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Abstract. In this paper we solve the gluing problem for the ζ-determinant of
a Dirac Laplacian. To do so, we develop a new approach to solve such problems
which relies heavily on the theory of elliptic boundary problems, the analysis
of the resolvent of the Dirac operator, and the introduction of an auxiliary
model problem. Moreover, as a byproduct of our approach we obtain a new
gluing formula for the eta invariant au gratis.

1. Introduction

Over the past several years there has been intense research activity in under-
standing the behavior of geometric and spectral invariants of Dirac type operators
under gluing, or surgery, of the underlying Riemannian manifold. This explosion
has resulted in the search for gluing or pasting formulas for these invariants and has
been motivated both by geometers in regards to, for instance, applications to the
Ray-Singer conjecture concerning the equality of torsion invariants, index theory
on manifolds with corners and gluing formulas for Dirac determinant line bundles,
and by mathematical physicists because of the rôle of these invariants in Donaldson,
Floer, and Seiberg-Witten theory and especially in the development of topological
quantum field theory where pasting laws for ζ-determinants are required. For recent
reviews, see Mazzeo and Piazza [33] and Scott and Wojciechowski [41].

However, the gluing formula for the ζ-determinant of a Dirac Laplacian has
remained an open question due to the nonlocal nature of this invariant. The purpose
of this paper is to solve this gluing problem. To do so, we develop a new technique to
attack such problems by using the theory of elliptic boundary problems, the analysis
of the resolvent of the Dirac operator, and the introduction of an auxiliary model
problem where the gluing problem can be solved explicitly [28]. This technique can
be adapted to more general cases like noncompact manifolds or the non-product
situation near the cutting hypersurface where, in the forthcoming papers [27], [29],
[30], we shall investigate similar gluing problems.

We begin with a brief history and rough description of gluing problems; in a mo-
ment we shall make these notions precise. The basic statement is as follows: Given
a partitioned compact manifold M = M− ∪ M+ into manifolds with boundaries,
describe the geometric and spectral invariants of Dirac operators on M in terms
of the invariants on M± with suitable boundary conditions. Here, we consider the
index as a geometric invariant and the eta invariant and ζ-determinant as spectral
invariants. The gluing problem for the index was the first to be solved. This was
settled by Atiyah, Patodi, and Singer [1], and the solution used the local nature
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of the index. The Bojarski Conjecture, later proved by Booß–Bavnbek and Woj-
ciechowski [4], gives a general gluing formula for the index in terms of the Fredholm
index of the pair of Cauchy data spaces from M±. Later we will see that Cauchy
data spaces play significant rôles in the solutions of each of the gluing problems.
Next, the gluing problem for the eta invariant was solved. The main difficultly in
this case has to do with the nonlocal nature of the eta invariant, in contrast to
the local nature of the index. However, the variation of the eta invariant is local,
and because of this locality a variety of formulas and proofs for the gluing prob-
lem have been found (many modulo Z), see for instance, Brüning and Lesch [5],
Bunke [6], Dai and Freed [10], Douglas and Wojciechowski [11], Hassell, Mazzeo,
and Melrose [19], Kirk and Lesch [22], Mazzeo and Melrose [32], Müller [34], Park
and Wojciechowski [37], Wojciechowski [47, 48]; see the survey articles by Bleecker
and Booß-Bavnbek [3] and Mazzeo and Piazza [33] for more on this topic. Of these
solutions, the one by Kirk and Lesch [22] is the most complete and general and, as
with Booß–Bavnbek and Wojciechowski’s [4] solution to the index problem, involves
the two Cauchy data spaces from M±.

Last in the chain of invariants is the ζ-determinant. Because of the highly
nonlocal nature of the ζ-determinant and its variation, the gluing problem for the
ζ-determinant has been the most difficult part of the gluing problems to solve.
Nonetheless, the gluing problem for the ζ-determinant of Laplace type operators
with local boundary conditions was solved by Burghelea, Friedlander, and Kappeler
[7] and has been further extended by Carron [9], Hassell [17], Hassell and Zelditch
[18], Lee [21], Loya and Park [25], Vishik [46], and many others. Compounding the
nonlocal nature of the ζ-determinant and its variation with the technical aspects
inherent with the global pseudodifferential boundary problems required for Dirac
type operators, the gluing problem for the ζ-determinant of Dirac type operators
has remained an open problem. The purpose of this paper is to solve this gluing
problem under general pseudodifferential boundary conditions and to develop a new
method to attack such problems. As with Booß–Bavnbek and Wojciechowski’s [4]
solution to the index problem and Kirk and Lesch’s [22] solution to the eta problem,
our solution involves the two Cauchy data spaces from M±. As we will see later,
this is because the gluing problems for the eta invariant and the ζ-determinant are
not entirely separate problems, but are really just two aspects of one problem —
the phase and modulus of the same global data defined by the two Cauchy data
spaces from M±.

We now describe our situation more precisely. Let D be a self-adjoint Dirac type
operator acting on C∞(M, S) where M is a closed compact Riemannian manifold
of arbitrary dimension and S is a Clifford bundle over M . We decompose the closed
manifold M into two submanifolds M−, M+ with a common boundary Y such that

M = M− ∪M+, ∂M− = ∂M+ = Y.

We also assume throughout this paper that the Riemannian metric of M and
the Hermitian metric of S are of product type over a tubular neighborhood N =
[−1, 1]× Y of Y where the Dirac operator takes the product form

D = G(∂u + DY ).

Here G is an endomorphism of S0 := S|Y and DY is a Dirac type operator over Y
satisfying G2 = −Id and DY G = −GDY . Recall that if {λk} are the eigenvalues
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of D, then the eta function of D is defined by

ηD(s) =
∑

λk 6=0

sign(λk)
|λk|s ,

and the zeta function of D2 is defined by

ζD2(s) =
∑

λk 6=0

λ−2s
k ,

both of which are defined a priori for Re s À 0 and extend to be meromorphic
functions on C that are regular at s = 0. The eta invariant η(D) is by definition
the value ηD(0) and the ζ-determinant is by definition

(1.1) detζD2 := exp
(
− d

ds

∣∣∣
s=0

ζD2(s)
)
.

The eta invariant was introduced in the paper [1] by Atiyah, Patodi, and Singer as
the boundary correction term in their index formula for manifolds with boundary.
The ζ-determinant was introduced by Ray and Singer in the paper [38] on the ana-
lytic torsion. Since these papers, eta invariants and ζ-determinants have impacted
geometry, topology, and physics in several ways, cf. Singer [44], [45], and Hawking
[20].

To formulate the gluing problem, we need to introduce boundary conditions.
By restriction, D induces Dirac type operators D+ over M+ and D− over M−.
For these operators, we choose orthogonal projections P+, P− over L2(Y, S0), that
provide us with well-posed boundary conditions for D+, D− in the sense of Seeley
[43]. Then we obtain Fredholm operators

DP± : dom(DP±) → L2(M±, S)

where
dom(DP±) := {φ ∈ H1(M±, S) | P±(φ|Y ) = 0 }.

Amongst these projectors are the orthogonalized Calderón projectors C± [8], which
are projectors defined intrinsically as the unique orthogonal projectors onto the
closures in L2(Y, S0) of the infinite-dimensional Cauchy data spaces of D±:

{φ|Y | φ ∈ C∞(M±, S) , D±φ = 0 } ⊂ C∞(Y, S0).

In order to define the eta invariant of DP± and the ζ-determinant of D2
P± , we need

to restrict to a subclass of projectors; a natural class of such projectors are those
in the smooth, self-adjoint Grassmannian Gr∗∞(D±), which consists of orthogonal
projections P± with two properties: (1) P± − C± are smoothing operators; (2)
GP± = (Id − P±)G. Examples of such projections are the generalized APS spec-
tral projections P− = Π< + 1+σ1

2 Π0, P+ = Π> + 1+σ2
2 Π0 where Π<, Π>, Π0 are

the orthogonal projections onto the eigenspaces of the negative, positive, and zero
eigenvalues of DY , respectively, and the σi’s are involutions on ker(DY ) anticom-
muting with G. For P± ∈ Gr∗∞(D±), the eta invariant η(DP±) and ζ-determinant
detζD2

P± can be defined in the same way as in the closed case, see Grubb [14],[15],
Loya and Park [26], and Wojciechowski [48].

The gluing problem for the spectral invariants is to describe the “defects”

(1.2) η(D)− η(DP+)− η(DP−) ,

(1.3) log detζD2 − log detζD2
P+
− log detζD2

P−
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in terms of recognizable data. These types of problems are also called surgery,
pasting, or splitting, problems of the spectral invariants. The aim of this paper is to
provide complete simultaneous solutions to these gluing problems and to develop a
new method to attack such problems.

Before explaining our approach to the gluing problem, we first discuss the choice
of the projections P± imposing the boundary conditions. After Atiyah, Patodi, and
Singer introduced the APS spectral projector in their influential paper [1], the APS
spectral projector has been used, to some extent, in the gluing formulas for the eta
invariant; moreover, most of the formulas hold modulo an integer ambiguity, cf. [3].
This ambiguity was removed by Kirk and Lesch [22] where they formulated their
result in terms of the boundary conditions given by the Calderón projectors rather
than the APS spectral projectors. This suggests that it is more appropriate to use
the Calderón projector instead of the APS spectral projector in regards to the gluing
formula for the eta invariant. For the ζ-determinant gluing formula of the Dirac
Laplacian, one can also see the need to use Calderón projectors by the work of the
second author and Wojciechowski [36], [37] on the adiabatic decomposition of the ζ-
determinant. Here, ‘adiabatic decomposition’ means to investigate the limit of the
ratio of the ζ-determinants of the whole manifold and the decomposed manifolds as
the length of the collar N = [−1, 1]× Y is stretched to infinity. This limiting value
is described by a ratio of determinants involving the scattering matrices defined
from the manifolds obtained by attaching half infinite cylinders to the decomposed
manifolds with boundary. Here, the scattering matrix is the analog of the Calderón
projector for manifolds with cylindrical end.

These phenomena lead us to first solve the gluing problem for the ζ-determinant
(1.3) with respect to the Calderón projectors P± = C± rather than the APS spectral
projectors (see Theorem 1.1), and then only after understanding this case, proceed
to general P± (see Theorem 1.2).

Because we choose to work with Calderón projectors and therefore have no ex-
plicit form for the heat kernels of D2

C± , we have to proceed in a different way from
the established methods used to derive gluing formula of the eta invariant. As a
consequence, we develop a new method which relies on the theory of elliptic bound-
ary problems, the analysis of the resolvents of D and DC± , and the introduction of
an auxiliary model problem. The basic idea is to introduce a family of operators
K(λ) over Y defined by the Calderón projectors of (D± − λ) on M±. We then
connect the operator K(λ) to the resolvents (D− λ)−1 and (DC± − λ)−1, and then
connect the resolvents to the spectral invariants. The operator K(λ) describes how
the two Cauchy data spaces of (D± − λ) over M± match into the global data of
(D−λ) over M , which simultaneously contains the phase data describing the eta in-
variants (1.2) and the modulus data describing the ζ-determinants (1.3). From this
view point, the gluing problems of the eta invariant and the ζ-determinant simply
represent two aspects of one problem. Another new feature of our method is the
introduction of an auxiliary model problem over the finite cylinder N = [−1, 1]×Y .
We consider the corresponding gluing problem and family of operators Kc(λ) for
the decomposition of N into its two halves N− = [−1, 0]× Y and N+ = [0, 1]× Y .
The essence of our approach is to compare the original problem over M with this
model problem over N , where the gluing problem can be solved exactly [28]. This
enables us to avoid certain trace class issues involving the resolvents (D − λ)−1
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and (DC± −λ)−1 and allows us to derive the gluing formulas with no undetermined
constants.

The use of resolvents in the study of spectral invariants can also be found in, for
instance, Forman [12] (cf. Levit and Smilansky [23]), Burghelea, Friedlander, and
Kappeler [7], Scott and Wojciechowski [40], Scott [39], and Loya and Park [25], [26].
However, the papers [12], [40], [39], [26] deal with the relative invariant problem,
and not the gluing problem, of the spectral invariants with two different boundary
conditions over a single manifold with boundary. Hence, there is no gluing feature
concerning the mechanism to which the two Cauchy data spaces from M± connect
with the global data of the closed manifold M ; in contrast, this is the crucial point
for the gluing problem. This distinction makes our analysis substantially different
from the analysis used for the relative invariant problem. The gluing formula for
the ζ-determinant of a Laplace type operator over M with Dirichlet boundary
conditions was considered in [7], [25]. In this case, the resolvents of the Laplace
type operators (with Dirichlet boundary condition) over M (and M±) are linked
through the sum of the Dirichlet to Neumann operators defined over M±. However,
this operator cannot be applied to the Dirac operator situation where one deals with
global pseudodifferential projections and not the local Dirichlet condition.

We now state our main theorem. The Calderón projectors C± have the matrix
forms

(1.4) C± =
1
2

(
Id κ−1

±
κ± Id

)

with respect to L2(Y, S0) = L2(Y, S+) ⊕ L2(Y, S−) where S± are the subbundles
of S0 consisting of the (±i)-eigensections of G. Here, the maps κ± : L2(Y, S+) →
L2(Y, S−) are isometries, so that U := −κ−κ−1

+ is a unitary operator over L2(Y, S−).
Moreover, this operator is of Fredholm determinant class. We denote by Û the re-
striction of U to the orthogonal complement of its (−1)-eigenspace. We also put

L :=
hM∑

k=1

γ0Uk ⊗ γ0Uk =
hM∑

k=1

〈 · , γ0Uk〉L2(Y,S0)
γ0Uk

where hM = dim ker(D), γ0 is the restriction map from M to Y , and {Uk} is an
orthonormal basis of the kernel of D. Then L is a positive operator on the finite-
dimensional vector space γ0(ker(D)). The following theorem is the main result of
our paper.

Theorem 1.1. The following ζ-determinant gluing formula holds:

detζD2

detζD2
C+ · detζD2

C−
= 2

−ζ
D2

Y
(0)−hY (detL)−2 detF

(2Id + Û + Û−1

4

)

where ζD2
Y
(s) is the ζ-function of D2

Y , hY = dim ker(DY ), and detF denotes the
Fredholm determinant.

A brief sketch of the proof of Theorem 1.1 is as follows. We adopt the strategy of
Forman [12] and Burghelea, Friedlander, and Kappeler [7], by introducing a spectral
parameter λ and relying heavily on resolvents. For our problem, we consider the
aforementioned operator K(λ) which depends on the Cauchy data spaces of (D±−λ)
on M± and the corresponding operator Kc(λ) over the model cylinder. We prove
that K(λ)Kc(λ)−1 is of Fredholm determinant class and show that the λ-derivative
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of log detF (K(λ)Kc(λ)−1) equals a relative trace of resolvents (D − λ)−1, (DC± −
λ)−1 and the corresponding resolvents over the model cylinder. On the other hand,
for purely imaginary λ, the λ-derivative of the log of a ratio of the ζ-determinants
of D2 − λ2,D2

C± − λ2 and the corresponding operators over the model cylinder can
be expressed in terms of this relative trace. Hence we obtain a relation between
detF (K(λ)Kc(λ)−1) and a ratio of the ζ-determinants of D2 − λ2,D2

C± − λ2 and
the corresponding operators over the model cylinder up to an integration constant.
We then study the asymptotics of detF (K(λ)Kc(λ)−1) as =λ → ±∞ to determine
this constant. Finally, we study the asymptotics of detF (K(λ)Kc(λ)−1) as λ → 0
and combine this with the exact gluing formula over the model cylinder to get the
desired formula in Theorem 1.1.

We can generalize the gluing formula stated in Theorem 1.1 in terms of other
boundary conditions if we combine Theorem 1.1 with the result in [26]. To explain
this generalization, let P1 ∈ Gr∗∞(D−) and P2 ∈ Gr∗∞(D+). The projections P1

and P2 determine maps κ1 and κ2 as in (1.4), so we can define unitary operators
U1 := κ−κ−1

1 and U2 := κ2κ
−1
+ over L2(Y, S−). As before, we let Ûi denote the

restriction of Ui to the orthogonal complement of its (−1)-eigenspace. We define
the operator L1 over the finite-dimensional vector space ran(C−)∩ ran(Id−P1) by

L1 := −P1 GR−1
− GP1

where R− is the sum of the Dirichlet to Neumann maps on the double of M−, that
was introduced in [7], and P1 is the orthogonal projection onto ran(C−) ∩ ran(Id−
P1). In [26], we prove that L1 is a positive operator so that detL1 is a positive
real number. We define L2 in a similar way. We can now state the general gluing
formula for the ζ-determinant.

Theorem 1.2. The following general gluing formula holds:

detζD2

detζD2
P1
· detζD2

P2

= 2
−ζ

D2
Y

(0)−hY (detL)−2 detF
(2Id + Û + Û−1

4

)

·
2∏

i=1

(detLi)−2 · detF
(2Id + Ûi + Û−1

i

4

)−1

.

The gluing formula of the ζ-determinant in Theorem 1.2 holds in particular for
the generalized APS spectral projectors P1 = Π< + 1+σ1

2 Π0, P2 = Π> + 1+σ2
2 Π0.

The resulting formula is not so simple in comparison to the formula in Theorem 1.1,
which reinforces the prominent rôle of the Calderón projector in gluing problems
over the APS projector. However, taking generalized APS projectors in Theorem
1.2 and elongating the collar, and using the description of the adiabatic limit of the
Cauchy data spaces [35], we get a simple derivation of the aforementioned adiabatic
decomposition formula of the ζ-determinant of a Dirac Laplacian presented in [36],
[37], which was proved mainly using the Duhamel principle and small eigenvalue
analysis through scattering theory (cf. [31]). As we already mentioned, the method
we use to attack the ζ-determinant actually solves the gluing problem for the eta
invariant au gratis:

Corollary 1.3 (of proof). The following gluing formula holds:

η̃(D)− η̃(DP1)− η̃(DP2) =
1

2πi
Log detF U12 mod Z,
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where the tildes denote reduced eta invariants, e.g. η̃(D) = (η(D) + dim ker(D))/2,
Log the principal branch of the logarithm, and U12 := −κ1κ

−1
2 .

Remark 1.4. As shown in Section 9, the integer defect can be identified exactly
in terms of winding numbers involving the fundamental operator K(λ), the corre-
sponding operator Kc(λ) for the auxiliary model problem, and related operators
from the relative invariant problem in [26]; this is a new formulation of the integer
defect. The eta formula (with a different right-hand side) was first proved by Kirk
and Lesch [22, Th. 5.10] using techniques from [5], [40]. However, the proof of the
eta gluing formula we present is distinct from theirs and in our case it is proved
‘simultaneously’ with the ζ-determinant gluing formula.

The structure of this paper is as follows. In Section 2, we review some material
on elliptic boundary problems for Dirac type operators. In Section 3, we introduce
the model problem over the finite cylinder N and compare this with our original
problem. In Section 4, we introduce a family of operators K(λ) that links the
Cauchy data spaces of (D± − λ) with the resolvents (D − λ)−1 and (DC± − λ)−1

and we define the corresponding operator Kc(λ) for the auxiliary model problem.
We also prove an equality between the variation of log detF (K(λ)Kc(λ)−1) and the
relative traces of the resolvents. In Section 5, we discuss the asymptotic behavior
of detF (K(λ)Kc(λ)−1) for λ near 0. This analysis enables us to determine the
contribution detL in the formula of the ζ-determinant. In Section 6, we study the
limits of the Calderón projectors for (D± − λ) as =λ → ±∞ and we use this in
Section 7 to derive asymptotic expansions for detF (K(λ)Kc(λ)−1) as =λ → ±∞.
In Section 8, we express the spectral invariants of D, DC± , and those on the finite
cylinder in terms of log detF (K(λ)Kc(λ)−1), so that we can apply the results in the
previous sections to prove the gluing formulas of the spectral invariants. Finally,
combining all the results established in the previous sections, in Section 9 we prove
Theorems 1.1, 1.2, and Corollary 1.3.

The authors thank Gerd Grubb and K. P. Wojciechowski not only for their help
in the writing of this paper, but also for taking a keen interest in the developments
of our mathematical careers. The authors also thank the referee for corrections and
helpful suggestions, all of which considerably improved this paper.

2. Elliptic boundary problems for Dirac type operators

In this section we review basic material on elliptic boundary problems for Dirac
type operators. We follow the notation in the introduction.

Throughout this paper, we shall fix a union of sectors Λ ⊂ C of the form

(2.1) Λ = {λ ∈ C \ {0} | ε0 ≤ arg λ ≤ π − ε0 or π + ε0 ≤ arg λ ≤ 2π − ε0},
where 0 < ε0 < π/2. For λ ∈ Λ, we define

D(λ) = D − λ : H1(M, S) → L2(M, S),

then its inverse operator D(λ)−1 is well-defined. We denote the restriction of D(λ)
over M± by D±(λ). We denote the trace, or restriction map to Yε = {ε} × Y ⊂ M
by γε. Then γε is a well-defined map

γε : Hk(M,S) → Hk− 1
2 (Yε, S0)

for k > 1
2 . The Calderón projectors of D±(λ) are defined by

(2.2) P±(λ) = ±γ0±D(λ)−1γ∗0G : L2(Y, S0) → L2(Y, S0)
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where γ0± = limε→0± γε and γ∗0 is the adjoint map of γ0 at {0}×Y . In [42], [13], it
is proved that P±(λ) are pseudodifferential projections, their images coincide with
the closures in L2(Y, S0) of Cauchy data spaces of D±(λ):

H±(λ) =
{

γ0±φ± | φ± ∈ C∞(M±, S) , D±(λ)φ± = 0 over M± \ Y
}

,

and the following equality holds:

(2.3) P+(λ) + P−(λ) = Id.

With C± denoting the unique orthogonalized Calderón projectors, which are by
definition the (unique) orthogonal projectors onto the closures of the Cauchy data
spaces H±(0), we define

S±(λ) = C±P±(λ),

S±(λ)−1 = P o
±(λ)[ C±P o

±(λ) + (Id− C±)(Id− P o
±(λ)) ]−1C±,

where P o
±(λ) are the unique orthogonal projections onto the closures of the Cauchy

data spaces H±(λ) given by (see [2], [4])

P o
±(λ) := P±(λ)P ∗±(λ)

(
P±(λ)P ∗±(λ) + (Id− P ∗±(λ))(Id− P±(λ))

)−1
.

Then S±(λ) and S±(λ)−1 satisfy the following equations [13]:

(2.4) S±(λ)S±(λ)−1 = C±, S±(λ)−1S±(λ) = P±(λ).

Using these formulas and that S±(λ) are holomorphic in λ ∈ Λ, it is straightforward
to show that S±(λ)−1 are holomorphic functions of λ ∈ Λ.

For the Dirac type operators D±(λ), we impose the boundary conditions given
by C± and denote the resulting operators by

DC±(λ) : dom(DC±(λ)) → L2(M,S)

where

dom(DC±(λ)) := { φ ∈ H1(M±, S) | C±γ0φ = 0 }.
We define

D±(λ)−1 = r±D(λ)−1e±

where r± : H1(M, S) → H1(M±, S) are the restriction maps from M to M± and
e± : L2(M±, S) → L2(M, S) are the extension maps by zero out of M±. The
Poisson operators of DC±(λ) are defined by

(2.5) KC±(λ) = K±(λ)S±(λ)−1

where K±(λ) = ±D±(λ)−1γ∗0G. These operators KC±(λ) satisfy

(2.6) (D − λ)KC±(λ) = 0, C±γ0KC±(λ) = C±.

Then the following equality holds [13]:

(2.7) DC±(λ)−1 = D±(λ)−1 −KC±(λ)C±γ0D±(λ)−1.
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3. Comparison with the auxiliary model problem

In this section, we compare our original problem with a corresponding auxiliary
model problem on the finite cylinder N , which is defined as follows.

We consider the restriction of the Dirac type operator D(λ) to N , whose bound-
ary consists of two components {±1}× Y . Recall that Π>, Π<, and Π0 denote the
orthogonal projections onto the positive, negative, and zero eigenspaces, respec-
tively, of DY . By the cobordism invariance of the index [4], we have dim

(
ker(DY )∩

C∞(Y, S+)
)

= dim
(
ker(DY )∩C∞(Y, S−)

)
, so we can henceforth fix an involution

σ over ker(DY ) that anticommutes with G. We then impose boundary conditions
Cc
− = Π< + 1−σ

2 Π0 at {1} × Y , Cc
+ = Π> + 1+σ

2 Π0 at {−1} × Y for the restriction
of D(λ) to N . Let us denote the resulting operator with these boundary conditions
by Dc(λ). Then

Dc(λ) : dom(Dc(λ)) → L2(N,S)

where
dom(Dc(λ)) := { φ ∈ H1(N,S) | Cc

±
(
γ∓1φ

)
= 0 }.

We denote the restriction of Dc(λ) to N− = [−1, 0] × Y by Dc
−(λ) and to N+ =

[0, 1] × Y by Dc
+(λ). If Kc(λ) = Dc(λ)−1γ∗0G, then the usual arguments using the

rational symbolic structure of Dc(λ)−1 (cf. the proof of Theorem 6.1) show that if
ϕ ∈ C∞(Y, S0), then

(Kc(λ)ϕ
)∣∣

N±
∈ dom(Dc

±(λ)) and is smooth up to each side
of Y with at most a jump discontinuity at Y . In particular, we can define the
Calderón projectors P c

±(λ) of Dc
±(λ) by

P c
±(λ) = ±γ0±Dc(λ)−1γ∗0G.

One can show that Dc(0) is invertible and P c
±(0) = Cc

±. In the following lemma we
summarize the properties of P c

±(λ).

Lemma 3.1. For all λ ∈ Λ∪ {0}, the operators P c
±(λ) over C∞(Y, S0) are projec-

tions satisfying

(3.1) P c
+(λ) + P c

−(λ) = Id

and the images of P c
±(λ) over C∞(Y, S0) coincide with the Cauchy data spaces

Hc
±(λ) =

{
γ0±φ± | φ± ∈ C∞(N±, S) ∩ dom(Dc

±(λ)) , Dc
±(λ)φ± = 0

}
.

Proof. The proof of this lemma is similar to Seeley [42, Th. 5] (see also Grubb
[13]). We shall prove that P c

−(λ) is a projection with image Hc
−(λ); a similar proof

works for P c
+(λ). We first show that P c

−(λ) = Id on Hc
−(λ). Let ϕ = γ0−φ−, where

φ− ∈ C∞(N−, S) ∩ dom(Dc
−(λ)) and Dc

−(λ)φ− = 0, and define

φ :=

{
φ− on N−
0 on N \N−.

SinceDc
−(λ)φ− = 0 andDc(λ) = G(∂u+DY )−λ, and the derivative of the Heaviside

function is the delta distribution, it follows that

Dc(λ)φ = −δY ⊗Gϕ = −γ∗0Gϕ,

since γ∗0 = δY ⊗ · with δY the delta distribution concentrated at {0} × Y . Thus,
φ = −Dc(λ)−1γ∗0Gϕ, and so

P c
−(λ)ϕ := −γ0−

(Dc(λ)−1γ∗0Gϕ
)

= γ0−
(
φ
)

= ϕ.
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Hence, P c
−(λ) = Id on Hc

−(λ). We now show that P c
−(λ)2 = P c

−(λ). Let ϕ ∈
C∞(Y, S0). Then by definition of P c

−(λ), we have

P c
−(λ)ϕ = γ0−φ , φ = −(Dc(λ)−1γ∗0Gϕ

)∣∣
N−

.

Note that φ ∈ C∞(N−, S) ∩ dom(Dc
−(λ)) and Dc

−(λ)φ = 0. Thus, γ0−φ ∈ Hc
−(λ),

so as we know that P c
−(λ) = Id on Hc

−(λ), it follows that

P c
−(λ)2ϕ = P c

−(λ)
(
P c
−(λ)ϕ

)
= P c

−(λ)
(
γ0−φ

)
= γ0−φ = P c

−(λ)ϕ.

We now prove that P c
−(λ) + P c

+(λ) = Id. Let φ ∈ C∞c ((−1, 1) × Y, S) and let
ψ ∈ C∞(Y, S0). Denote the L2-pairing on Y by 〈 , 〉 and denote the distributional
pairing on N by parentheses. If Kc(λ) = Dc(λ)−1γ∗0G, then

(3.2) 〈γ0φ,Gψ〉 = (γ∗0Gψ)(φ) =
(Dc(λ)Kc(λ)ψ

)
(φ)

=
(Kc(λ)ψ

)(Dc(λ)∗φ
)

=
∫ 1

−1

〈Dc(λ)∗φ,Kc(λ)ψ〉 du.

Since the function Kc(λ)ψ is smooth off Y with at most a jump discontinuity at Y
and φ ∈ C∞c ((−1, 1)× Y, S), we can write

∫ 1

−1

〈Dc(λ)∗φ,Kc(λ)ψ〉 du = lim
ε→0+

∫

|u|>ε

〈Dc(λ)∗φ,Kc(λ)ψ〉 du.

Now observe that∫

|u|>ε

〈Dc(λ)∗φ,Kc(λ)ψ〉 du =
∫

|u|>ε

〈(G(∂u + DY )− λ
)
φ,Kc(λ)ψ〉 du

= −
∫

|u|>ε

〈∂uφ,GKc(λ)ψ〉 du +
∫

|u|>ε

〈φ,
(
GDY − λ

)Kc(λ)ψ〉 du

= −
∫

|u|>ε

∂u〈φ,GKc(λ)ψ〉 du +
∫

|u|>ε

〈φ,Dc(λ)Kc(λ)ψ〉 du

= −〈γ−εφ,Gγ−εKc(λ)ψ〉+ 〈γεφ,GγεKc(λ)ψ〉,(3.3)

where at the last step we used that Dc(λ)Kc(λ) = 0 off Y and the fundamental
theorem of calculus, recalling that φ is supported away from u = ±1. Taking
ε → 0+ in (3.3) and equating this with (3.2), and using the definition of P c

−(λ) and
P c

+(λ), we conclude that

〈γ0φ,Gψ〉 = 〈γ0φ,GP c
−(λ)ψ〉+ 〈γ0φ,GP c

+(λ)ψ〉.
Since φ ∈ C∞c ((−1, 1) × Y, S) and ψ ∈ C∞(Y, S0) were arbitrary, it follows that
Id = P c

−(λ) + P c
+(λ), and our proof is now complete. ¤

We now compare the Calderón projectors of our original problem to those of
our model problem. To this end, we first define a space of parameter-dependent
smoothing operators. For any p ∈ Z, we define Ψ−∞,p

Λ (Y, S0) as the space of
smoothing operators S(λ) over Y depending smoothly on the parameter λ ∈ Λ
such that as |λ| → ∞ in Λ, we have

(3.4) S(λ) ∼
∞∑

j=0

|λ|p−j Sj(θ),

where Sj(θ) ∈ Ψ−∞(Y, S0) (the space of smoothing operators on Y ) depends
smoothly on θ := λ/|λ|. If S(λ) happens to depend holomorphically on λ, then
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the asymptotic sum (3.4) can be written with |λ| replaced with λ and where Sj is
independent of θ. Note that Ψ−∞(Y, S0) ⊂ Ψ−∞,0

Λ (Y, S0).

Proposition 3.2. The differences C± − Cc
± are in Ψ−∞(Y, S0) and the differences

P±(λ)− P c
±(λ) are in Ψ−∞,−2

Λ (Y, S0).

Proof. We first prove the statement for the λ-dependent operators. The main idea
follows from the observation that we can replace D(λ)−1 by a suitable parametrix,
which involves the operator Dc(λ)−1 up to a smoothing operator plus an integral
operator whose support is far from {0} × Y .

Let ρ(a, b) : [−1, 1] → [0, 1] be a smooth even function equal to 0 for −a ≤ u ≤ a
and equal to 1 for b ≤ |u| . We define

φ1 = 1− ρ(5/7, 6/7) , φ2 = ρ(1/7, 2/7) , ψ2 = ρ(3/7, 4/7) , ψ1 = 1− ψ2

and then we extend these functions to be functions on M in the obvious way. We
now define a parametrix Q(λ) for the operator D(λ)−1 by

(3.5) Q(λ)(x, z) = φ1(x)Dc(λ)−1(x, z)ψ1(z) + φ2(x)D(λ)−1(x, z)ψ2(z).

Then we have

D(λ)Q(λ)(x, z) = Id + G (∂uφ1)(x)Dc(λ)−1(x, z)ψ1(z)

+ G (∂uφ2)(x)D(λ)−1(x, z)ψ2(z).

Hence,
D(λ)Q(λ) = Id + S(λ),

where S(λ) is a smoothing operator whose kernel S(λ)(x, z) is equal to 0 if the
distance from x to z is smaller than 1/7. Since the supports of ∂uφi and ψi are
disjoint, it follows from work in Grubb and Seeley [16] that S(λ) ∈ Ψ−∞,−1

Λ (M, S).
Thus,

(3.6) D(λ)−1 −Q(λ) = S ′(λ)

where S ′(λ) = −D(λ)−1S(λ) ∈ Ψ−∞,−2
Λ (M, S). Finally, using the definitions of

P±(λ) and P c
±(λ) and the equalities (3.5) and (3.6), we obtain

P±(λ)− P c
±(λ) = ±γ0±(D(λ)−1 −Dc(λ)−1)γ∗0G = ±γ0±S ′(λ)γ∗0G

It follows that P±(λ)− P c
±(λ) ∈ Ψ−∞,−2

Λ (Y, S0).
We now prove that C−−Cc

− is in Ψ−∞,0
Λ (Y, S0), with a similar argument holding

for the “+” operators. For this, we use that C− is given by the formula (2.2) with
D(λ)−1 replaced by D̃−1 where D̃ is the invertible double of D− on M− ∪ (−M−),
cf. [4]. Then replacing D(λ)−1 and Dc(λ)−1 by D̃−1 and Dc(0)−1, respectively, in
the definition of the parametrix (3.5), and then proceeding as we did before, proves
that C− − Cc

− is in Ψ−∞,0
Λ (Y, S0). ¤

We next compare the Poisson operators of our original problem to those of the
model problem. For Dc

±(λ), we impose the boundary conditions defined by the
projections Cc

± at {0} × Y and we denote by Dc
Cc
±
(λ) the resulting operators. We

also define Dc
±(λ)−1 as we did for D±(λ)−1. Observe that the operators Dc

Cc
±
(λ)−1

and Dc
±(λ)−1 can be extended as the zero maps over L2(N±, S)⊥ ⊂ L2(M,S) and

we obtain operators acting on L2(M, S); we use the same notations for these exten-
sions. Just as we did in (2.4) and (2.5) for the operators D±(λ), we can also define
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operators Sc
±(λ), Sc

±(λ)−1, Kc
±(λ), and Kc

Cc
±
(λ) for the operator Dc

±(λ). In particu-
lar, in an obvious way, we can regard the operators Kc

±(λ) and Kc
Cc
±
(λ) as mapping

L2(Y, S0) into L2(M, S). Then using formulas (3.5) and (3.6) in Proposition 3.2, it
is straightforward to prove

Lemma 3.3. The differences S±(λ)− Sc
±(λ) and S±(λ)−1 − Sc

±(λ)−1 are smooth-
ing operators over L2(Y, S0), KC±(λ) − Kc

Cc
±
(λ) : L2(Y, S0) → L2(M±, S) has a

smoothing Schwartz kernel apart from a jump discontinuity at {±1} × Y in M±,
and finally, γ0(D±(λ)−1 − Dc

±(λ)−1) : L2(M±, S) → L2(Y, S0) has a smoothing
Schwartz kernel apart from a jump discontinuity at {±1} × Y in M±.

Note that the jump discontinuity in the kernel of KC±(λ)−Kc
Cc
±
(λ) occurs because

Kc
Cc
±
(λ) maps into L2(N±, S), so Kc

Cc
±
(λ) is identically zero off N± when considered

as a map into L2(M±, S). A similar remark holds for γ0(D±(λ)−1 −Dc
±(λ)−1).

Finally, we compare the resolvents of our original problem to those of the model
problem. First, we note that a similar formula to (2.7) holds:

(3.7) Dc
Cc
±
(λ)−1 = Dc

±(λ)−1 −Kc
Cc
±
(λ)Cc

±γ0Dc
±(λ)−1.

Second, we note that the Hilbert spaces L2(M,S), L2(N, S) have the decomposi-
tions

L2(M,S) = L2(M+, S)⊕ L2(M−, S) , L2(N, S) = L2(N+, S)⊕ L2(N−, S).

With respect these decompositions, D(λ)−1, Dc(λ)−1 have the matrix forms

D(λ)−1 =
( D+(λ)−1 r+D(λ)−1e−

r−D(λ)−1e+ D−(λ)−1

)
,

Dc(λ)−1 =
( Dc

+(λ)−1 r+Dc(λ)−1e−
r−Dc(λ)−1e+ Dc

−(λ)−1

)
.

(3.8)

Here, r+, r− are the restriction maps to M+,M− and e+, e− are the extension maps
by zero out of M+,M−. To simplify notation, from now on we put

DC(λ)−1 := DC+(λ)−1 t DC−(λ)−1, Dc
Cc(λ)−1 := Dc

Cc
+
(λ)−1 t Dc

Cc
−
(λ)−1.

Proposition 3.4. The following operator is of trace class:

D(λ)−1 −DC(λ)−1 − (Dc(λ)−1 −Dc
Cc(λ)−1) over L2(M, S).

Proof. By the formulas (2.7) and (3.7) for DC±(λ)−1 and Dc
Cc
±
(λ)−1, we have

D±(λ)−1 −DC±(λ)−1 − (Dc
±(λ)−1 −Dc

Cc
±
(λ)−1)

= −KC±(λ)C±γ0D±(λ)−1 +Kc
Cc
±
(λ)Cc

±γ0Dc
±(λ)−1.

By Proposition 3.2 and Lemma 3.3, it follows that the right-hand side is of trace
class over L2(M,S). Therefore, if Dd(λ)−1 and Dc

d(λ)−1 are the operators defined
by the diagonal terms of the matrices (3.8), then the operator

Dd(λ)−1 −DC(λ)−1 − (Dc
d(λ)−1 −Dc

Cc(λ)−1)

is of trace class over L2(M,S). The claim now follows from the fact the difference
of D(λ)−1 (Dc(λ)−1) and Dd(λ)−1 (Dc

d(λ)−1) is given by off diagonal terms in the
decomposition (3.8).

For an alternative proof, one can take an arbitrary φ ∈ L2(M, S) and consider
the sections D(λ)−1φ, DC(λ)−1φ, Dc(λ)−1φ, and Dc

Cc(λ)−1φ, and show that the
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alternating sum of these sections is smooth over M+ tM− except with jump dis-
continuities at {±1}×Y (because Dc(λ)−1φ, and Dc

Cc(λ)−1φ vanish outside of N);
this implies that the operator in question is trace class. ¤

Remark 3.5. Proposition 3.4 is a crucial element in the proof of Theorem 1.1
because the trace Tr(D(λ)−1 −DC(λ)−1 − (Dc(λ)−1 −Dc

Cc(λ)−1)) is related to the
variation of the log of the ratio of the relative ζ-determinants of D2−λ2,D2

C−λ2 and
(Dc)2 − λ2, (Dc

Cc)2 − λ2 (see Proposition 8.4 where we set λ = iν with ν ∈ R). We
also remark that we can regularize the trace of D(λ)−1 − DC(λ)−1 by subtracting
off other operators instead of the model cylinder operators. However, the reason we
choose the finite cylinder operators is because the ζ-determinants of these operators
can be computed exactly (see Lemma 9.1). This ‘comparison with model problems’
technique can also be found in [25] and [27] where we investigate similar gluing
problems.

4. Variation of log detF (K(λ)Kc(λ)−1)

In this section, we define the key operators of this paper, K(λ) and Kc(λ), over
Y , which are defined through our various Calderón projectors.

Recall from (1.4) that C± have the matrix forms

(4.1) C+ =
1
2

(
Id κ−1

+

κ+ Id

)
, C− =

1
2

(
Id κ−1

−
κ− Id

)

with respect to L2(Y, S0) = L2(Y, S+) ⊕ L2(Y, S−), where the operators κ± are
isometries from L2(Y, S+) to L2(Y, S−). Now using this decomposition we define

(4.2) V =
(

Id 0
0 −κ−κ−1

+

)
over L2(Y, S+)⊕ L2(Y, S−).

Then V is a unitary operator on L2(Y, S0) and

V (Id− C+)V −1 = C−.

For λ ∈ Λ ∪ {0}, we introduce K(λ), Kc(λ) acting on L2(Y, S0),

K(λ) = S+(λ)−1 + S−(λ)−1C−V (Id− C+),

Kc(λ) = Sc
+(λ)−1 + Sc

−(λ)−1.

Remark 4.1. To see why these operators are primal to the gluing problem, con-
sider the following formal argument. Let us focus on K(λ). First of all, the factor
C−V (Id − C+) in front of S−(λ)−1 allows K(λ) to be written as a diagonal ma-
trix with respect to the following direct sums (the second is non-orthogonal) of
L2(Y, S0):

(4.3) K(λ) =
(

S+(λ)−1 0
0 S−(λ)−1C−V (Id− C+)

)
:

ran(C+)
⊕

ran(Id− C+)
→

ran(P+(λ))
⊕

ran(P−(λ))
.
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Second, recalling that S+(λ) = C+P+(λ) = C+γ0+D(λ)−1γ∗0G, proceeding formally
(as the following operators are not of trace class), observe that

Tr(∂λS+(λ)S+(λ)−1) = Tr(C+γ0+D(λ)−2γ∗0GS+(λ)−1)

= Tr
(C+γ0+D(λ)−1D(λ)−1γ∗0GS+(λ)−1)

= Tr
(D+(λ)−1γ∗0GS+(λ)−1 C+γ0D+(λ)−1)

= Tr
(KC+(λ)C+γ0D+(λ)−1) (by (2.5))

= Tr
(D+(λ)−1 −DC+(λ)−1) (by (2.7)).

Thus, in view of the diagonal decomposition (4.3), formally we have

∂λ log detF K(λ) = −Tr
(D+(λ)−1 −DC+(λ)−1)− Tr

(D−(λ)−1 −DC−(λ)−1)

= −Tr
(D(λ)−1 −DC(λ)−1).

Making a similar formal argument with Kc(λ), we formally obtain

∂λ log detF (K(λ)Kc(λ)−1) = −Tr
(D(λ)−1 −DC(λ)−1 − (Dc(λ)−1 −Dc

Cc(λ)−1)
)
.

In Theorem 4.4 we shall establish this variation formula in a long, but careful,
argument. Now in view of Remark 3.5, we can see that ∂λ log detF (K(λ)Kc(λ)−1)
is related to the variation of a ratio of relative ζ-determinants.

A basic property of these operators K(λ), Kc(λ) is that they are holomorphic
functions of λ ∈ Λ. Another fundamental property is

Proposition 4.2. For λ ∈ Λ, the operators K(λ) and Kc(λ) are invertible with
inverses given by

K(λ)−1 =S+(λ) + (Id− C+)V −1C−S−(λ),

Kc(λ)−1 =Sc
+(λ) + Sc

−(λ);

moreover, Kc(0) = Id, so Kc(λ) is invertible even for λ = 0.

Proof. First, from the identities (2.3) and (2.4) it is easy to see that

K(λ)K(λ)−1 =
(
S+(λ)−1 + S−(λ)−1C−V (Id− C+)

)

◦ (
S+(λ) + (Id− C+)V −1C−S−(λ)

)

=S+(λ)−1S+(λ) + S−(λ)−1S−(λ) = P+(λ) + P−(λ) = Id.

Second, using the equalities P+(λ)P−(λ) = 0, P−(λ)P+(λ) = 0, which follow from
(2.3), we also have

K(λ)−1K(λ) =
(
S+(λ) + (Id− C+)V −1C−S−(λ)

)

◦ (
S+(λ)−1 + S−(λ)−1C−V (Id− C+)

)

=C+ + (Id− C+) = Id.

A similar computation shows that Sc
+(λ) + Sc

−(λ) is the inverse of Kc(λ). Since
Kc(0) = Sc

+(0)−1 + Sc
−(0)−1 = Cc

+ + Cc
− = Id, our proof is complete. ¤

We remark that K(0) in general has a nontrivial kernel (see Section 5). In
Equation (7.6), we will see that K(λ)Kc(λ)−1 has the form Id+S(λ) for a smoothing
operator S(λ). Hence, we can define detF (K(λ)Kc(λ)−1), which is holomorphic
when K(λ)Kc(λ)−1 is defined. Although K(λ) and Kc(λ) are defined over Λ∪{0},
both K(λ) and Kc(λ) have meromorphic extensions over C with poles on the real
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axis. Let us choose, and henceforth fix, an open simply connected region of the
plane containing all of Λ and an interval on the real axis, and a corresponding
logarithm log detF (K(λ)Kc(λ)−1) defined and depending holomorphically for λ in
this fixed region. We shall compute the variation of log detF (K(λ)Kc(λ)−1), but
before we do, we first need

Lemma 4.3. The following equalities hold:

∂λKC±(λ) = DC±(λ)−1KC±(λ), ∂λKc
Cc
±
(λ) = Dc

Cc
±
(λ)−1Kc

Cc
±
(λ).

Proof. We prove this lemma for the “+” and “non c” case, the other cases being
similar. We take the derivative of the equalities in (2.6) to get

−KC+(λ) +D+(λ)∂λKC+(λ) = 0, C+γ0∂λKC+(λ) = 0.

The second equality means that ∂λKC+(λ) is in the domain of DC+(λ), and then
the first equality establishes our lemma. ¤

The following theorem is the key ingredient in the proof of our main result, which
shows the importance of the operators K(λ), Kc(λ) as explained in Remark 4.1.

Theorem 4.4. For λ ∈ Λ, the following variation formula holds:

∂λ log detF (K(λ)Kc(λ)−1) = −Tr
(D(λ)−1 −DC(λ)−1 − (Dc(λ)−1 −Dc

Cc(λ)−1)
)
.

Proof. Noting that

∂λ log detF (K(λ)Kc(λ)−1) = Tr
(
K(λ)−1∂λK(λ)−Kc(λ)−1∂λKc(λ)

)

and using the formula for K(λ)−1 in Lemma 4.2, we obtain

K(λ)−1∂λK(λ) =
(
S+(λ) + (Id− C+)V −1C−S−(λ)

)

◦ ∂λ

(
S+(λ)−1 + S−(λ)−1C−V (Id− C+)

)

= S+(λ) ∂λS+(λ)−1 + (Id− C+)V −1C−S−(λ) ∂λS−(λ)−1C−V (Id− C+)
+ off diagonal terms,

where “off diagonal” here means with respect to the decomposition L2(Y, S0) =
ran(C+)⊕ ran(Id− C+). By definitions and Lemma 4.3, we have

∂λS+(λ)−1 = ∂λγ0KC+(λ) = γ0∂λKC+(λ) = γ0DC+(λ)−1KC+(λ).

Using this and the resolvent formula (2.7), we obtain

S+(λ) ∂λS+(λ)−1 =S+(λ)γ0

(D+(λ)−1 −KC+(λ)C+γ0D+(λ)−1
)KC+(λ)C+

=S+(λ)γ0D+(λ)−1KC+(λ)C+ − C+γ0D+(λ)−1KC+(λ)C+.

Using a similar formula for S−(λ) ∂λS−(λ)−1, we can write

K(λ)−1∂λK(λ)

= C+

(
S+(λ)γ0D+(λ)−1KC+(λ)− C+γ0D+(λ)−1KC+(λ)

)C+

+ (Id− C+)V −1C−
(
S−(λ)γ0D−(λ)−1KC−(λ)

− C−γ0D−(λ)−1KC−(λ)
)C−V (Id− C+)

+ off diagonal terms.
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A similar formula holds for Kc(λ), so

∂λ log detF (K(λ)Kc(λ)−1)

= Tr
(KC+(λ)S+(λ)γ0D+(λ)−1 −Kc

Cc
+
(λ)Sc

+(λ)γ0Dc
+(λ)−1

)

− Tr
(KC+(λ)C+γ0D+(λ)−1 −Kc

Cc
+
(λ)Cc

+γ0Dc
+(λ)−1

)

+ Tr
(KC−(λ)S−(λ)γ0D−(λ)−1 −Kc

C−(λ)Sc
−(λ)γ0Dc

−(λ)−1
)

− Tr
(KC−(λ)C−γ0D−(λ)−1 −Kc

Cc
−
(λ)Cc

−γ0Dc
−(λ)−1

)
,

where the operators in parentheses are trace class according to Lemma 3.3. By
(2.5), we have KC+(λ) = K+(λ)S+(λ)−1 where K+(λ) = D+(λ)−1γ∗0G, with similar
formulas for the “−” and “c” operators, which imply that

∂λ log detF (K(λ)Kc(λ)−1)

= Tr
(K+(λ)P+(λ)γ0D+(λ)−1 −Kc

+(λ)P c
+(λ)γ0Dc

+(λ)−1
)

− Tr
(KC+(λ)C+γ0D+(λ)−1 −Kc

C+(λ)Cc
+γ0Dc

+(λ)−1
)

+ Tr
(K−(λ)P−(λ)γ0D−(λ)−1 −Kc

−(λ)P c
−(λ)γ0Dc

−(λ)−1
)

− Tr
(KC−(λ)C−γ0D−(λ)−1 −Kc

C−(λ)Cc
−γ0Dc

−(λ)−1
)
.

Now we claim that the following sum vanishes:

Tr
(K+(λ)P+(λ)γ0D+(λ)−1 −Kc

+(λ)P c
+(λ)γ0Dc

+(λ)−1
)

+Tr
(K−(λ)P−(λ)γ0D−(λ)−1 −Kc

−(λ)P c
−(λ)γ0Dc

−(λ)−1
)
.

(4.4)

To see this, we note that as in the proof of Lemma 4.3, we can get

∂λK±(λ) = D(λ)−1K±(λ),

and therefore noting that P±(λ) = γ0±K±(λ), we see that

∂λP±(λ) = γ0±D(λ)−1K±(λ) = γ0D±(λ)−1K±(λ),

with similar equalities holding for the remaining terms in (4.4). Now taking the
derivative of P±(λ) = P±(λ)2, we obtain

∂λP±(λ) = ∂λP±(λ)P±(λ) + P±(λ)∂λP±(λ),

and similar equalities for the other projections, hence

Tr
(K+(λ)P+(λ)γ0D+(λ)−1 −Kc

+(λ)P c
+(λ)γ0Dc

+(λ)−1
)

+ Tr
(K−(λ)P−(λ)γ0D−(λ)−1 −Kc

−(λ)P c
−(λ)γ0Dc

−(λ)−1
)

= Tr
(

γ0D+(λ)−1K+(λ)P+(λ) + γ0D−(λ)−1K−(λ)P−(λ)

− γ0Dc
+(λ)−1Kc

+(λ)P c
+(λ)− γ0Dc

−(λ)−1Kc
−(λ)P c

−(λ)
)

= Tr
(

∂λP+(λ)P+(λ) + ∂λP−(λ)P−(λ)

− ∂λP c
+(λ)P c

+(λ)− ∂λP c
−(λ)P c

−(λ)
)

=
1
2
∂λ Tr

(
P+(λ) + P−(λ)− (P c

+(λ) + P c
−(λ))

)
= 0
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where we used the equalities (2.3), (3.1). Thus,

∂λ log detF (K(λ)Kc(λ)−1)

=− Tr
(KC+(λ)C+γ0D+(λ)−1 −Kc

Cc
+
(λ)Cc

+γ0Dc
+(λ)−1

)

− Tr
(KC−(λ)C−γ0D−(λ)−1 −Kc

C−(λ)Cc
−γ0Dc

−(λ)−1
)
.

Finally, using the notation as in the proof of Proposition 3.4, we see that the right-
hand side is exactly

− Tr
(KC+(λ)C+γ0D+(λ)−1 −Kc

Cc
+
(λ)Cc

+γ0Dc
+(λ)−1

)

− Tr
(KC−(λ)C−γ0D−(λ)−1 −Kc

C−(λ)Cc
−γ0Dc

−(λ)−1
)

= − Tr
(Dd(λ)−1 −DC(λ)−1 − (Dc

d(λ)−1 −Dc
Cc(λ)−1)

)

= − Tr
(D(λ)−1 −DC(λ)−1 − (Dc(λ)−1 −Dc

Cc(λ)−1)
)
,

which completes our proof. ¤

5. Asymptotics of detF (K(λ)Kc(λ)−1) for small λ

In this section, we investigate the asymptotics of detF (K(λ)Kc(λ)−1) for small
λ, which enable us to extract the contribution of the nontrivial kernel of D to our
main results. We start with the following lemma.

Lemma 5.1. The following equalities hold:

P±(λ) = ±λ−1
hM∑

k=1

γ0Uk ⊗Gγ0Uk + Q±(λ)

where hM = dim ker(D), {Uk} is an orthonormal basis of ker(D), and Q±(λ) are
pseudodifferential operators over Y that are regular at λ = 0.

Proof. The usual analytic Fredholm theory implies that

(D − λ)−1 = −λ−1
hM∑

k=1

Uk ⊗ Uk + R(λ)

where R(λ) is a pseudodifferential operator over M that is regular at λ = 0. Ap-
plying this equality to the definition of P±(λ), we obtain

P±(λ) = ±γ0±(D − λ)−1γ∗0G = ∓λ−1
hM∑

k=1

γ0Uk ⊗ Ukγ∗0G + Q±(λ),

where Q±(λ) are regular at λ = 0. Now for ϕ ∈ C∞(Y, S0), denoting the L2 pairing
on C∞(Y, S0) by 〈 , 〉 and the distributional pairing by parentheses, we have

Uk(γ∗0Gϕ) = (γ0Uk)(Gϕ) = 〈G ϕ, γ0Uk〉 = −〈ϕ,Gγ0Uk〉 = −(Gγ0Uk)(ϕ).

Thus,

∓λ−1
hM∑

k=1

γ0Uk ⊗ Ukγ∗0G = ±λ−1
hM∑

k=1

γ0Uk ⊗Gγ0Uk,

which completes our proof. ¤

From now on, we put P± := Id∓iG
2 , which is the projection onto S±. We next

make the following observation.
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Lemma 5.2. When W = Gγ0(ker(D)), the following equalities hold:

ran(C−) ∩ ran(C+) = γ0(ker(D)) , dim W = dimker(D),

V = −iG on W := W ⊕GW.

Proof. By definition of the Calderón projectors C±, elements of the intersection
ran(C−) ∩ ran(C+) are exactly the restrictions of elements of ker(D) to Y . This
proves that ran(C−)∩ran(C+) = γ0(ker(D)), and since G is an isomorphism, we also
conclude that dim W = dim ker(D) by the unique continuation theorem forD. From
the expressions (4.1) for C±, it follows that κ− = κ+ over W+ := P+W = P+GW .
Thus, from the definition of V in (4.2), over either W or GW we have

(5.1) V =
(

Id 0
0 −Id

)
.

Recalling that G =
(

i 0
0 −i

)
completes our proof. ¤

Now let us recall that

K(λ)−1 = S+(λ) + (Id− C+)V −1C−S−(λ).

Hence, by Lemma 5.1, we have

K(λ)−1 = C+(λ−1L̃+ Q+(λ)) + (Id− C+)V −1C−(−λ−1L̃+ Q−(λ))

where

L̃ =
hM∑

k=1

γ0Uk ⊗Gγ0Uk.

Therefore, we can rewrite K(λ)−1 as

(5.2) K(λ)−1 = λ−1(L̃ − V −1L̃) + Q(λ)

where Q(λ) is a pseudodifferential operator over Y that is regular at λ = 0. From
Lemma 5.2, we recall that V = −iG over the space spanned by {γ0Uk}. Hence, if
we look at the first term in more detail, we have

λ−1(L̃ − V −1L̃) =λ−1
( hM∑

k=1

γ0Uk ⊗Gγ0Uk −
hM∑

k=1

(−iG)γ0Uk ⊗Gγ0Uk

)

=λ−1
hM∑

k=1

(i−G)Gγ0Uk ⊗Gγ0Uk = λ−12i P−GL̃.(5.3)

By (5.2), (5.3), and Lemma 5.2, we obtain

Proposition 5.3. For λ = iν where ν ∈ R \ {0}, we have

(5.4) K(iν)−1 = ν−1
(
2P−GL̃) + Q(ν)

where Q(ν) is a pseudodifferential operator on Y that is regular at ν = 0. In
particular, the kernel of K(0) is W− := P−W = P−GW .

We now analyze the residue operator 2P−GL̃ of the right side of (5.4). Recalling
W± = P±W = P±Gγ0(ker(D)), let us observe that P±G : γ0(ker(D)) → W± are
isomorphisms and we define

L̃± := 2P−GL̃P± : W± → W−.

Then we have
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Lemma 5.4. The following equality holds:

(5.5) L̃± = (P−G)L (P±G)−1 : W± → W−.

Proof. From definition of L :=
∑hM

k=1 γ0Uk ⊗ γ0Uk, we have
(
(P−G)L (P±G)−1

)
(P±Gγ0Uj) = (P−G)L γ0Uj

=
hM∑

k=1

(
P−Gγ0Uk

) 〈γ0Uj , γ0Uk〉,
(5.6)

where 〈 , 〉 denotes the L2-inner product on Y . On the other hand, by definition
of L̃±, we have

L̃± (P±Gγ0Uj) = 2
hM∑

k=1

(P−Gγ0Uk)〈P±Gγ0Uj , P
±Gγ0Uk〉.

Now observe that

〈γ0Uj , γ0Uk〉 = 〈Gγ0Uj , Gγ0Uk〉
= 〈P+Gγ0Uj , P

+Gγ0Uk〉+ 〈P−Gγ0Uj , P
−Gγ0Uk〉

= 2〈P±Gγ0Uj , P
±Gγ0Uk〉,

since 〈P+Gγ0Uj , P
+Gγ0Uk〉 = 〈P−Gγ0Uj , P

−Gγ0Uk〉. Hence,

(5.7) L̃± (P±Gγ0Uj) =
hM∑

k=1

(P−Gγ0Uk) 〈γ0Uj , γ0Uk〉.

Comparing (5.6) and (5.7) proves (5.5) and completes our proof. ¤
Let us observe that W = W ⊕GW = W+ ⊕W−, then we have

Proposition 5.5. With respect to the decomposition L2(Y, S0) = W ⊕ W⊥, the
operator K(0) over L2(Y, S0) takes the matrix form

K(0) =
(

A 0
0 PW⊥K(0)PW⊥

)

and the operator A : W → W is of the form A =
(

Id 0
−κ0 0

)
with respect to the

decomposition W = W+ ⊕W− where κ0 := κ+|W+ = κ−|W+ .

Proof. Using that K(0) = C+ + C−V (Id − C+) by definition of K(λ), and that
C±G = G(Id− C±), for ϕ ∈ W we have

C±ϕ = 0 , C±Gϕ = Gϕ.

Using these formulas and the fact that V = −iG over W = W ⊕ GW proved in
Lemma 5.2 (see the identity (5.1)), we find that

K(0)P+ϕ = (C+ + C−V (Id− C+))P+ϕ = V ϕ = P+ϕ− P−ϕ,

K(0)P−ϕ = (C+ + C−V (Id− C+))P−ϕ = 0.
(5.8)

These equations show that K(0) : W → W and if A := K(0)|W , then with re-

spect to the decomposition W = W+ ⊕ W−, we have A =
(

Id 0
−κ0 0

)
since

ϕ = (P+ϕ,P−ϕ) = (P+ϕ,−κ0P
+ϕ) ∈ W = Gγ0(ker(D)). Thus, our proof
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is finished once we show that PW⊥K(0)PW = 0 and PWK(0)PW⊥ = 0. That
PW⊥K(0)PW = 0 follows from the fact that K(0) : W → W. To prove that
T := PWK(0)PW⊥ = 0 it suffices to consider adjoints and prove that T ∗ =
PW⊥K(0)∗PW = 0. However, the exact same argument shown in (5.8) can be
used to show that

K(0)∗ = C+ + (Id− C+)V −1C− : W →W,

which in turn proves that T ∗ = 0. ¤
From Proposition 5.5 and the fact that Kc(0) = Sc

+(0)−1+Sc
−(0)−1 = Cc

++Cc
− =

Id, we have

Proposition 5.6. For small λ = iν near 0, with respect to the decomposition
L2(Y, S0) = W ⊕W⊥ we have

K(λ)Kc(λ)−1 =
(

A(ν) O(ν)
O(ν) PW⊥K(0)PW⊥ +O(ν)

)
,

and with respect to the decomposition W = W+ ⊕W−,

A(ν) =
(

Id +O(ν) O(ν)
−κ0 +O(ν) O(ν)

)
.

We are ready to determine the asymptotics of detF (K(iν)Kc(iν)−1) for real ν
near 0. It follows from Proposition 5.6 that for real ν near 0, we have

(5.9) detF (K(iν)Kc(iν)−1) = det A(ν) · detW⊥K(0) · (1 + o(1)
)
,

where detW⊥ is the Fredholm determinant over the orthogonal complement of W.
In the following lemma we investigate the factor det A(ν) on the right side of (5.9).

Lemma 5.7. For real ν near 0, we have

detA(ν) = νhM (detL)−1
(
1 + o(1)

)
.

Proof. If B(ν) := A(ν)−1, then it is sufficient to prove that for real ν near 0,

detB(ν) = ν−hM (detL)
(
1 + o(1)

)
.

Now by Proposition 5.3, an elementary matrix computation shows that B(ν) must
have the form

(5.10) B(ν) =

(
Id + b L̃−1

− L̃+ +O(ν) b +O(ν)
ν−1L̃+ + p(ν) ν−1L̃− + q(ν)

)

with respect to the decomposition W = W+ ⊕W−, where p(ν), q(ν) are regular at
ν = 0 and b : W− → W+. We can rewrite this as

B(ν) =
(

Id 0
0 ν−1L̃−

) (
Id + b L̃−1

− L̃+ +O(ν) b +O(ν)
L̃−1
− L̃+ + νL̃−1

− p(ν) Id + νL̃−1
− q(ν)

)
.

Thus,

det B(ν) = ν−hM (det L̃−) · det

(
Id + b L̃−1

− L̃+ +O(ν) b +O(ν)
L̃−1
− L̃+ + νL̃−1

− p(ν) Id + νL̃−1
− q(ν)

)
.

Since det L̃− = detL by Lemma 5.4, we just have to prove that

det

(
Id + b L̃−1

− L̃+ b

L̃−1
− L̃+ Id

)
= 1.



DECOMPOSITION OF SPECTRAL INVARIANTS 21

But this just follows from the fact that
(

Id + b L̃−1
− L̃+ b

L̃−1
− L̃+ Id

)
=

(
Id bL̃−1

−
0 L̃−1

−

)(
Id 0
L̃+ L̃−

)
,

which implies that

det

(
Id + b L̃−1

− L̃+ b

L̃−1
− L̃+ Id

)
= (det L̃−1

− )(det L̃−) = 1.

This completes the proof. ¤

For the second factor on the right side of (5.9), we have

Lemma 5.8. The following equality holds,

detW⊥K(0) = detF
( Id + Û

2

)
.

Proof. Let us consider the equality

K(0) = C+ + C−V (Id− C+) =
(C+ C+C−V (Id− C+)

0 (Id− C+)C−V (Id− C+)

)
,

which is written with respect to L2(Y, S0) = ran(C+) ⊕ ran(Id − C+). Since W =
G(ran(C−) ∩ ran(C+)) ⊂ ran(Id− C+) and GW ⊂ ran(C+), we see that

(5.11) detW⊥K(0) = detW⊥(Id− C+)C−V (Id− C+)

where detW⊥ is the Fredholm determinant over the orthogonal complement of W
within ran(Id− C+). Then for ϕ = (x,−κ+x) ∈ ran(Id− C+) written as a column
vector, using the formulas (4.1) and (4.2) for C± and V , we have

(Id− C+)C−V (Id− C+)ϕ

=
1
2

(
Id −κ−1

+

−κ+ Id

)
1
2

(
Id κ−1

−
κ− Id

)(
Id 0
0 −κ−κ−1

+

) (
x

−κ+x

)

=
1
2

(
Id− κ−1

+ κ− 0
0 Id− κ−κ−1

+

)(
x

−κ+x

)
.

In other words,

(5.12) (Id− C+)C−V (Id− C+)ϕ =
(
κ−1

+

Id− κ−κ−1
+

2
κ+x,

Id− κ−κ−1
+

2
(−κ+)x

)
.

Recalling that U := −κ−κ−1
+ , we observe that for ψ ∈ L2(Y, S−),

−Uψ = κ−κ−1
+ ψ = ψ if and only if ψ ∈ W− = P−W = P−GW ;

that is, the (−1)-eigenspace of U is exactly W−. Thus, if we define Û as the
restriction of U to the orthogonal complement of its (−1)-eigenspace, then Id + Û
is invertible on its domain. By (5.11) and (5.12), we obtain

detW⊥K(0) = detF
( Id + Û

2

)
.

¤

Combining (5.9) and Lemmas 5.7 and 5.8, we get



22 PAUL LOYA AND JINSUNG PARK

Theorem 5.9. For real ν near 0, we have

detF (K(iν)Kc(iν)−1) = νhM (detL)−1 detF
( Id + Û

2

)(
1 + o(1)

)
.

6. Limits of detF (K(λ)Kc(λ)−1) as =λ → ±∞
In this section, we investigate the limits of P±(λ), S±(λ), K(λ), and the corre-

sponding operators on the model cylinder, as =λ → ±∞ within Λ. We begin with
the Calderón projectors.

Theorem 6.1. For λ ∈ Λ, we have

lim
=λ→∞

P±(λ) = lim
=λ→∞

P c
±(λ) = P∓

and
lim

=λ→−∞
P±(λ) = lim

=λ→−∞
P c
±(λ) = P±,

where P± = Id∓iG
2 , the projections onto L2(Y, S±).

Proof. Since the proofs of each limit are similar, we shall only prove the limit of
P−(λ) as =λ →∞. Throughout this proof the parameter λ is always restricted to
Λ with =λ > 0. Using the fact that

D(λ)−1 = (D − λ)−1 = (D + λ)(D2 − λ2)−1,

we can write P−(λ) as

P−(λ) = −γ0−(D + λ)(D2 − λ2)−1γ∗0G.

Since (D−λ)−1 is smoothing away from the diagonal and vanishes to infinite order
as |=λ| → ∞ there [16], it suffices to work in a coordinate patch [−1, 1]u × Rn−1

near the cross section Y , where Rn−1 is a coordinate patch on the cross section with
n the dimension of the manifold M . For a compactly supported section ψ(u, y) in
this coordinate patch, we can write

(D + λ)(D2 − λ2)−1ψ =
1

(2π)n

∫

Rn

eiuξ+iy·ηd(u, y, ξ, η;λ) ψ̂(ξ, η) dξ dη,

where d(u, y, ξ, η; λ) is the (complete) symbol of (D + λ)(D2 − λ2)−1 and with ψ̂
denoting the Fourier transform of ψ. Thus, for a compactly supported section ϕ on
the cross section coordinate patch Rn−1, we have

P−(λ)ϕ = −γ0−(D + λ)(D2 − λ2)−1(γ∗0Gϕ)(6.1)

= − 1
(2π)n−1

∫

Rn−1
eiy·η c(y, η; λ)Gϕ̂(η)dη,

where

c(y, η;λ) = lim
u→0−

1
2π

∫

R
eiuξ d(u, y, ξ, η; λ) dξ.

To determine the symbol c(y, η; λ) we proceed as follows. First, in view of the
decomposition D = G(∂u + DY ) near the dividing hypersurface Y , the principal
symbol of D is G

(
iξ+b(y, η)

)
, where b(y, η) is the principal symbol of DY . Second,

the (complete) symbol of (D2 − λ2)−1 satisfies, cf. Grubb and Seeley [16],
1

ξ2 + |η|2 − λ2
+O(

(|ξ|+ |η|+ |λ|)−3
)
,
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where |η|2 is the (Riemannian metric on Y ) square of the covector η and the second
term is a rational symbol in ξ, η, and λ that is O(

(|ξ|+ |η|+ |λ|)−3
)
. It follows that

the symbol d(u, y, ξ, η;λ), which is just the symbol of the operator (D + λ)(D2 −
λ2)−1, is given by

d(u, y, ξ, η; λ) =
G

(
iξ + b(y, η)

)
+ λ

ξ2 + |η|2 − λ2
+O(

(|ξ|+ |η|+ |λ|)−2
)
.

Thus,

(6.2)
1
2π

∫

R
eiuξ d(u, y, ξ, η; λ) dξ =

1
2π

∫

R
eiuξ Giξ

ξ2 + |η|2 − λ2
dξ

+
1
2π

∫

R
eiuξ Gb(y, η) + λ

ξ2 + |η|2 − λ2
dξ +

1
2π

∫

R
eiuξ O(

(|ξ|+ |η|+ |λ|)−2
)
dξ.

We can evaluate the first term on the right in (6.2) via the usual technique of
contour integration by writing

1
2π

∫

R
eiuξ Giξ

ξ2 + |η|2 − λ2
dξ

=
1
2π

∫

R
eiuξ Giξ(

ξ + i
√
|η|2 − λ2

)(
ξ − i

√
|η|2 − λ2

) dξ.

Here, for any η ∈ Rn−1 and λ ∈ Λ with =λ > 0, |η|2 − λ2 is never on the negative
real axis, so we can define

√
|η|2 − λ2 by taking −π < arg(|η|2 − λ2) < π. Now

shift the contour R = {=(ξ) = 0} down to {=(ξ) = −∞} where at this last contour
the integral is zero since eiuξ will decay exponentially as =(ξ) → −∞ (here we use
the so-called Jordan’s inequality recalling that u < 0 in M−). Hence by Cauchy’s
Theorem, the above integral is given in terms of the residue at ξ = −i

√
|η|2 − λ2:

1
2π

∫

R
eiuξ G iξ(

ξ + i
√
|η|2 − λ2

)(
ξ − i

√
|η|2 − λ2

) dξ

= −i · eu
√
|η|2−λ2 Gi

(− i
√
|η|2 − λ2

)

−2i
√
|η|2 − λ2

= eu
√
|η|2−λ2 G

2
.

Therefore,

lim
u→0−

1
2π

∫

R
eiuξ Giξ

ξ2 + |η|2 − λ2
dξ =

1
2
G.

For the second term on the right of the equality in (6.2), we make the change of
variables ξ 7→ ξ

√
|η|2 − λ2, to get

1
2π

∫

R

1
ξ2 + |η|2 − λ2

dξ =
1
2π

√
|η|2 − λ2

|η|2 − λ2

∫

R

1
ξ2 + 1

dξ =
1

2
√
|η|2 − λ2

.

Thus,

lim
u→0−

1
2π

∫

R
eiuξ G b(y, η) + λ

ξ2 + |η|2 − λ2
dξ =

1
2π

∫

R

Gb(y, η) + λ

ξ2 + |η|2 − λ2
dξ

=
G b(y, η)

2
√
|η|2 − λ2

+
λ

2
√
|η|2 − λ2

.
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One can analyze the last term in (6.2) and prove it is O(
(|ξ|+ |η|+ |λ|)−1

)
. This

shows that

c(y, η;λ) = lim
u→0−

1
2π

∫

R
eiuξ d(u, y, ξ, η; λ) dξ

=
1
2
G +

Gb(y, η)
2
√
|η|2 − λ2

+
λ

2
√
|η|2 − λ2

+O(
(|ξ|+ |η|+ |λ|)−1

)
(6.3)

=
1
2

[
G +

λ√
|η|2 − λ2

]
+O(λ−1).

Now back to (6.1), we see that

P−(λ)ϕ = − 1
(2π)n−1

∫

Rn−1
eiy·η c(y, η; λ)Gϕ̂(η)dη

= − 1
(2π)n−1

∫

Rn−1
eiy·η 1

2

[
G +

λ√
|η|2 − λ2

]
Gϕ̂(η)dη +O(λ−1).(6.4)

Finally, taking =λ →∞, we obtain

lim
=λ→∞

P−(λ)ϕ = − 1
(2π)n−1

∫

Rn−1
eiy·η 1

2
[G + i] Gϕ̂(η)dη

= −1
2
[G + i] ·Gϕ =

Id− iG

2
ϕ.

¤

Corollary 6.2. For λ ∈ Λ, we have

lim
=λ→±∞

S±(λ)−1 =
(

0 0
κ± Id

)
, lim

=λ→±∞
Sc
±(λ)−1 =

(
0 0

κc
± Id

)
,

lim
=λ→∓∞

S±(λ)−1 =
(

Id κ−1
±

0 0

)
, lim

=λ→∓∞
Sc
±(λ)−1 =

(
Id (κc

±)−1

0 0

)

where the matrices are written with respect to L2(Y, S0) = L2(Y, S+)⊕ L2(Y, S−).

Proof. We prove this lemma only for S+(λ)−1 when =λ →∞ since the other cases
are proved similarly. By Theorem 6.1, as =λ →∞, P+(λ) and consequently P o

+(λ)
approach the projection P−. Hence, as =λ →∞,

C+P o
+(λ) + (Id− C+)(Id− P o

+(λ))

→ 1
2

(
Id κ−1

+

κ+ Id

) (
0 0
0 Id

)
+

1
2

(
Id −κ−1

+

−κ+ Id

)(
Id 0
0 0

)

=
1
2

(
0 κ−1

+

0 Id

)
+

1
2

(
Id 0
−κ+ 0

)
=

1
2

(
Id κ−1

+

−κ+ Id

)
.

Finding the inverse of the last matrix, we obtain

[ C+P o
+(λ) + (Id− C+)(Id− P o

+(λ)) ]−1 →
(

Id −κ−1
+

κ+ Id

)
.
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Therefore, as =λ →∞,

S+(λ)−1 = P o
+(λ)[ C+P o

+(λ) + (Id− C+)(Id− P o
+(λ)) ]−1C+

→
(

0 0
0 Id

) (
Id −κ−1

+

κ+ Id

)
1
2

(
Id κ−1

+

κ+ Id

)
=

(
0 0

κ+ Id

)
.

¤

Corollary 6.3. For λ ∈ Λ, we have

lim
=λ→∞

K(λ) =
(

Id −κ−1
+

κ+ Id

)
, lim

=λ→−∞
K(λ) =

(
Id κ−1

+

κ− −κ−κ−1
+

)
,

lim
=λ→∞

Kc(λ) =
(

Id −(κc
+)−1

κc
+ Id

)
, lim

=λ→−∞
Kc(λ) =

(
Id (κc

+)−1

−κc
+ Id

)
.

Proof. Let us consider the first case. By Corollary 6.2, as =λ →∞,

K(λ) = S+(λ)−1 + S−(λ)−1C−V (Id− C+)

→
(

0 0
κ+ Id

)
+

(
Id κ−1

−
0 0

)(
Id 0
0 −κ−κ−1

+

)
1
2

(
Id −κ−1

+

−κ+ Id

)

=
(

0 0
κ+ Id

)
+

(
Id −κ−1

+

0 0

)
=

(
Id −κ−1

+

κ+ Id

)
.

The limit lim=λ→−∞K(λ) can be computed using a similar argument. For the
remaining cases, we can proceed in the same way and use the relation κc

+ = −κc
−

to get the claimed equalities. ¤

We are now ready to find the limits of detF (K(λ)Kc(λ)−1).

Theorem 6.4. For λ ∈ Λ, we have

lim
=λ→∞

detF (K(λ)Kc(λ)−1) = 1,

lim
=λ→−∞

detF (K(λ)Kc(λ)−1) = detF U.

Proof. We only prove the second claim since the first one can be proved in the same
way. By Corollary 6.3, we have

lim
=λ→−∞

detF (K(λ)Kc(λ)−1) = detF

(
Id κ−1

+

κ− −κ−κ−1
+

)(
Id (κc

+)−1

−κc
+ Id

)−1

.

Define

A =
(

0 κ−1
+

−κ+ 0

)
, Ac =

(
0 (κc

+)−1

−κc
+ 0

)
.

Then both A and Ac are unitary operators differing by a smoothing operator such
that A2 = −Id and (Ac)2 = −Id. Moreover, for any t ∈ R, the operator A(t) :=
(Id + tA)(Id + tAc)−1 is of the form Id + smoothing, and

detF

(
Id κ−1

+

κ− −κ−κ−1
+

)(
Id (κc

+)−1

−κc
+ Id

)−1

= detF

(
Id 0
0 −κ−κ−1

+

)(
Id κ−1

+

−κ+ Id

)(
Id (κc

+)−1

−κc
+ Id

)−1

= detF (−κ−κ−1
+ ) · detF A(1).
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Thus, it remains to show that detF A(1) = 1. To see this, observe that f(t) :=
detF A(t) is a smooth function of t and f(0) = detF Id = 1. We claim that f ′ = 0.
This shows that f is constant and therefore completes our proof: detF A(1) =
f(1) = f(0) = 1. To prove that f ′ = 0, we make a short computation to obtain

f ′(t) = Tr
(
A′(t) A(t)−1

)
= Tr

(
(Id + tA)−1A− (Id + tAc)−1Ac

)
.

Now using that A2 = −Id and (Ac)2 = −Id, it is easy to verify that

(Id + tA)−1 =
1

1 + t2
− t

1 + t2
A , (Id + tAc)−1 =

1
1 + t2

− t

1 + t2
Ac.

Replacing these formulas into the formula for f ′(t), we get

f ′(t) = Tr
(

A−Ac

1 + t2

)
.

Since A−Ac is off diagonal, this shows that f ′ = 0. ¤

7. Asymptotics of detF (K(λ)Kc(λ)−1) for large λ

We begin by briefly reviewing a class of parameter-dependent symbols in [24]
that are related to Grubb and Seeley’s weakly polyhomogeneous symbols [16], [13].
Recall that Λ ⊂ C is fixed as in (2.1).

For µ ∈ R and p ∈ Z, we define Sµ,p(Rn−1 × Rn−1; Λ) as the space of functions
a ∈ C∞(Rn−1 × Rn−1 × Λ), where Λ = Λ ∪ {0}, such that for all multi-indices α,
β, γ, and for all (y, η, λ) ∈ Rn−1 × Rn−1 × Λ, we have

|∂γ
y ∂α

η ∂β
λa(y, η;λ)| ≤ Cαβγ(1 + |η|)µ−p−|α|(1 + |η|+ |λ|)p−|β|.

The space Sµ,p
r (Rn−1 × Rn−1; Λ) consists of parameter-dependent symbols a ∈

Sµ,p(Rn−1 × Rn−1; Λ) such that if we set λ = 1/z and put

ã(y, η; z) := zpa(y, η; 1/z),

then ã(y, η; z) is smooth at z = 0, and

(7.1) |∂γ
y ∂α

η ∂β
z ã(y, η; z)| ≤ Cαβ(1 + |η|)µ−p−|α|+|β|(1 + |z||η|)p−|β|

uniformly for |z| ≤ 1. Further, let Sµ,p
r,c`(Rn−1 × Rn−1; Λ) be the space of elements

a ∈ Sµ,p
r (Rn−1 × Rn−1; Λ) that, for every N ∈ N, admit a decomposition

(7.2) a(y, η;λ) =
N−1∑

j=0

χ(η)aµ−j(y, η; λ) + rN (y, η; λ),

where rN ∈ Sµ−N,p
r (Rn−1 × Rn−1; Λ), χ ∈ C∞(Rn−1) with χ(η) = 0 for |η| ≤ 1

2
and χ(η) = 1 for |η| ≥ 1, and where each aµ−j(y, η; λ) satisfies:

(I) aµ−j(y, η;λ) is homogeneous of degree µ− j, that is,

aµ−j(y, δη; δλ) = δµ−jaµ−j(y, η;λ) for δ > 0,

(II) zpaµ−j(y, ω; 1/z) = zpaµ−j(y, ω; z/|z|2) is smooth in all variables, where
|ω| = 1 and z ∈ Λ, and is smooth down to z = 0.

We define the operator space Ψµ,p
Λ (Y, S0) as those parameter-dependent opera-

tors A(λ) having the following properties: If ϕ ∈ C∞(Y ) has support in a coordinate
patch on Y , then ϕA(λ)ϕ is a pseudodifferential operator on Rn−1 with a symbol in
Sµ,p

r,c`(Rn−1 ×Rn−1; Λ). Here, n = dim M . If ϕ,ψ ∈ C∞(Y ) have disjoint supports,
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then ϕA(λ)ψ ∈ Ψ−∞,p
Λ (Y, S0) where this space is defined in (3.4). These spaces

have the following composition rule [24]:

(7.3) Ψµ,p
Λ (Y, S0) ◦Ψµ′,p′

Λ (Y, S0) ⊂ Ψµ+µ′,p+p′

Λ (Y, S0).

We remark that ⋂
µ

Ψµ,p
Λ (Y, S0) ⊂ Ψ−∞,p

Λ (Y, S0),

where Ψ−∞,p
Λ (Y, S0) is defined is (3.4), and the composition rule (7.3) continues to

hold when either µ or µ′ is −∞.
In the following lemma, we put

A±(λ) = C±P o
±(λ) + (Id− C±)(Id− P o

±(λ))

and
Ac
±(λ) = Cc

±(P c
±)o(λ) + (Id− C±)(Id− (P c

±)o(λ)).

Theorem 7.1. Outside a neighborhood of λ = 0, each of P±(λ), P c
±(λ), A±(λ),

A±(λ)−1, Ac
±(λ), Ac

±(λ)−1, S±(λ)−1, and Sc
±(λ)−1 is in Ψ0,0

Λ (Y, S0).

We remark that P±(λ) are only smooth for λ ∈ Λ and not at λ = 0, while all the
other operators are smooth at λ = 0, hence the phrase “outside a neighborhood of
λ = 0” only refers to P±(λ).

Proof. We shall prove these statements only for P−(λ), A−(λ), and S−(λ)−1; the
proofs for the other operators are analogous. To prove this for P−(λ), from (6.3)
and (6.4), we see that

P−(λ)ϕ =
1

(2π)n−1

∫

Rn−1
eiy·η c(y, η;λ) ϕ̂(η)dη,

where using the fact that b(y, η)G = −Gb(y, η) (since this holds at the operator
level), we have c(y, η; λ) = c0(y, η; λ) +O(

(|ξ|+ |η|+ |λ|)−1
)

with

c0(y, η; λ) = −1
2

[
G +

Gb(y, η) + λ√
|η|2 − λ2

]
G =

1
2

[
Id− b(y, η) + λG√

|η|2 − λ2

]
.

Moreover, going through the proof of Theorem 6.1, one can show that

(7.4) c(y, η; λ) = c0(y, η;λ) + c1(y, η, λ), c1 ∈ S−1,−1(Rn−1 × Rn−1; Λ).

We claim that c0(y, η;λ) satisfies (I) and (II) above with µ = j = p = 0. The fact
that c0(y, δη; δλ) = c0(y, η;λ) is clear. Set λ = 1/z and η = ω with |ω| = 1. We
shall prove that c0(y, ω; 1/z) is smooth at z = 0. Because the branch of the square
root in the definition of c0 is the negative real axis (see the proof of Theorem 6.1),
one can check that √

1− 1/z2 =
√
−λ2(1− z2) = −iλ

√
1− z2.

Thus,

c0(y, ω; 1/z) =
1
2

[
Id− b(y, ω) + (1/z)G√

1− 1/z2

]
=

1
2

[
Id +

z b(y, ω) + G

i
√

1− z2

]
.

It follows that c0(y, ω; 1/z) is smooth in all variables, including in z down to z = 0,
and this formula implies that

(7.5) c0(y, ω; 1/z)|z=0 =
1
2
[Id− iG] = P+.
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Thus, c0 ∈ S0,0
r,c`(Rn−1 × Rn−1; Λ) (outside λ = 0; henceforth, we shall drop this

phrase). One can also show that c1 ∈ S−1,−1
r,c` (Rn−1 × Rn−1; Λ). This shows that

P−(λ) ∈ Ψ0,0
Λ (Y, S0), and hence by the composition rule (7.3),

P−(λ)P ∗−(λ) + (Id− P ∗−(λ))(Id− P−(λ)) ∈ Ψ0,0
Λ (Y, S0).

Moreover, by (7.4) the leading homogeneous symbol of this operator is

p(y, η;λ) = c0(y, η;λ) c0(y, η; λ)∗ + (Id− c0(y, η;λ)∗)(Id− c0(y, η;λ)).

The properties of c0(y, η;λ) imply that p(y, η;λ) satisfies (I) and (II) above with
µ = j = p = 0. We claim that p(y, η;λ)−1 also has these properties. This symbol
certainly satisfies (I), the only question is whether or not p(y, ω; 1/z)−1 is smooth
at z = 0, for perhaps the invertibility of p(y, ω; 1/z) is destroyed at z = 0. However,
(7.5) implies that

p(y, ω; 1/z)|z=0 = P+(P+)∗ + (Id− P+)∗(Id− P+) = P+ + Id− P+ = Id.

This shows that p(y, ω; 1/z)−1 is smooth at z = 0. Now this fact plus the usual
parametrix construction, one can show that

(P−(λ)P ∗−(λ) + (Id− P ∗−(λ))(Id− P−(λ)))−1 ∈ Ψ0,0
Λ (Y, S0).

Composing this operator with P−(λ)P ∗−(λ) and using the composition rule (7.3) we
obtain P o

−(λ) ∈ Ψ0,0
Λ (Y, S0), and therefore (again by the composition rule (7.3)),

A−(λ) = C−P o
−(λ) + (Id− C−)(Id− P o

−(λ)) ∈ Ψ0,0
Λ (Y, S0).

Another parametrix argument shows that A−(λ)−1 ∈ Ψ0,0
Λ (Y, S0), which implies

that
S−(λ)−1 := P o

−(λ)A−(λ)−1C− ∈ Ψ0,0
Λ (Y, S0).

Our theorem is now proved. ¤

Corollary 7.2. Each of the differences A±(λ)−1 −Ac
±(λ)−1, S+(λ)−1 − Sc

+(λ)−1,
and S−(λ)−1C−V (Id− C+)− Sc

−(λ)−1, is in Ψ−∞,0
Λ (Y, S0).

Proof. By Proposition 3.2, we have P+(λ)−P c
+(λ) ∈ Ψ−∞,−2

Λ (Y, S0) and C+−Cc
+ ∈

Ψ−∞,0
Λ (Y, S0) , hence it follows from our composition rule (7.3) that

Ac
+(λ)−A+(λ) = Cc

+ ◦ (P c
+)o(λ) + (Id− Cc

+) ◦ (Id− (P c
+)o(λ))

− C+ ◦ P o
+(λ)− (Id− C+) ◦ (Id− P o

+(λ)) ∈ Ψ−∞,0
Λ (Y, S0).

Since
A+(λ)−1 −Ac

+(λ)−1 = A+(λ)−1(Ac
+(λ)−A+(λ))Ac

+(λ)−1,

the composition rule (7.3) implies that A+(λ)−1 − Ac
+(λ)−1 ∈ Ψ−∞,0

Λ (Y, S0). A
similar proof works for the “−” operators.

The third assertion is proved like the second assertion, so we shall focus on the
second one. By definition of S+(λ)−1 and Sc

+(λ)−1, we can write

S+(λ)−1 − Sc
+(λ)−1 = P+(λ)A+(λ)−1C+ − P c

+(λ)Ac
+(λ)−1Cc

+.

By Proposition 3.2, we have P+(λ) − P c
+(λ) ∈ Ψ−∞,−2

Λ (Y, S0) and C+ − Cc
+ ∈

Ψ−∞,0
Λ (Y, S0), and by our first assertion, A+(λ)−1 − Ac

+(λ)−1 ∈ Ψ−∞,0
Λ (Y, S0), all

of which together with the composition rule (7.3), imply that S+(λ)−1−Sc
+(λ)−1 ∈

Ψ−∞,0
Λ (Y, S0). ¤
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Now by the definition of K(λ) and Kc(λ), Corollary 7.2 implies that K(λ) −
Kc(λ) ∈ Ψ−∞,0

Λ (Y, S0). Therefore,

(7.6) K(λ)Kc(λ)−1 = Id + (K(λ)−Kc(λ))Kc(λ)−1 = Id + S(λ),

where
S(λ) = (K(λ)−Kc(λ))Kc(λ)−1 ∈ Ψ−∞,0

Λ (Y, S0),

since Kc(λ)−1 = Sc
+(λ) + Sc

−(λ) ∈ Ψ0,0
Λ (Y, S0). Hence, by the expansion (3.4) and

the fact that K(λ) and Kc(λ) are holomorphic over Λ, we have

S(λ) ∼=λ→±∞
∞∑

k=0

λ−kS±k ,

for smoothing operators S±k . Combining this expansion with Theorem 6.4, we get

Theorem 7.3. For λ ∈ Λ, we have

detF (K(λ)Kc(λ)−1) ∼=λ→±∞
∞∑

k=0

a±k λ−k,

where a+
0 = 1 and a−0 = detF U .

8. The spectral invariants and detF (K(λ)Kc(λ)−1)

From now on we use the following notations:

DC = DC+ t DC− , Dc
Cc = Dc

Cc
+
t Dc

Cc
−
.

In this section we relate the relative eta invariant

η(D,DC) = η(D)− η(DC),
and relative ζ-determinant

detζ(D2 + ν2,D2
C + ν2) =

detζ(D2 + ν2)
detζ(D2

C + ν2)
,

with similar relative invariant formulas holding for the operators on the cylinder
N , to log detF (K(λ)Kc(λ)−1). The key result in this direction is

Proposition 8.1. The following equalities hold for λ ∈ Λ:

∂λ

(
log detF (K(λ)Kc(λ)−1)− log detF (K(−λ)Kc(−λ)−1)

)

= − 2Tr
( D
D2 − λ2

− DC
D2
C − λ2

− Dc

(Dc)2 − λ2
+

Dc
Cc

(Dc
Cc)2 − λ2

)
,

∂λ

(
log detF (K(λ)Kc(λ)−1) + log detF (K(−λ)Kc(−λ)−1)

)

= − 2Tr
(

λ

D2 − λ2
− λ

D2
C − λ2

− λ

(Dc)2 − λ2
+

λ

(Dc
Cc)2 − λ2

)
.

Proof. The proofs of these formulas are similar, so we shall focus on the first. If
F (λ) = log detF (K(λ)Kc(λ)−1), then from Theorem 4.4, we have

∂λ

(
F (λ)− F (−λ)

)
= ∂λF (λ) + (∂λF )(−λ)

=− Tr
(D(λ)−1 −DC(λ)−1 − (Dc(λ)−1 −Dc

Cc(λ)−1)
)

− Tr
(D(−λ)−1 −DC(−λ)−1 − (Dc(−λ)−1 −Dc

Cc(−λ)−1)
)
.



30 PAUL LOYA AND JINSUNG PARK

Since
D(λ)−1 +D(−λ)−1 = (D − λ)−1 + (D + λ)−1 =

2D
D2 − λ2

,

with similar formulas holding for the resolvents of the other Dirac operators, we
get our first equality. ¤

Since for any holomorphic branch of log around a point c, we have log(c + z) ∼∑∞
k=0 ckzk as z → 0, by Theorem 7.3 it follows that log detF (K(λ)Kc(λ)−1) has

expansions as =λ → ±∞ that resemble the expansions in Theorem 7.3. Therefore,
using the formulas in Proposition 8.1, we immediately obtain the following corollary.

Corollary 8.2. As |λ| → ∞ for λ ∈ Λ, we have

Tr
( D
D2 − λ2

− DC
D2
C − λ2

− Dc

(Dc)2 − λ2
+

Dc
Cc

(Dc
Cc)2 − λ2

)
= O(λ−2),

Tr
(

1
D2 − λ2

− 1
D2
C − λ2

− 1
(Dc)2 − λ2

+
1

(Dc
Cc)2 − λ2

)
= O(λ−3).

In the following proposition, we write η(D,DC) in terms of resolvents.

Proposition 8.3. We have

η(D,DC)

=
2
π

∫ ∞

0

Tr
( D
D2 + ν2

− DC
D2
C + ν2

− Dc

(Dc)2 + ν2
+

Dc
Cc

(Dc
Cc)2 + ν2

)
dν.

Proof. Consider the formula

ηA(s) = Tr(A(A2)−
s+1
2 ), (A2)−

s+1
2 =

1
πi

∫

Γ

λ−s(A2 − λ2)−1dλ

for the eta function of a self-adjoint operator A, where Γ is the contour Γ = {λ ∈
C | Re λ = δ} with δ > 0 chosen so that the poles of A(A2−λ2)−1 lie on [2δ,∞), and
where λ−s is defined via the standard branch. Now a straightforward computation
shows that Dc and Dc

Cc have symmetric spectrum, hence ηDc(s) = ηDc
Cc

(s) = 0.
Thus, with δ > 0 chosen uniformly for D, DC , Dc, and Dc

Cc , by Proposition 3.4 it
follows that for Re s À 0, we have

ηD(s)− ηDC (s) = ηD(s)− ηDC (s)− ηDc(s) + ηDc
Cc

(s)

=
1
πi

∫

Γ

λ−s Tr
(
D(D2 − λ2)−1 −DC(D2

C − λ2)−1

−Dc((Dc)2 − λ2)−1 +Dc
Cc((Dc

Cc)2 − λ2)−1
)

dλ.

According to the first estimate in Corollary 8.2, we can set s = 0 into this integral
and conclude that

η(D)− η(DC)

=
1
πi

∫

Γ

Tr
(
D(D2 − λ2)−1 −DC(D2

C − λ2)−1(8.1)

−Dc((Dc)2 − λ2)−1 +Dc
Cc((Dc

Cc)2 − λ2)−1
)

dλ,

Finally, because the poles of the resolvents lie on [2δ,∞), we can shift the contour
Γ to the imaginary axis iR, and when we set λ = iν in (8.1) we get our result. ¤
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Proposition 8.4. For ν ∈ R \ {0}, we have

(1) lim
ν→∞

log detζ(D2 + ν2,D2
C + ν2)− log detζ((Dc)2 + ν2, (Dc

C)
2 + ν2) = 0,

(2) ∂ν

(
log detζ(D2 + ν2,D2

C + ν2)− log detζ((Dc)2 + ν2, (Dc
C)

2 + ν2)
)

= 2 Tr
(

ν

D2 + ν2
− ν

D2
C + ν2

− ν

(Dc)2 + ν2
+

ν

(Dc
Cc)2 + ν2

)
.

Proof. For Re s À 0, by Proposition 3.4 it follows that

(8.2) ζD2+ν2(s)− ζD2
C+ν2(s)− ζ(Dc)2+ν2(s) + ζ(Dc

Cc )2+ν2(s)

=
1

2πi

∫

Γ

λ−sG(ν, λ) dλ,

where

G(ν, λ) = Tr
(
(D2 + ν2 − λ)−1 − (D2

C + ν2 − λ)−1

− ((Dc)2 + ν2 − λ)−1 + ((Dc
Cc)2 + ν2 − λ)−1

)
,

and where Γ = {λ ∈ C | Re λ = δ} with δ any positive real number such that
0 < δ < ν2. (Note that the spectra of D2 + ν2,D2

C + ν2, (Dc)2 + ν2, (Dc
Cc)2 + ν2 all

lie in the interval [ν2,∞).) Here, λ−s is defined via the standard branch. By the
second estimate in Corollary 8.2, we have

(8.3) G(ν, λ) = O
(
(λ− ν2)−3/2

)
.

Taking the derivative of (8.2) with respect to s, multiplying the result by −1, and
using the estimate (8.3) to justify setting s = 0, we obtain

log detζ(D2 + ν2,D2
C + ν2)− log detζ((Dc)2 + ν2, (Dc

C)
2 + ν2)

=
1

2πi

∫

Γ

log λG(ν, λ) dλ.

Taking ν → ∞ and using the estimate (8.3) implies (1). To prove (2), we observe
that ∂νG(ν, λ) = −2ν ∂λG(ν, λ), which implies that

∂ν

(
log detζ(D2 + ν2,D2

C + ν2)− log detζ((Dc)2 + ν2, (Dc
C)

2 + ν2)
)

= − ν

πi

∫

Γ

log λ∂λG(ν, λ) dλ

=
ν

πi

∫

Γ

1
λ

G(ν, λ) dλ,

where we used the estimate (8.3) to integrate by parts. By Cauchy’s formula, the
right-hand side of this equation is exactly 2ν G(ν, 0), which is exactly the right-hand
side of (2). ¤

The following theorem, which follows from Propositions 8.1, 8.3, and 8.4, is the
main result in this section.

Theorem 8.5. We have

(1) η(D,DC)

= − 1
πi

∫ ∞

0

∂ν

(
log detF (K(iν)Kc(iν)−1)− log detF (K(−iν)Kc(−iν)−1)

)
dν,
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(2) and for ν ∈ R \ {0},
∂ν

(
log detζ(D2 + ν2,D2

C + ν2)− log detζ((Dc)2 + ν2, (Dc
C)

2 + ν2)
)

= ∂ν

(
log detF (K(iν)Kc(iν)−1) + log detF (K(−iν)Kc(−iν)−1)

)
.

We end this section with the following result that we will need shortly.

Proposition 8.6. For positive ν near 0, we have

detζ(D2 + ν2,D2
C + ν2) = ν2hM · detζ(D2,D2

C)
(
1 + o(1)

)
,

detζ((Dc)2 + ν2, (Dc
Cc)2 + ν2) = detζ((Dc)2, (Dc

Cc)2)
(
1 + o(1)

)
.

Proof. If Π is the orthogonal projection onto the kernel of D, then we can write

Tr e−t(D2+ν2) = e−tν2
Tr e−tD2

= e−tν2
hM + e−tν2

Tr
(
Π⊥e−tD2)

.

Hence,

(8.4) ζD2+ν2(s) = ν−2s hM +
1

Γ(s)

∫ ∞

0

ts−1e−tν2
Tr(Π⊥e−tD2

) dt.

Since Tr
(
Π⊥e−tD2)

vanishes exponentially as t →∞ and e−tν2
= 1 +O(tν2), the

integral on the right in (8.4) equals ζD2(s) + O(ν2). Taking the derivative with
respect to s and multiplying by −1, we find that as ν → 0+,

log detζ(D2 + ν2) = 2hM log ν + log detζD2 + o(1).

A similar argument shows that log detζ(D2
C + ν2) = log detζD2

C + o(1) as ν → 0+,
since DC is invertible by definition of the Calderón projectors C±. This proves our
proposition for detζ(D2 + ν2,D2

C + ν2) as ν → 0+. A similar proof gives our result
for detζ((Dc)2 + ν2, (Dc

Cc)2 + ν2) as ν → 0+, since in this case both Dc and Dc
Cc are

invertible. ¤

9. Proof of the Main Theorems

For Theorem 1.1, we begin with formula (2) of Theorem 8.5, which implies that

(9.1)
detζ(D2 + ν2,D2

C + ν2)
detζ((Dc)2 + ν2, (Dc

C)2 + ν2)

= C detF (K(iν)Kc(iν)−1) · detF (K(−iν)Kc(−iν)−1)

where C is a constant. To find the constant C, we take ν →∞ on both sides and
use (1) in Proposition 8.4 to see that the left-hand side of (9.1) tends to unity, and
use

lim
ν→∞

detF (K(iν)Kc(iν)−1) = 1 , lim
ν→∞

detF (K(−iν)Kc(−iν)−1) = detF U,

from Theorem 6.4, to get

C = detF (U−1) = (−1)hM detF (Û−1),

where we used the definition of Û . Substituting this expression into (9.1), we obtain

detζ(D2 + ν2,D2
C + ν2)

detζ((Dc)2 + ν2, (Dc
C)2 + ν2)

= (−1)hM detF (Û−1) detF (K(iν)Kc(iν)−1) · detF (K(−iν)Kc(−iν)−1).
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We can evaluate the right-hand side by Theorem 5.9: For positive ν near 0, we have

detF (K(±iν)Kc(±iν)−1) = (±1)hM νhM (detL)−1 detF
( Id + Û

2

)(
1 + o(1)

)
,

therefore as ν → 0+,

detζ(D2 + ν2,D2
C + ν2)

detζ((Dc)2 + ν2, (Dc
C)2 + ν2)

= ν2hM (detL)−2 detF (Û−1) detF
( Id + Û

2

)2(
1 + o(1)

)

= ν2hM (detL)−2 detF
(2Id + Û + Û−1

4

)(
1 + o(1)

)
.

On the other hand, by Proposition 8.6,

detζ(D2 + ν2,D2
C + ν2)

detζ((Dc)2 + ν2, (Dc
C)2 + ν2)

= ν2hM
detζ(D2,D2

C)
(
1 + o(1)

)

detζ((Dc)2, (Dc
Cc)2)

(
1 + o(1)

) .

Equating the previous two lines and then taking ν → 0+, we conclude that

detζ(D2,D2
C) = detζ((Dc)2, (Dc

Cc)2) (detL)−2 detF
(2Id + Û + Û−1

4

)
.

The next lemma completes the proof of Theorem 1.1.

Lemma 9.1. We have

detζ((Dc)2, (Dc
Cc)2) = 2

−ζ
D2

Y
(0)−hY

.

Proof. By the main theorem of [28], we have

detζ(Dc)2 = 2
ζ

D2
Y

(0)+hY
e2C , detζ(Dc

Cc)2 =
(
2

ζ
D2

Y
(0)+hY

eC
)2

where C = −(2
√

π)−1(Γ(s)−1Γ(s− 1/2)ζD2
Y
(s− 1/2))′(0), and dividing completes

the proof. ¤

Using Theorem 1.1 and the main result of [26], we prove the general formula in
Theorem 1.2 for other boundary conditions P1 ∈ Gr∗∞(D−), P2 ∈ Gr∗∞(D+).

To state the result proved in [26], we first need to recall some notation from
the introduction. Let κ1 : L2(Y, S+) → L2(Y, S−) be the map that determines
P1 as κ± does for C±. Let P1 be the orthogonal projection of L2(Y, S0) onto the
finite-dimensional vector space ran(C−)∩ ran(Id−P1). Then we introduce a linear
map L1 over ran(C−) ∩ ran(Id− P1) defined by

L1 := −P1 GR−1
− GP1

where R− is the sum of the Dirichlet to Neumann maps on the double of M−,
that was introduced in [7]. In [26], we prove that L1 is a positive operator so that
detL1 is a positive real number. The main result of [26] is the following comparison
theorem.
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Theorem 9.2. For the orthogonal projection P1 ∈ Gr∗∞(D−), the following com-
parison formulas hold:

detζD2
P1

detζD2
C−

= (detL1)2 · detF
(2Id + Û1 + Û−1

1

4

)
,

η̃(DP1)− η̃(DC−) =
1

2πi
Log detF U1 mod Z

where Û1 is the restriction of U1 := κ−κ−1
1 to the orthogonal complement of its

(−1)-eigenspace.

Similar results hold for the corresponding objects over M+ with the proper
changes taking care of the orientation. We shall use the notations κ2, U2, and
L2 for the corresponding objects associated to the pair (D+,P2). Theorem 1.2 in
the introduction now follows easily: By Theorem 1.1, we have

detζD2

detζD2
C+ · detζD2

C−
= 2

−ζ
D2

Y
(0)−hY (detL)−2 detF

(2Id + Û + Û−1

4

)
.

and by Theorem 9.2, we have

detζD2
P1

detζD2
C−

= (detL1)2 · detF

(
2Id + Û1 + Û−1

1

4

)
,

detζD2
P2

detζD2
C+

= (detL2)2 · detF

(
2Id + Û2 + Û−1

2

4

)
,

then combining these equalities we get exactly the formula of Theorem 1.2.
Recall that if f(t) is a smooth nonzero complex-valued function on an interval

[a, b], then the winding number W (f) ∈ Z of f is defined by the equality:

(9.2) log f(b)− log f(a) = Log f(b)− Log f(a) + 2πiW (f),

where log f(t) is any continuous logarithm for f(t) with t ∈ [a, b] and Log denotes
the principal value logarithm. An integral expression for the left-hand side is

(9.3) log f(b)− log f(a) =
∫ b

a

f ′(t)
f(t)

dt.

We now prove Corollary 1.3 by following almost verbatim the proof for the ζ-
determinant! By formula (1) of Theorem 8.5, we have

η(D,DC) = − 1
πi

(
lim

ν→∞
(
log detF K(iν)Kc(iν)−1 − log detF K(−iν)Kc(−iν)−1

)

− lim
ν→0+

(
log detF K(iν)Kc(iν)−1 − log detF K(−iν)Kc(−iν)−1

))
.

By Theorem 6.4, we have

lim
ν→∞

detF (K(iν)Kc(iν)−1) = 1 , lim
ν→∞

detF (K(−iν)Kc(−iν)−1) = detF U,

so by definition of the winding number (9.2), we have, modulo 2πiZ,

lim
ν→∞

(
log detF K(iν)Kc(iν)−1 − log detF K(−iν)Kc(−iν)−1

) ≡ −Log detF U

where the integer defect is just the winding number of detF (K(λ)Kc(λ)−1) from
−i∞ to i∞. We remark that via (9.3) this winding number can be explicitly
computed by quadrature of Tr(k′(λ)k(λ)−1) with k(λ) = K(λ)Kc(λ)−1 or in terms
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of the resolvents as shown in Theorem 4.4. Similarly, by Theorem 5.9, for positive
ν near 0, we have

detF (K(±iν)Kc(±iν)−1) = (±1)hM νhM (detL)−1 detF
( Id + Û

2

)(
1 + o(1)

)

so by definition of the winding number (9.2), we have, modulo 2πiZ,

lim
ν→0+

(
log detF K(iν)Kc(iν)−1− log detF K(−iν)Kc(−iν)−1

)) ≡
{

0 hM even
−πi hM odd,

where the integer defect is just the winding number of detF (K(λ)Kc(λ)−1) from
−iν to iν for ν > 0 sufficiently small. These equalities imply that

η̃(D,DC) =
1

2πi
Log detF U mod Z,

where the integer defect consists of the aforementioned winding numbers if hM is
even or is shifted by (hM −1)/2 if hM is odd. This completes the proof of Corollary
1.3 when P1 = C− and P2 = C+. The general case considered in Corollary 1.3
follows from applying the comparison Theorem 9.2 in a similar manner as we did
for the ζ-determinant case and recalling that the integer defect for the eta formula
in Theorem 9.2 is given in terms of winding numbers that originate from completely
natural operators defined from P1 and C− [26].
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