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Abstract. We show meromorphic extension and give a complete description of the divisors
of a Selberg zeta function of odd type Zo

Γ,Σ(λ) associated to the spinor bundle Σ on an odd

dimensional convex co-compact hyperbolic manifold Γ\H2n+1. As a byproduct we do a full
analysis of the spectral and scattering theory of the Dirac operator on asymptotically hyperbolic
manifolds. We show that there is a natural eta invariant η(D) associated to the Dirac operator
D over a convex co-compact hyperbolic manifold Γ\H2n+1 and that exp(πiη(D)) = Zo

Γ,Σ(0),

thus extending Millson’s formula to this setting. Under some assumption on the exponent of
convergence of Poincaré series for the group Γ, we also define an eta invariant for the odd
signature operator, and we show that for Schottky 3-dimensional hyperbolic manifolds it gives
the argument of a holomorphic function which appears in the Zograf factorization formula
relating two natural Kähler potentials for Weil-Petersson metric on Schottky space.

1. Introduction

The eta invariant is a measure of the asymmetry of the spectrum of self-adjoint elliptic operators
which has been introduced by Atiyah, Patodi and Singer as the boundary term in the index formula
for compact manifolds with boundary [1]. For an elliptic self-adjoint pseudodifferential operator
D of positive order acting on a bundle over a closed manifold, it is defined as the value at s = 0
of the meromorphic function

η(D, s) := Tr
(
D(D2)−

s+1
2

)
=

1
Γ((s + 1)/2)

∫ ∞

0

ts−
1
2 Tr

(
De−tD2

)
dt,

which admits a meromorphic continuation from <(s) À 0 to s ∈ C and is regular at s = 0. In
heuristic terms, η(D) := η(D, 0) computes the asymmetry Tr(D|D|−1).

By applying Selberg’s trace formula, Millson [27] proved that for any (4m − 1)-dimensional
closed hyperbolic manifold XΓ := Γ\H4m−1, the eta invariant η(A) of the odd signature operator
A on odd forms Λodd = ⊕2m

p=0Λ
2p−1 can be expressed in terms of the geodesic flow on the unit

sphere bundle of XΓ. Millson defined a Selberg zeta function of odd type by

(1.1) Zo
Γ,Λ(λ) := exp


−

∑

γ∈P

∞∑

k=1

χ+(R(γ)k)− χ−(R(γ)k)
|det(Id− P (γ)k)| 12

e−λk`(γ)

k




where P denotes the set of primitive closed geodesics in XΓ, R(γ) ∈ SO(4m− 2) is the holonomy
along a geodesic γ, χ± denotes the character associated to the two irreducible representations of
SO(4m− 2) corresponding to the ±i eigenspace of ? acting on Λ2m−1, P (γ) is the linear Poincaré
map along γ, and `(γ) is the length of the closed geodesic γ. Then he showed that Zo

Γ,Λ(λ) extends
meromorphically to λ ∈ C, its only zeros and poles occur on the line <(λ) = 0 with order given in
terms of the multiplicity of the eigenvalues of A, and the following remarkable identity holds:

eπiη(A) = Zo
Γ,Λ(0).

The same result has been extended to compact locally symmetric manifolds of higher rank by
Moscovici-Stanton [28]. It is somehow believed that central values of Ruelle or Selberg type
dynamical zeta functions have some kind of topological meaning and this identity, as well as
Fried’s identity [8], provide striking examples.
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It is a natural question to try to extend this identity and to study the meromorphic extension
and the zeros and poles of the zeta function Zo

Γ,Λ(λ) on non-compact hyperbolic manifolds. The
first step in this direction has been done by the third author in [29] for cofinite hyperbolic quotients,
where the functional equation satisfied by the Selberg zeta function of odd type holds with extra
contributions from the cusps, in the guise of the determinant of the scattering matrix. In the
present work, we carry out this program for convex co-compact manifolds, i.e., geometrically finite
hyperbolic manifolds with infinite volume and no cusps. For particular 3-dimensional Schottky
groups, our results have interesting connections to Teichmüller theory, as we explain below.

The proof of the meromorphic extension of any reasonable dynamical zeta function on co-
compact hyperbolic manifolds is contained in the work of Fried [9] using transfer operator tech-
niques in dynamics, but as explained by Patterson-Perry [30], it extends to the convex co-compact
setting in a natural way. However there is no general description of the zeros and poles, while
we know in the co-compact and cofinite cases that these are related to spectral and topological
data since the work of Selberg [32]. There are now some rather recent works of Patterson-Perry
[30] and Bunke-Olbrich [3] which give a complete description of the zeros and poles of the original
Selberg zeta function on convex co-compact hyperbolic (real) manifolds. The case of Selberg zeta
functions attached to homogeneous vector bundles is not yet completely described.

In this paper we study mainly the Dirac operator acting on the spinor bundle Σ over a convex
co-compact hyperbolic manifold XΓ := Γ\H2n+1. The basic quantity associated with Γ for this
case is its exponent δΓ defined to be the smallest number such that

(1.2)
∑

γ∈Γ

exp(−λrγ) < ∞

for all λ > δΓ. Here rγ denotes the hyperbolic distance dH2n+1(m, γm) for a fixed point m ∈
Hd+1. For λ > δΓ − n, we define the Selberg zeta function of odd type Zo

Γ,Σ(λ) associated to the
spinor bundle Σ exactly like in (1.1) except that R(γ) denotes now the holonomy in the spinor
bundle Σ along γ, and χ± denotes the character of the two irreducible representations of Spin(2n)
corresponding to the ±i eigenspaces of the Clifford multiplication cl(Tγ) with the tangent vector
field Tγ to γ. Like for the hyperbolic space H2n+1, the Dirac operator D acting on the spinor
bundle Σ on a convex co-compact hyperbolic manifold XΓ has continuous spectrum the real line
R, and one can define its resolvent for <(λ) > 0 in two ways

R+(λ) := (D + iλ)−1, R−(λ) := (D − iλ)−1

as analytic families of bounded operators acting on L2(XΓ; Σ). We then first show

Theorem 1.1. The Selberg zeta function of odd type Zo
Γ,Σ(λ) associated to the spinor bundle Σ on

an odd dimensional spin convex co-compact hyperbolic manifold XΓ = Γ\H2n+1 has a meromorphic
extension to C and it is analytic in a neighborhood of the right half plane {<(λ) ≥ 0}. The
resolvents R±(λ) of the Dirac operator have meromorphic continuation to λ ∈ C when considered
as operators mapping C∞0 (XΓ, Σ) to its dual C−∞(XΓ, Σ∗), and the poles have finite rank polar
part. A point λ0 ∈ {<(λ) < 0} is a zero or pole of Zo

Γ,Σ(λ) if and only if the meromorphic
extension of R+(λ) or of R−(λ) has a pole at λ0, in which case the order of λ0 as a zero or pole
of Zo

Γ,Σ(λ) (with the positive sign convention for zeros) is given by

rankResλ0R−(λ)− rank Resλ0R+(λ).

We stress that our approach is closer to that of Patterson-Perry than that of Bunke-Olbrich. In
so far as analysis is concerned, we deal with a much more general geometric setting in arbitrary di-
mensions and we prove various results which were previously known for the Laplacian on functions.
We consider asymptotically hyperbolic manifolds (AH in short). These are complete Riemannian
manifolds (X, g) which compactify smoothly to compact manifolds with boundary X̄, whose met-
ric near the boundary is of the form g = ḡ/x2 where ḡ is a smooth metric on X̄ and x is any
boundary defining function of ∂X̄ in X̄, and finally such that |dx|ḡ = 1 at ∂X̄, a condition which
is equivalent to assuming that the curvature tends to −1 at the boundary. Convex co-compact
hyperbolic manifolds are special cases of AH manifolds. Using the machinery of Mazzeo-Melrose
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[25], we show that the spectrum of D on AH manifolds is absolutely continuous and given by R,
that the resolvents R±(λ) defined above have meromorphic extensions to λ ∈ C, and we define the
scattering operator S(λ) : C∞(∂X̄, Σ) → C∞(∂X̄, Σ) by considering asymptotic profiles of gener-
alized eigenspinors on the continuous spectrum. The family S(λ) extends to a meromorphic family
of elliptic pseudo-differential operators acting on the boundary with the same principal symbol
as Dh0 |Dh0 |2λ−1 (up to a multiplicative constant), where Dh0 is the Dirac operator induced by
the metric ḡ|T∂X̄ . The scattering operator is a fundamental object in the analysis of Selberg zeta
function for convex co-compact manifolds, and we study it thoroughly in this work. We also show
in a follow-up note [15] that the construction and properties of the scattering operator have some
nice applications, for instance the invertibility of S(λ) except at discrete λ’s implies that the index
of D+

h0
vanishes (the so-called cobordism invariance of the index), and the operator 1

2 (Id− S(0))
is a complementary Calderón projector of the Dirac operator D̄ corresponding to ḡ, providing a
natural way of constructing the Calderón projector without extending D̄ or doubling the manifold
X̄.

For the second result, we prove that Millson’s formula holds for the Dirac operator on odd
dimensional spin convex co-compact hyperbolic manifolds, and also for the signature operator
under some condition on δΓ.

Theorem 1.2. Let XΓ = Γ\H2n+1 be an odd dimensional spin convex co-compact hyperbolic
manifold. Then the function tr(De−tD2

)(m) ∈ C∞(XΓ) is in L1(XΓ), where tr denotes the local
trace on the spinor bundle. The eta invariant η(D) can be defined as a convergent integral by

(1.3) η(D) :=
1√
π

∫ ∞

0

t−
1
2

( ∫

XΓ

tr(De−tD2
)(m) dv(m)

)
dt,

and the following equality holds

(1.4) eπiη(D) = Zo
Γ,Σ(0).

If 2n + 1 = 4m − 1 and the exponent of convergence of Poincaré series δΓ is strictly less than
n = 2m − 1, then the eta invariant η(A) can also be defined replacing D by the odd signature
operator A and Σ by the bundle of forms Λodd = ⊕2m

p=0Λ
2p−1 in (1.3), moreover we also have

eπiη(A) = Zo
Γ,Λ(0).

The assumption about δΓ for the equality eπiη(A) = Zo
Γ,Λ(0) is rather a technical condition than

a serious problem. Most of the analysis we do here for Dirac operator D goes through without
significant difficulties to the signature operator A, but it appears to be slightly more involved
essentially due to the fact that the continuous spectrum of A has two layers corresponding to
closed and co-closed forms. The complete analysis for forms in all dimensions will be included
elsewhere.

To conclude this introduction and to motivate the eta invariant η(A) of the odd signature
operator A, we describe the particular case of Schottky 3-dimensional manifolds with δΓ < 1,
where the eta invariant η(A) can be considered as a function on the Schottky space Sg. Here the
Schottky space Sg is the space of marked normalized Schottky groups with g generators. It is a
complex manifold of dimension 3g−3, covering the Riemann moduli space Mg and with universal
cover the Teichmüller space Tg. It describes the deformation space of the 3-dimensional hyperbolic
Schottky manifolds XΓ = Γ\H3. Like Tg, the Schottky space Sg has a natural Kähler metric,
the Weil-Petersson metric. In [33, 34], Takhtajan-Zograf constructed two Kähler potentials of the
Weil-Petersson metric on Sg, that is,

∂∂S = ∂∂
(
− 12π log

Det∆
det Im τ

)
= 2i ωWP

where ∂ and ∂ are the (1, 0) and (0, 1) components of the de Rham differential d on Sg respectively,
and ωWP is the symplectic form of the Weil-Petersson metric; here S is the so-called classical
Liouville action, Det∆ and τ denote the ζ-regularized determinant of the Laplacian ∆ of hyperbolic
metric and the period matrix respectively over the Riemann surface corresponding to an inverse
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image in Tg of a point in Sg. Let us remark that Det∆ and det Im τ descend to well-defined
functions on Sg. We show that

Theorem 1.3. The function F defined on S0
g := {Γ ∈ Sg; δΓ < 1} by

F :=
Det∆

det Im τ
exp

(
S

12π
− iπη(A)

)

is holomorphic. In particular, the eta invariant η(A) is a pluriharmonic function on S0
g.

The condition δΓ < 1 in Theorem 1.3 simplifies the proof at several stages. But, one can expect
that a similar result still holds over the whole Schottky space Sg. This extension problem will be
discussed elsewhere.
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2. The Dirac operator on real hyperbolic space

2.1. Dirac operators over hyperbolic spaces. The (d + 1)-dimensional real hyperbolic space
is the manifold

Hd+1 =
{

x ∈ Rd+2 |x2
0 + x2

1 + . . . + x2
d − x2

d+1 = −1, xd+1 > 0
}

equipped with the metric of curvature −1. The orientation preserving isometries of Hd+1 form
the group SO0(d + 1, 1), which is the identity connected component of SO(d + 1, 1). The isotropy
subgroup of the base point (0, . . . , 0, 1) is isomorphic to SO(d+1). Hence the real hyperbolic space
Hd+1 can be identified with the symmetric space SO0(d+1, 1)/SO(d+1). Since G = Spin(d+1, 1),
K = Spin(d + 1) are double coverings of SO0(d + 1, 1), SO(d + 1) respectively, we see that
SO0(d + 1, 1)/SO(d + 1) = G/K and we use the identification Hd+1 ∼= G/K for our purpose.
We denote the Lie algebras of G, K by g = spin(d + 1, 1), k = spin(d + 1) respectively. The
Cartan involution θ on g gives us the decomposition g = k⊕ p where k, p are the 1,−1 eigenspaces
of θ respectively. The subspace p can be identified with the tangent space To(G/K) ∼= g/k at
o = eK ∈ G/K where e denotes the identity element in G. The invariant metric of curvature −1
over Hd+1 is given by the normalized Cartan-Killing form

(2.1) 〈X, Y 〉 := − 1
2d

C(X, θY )

where the Killing form is defined by C(X, Y ) = tr(ad X ◦ ad Y ) for X, Y ∈ g.
Let a be a fixed maximal abelian subspace of p. Then the dimension of a is 1. Let M = Spin(d)

be the centralizer of A = exp(a) in K with Lie algebra m. We put β to be the positive restricted
root of (g, a). Let ρ denote the half sum of the positive roots of (g, a), that is, ρ = d

2β. From now
on, we use the identification

(2.2) a∗C ∼= C by λβ −→ λ.

Let n be the positive root space of β and N = exp(n) ⊂ G. The Iwasawa decomposition is given
by G = KAN . Throughout this paper we use the following Haar measure on G,

(2.3) dg = a2ρdk da dn = a−2ρdn da dk

where g = kan is the Iwasawa decomposition and a2ρ = exp(2ρ(log a)). Here dk is the Haar mea-
sure over K with

∫
K

dk = 1, da is the Euclidean Lebesgue measure on A given by the identification
A ∼= R via ar = exp(rH) with H ∈ a, β(H) = 1, and dn is the Euclidean Lebesgue measure on N
induced by the normalized Cartan-Killing form 〈·, ·〉 given in (2.1).
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The spinor bundle Σ(Hd+1) can be identified with the associated homogeneous vector bundle
over Hd+1 = G/K with the spin representation τd of K ∼= Spin(d + 1) acting on Vτd

= C2[d+1/2]
,

that is,

(2.4) Σ(Hd+1) = G×τd
Vτd

−→ Hd+1 = G/K.

Here points of G ×τd
Vτd

are given by equivalence classes [g, v] of pairs (g, v) under (gk, v) ∼
(g, τd(k)v). Hence the sections of G×τd

Vτd
from G/K consist of functions f : G → Vτd

with the
K-equivariant condition,

f(gk) = τd(k)−1f(g)
for g ∈ G, k ∈ K. Recall that τd is irreducible if d + 1 is odd, while it splits into 2 irreducible
representations if d + 1 is even.

Let us denote by

∇ : C∞(Hd+1; Σ(Hd+1)) −→ C∞(Hd+1;T ∗(Hd+1)⊗ Σ(Hd+1))

the covariant derivative induced by the lift of the Levi-Civita connection to the spinor bundle
Σ(Hd+1), and by cl : Tm(Hd+1) → EndΣm(Hd+1) the Clifford multiplication. Then the Dirac
operator DHd+1 acting on C∞0 (Hd+1; Σ(Hd+1)) is defined by

DHd+1f(m) =
d+1∑

j=1

cl(ej)∇ej
f(m) for f ∈ C∞0 (Hd+1; Σ(Hd+1))

where (ej)d+1
j=1 denotes an orthonormal frame of Tm(Hd+1). The Dirac operator DHd+1 is an

essentially self-adjoint, elliptic and G-invariant differential operator of first order, and we use
the same notation for its self adjoint extension to L2(Hd+1; Σ(Hd+1)). It is well known that the
spectrum of DHd+1 on L2(Hd+1; Σ(Hd+1)) consists only of the absolutely continuous spectrum R
(for instance, by Cor. 4.11 in [6]).

2.2. The resolvent on Hd+1. Let us define the resolvent of D2 in the half-plane {<(λ) > 0} by

RHd+1(λ) := (D2
Hd+1 + λ2)−1

which maps L2(Hd+1; Σ(Hd+1)) to itself. Recall the hypergeometric function F (a, b, c, z) defined
by

F (a, b, c; z) =
∞∑

k=0

Γ(a + k)Γ(b + k)Γ(c)
Γ(a)Γ(b)Γ(c + k)

zk

k!
for |z| < 1.

Then we have from the work of Camporesi [6, Th. 6.2 and 6.3],

Proposition 2.1. [Camporesi] For <(λ) > 0, the respective Schwartz kernels of RHd+1(λ) and
DHd+1RHd+1(λ) are given by

RHd+1(λ; m,m′) = 2−(d+1)π−
d+1
2

Γ(d+1
2 + λ)Γ(λ)
Γ(2λ + 1)

(cosh(r/2))−d−2λ

F

(
d + 1

2
+ λ, λ, 2λ + 1; cosh−2(r/2)

)
U(m,m′),

(2.5)

DHd+1RHd+1(λ; m,m′) =− 2−(d+1)π−
d+1
2

Γ(d+1
2 + λ)Γ(λ + 1)
Γ(2λ + 1)

(cosh(r/2))−(d+1)−2λ sinh(r/2)

F

(
d + 1

2
+ λ, λ + 1, 2λ + 1; cosh−2(r/2)

)
cl(vm,m′)U(m,m′)

(2.6)

where r = dHd+1(m,m′) for m,m′ ∈ Hd+1, vm,m′ is the unit tangent vector at m to the geodesic
from m′ to m and U(m,m′) is the parallel transport from m′ to m along the geodesic between
them. Moreover RHd+1(λ) has an analytic continuation in C \ {0} with a simple pole at λ = 0 and
DHd+1RHd+1(λ) admits an analytic continuation to λ ∈ C (thus with no pole), as distributions on
Hd+1 ×Hd+1.



6 COLIN GUILLARMOU, SERGIU MOROIANU, AND JINSUNG PARK

Remark. If one denotes RHd+1(λ; m; m′) = Qλ(r)U(m,m′) where r = dHd+1(m,m′), the function
Qλ(r) satisfies that Qλ(r) − Q−λ(r) is smooth in r near r = 0. This can be checked using func-
tional equations of hypergeometric functions but actually follows directly from elliptic regularity
since Qλ(r) − Q−λ(r) (since the difference of resolvents too) solves an elliptic ODE. The kernel
DΠ(λ; m,m′) of D(RHd+1(λ) − RHd+1(−λ)) is then also smooth near the diagonal m = m′ and
following the proof of [6, Th 6.3], we see that it can be written under the form

DΠ(λ; m,m′) = −1
2

sinh(r)
∂cosh−2(r/2)

(
(cosh−2( r

2 ))−
d
2 Hλ(cosh−2( r

2 ))
)

cosh( r
2 )d+4

cl(vm,m′)U(m, m′)

where Hλ(cosh−2(r/2)) := Qλ(r)−Q−λ(r) with Hλ(u) smooth near u = 1. Then we deduce that
on the diagonal DΠ(λ;m, m) = 0.

2.3. Dirac operators over convex co-compact hyperbolic manifolds. Let Γ denote a con-
vex co-compact torsion-free discrete subgroup of G = Spin(d + 1, 1) such that its co-volume
Vol(Γ\G) = ∞. Hence

XΓ := Γ\G/K

is a (d+1)-dimensional convex co-compact hyperbolic manifold of infinite volume, which is a spin
manifold by construction. The boundary ∂Hd+1, which can be identified with K/M , admits a
Γ-invariant decomposition into Ω(Γ) ∪ Λ(Γ) where Ω(Γ) 6= ∅ is open and Γ acts freely and co-
compactly on Hd+1 ∪ Ω(Γ). Hence XΓ can be compactified by adjoining the geodesic boundary
Γ\Ω(Γ).

By the identification (2.4) of the spinor bundle Σ(Hd+1) with the homogeneous vector bundle
G ×τd

Vτd
, we can also identify the spinor bundle Σ(XΓ) over XΓ with the locally homogeneous

vector bundle Γ\(G ×τd
Vτd

)
. Here Γ acts on G ×τd

Vτd
by γ[g, v] = [γg, v] for γ ∈ Γ. We can

also push down the Dirac operator DHd+1 to XΓ, which we denote by D. We also use the same
notation for its unbounded self-adjoint extension in L2(XΓ; Σ(XΓ)), that is,

D : L2(XΓ; Σ(XΓ)) −→ L2(XΓ; Σ(XΓ)).

By Corollary 3.4 below (cf. Cor. 7.9 and Th. 11.2 in [4]), the Dirac operator D over L2(XΓ; Σ(XΓ))
has no discrete spectrum and only absolutely continuous spectrum R.

3. Resolvent of Dirac operator on Asymptotically Hyperbolic manifolds

In this section, we analyze the resolvent R(λ) of D2 on an asymptotically hyperbolic manifold
(AH in short) of dimension (d + 1). An asymptotically hyperbolic manifold is a complete non-
compact Riemannian manifold (X, g) which compactifies in a smooth manifold with boundary
X̄ and there is a diffeomorphism ψ (called product decomposition) from a collar neighbourhood
[0, ε)x × ∂X̄ of the boundary to a neighbourhood of ∂X̄ in X̄ so that

(3.1) ψ∗g =
dx2 + hx

x2

for some one-parameter family of metrics hx on the boundary ∂X̄ depending smoothly on x ∈ [0, ε).
By abuse of notations, we will write x for ψ∗x, and x is then a boundary defining function in X̄
near ∂X̄, satisfying |dx|x2g = 1. A boundary defining functions satisfying |dx|x2g = 1 near the
boundary is called geodesic boundary defining function, and it yields a diffeomorphism ψ like in
(3.1) by taking the flow of the gradient ∇x2gx starting at the boundary. Following the terminology
of [12], we shall say that

(3.2) the metric is even if the Taylor expansion of hx at x = 0 contains only even powers of x.

This property does not depend on the choice of the diffeomorphism ψ but only on g, see [12,
Lemma 2.1]. It is well known that convex co-compact quotients XΓ = Γ\Hd+1 are even AH
manifolds (see [25]). Note that the metric h0 is not canonical since it depends on the choice of ψ,
but its conformal class [h0] is canonical with respect to g.
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3.1. 0-structures, spinor bundle and Dirac operator. Following the ideas of Mazzeo-Melrose
[25] (and refer to this paper for more details), there is a natural structure associated to AH
manifolds, this is encoded in the Lie algebra V0(X̄) of smooth vector fields vanishing at the
boundary, whose local basis over C∞(X̄) is given near the boundary ∂X̄ by the vector fields
(x∂x, x∂y1 , . . . , x∂yd

) if (x, y1, . . . , yd) is a local chart near a point p ∈ ∂X̄ and x is a smooth
boundary defining function in X̄. The algebra is also the space of smooth section of a bundle 0TX̄
with local basis near p given by (x∂x, x∂y1 , . . . , x∂yd

) and its dual space is denoted 0T ∗X̄, with
local basis (dx/x, dy1/x, . . . , dyd/x). The metric g is a smooth section of the bundle of positive
definite symmetric form S2

+(0T ∗X̄) of 0T ∗X̄.

Let us define ḡ := x2g where x is a boundary defining function appearing in (3.1). If (X̄, ḡ) is
orientable, there exists an SO(d + 1)-bundle oF (X̄) → X̄ over X̄, but also an SO(d + 1)-bundle
0
oF (X̄) → X̄ defined using the 0-tangent bundle 0TX̄ and the metric g smooth on it. If (X̄, ḡ)
admits a spin structure, then there exists a 0-spin structure on (X, g) in the sense that there is a
Spin(d+1)-bundle 0

sF (X̄) → X̄ which double covers 0
oF (X̄) and is compatible with it in the usual

sense. This corresponds to a rescaling of the spin structure related to (X̄, ḡ). The 0-spinor bundle
0Σ(X̄) can then be defined as a bundle associated to the Spin(d+1) principal bundle 0

sF (X̄), with
fiber at p ∈ X̄

0Σp(X̄) = 0
sFp ×τd

Vτd
.

The vector field x∂x := x∇ḡ(x) in the collar neighbourhood is unit normal to all hypersurfaces
{x = constant}. The 0-spinor bundle on X̄ splits near the boundary under the form

0Σ = 0Σ+ ⊕ 0Σ−, where 0Σ± := ker(cl(x∂x)∓ i),

note that this splitting is dependent of the choice of the geodesic boundary defining function x
except at the boundary ∂X̄ where it yields an independent splitting of the spinor (since the one-jet
of x∇x2gx is independent of x at ∂X̄). To avoid confusions later (and emphasize the fact that it is
only depending on the conformal class (∂X̄, [h0])), we shall define cl(ν) the linear map on 0Σ|∂X̄

by
cl(ν)ψ := cl(x∂x)ψ.

At the boundary, 0Σ|∂X̄ is diffeomorphic to the spinor bundle Σ(∂X̄) on (∂X̄, h0), this is not
canonical since it depends on h0 and thus on the choice of x, however the splitting above is.
Notice also that in even dimension d + 1 = 2m, the splitting 0Σ+ ⊕ 0Σ− near the boundary is
not the usual splitting of the spinor bundle into positive and negative spinors, i.e., into the ±1
eigenspaces of the involution ω := imcl(e1) . . . cl(e2m), where (ei)i is any orthonormal oriented
local basis of 0TX̄. The Dirac operator near the boundary has the form

(3.3) D = x
d
2 (cl(x∂x)x∂x + P )x−

d
2 , P ∈ Diff1

0(X̄; 0Σ)

where P is a first order differential operator in tangential derivatives, which anticommutes with
cl(x∂x) and such that P = xDh0 +O(x2) where Dh0 is the Dirac operator on ∂X̄ equipped with the
metric h0. If the metric g is even, it is easy to see that locally near any point y′ of the boundary,
if (x∂x, xY1, . . . , xYd) is an orthonormal frame near y′ and (x, y) are coordinates on [0, ε) × ∂X̄
there, then P is of the form

P =
d∑

i=1

Pi(x2, y;∇ḡ
xYi

)

for some differential operators Pi of order 1 and with smooth coefficients in (x2, y). This can be
checked for instance by using the conformal change formula D = x

d
2 +1D̄x−

d
2 where D̄ is the Dirac

operator for the metric ḡ = x2g which is smooth in the coordinates (x = x2, y) down to x = 0.
From these properties, it is straightforward to check that if g is even, then for x geodesic boundary
defining function fixed, D preserves the space A± ⊂ C∞(X̄; 0Σ) of smooth spinors which have
expansion at the boundary of the form

(3.4) σ ∼x→0

∞∑

j=0

xjψj , with ψ2j ∈ Σ±(∂X̄) and ψ2j+1 ∈ Σ∓(∂X̄).
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3.2. The stretched product. Following Mazzeo-Melrose [25], we define the stretched product
X̄ ×0 X̄ as the blow-up [X̄ × X̄,∆∂ ] of X̄ × X̄ around the diagonal in the boundary ∆∂ :=
{(y, y) ∈ ∂X̄ × ∂X̄}. The blow-up is a smooth manifold with codimension 2 corners, and 3
boundary hypersurfaces, the left boundary denoted lb, the right boundary denoted rb and the
new face, called ‘front face’ and denoted ff, obtained from the blow-up. The blow-down map is
denoted β : X̄ ×0 X̄ → X̄ × X̄ and maps int(lb) to ∂X̄ × X, int(rb) to X × ∂X̄ and ff to ∆∂ .
The face ff is a bundle over ∆∂ ' ∂X̄ with fibers a quarter of d-dimensional sphere. Let us use
the boundary defining function x in (3.1), which induces x := π∗Lx and x′ := π∗Rx as boundary
defining functions of X̄ × X̄ where πL, πR are the left and right projection X̄ × X̄ → X̄. The fibre
ffp of the front face ff (with p = (y′, y′) ∈ ∂X̄ × ∂X̄) is, by definition of blow-up, given by the
quotient

(3.5) ffp =
((

Np(∆∂ , ∂X̄ × ∂X̄)× (R+∂x)× (R+∂x′)
)
\ {0}

)/
{(w, t, u) ∼ s(w′, t′, u′), s > 0}

where in general N(M,Y ) denotes the normal bundle of a submanifold M in a manifold Y . Since
Ty′∂X̄ is canonically isomorphic to Np(∆∂ , ∂X̄ × ∂X̄) by z ∈ Ty′∂X̄ → (z,−z) ∈ Tp(∂X̄ × ∂X̄),
h0(y′) induces a metric on Np(∆∂ , ∂X̄ × ∂X̄). Then ffp is clearly identified with the quarter of
sphere

ffp ' {w + t∂x + u∂x′ ∈ Np(∆∂ , ∂X̄ × ∂X̄)× (R+∂x)× (R+∂x′), t2 + u2 + |w|2h0(y′) = 1}.
In projective coordinates (s := t/u, z := w/u) ∈ (0,∞)×Rd, the interior of the front face fiber ffp

is diffeomorphic to Hd+1. In the same way we define the blow-up X̄ ×0 ∂X̄ of X̄ × ∂X̄ around ∆∂

and the blow-up ∂X̄ ×0 ∂X̄ of ∂X̄ × ∂X̄ around ∆∂ . The first one is canonically diffeomorphic to
the face rb of X̄ ×0 X̄ while the second one is canonically diffeomorphic to lb ∩ rb.

The manifold X̄ × X̄ carries the bundle

E = 0Σ(X̄) £ 0Σ
∗
(X̄)

which on the diagonal is isomorphic to End(0Σ). This bundle lifts under β to a bundle over X̄×0X̄,
still denoted by E, whose fiber at the front face ff is given by 0Σy′(X̄) £ 0Σ∗y′(X̄) everywhere on
the fiber ffp (here p = (y′, y′) ∈ ∆∂) if 0Σy′(X̄) is the fiber of 0Σ(X̄) at the point y′ ∈ ∂X̄.

On a manifold with corners M with a smooth bundle E → M , let us denote by Ċ∞(M ; E)
the space of smooth section of E which vanish to all order at the (topological) boundary and let
C−∞(M ; E∗) be its dual, the elements of which are called extendible distributions. Then β∗ is an
isomorphism between Ċ∞(X̄ × X̄; E) and Ċ∞(X̄ ×0 X̄; E) and also between their duals, meaning
that distributions on X̄×X̄ can be as well considered on the stretched product. In what follows, we
consider the Schwartz kernel KA ∈ C−∞(X̄×X̄;E) of an operator A : Ċ∞(X̄; 0Σ) → C−∞(X̄; 0Σ)
defined by

〈Aψ, φ〉 = 〈KA, φ £ ψ〉
where 〈., .〉 is the duality pairing using the volume density of the metric. By abuse of notations we
will write A(m,m′) for KA(m,m′) and the bundle E at the diagonal will be identified to End(0Σ).

3.3. Pseudo-differential operators. We define the space Ψm,α,β
0 (X̄; 0Σ) for m ∈ R, α, β ∈ C

as in [22, 25], and refer the reader to these references for more details. An operator A is in
Ψm,α,β

0 (X̄; 0Σ) if its Schwartz kernel KA lifts to X̄ ×0 X̄ to a distribution β∗(KA) which can be
decomposed as a sum K1

A + K2
A with K1

A ∈ ρα
lbρβ

rbC∞(X̄ ×0 X̄;E) and K2
A ∈ Im

cl (X̄ ×0 X̄, ∆; E)
where Im

cl (X̄ ×0 X̄, ∆; E) denotes the space of distribution on X̄ ×0 X̄ classically conormal to the
lifted diagonal ∆ := β∗({(m, m) ∈ X ×X}) of order m and vanishing to infinite order at the left
and right boundaries lb ∪ rb.

3.4. Microlocal structure of the resolvent on Hd+1. We want to describe the resolvent kernel
as a conormal distribution on a compactification of Hd+1 × Hd+1, in order to show later that a
similar result holds for convex co-compact quotients and more generally asymptotically hyperbolic
manifolds. Here we let Hd+1 be the natural compactification of Hd+1, i.e., the unit ball in Rd+1.
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Lemma 3.1. The analytically extended resolvent RH
d+1

± (λ) := (DHd+1±iλ)−1 of the Dirac operator

DHd+1 on Hd+1 is in the space Ψ−1,λ+ d
2 ,λ+ d

2
0 (Hd+1; 0Σ).

Proof. The proof is very similar to the case of the Laplacian on functions dealt with in [25], since
we have cosh(r/2)−2 ∈ ρlbρrbC∞(Hd+1 ×0 Hd+1 \ ∆) and is a smooth function of the distance,
and since, by the remark after Lemma A.2, the lift of U(m, m) by β∗ is smooth on Hd+1 ×0

Hd+1, combining the formulae (2.5), (2.6) proves our claim, except for the singularity at the
diagonal ∆. The conormal diagonal singularity can be easily seen by applying the first step
of the parametrix of Mazzeo-Melrose (we refer to the proof of Proposition 3.2 below) near the
diagonal, indeed the construction shows that there exists Q0

±(λ) ∈ Ψ−1,∞,∞
0 (Hd+1; 0Σ) such that

(DHd+1 ± iλ)(RH
d+1

± (λ)−Q0
±(λ)) and (RH

d+1

± (λ)−Q0
±(λ))(DHd+1 ± iλ) have a smooth kernel in a

neighbourhood of ∆ down to the front face ff, and so by 0-elliptic regularity RH
d+1

± (λ)−Q0
±(λ) is

smooth near ∆ down to ff. ¤
Note that the resolvent can be also considered as a convolution kernel on Hd+1 with a conormal

singularity at the center 0 ∈ Hd+1.

3.5. The parametrix construction of Mazzeo-Melrose. We can construct the resolvent
R±(λ) := (D ± iλ)−1 through a pseudo-differential parametrix, following Mazzeo-Melrose [25]
or Mazzeo [22]. We will not give the full details since this is a straightforward application of
the paper [25] and the analysis of the resolvent RH

d+1

± (λ) on the model space Hd+1. This will
be done in 3 steps. If E, F are smooth bundles over X̄, we will say that a family of operator
A(λ) : Ċ∞(X̄; E) → C−∞(X̄; F ) depending meromorphically on a parameter λ ∈ C is finite
meromorphic if the polar part of A(λ) at any pole is a finite rank operator.

Proposition 3.2. Let (X, g) be a spin asymptotically hyperbolic manifold and D be a Dirac
operator over X. Then the resolvent R±(λ) = (D ± iλ)−1 extends from {<(λ) > 0} to C \
(−N/2) as a finite meromorphic family of operators in Ψ−1,λ+ d

2 ,λ+ d
2

0 (X̄; 0Σ). Moreover R±(λ)
maps Ċ∞(X̄; 0Σ) to xλ+ d

2 C∞(X̄; 0Σ) and for all σ ∈ Ċ∞(X̄; 0Σ), we have [x−λ− d
2 R±(λ)σ]|x=0 ∈

C∞(∂X̄; 0Σ∓).

Proof. The proof goes along the lines of the construction of Mazzeo-Melrose [25], but we also
use arguments of Epstein-Melrose-Mendoza [7] which somehow simplify it. Since there is no real
novelty, we do not give the full details but only the important steps and additional arguments to
our case which are needed. First, we construct an operator Q0

±(λ) ∈ Ψ−1,∞,∞
0 (X̄; 0Σ) supported

near the interior diagonal such that (D±iλ)Q0
±(λ) = Id−K0

±(λ) with K0
±(λ) ∈ Ψ−∞,∞,∞

0 (X̄; 0Σ),
thus a smooth kernel on X̄ ×0 X̄ and whose support actually does not intersect the right and left
boundary. Note that this can be done thanks to the ellipticity of D and it can be chosen analytic
in λ, moreover notice also that Q0

±(λ)(D ± iλ)− Id ∈ Ψ−∞,∞,∞
0 (X̄; 0Σ) by standards arguments

of pseudo-differential calculus. The error K0
±(λ) is a priori not compact on any weighted space

xsL2(X; 0Σ) so this parametrix is not sufficient for our purpose. To be compact on such a space,
it would be enough to have vanishing of the error on the front face K0

±(λ)|ff = 0.
Next we need to solve away the term at the front face ff, i.e., K0

±(λ)|ff. We can use the normal
operator of D: the normal operator Ny′(D) of D at y′ ∈ ∂X̄ is an operator acting on the space
Xy′ := {z ∈ 0T y′X̄, dx

x (z) > 0} obtained by freezing coefficients of D at y′ ∈ ∂X̄, when considered
as polynomial in the 0-vector fields x∂x, x∂y. Here the spinor bundle over Xy′ is trivial, i.e., it is
given by Xy′ × 0Σy′(X̄) where 0Σy′(X̄) is the fiber of 0Σ at the boundary point y′ ∈ ∂X̄. The half
space Xy′ equipped with the metric g frozen at y′ (the metric here is considered as a symmetric
tensor on the 0-cotangent space 0T ∗X̄) is isometric to Hd+1 and the operator Ny′(D) corresponds
to the Dirac operator on Hd+1 using this isometry. Moreover this space is also canonically identified
to the interior of the front face fibre ffp with basis point p = (y′, y′) ∈ ∆∂ . One has from [25] that
the composition (D±iλ)G± for G± ∈ Ψ−∞,α,β

0 (X̄; 0Σ) is in the calculus Ψ0(X̄) and the restriction
at the front face fiber ffp is given by

((D ± iλ)G±)|ffp = Ny′(D ± iλ).G±|ffp
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which is understood as the action of the differential operator Ny′(D± iλ) on the conormal distri-
bution G±|ffp

on ffp ' Xy′ . Thus to solve away the error term at ff, it suffices to find an operator
Q1
±(λ) in the calculus such that

Ny′(D ± iλ).Q1
±(λ)|ffp = K0

±(λ)|ffp

for all y′ ∈ ∂X̄. This can be done smoothly in y′ by taking Q1
±(λ)|ffp := R

Xy′
± (λ)(K0

±(λ)|ffp
) where

R
Xy′
± (λ) is the analytically extended resolvent of Ny′(D± iλ) ' (DHd+1 ± iλ) on Xy′ × 0Σy′(X̄) '
Hd+1 × 0Σ(Hd+1), and then defining Q1

±(λ) to be a distribution on X̄ ×0 X̄ whose restriction

to each fiber ffp is R
Xy′
± (λ)(K0

±(λ)|ffp
). As we studied above, the resolvent RH

d+1

± (λ) is ana-
lytic in λ and it maps Ċ∞(Hd+1; 0Σ) to ρλ+ d

2 C∞(Hd+1; 0Σ) if ρ is a boundary defining function
of the compactification of Hd+1, moreover the leading asymptotic term is of the form ρλ+ d

2 ψ∓
for some ψ∓ ∈ C∞(∂Hd+1; 0Σ∓). Thus, the composition R

Xy′
± (λ)(K0

±(λ)|ffp
) is a conormal dis-

tribution in the class (ρlbρrb)λ+ d
2 C∞(ffp; End(0Σy′)) and it is then possible to find Q1

±(λ) ∈
Ψ−∞,λ+ d

2 ,λ+ d
2

0 (X̄; 0Σ) with the correct restriction at ff. Let P± denote the canonical projection
P± : 0Σ(∂X̄) → 0Σ±(∂X̄). The restriction of a conormal kernel in Ψ−∞,0,β

0 (X̄; 0Σ) at lb can be
considered as a section C−∞(∂X̄×X̄;E) conormal to all boundary faces. From the mapping prop-

erty of RH
d+1

± (λ) just discussed, it is possible to choose Q1
±(λ) such that P±[ρ−λ− d

2
lb Q1

±(λ)]|lb = 0,
which will be important for the next step. Then we get (D ± iλ)(Q0

±(λ) + Q1
±(λ)) = Id−K1

±(λ)

where K1
±(λ) ∈ ρffΨ−∞,λ+ d

2 ,λ+ d
2

0 (X̄; 0Σ).
The final terms in the parametrix are those at the left boundary, solved away through the

indicial equation for z ∈ C: for all ψ± ∈ C∞(∂X̄; 0Σ±)

(D ± iλ)x
d
2 +z(ψ+ + ψ−) = i(z ± λ)x

d
2 +zψ+ + i(−z ± λ)x

d
2 +zψ− + O(x

d
2 +z+1),(3.6)

which is an easy consequence of (3.3). Lifting D as acting on the left variable on the space X̄×0 X̄,

it satisfies the same type of indicial equation: if G ∈ Ψ−∞,α+ d
2 ,β+ d

2
0 (X̄; 0Σ) for some α, β ∈ C,

then (D ± iλ)G ∈ Ψ−∞,α+ d
2 ,β+ d

2
0 (X̄; 0Σ) and the leading term at lb is

(3.7) [i(α± λ)ρα+ d
2

lb P+[(ρ−α− d
2

lb G)|lb] + i(−α± λ)ρα+ d
2

lb P−[(ρ−α− d
2

lb G)|lb]

where the restriction at lb is considered as a section C−∞(∂X̄ × X̄;E) (conormal to all boundary

faces). Then since for α = λ, the term (3.7) vanishes if P±(ρ−λ− d
2

lb G)|lb = 0, one clearly has

K1
±(λ) ∈ ρffΨ−∞,λ+ d

2 +1,λ+ d
2

0 (X̄; 0Σ) thanks to the choice of Q1
±(λ) and now, since α = λ+j for j ∈

N is not solution of the indicial equation above when λ /∈ −N/2, it is possible by induction and using

Borel Lemma to construct a term Q2
±(λ) ∈ ρffΨ−∞,λ+ d

2 +1,λ+ d
2

0 (X̄; 0Σ), holomorphic in C \ (−N/2)

such that (D ± iλ)Q2
±(λ) = K1

±(λ)−K2
±(λ) for some operator K2

±(λ) ∈ ρffΨ−∞,∞,λ+ d
2

0 (X̄; 0Σ).
By [24, Prop. 3.29], the error term K2

±(λ) is now already compact on ρzL2 for all z ∈ [0,∞) such
that <(λ)+z > 0. We can now improve the parametrix by using exactly the same arguments as in
the proof of Theorem 14.5 of Epstein-Melrose-Mendoza [7] for complex asymptotically hyperbolic
manifolds: take a kernel Q3

±(λ) which matches to infinite order on X̄×X̄ with the formal Neumann
series composition

(Q0
±(λ) + Q1

±(λ) + Q2
±(λ))

∞∑

j=0

(K2
±(λ))j ,

and the error term K3
±(λ) will now be in ρ∞ff Ψ−∞,∞,λ+ d

2
0 (X̄; 0Σ). The compositions above are

still in the calculus by Mazzeo’s composition theorem [24, Th. 3.15], but with a larger index
set at the right boundary and front face than for

∑2
i=0 Qi

±(λ) (see the proof of Theorem 4.15
of [7] where this is explained in full details). Now fix λ0 such that <(λ0) > 0 where R±(λ0) is
bounded on L2(X). Then we use a standard argument, we can add a finite rank term Q4

±(λ) =
Q4
±(λ0) ∈ ρ∞ff Ψ−∞,∞,∞

0 (X̄; 0Σ) to Q3
±(λ) in case (Id−K3

±(λ0)) has non empty null space in ρzL2,
so that Id − K4

±(λ0) is invertible if K4
±(λ) := Id − (D ± iλ)(Q3

±(λ) + Q4
±(λ)). The operator
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Q±(λ) := Q3
±(λ) + Q4

±(λ) is bounded from ρzL2 to ρ−zL2 if <(λ) + z > 0 by [24, Th. 3.25], and
so Fredholm theorem proves that R±(λ) = Q±(λ)(Id−K4

±(λ))−1 on the weighted space ρzL2 for
z ∈ [0,∞) such that <(λ) + z > 0. Finally, writing (Id − K4

±(λ))−1 = Id + T±(λ), we see that

T±(λ) = K4
±(λ) + K4

±(λ)(Id − K4
±(λ))−1K4

±(λ). We claim that R±(λ) ∈ Ψ−1,λ+ d
2 ,λ+ d

2
0 (X̄; 0Σ):

since there are no new arguments needed, we do not give details here and refer the reader to the
proof of Theorem 4.15 in [7], we notice though that one of the points explained in [7] is to check
that the additional exponents in the index sets obtained using the composition theorem of Mazzeo
in the Neumann series of K2

±(λ) are actually absent in R±(λ), this is based on the adjointness
properties of the resolvent for what concerns the right boundary index set and on the properties
of the normal operator for the front face index set (this however requires to add a last term to the
parametrix). The mapping property of R±(λ) acting on Ċ∞(X̄; 0Σ) follows again from Mazzeo
[24, Prop. 3.28], and the fact that for all σ ∈ Ċ∞(X̄; 0Σ) we have R±(λ)σ = xλ+ d

2 ψ∓+O(xλ+ d
2 +1)

for some ψ∓ ∈ C∞(∂X̄; 0Σ∓) is a straightforward consequence of the indicial equation (3.6). ¤
Let us now discuss the nature of the spectrum of D. We start by an application of Green

formula, usually called boundary pairing property (compare to [11, Prop. 3.2])

Lemma 3.3. Let <(λ) = 0 and σi = x
d
2−λσ−i + x

d
2 +λσ+

i for i = 1, 2 and σ±i ∈ C∞(X̄; 0Σ), then
if (D2 + λ2)σi = ri ∈ Ċ∞(X̄; 0Σ), one has∫

X

(〈σ1, r2〉 − 〈r1, σ2〉)dvg = 2λ

∫

∂X̄

〈σ−1 |∂X̄ , σ−2 |∂X̄〉 − 〈σ+
1 |∂X̄ , σ+

2 |∂X̄〉dvh0

where 〈 , 〉 denotes the scalar product with respect to g on X and to h0 on ∂X̄.

Proof. The proof of this Lemma is straightforward by using integration by parts in {x ≥ ε} and
letting ε → 0. ¤

As a corollary of the resolvent extension and this Lemma, we obtain the following

Corollary 3.4. On a spin asymptotically hyperbolic manifold, the extended resolvent R±(λ) =
(D ± iλ)−1 is holomorphic on the imaginary line iR, consequently the spectrum of D is R and
absolutely continuous.

Proof. In view of the meromorphy of R±(λ), it clearly suffices from Stone’s formula to prove that
R±(λ) has no pole on the imaginary line. Assume λ0 is such a pole with order p, then the most
singular coefficient of the Laurent expansion is a finite rank operator whose range is made of gen-
eralized eigenspinors σ solving (D± iλ0)σ = 0 and σ ∈ xλ0+

d
2 C∞(X̄; 0Σ). In particular it satisfies

(D2 + λ2
0)σ = 0 and by applying Lemma 3.3 with σ1 = σ2 = σ we see that (x−λ0− d

2 σ)|x=0 = 0 and
so σ ∈ xλ0+

d
2 +1C∞(X̄; 0Σ). Now from the indicial equation (3.6), this implies σ ∈ Ċ∞(X̄; 0Σ)

if λ0 6= 0. Then Mazzeo’s unique continuation theorem [23] says that for a class of operators
including D2, there is no eigenfunction vanishing to infinite order at the boundary except σ ≡ 0,
we deduce that σ = 0 and thus by induction this shows that the polar part of Laurent expansion
of R(λ) at λ0 is 0. Now there remains the case λ0 = 0. First from self-adjointness of D, we easily
get

(3.8) λ||σ||L2 ≤ ||(D ± iλ)σ||L2

for all λ > 0 and σ in the L2-Sobolev space H1(X; 0Σ) of order 1, and this implies that R±(λ)
has a pole of order at most 1 at λ = 0, i.e., one has R±(λ) = A±λ−1 + B±(λ) for some B±(λ)
holomorphic (these can be considered as operators from Ċ∞(X̄; 0Σ) to its dual). By (3.8), we
also see by taking λ → 0 that ||A±σ||L2 ≤ ||σ||L2 for all σ ∈ Ċ∞(X̄; 0Σ) and so A± is bounded
on L2 and also maps into ker(D) by (D ± iλ)R±(λ) = Id. Now in view of the structure of the
kernel of R±(λ), it is not hard to check (e.g. see [13]) that the elements in the range of A± are
harmonic spinors of the form σ ∈ x

d
2 C∞(X̄; 0Σ), which can only be L2 if the leading asymptotic

(x−
d
2 σ)|x=0 = 0, i.e., if σ ∈ x

d
2 +1C∞(X̄; 0Σ). Using again the indicial equation, (3.6), we deduce

that σ ∈ Ċ∞(X̄; 0Σ) and thus σ = 0 by Mazzeo’s unique continuation theorem, so A± = 0. ¤
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Another corollary of Proposition 3.2 is

Corollary 3.5. The resolvent R(λ) := (D2 + λ2)−1 extends meromorphically to λ ∈ C \ (−N/2)
with poles of finite multiplicity, except at λ = 0 where it has a simple infinite rank pole with
residue (2i)−1(R−(0) − R+(0)). Moreover R(λ) is an operator in Ψ−2,λ+ d

2 ,λ+ d
2

0 (X̄; 0Σ) and for
any σ ∈ Ċ∞(X̄; 0Σ), one has R(λ)σ ∈ xλ+ d

2 C∞(X̄; 0Σ).

Proof. : The extension and the structure of R(λ) are a consequence of Proposition 3.2 since
R(λ) = (2iλ)−1(R−(λ)−R+(λ)). As for the mapping property, this is a consequence of mapping
properties of operators in Ψ∗,∗,∗0 (X̄) in [24]. The question of the simple pole at λ = 0 is also
clear since R±(λ) are holomorphic at λ = 0. It remains to show that the residue Π0 is infinite
rank. One way to prove it is to consider the asymptotic of Π0φ if φ ∈ C∞0 (X̄; 0Σ). First, both
R−(0) and R+(0) have infinite rank since DR±(0) = Id on C∞0 (X̄; 0Σ), but moreover if φ is
smooth compactly supported, R±(0)φ has an asymptotic of the form x

d
2 ψ± at the boundary

where ψ± ∈ C∞(∂X̄; 0Σ∓) according to Proposition 3.2. If ψ± = 0, then R±(0)φ = O(x
d
2 +1), and

by the indicial equation (3.6) it must vanish to infinite order at ∂X̄, which by Mazzeo’s unique
continuation theorem implies that R±(0)φ = 0, a contradiction. This then shows that the range of
R+(0) on C∞0 (X̄; 0Σ) does not intersect the range of R−(0) acting on the same space, concluding
the proof. ¤
Remark. By self-adjointness of D2, one deduces easily that R(λ)∗ = R(λ̄), or in terms of kernels

R(λ; m,m′)∗ = R(λ̄; m′,m) ∀m,m′ ∈ X, m 6= m′,

here A∗ ∈ Σm′ £ Σm means the adjoint of A ∈ Σm £ Σm′ if we identify the dual Σ∗m with Σm via
the Hermitian product induced by the metric g.

3.6. Another parametrix construction when the curvature is constant near ∞. When
(X, g) is asymptotically hyperbolic with constant curvature outside a compact set (which is the
case of a convex co-compact quotient XΓ = Γ\Hd+1), one may use a simplified construction similar
to that of Guillopé-Zworski [17] for the Laplacian on functions.

Indeed, there exists a covering of a neighbourhood of ∂X̄ by open sets (Uj) with isometries

ιj : (Uj , g) → (B, gHd+1),

where B := {(x0, y0) ∈ (0,∞)× Rd, x2
0 + |y0|2 < 1} and gHd+1 =

dx2
0 + |dy0|2

x2
0

.

We denote by B̄ := {(x0, y0) ∈ [0,∞)×Rd, x2
0+|y0|2 < 1} a half-ball in Hd+1 and ∂B̄ := B̄∩{x0 =

0}. We shall also use the notation ιj for the restriction ιj |Uj∩∂X̄ .
Note that the function x0 in B is not pulled-back to a boundary defining function putting the

metric g under the form g = (dx2 + hx)/x2, but we have (x/ι∗jx0)|∂X̄ = ι∗jηj for some functions
ηj ∈ C∞(∂B̄). Through ιj , the spinor bundle on Hd+1 pulls-back to the spinor bundle 0Σ(X̄)|Uj

but the splitting induced by cl(x0∂x0) does not correspond to the splitting 0Σ+ ⊕ 0Σ−, except at
the boundary x0 = 0, since the eigenspaces of cl(x0∂x0) are the eigenspaces of cl(ιj∗(x∂x)) when
restricted to the boundary.

The Dirac operator DHd+1 pulls back to D in Uj , consequently one may choose a partition of
unity ι∗jχ

1
j near ∂X̄ associated to (Uj)j , that is

∑
j ι∗jχ

1
j = χ where χ ∈ C∞(X̄) is equal to 1 near

∂X̄. Take now χ2
j ∈ C∞0 (B̄) some functions which are equal to 1 on the support of χ1

j . Let us
define φi

j on ∂B̄ by χi
j(0, y0) = φi

j(y0) so that
∑

j ι∗jφ
1
j = 1 on ∂X̄ and φ2

jφ
1
j = φ1

j .
The first parametrix we can use for (D2 + λ2)−1 is

(3.9) R0(λ) =
∑

j

ι∗jχ
2
jRHd+1(λ)χ1

j ιj∗ + Q0(λ)

where Q0(λ) ∈ Ψ−2;∞,∞
0 (X̄; 0Σ) is holomorphic, compactly supported and solves (D2+λ2)Q0(λ) =

(1− χ)Id + K0(λ) for some K0(λ) ∈ C∞0 (X ×X;E). Here ι∗j denotes the pull back on sections of
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the spinor bundle and ιj∗ := (ι−1
j )∗. We obtain

(D2 + λ2)R0(λ) = Id +
∑

j

ι∗j [D
2
Hd+1 , χ

2
j ]RHd+1(λ)χ1

j ιj∗ + K0(λ).

The last term K0(λ) is clearly compact on all weighted spaces xNL2(X; 0Σ) while the first one is
not. Since on Hd+1 one has

D2
Hd+1 = x

d
2
0

(−(x0∂x0)
2Id + x2

0DRd + ix0ADRd

)
x
− d

2
0 , A :=

[
1 0
0 −1

]
= −icl(x0∂x0),

in the splitting induced by cl(x0∂x0). The operator [D2
Hd+1 , χ

2
j ] can be written as follows:

[D2
Hd+1 , χ

2
j ] = dx0(∂x0χ

2
j (x0, y0))Id

− x2
0(∂

2
x0

χ2
j (x0, y0))Id + x2

0[DRd , χ2
j (x0, y0)] + ix0[ADRd , χ2

j (x0, y0)].

Using the fact that (∇χ2
j )χ

1
j = 0 and the expression of RHd+1(λ), we deduce that

[D2
Hd+1 , χ

2
j ]RHd+1(λ)χ1

j ∈ x
λ+ d

2 +1
0 x′0

λ+ d
2 C∞(B̄ × B̄;E)

where (x0, y0, x
′
0, y

′
0) are the natural coordinates on B × B. This error term can be solved away

using the indicial equation explained above for the general AH case and one can thus construct,
for all N ∈ N, an operator RN (λ) ∈ xλ+ d

2 +1x′λC∞(X̄ × X̄; E) such that

(D2 + λ2)(R0(λ) + RN (λ)) = Id + KN (λ), KN (λ) ∈ xλ+ d
2 +Nx′λ+ d

2 C∞(X̄ × X̄; E)

and KN (λ) is compact on xN ′
L2(X; 0Σ) if 0 < N ′ < N and <(λ) > −N + N ′ and <(λ) > −N ′.

All these terms are holomorphic in λ except possibly at −N/2 where first order poles come from
the indicial equation and at λ = 0 where RHd+1(λ) has an infinite rank pole. As above for
the general case, we can take an asymptotic series using Borel Lemma, which gives an operator
R∞(λ) ∈ xλ+ d

2 +1x′λ+ d
2 C∞(X̄ × X̄;E), holomorphic in λ /∈ −N0/2 so that (D2 + λ2)(R0(λ) +

R∞(λ)) = Id + K∞(λ) for some K∞(λ) ∈ x∞x′λ+ d
2 C∞(X̄ × X̄;E). And again, as in the proof of

Proposition 3.2, up to the addition of a residual finite rank term for R∞(λ), we can assume that
there is λ0 with <(λ0) > 0 such that Id + K∞(λ0) is invertible on xNL2(X) for all N > 0. The
extended resolvent of D2 + λ2 is thus given by

R(λ) = (R0(λ) + R∞(λ))(Id + K∞(λ))−1,

it is finite meromorphic in C\(−N0/2). Moreover standard arguments show that (Id+K∞(λ))−1 =
Id + S∞(λ) for some S∞(λ) ∈ x∞x′λ+ d

2 C∞(X̄ × X̄; E) and so

R(λ)−R0(λ)(Id + S∞(λ)) ∈ xλ+ d
2 +1x′λ+ d

2 C∞(X̄ × X̄;E).

Using the composition results of Mazzeo [24, Th. 3.15], we get R0(λ)S∞(λ) ∈ (xx′)λ+ d
2 C∞(X̄ ×

X̄;E) so

(3.10) R(λ)−R0(λ) ∈ xλ+ d
2 x′λ+ d

2 C∞(X̄ × X̄; E).

Similarly, using the remark following Corollary 3.5, we deduce that the kernel

(3.11) R(λ;m, m′)−R0(λ̄;m′,m)∗ ∈ xλ+ d
2 x′λ+ d

2 C∞(X̄ × X̄; E)

where R0(λ̄; m′,m)∗ is given, by symmetry of RHd+1(λ), by

(3.12) R0(λ̄; m′, m)∗ =
∑

j

(ι∗jχ
1
jRHd+1(λ)χ2

j ιj∗)(m,m′) + Q0(λ̄)∗.

The expressions (3.10), (3.11) and (3.12) will be very useful in what follows for obtaining an
explicit formula of the scattering operator modulo a smoothing term.
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4. Scattering and Eisenstein series

4.1. Definitions and properties. Similarly to the Laplacian on functions, we can define Eisen-
stein series and scattering operator for Dirac operator. The Eisenstein series E(λ) is an operator
mapping C∞(∂X̄; 0Σ) → C∞(X; 0Σ) and for all ψ, E(λ)ψ is a non L2-solution of (D2 +λ2)σ = 0;
more precisely it is defined using the following

Lemma 4.1. Let ψ ∈ C∞(∂X̄; 0Σ), and λ ∈ C \ (−N/2) not a pole of R(λ), then there exists
σ ∈ C∞(X; 0Σ) solution of (D2 + λ2)σ = 0, unique when <(λ) ≥ 0, and such that there exist
σ± ∈ C∞(X̄; 0Σ) with σ−|∂X̄ = ψ and σ = x

d
2−λσ− + x

d
2 +λσ+. Moreover σ± are meromorphic

in λ ∈ C \ (−N/2).

Proof. This is essentially the same construction as for the Laplacian on functions in [11]: us-
ing the indicial equation (3.6) and Borel lemma, it is possible to construct a spinor σ∞ ∈
x−λ+ d

2 C∞(X̄; 0Σ), holomorphic in C\(Z/2) such that (D2+λ2)σ∞ = O(x∞) and (xλ− d
2 σ∞)|∂X̄ =

ψ. Note that this spinor is meromorphic in λ ∈ C with only simple poles at N/2 coming from the
roots of the indicial equation. Then we can set

σ := σ∞ −R(λ)(D2 + λ2)σ∞.

If λ is not a pole of R(λ), this solves the problem and defines σ± by using the mapping property
of R(λ) stated in Corollary 3.5. The meromorphy of σ± is also a consequence of the construction
and of the meromorphy of R(λ). The uniqueness of the solution is due to the fact that for two
solutions σ1, σ2 of the problem, the indicial equation implies that σ1 − σ2 ∈ xλ+ d

2 C∞(X̄; 0Σ),
and then for <(λ) > 0 this would be L2 and λ would be a pole of the resolvent in the physical
plane. For <(λ) = 0, this can be proved using an application of Green formula like in [11]: if
σ̃1, σ̃2 are two solutions of the problem, then the difference σ̃1 − σ̃2 is in x

d
2 +λC∞(X̄; 0Σ) by the

indicial equation and it is also in the kernel of D2 + λ2, so we may apply the Lemma 3.3 with
σ1 = σ̃1 − σ̃2 and σ2 := R(−λ)ϕ where ϕ ∈ Ċ∞(X̄; 0Σ) is chosen arbitrarily. This clearly implies
that

∫
X
〈σ̃1 − σ̃2, ϕ〉dvg = 0 and thus σ̃1 = σ̃2. ¤

Remark. By uniqueness of the solution, σ and σ±|∂X̄ depend linearly on ψ.

Definition 4.2. The Eisenstein series is the operator E(λ) : C∞(∂X̄; 0Σ) → C∞(X; 0Σ) defined
by E(λ)ψ := σ where σ is the smooth spinor in Lemma 4.1.

Definition 4.3. The scattering operator S(λ) : C∞(∂X̄; 0Σ) → C∞(∂X̄; 0Σ) is defined by
S(λ)ψ := σ+|∂X̄ where σ+ is the smooth spinor in Lemma 4.1.

It is rather easy to prove that the scattering operator is off-diagonal with respect to the splitting
0Σ(∂X̄) = 0Σ+(∂X̄)⊕0Σ−(∂X̄). To that end, we give an alternative construction of the Eisenstein
series E(λ)ψ when ψ ∈ 0Σ+ or ψ ∈ 0Σ−. Let us first define a useful meromorphic function on C

(4.1) C(λ) := 2−2λ Γ( 1
2 − λ)

Γ( 1
2 + λ)

.

which satisfies C(λ)C(−λ) = 1.

Lemma 4.4. Let ψ ∈ C∞(∂X̄; 0Σ±), and λ ∈ C\(−N/2) be not a pole of R±(λ), then there exists
a unique σ ∈ C∞(X; 0Σ) solution of (D ± iλ)σ = 0 and such that there exists σ± ∈ C∞(X̄; 0Σ)
with σ−|∂X̄ = ψ and σ = x

d
2−λσ− + x

d
2 +λσ+. Moreover one has σ+|∂X̄ ∈ C∞(∂X̄; 0Σ∓) and

σ± are meromorphic in λ ∈ C \ (−N/2). If in addition the metric g is even, then σ±/C(λ) are
holomorphic in {<(λ) ≥ 0} where C(λ) is the function in (4.1).

Proof. Recall the indicial equation for (D ± iλ): let j ∈ N and ψ± ∈ C∞(∂X̄; 0Σ±) then there
exist some smooth spinor Fλ,j near ∂X̄ such that

(4.2) xλ− d
2 (D ± iλ)x−λ+ d

2 +j(ψ+ + ψ−) = ixj
(
(j − λ± λ)ψ+ + (λ− j ± λ)ψ−

)
+ xj+1Fλ,j .

Using this indicial equation inductively, we can construct for all ψ ∈ C∞(∂X̄; 0Σ±) a formal Taylor
series, and thus a true spinor σ∞,± ∈ x−λ+ d

2 C∞(X̄; 0Σ) by Borel lemma, such that (D±iλ)σ∞,± =
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O(x∞) and (xλ− d
2 σ∞,±)|∂X̄ = ψ. This can be done holomorphically in λ as long as λ is not a root

of the indicial equation (4.2). The λ such that the indicial numbers j − λ ± λ and λ − j ± λ in
(4.2) vanish are N/2 and they vanish only on the Σ∓ part of the bundle, therefore since C(λ) has
first order poles at 1/2 + N0, we see that σ∞/C(λ) can be chosen holomorphically in λ ∈ C \ N
and that it has at most poles of order 1 at each λ = k with k ∈ N; since it does not involve
new arguments we refer the reader who needs more details to the paper of Graham-Zworski [11]
where it was studied in the case of the Laplacian on functions. Now consider the case of a
metric g even. Since A+, A− defined in (3.4) are preserved by x−

d
2 Dx

d
2 if g is even, then clearly

xλ− d
2 (D ± iλ)x−λ+ d

2 = λ(−cl(x∂x) ± i) + x−
d
2 Dx

d
2 also preserves both A+,A−. In particular,

if ψ− = 0 in (4.2), then x2j+1Fλ,2j ∈ A+ and x2j+2Fλ,2j+1 ∈ A−, while the converse is true if
ψ+ = 0. This implies that the spinor σ∞,± can be taken so that xλ− d

2 σ∞,± ∈ A± and the λ which
are actually solution of the indicial equation (4.2) for D ± iλ are only at 1/2 + N0. The spinor
σ∞/C(λ) can be taken holomorphic also at λ ∈ N. It remains to set

(4.3) σ := σ∞,± −R±(λ)(D ± iλ)σ∞,±
which solves our problem, using the mapping property of R±(λ) stated in Proposition 3.2. ¤

By uniqueness, the solution in Lemma 4.4 is clearly the same as the one of Lemma 4.1 when
the initial data ψ is either in σ+|∂X̄ or σ−|∂X̄ , which implies

Corollary 4.5. The scattering operator S(λ) maps C∞(∂X̄; 0Σ±) to C∞(∂X̄; 0Σ∓).

Let us define the natural projection and inclusion

P± : C∞(∂X̄; 0Σ) → C∞(∂X̄; 0Σ±); I± : C∞(∂X̄; 0Σ±) → C∞(∂X̄; 0Σ)

and also the maps corresponding to the two off-diagonal components of S(λ)

S±(λ) := P∓S(λ)I± : C∞(∂X̄; 0Σ±) → C∞(∂X̄; 0Σ∓)

E±(λ) := E(λ)I±P± : C∞(∂X̄; 0Σ) → C∞(X; 0Σ).

4.2. Some relations between resolvent, scattering operator and Eisenstein series. Like
for the Laplacian on functions, the Schwartz kernels of R(λ), E(λ) and S(λ) are related by the
following

Proposition 4.6. Let λ ∈ C be such that λ /∈ −N/2 and λ not a pole of R(λ), then the Schwartz
kernel E(λ; m, y′) and E±(λ;m, y′) in C−∞(X̄ × ∂X̄;E) of respectively E(λ) and E±(λ) can be
expressed by

(4.4)
E(λ;m, y′) = 2λ[x′−

d
2−λ

R(λ; m,x′, y′)]|x′=0,

E±(λ; m, y′) = [x′−
d
2−λ

R±(λ; m,x′, y′)]|x′=0cl(ν)

where we use the product decomposition (x′, y′) ∈ [0, ε)×∂X̄ near the boundary in the right variable
of X̄× X̄. If in addition <(λ) < −d

2 , the Schwartz kernel S(λ; y, y′) of S(λ) is in C0(∂X̄×∂X̄; E)
and can be expressed by

(4.5) S(λ; y, y′) = [x−
d
2−λE(λ;x, y, y′)]x=0, S±(λ; y, y′) = [x−

d
2−λE±(λ; x, y, y′)]|x=0.

Proof. Let σ∞ as in Lemma 4.1, then E(λ)ψ = σ∞ − R(λ)(D2 + λ2)σ∞. The first statement of
Proposition is simply obtained by integration by part in (x′, y′) of∫

x′≥ε

〈R(λ; m,x′, y′), (D2 + λ2)σ∞(x′, y′)〉dvg(x′, y′)

and letting ε → 0, this gives the term σ∞(m) plus a term∫

∂X̄

[
x′−d

(
〈R(λ; m,x′, y′),∇x′∂x′σ∞(x′, y′)〉 − 〈∇x′∂′xR(λ; m,x′, y′), σ∞(x′, y′)〉

)]
x′=0

dvh0 .
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But from the analysis of the resolvent R(λ), we have for m ∈ X and as x′ → 0

R(λ; m,x′, y′) = x′
d
2 +λ(L(λ; m, y′) + O(x′)),

∇x′∂x′R(λ; m,x′, y′) = (
d

2
+ λ)x′

d
2 +λ(L(λ; m, y′) + O(x′))

σ∞(x′, y′) = x′
d
2−λ(ψ(y′) + O(x′)), ∇x′∂x′σ∞(x′, y′) = (

d

2
− λ)x′

d
2−λ(ψ(y′) + O(x′))

for some L ∈ C∞(X×∂X̄; E) and where ψ ∈ C∞(∂X̄, Σ) is arbitrarily chosen. We can then deduce
that E(λ;m, y′) = 2λL(λ;m, y′) as distributions in C∞(X × ∂X̄; E). Using the structure of R(λ)
in Proposition 3.2, we observe that the kernel of E(λ) is also a distribution in C−∞(X̄ × ∂X̄; E)
since its lift to X̄ ×0 ∂X̄ is a conormal distribution on X̄ ×0 ∂X̄, more precisely it is an element in
ρ

λ+ d
2

lb ρ
−λ− d

2
ff C∞(X̄ ×0 ∂X̄; E). This is exactly the same argument for the E±(λ) formula in (4.4)

by using the representation (4.3) and integration by part.
Now for the scattering operator, we take <(λ) < −d

2 and use the definition of S(λ)ψ to deduce
that

S(λ)ψ = (x−λ− d
2 E(λ)ψ)|x=0.

From the fact that the lift of the kernel x−λ− d
2 E(λ) to X̄ ×0 ∂X̄ is in ρ−2λ−d

ff C∞(X̄ ×0 ∂X̄; E),
thus in C0(X̄ × ∂X̄), we see that∫

∂X̄

x−λ− d
2 E(λ; x, y, y′)ψ(y′)dvh0(y

′)

is C0(X̄; 0Σ) and its restriction to ∂X̄ is given by the pairing of [x−λ− d
2 E(λ)]|x=0 with ψ, which

ends the proof for S(λ). The argument is the same for S±(λ). ¤

In the same way as E(λ), we define the operator E](λ), E]
±(λ) so that the Schwartz kernel of

E](λ), E]
±(λ) are given for λ ∈ C \ (−N/2) not a pole of R(λ) by

E](λ; y, m′) :=2λ[x−λ− d
2 R(λ;x, y, m′)]|x=0,

E]
±(λ; y, m′) :=− cl(ν)[x−λ− d

2 R±(λ; x, y,m′)]|x=0

(4.6)

using the product decomposition [0, ε)x× ∂X̄ near ∂X̄. Like for the analysis of the kernel of E(λ)
above, the structure of the kernel E](λ) on the blow-up ∂X̄ ×0 X̄ is clear from the analysis of
R(λ). Note also that E]

±(λ) maps Ċ∞(X̄; 0Σ) to C∞(∂X̄; 0Σ±) by using Corollary 3.5 and

(E]
±(λ)f)(y) = −cl(ν) lim

x→0

∫

X

x−λ− d
2 R±(λ;x, y, m′)σ(m′)dvg(m′).

We see also from the remark following Corollary 3.5 that

E](λ̄; y, m′) = E(λ; m′, y)∗, E]
±(λ̄; y,m′) = E∓(λ; m′, y)∗(4.7)

when these are considered as linear maps from 0Σm′ to 0Σy.

Lemma 4.7. Let m,m′ ∈ X, then for λ /∈ Z/2 neither a pole of R(λ) nor of R(−λ), we have

(4.8)
R(λ;m, m′)−R(−λ; m,m′) = (2λ)−1

∫

∂X̄

E(λ;m, y)E](−λ; y,m′)dvh0(y),

R±(λ;m,m′)−R∓(−λ;m,m′) = −
∫

∂X̄

E±(λ;m, y)cl(ν)E]
∓(−λ; y, m′)dvh0(y)

or in terms of operators

R(λ)−R(−λ) = (2λ)−1E(λ)E](−λ), R±(λ)−R∓(−λ) = −E±(λ)cl(ν)E]
∓(−λ).

Proof. This is a straightforward application of Green formula and does not involve anything
more than in the proof given by Guillopé [16] for the Laplacian on functions on a surface. It
is based on the fact that (D2 + λ2)R(λ; m,m′) = (D2 + λ2)R(−λ; m,m′) = δ(m − m′) and
(D± iλ)R±(λ;m,m′) = (D± iλ)R∓(−λ; m,m′) = δ(m−m′), where δ(m−m′) denotes the Dirac
mass on the diagonal. ¤
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A corollary of this is some functional equations relating E(λ), E](λ) and S(λ).

Corollary 4.8. The following meromorphic identities hold

E(λ) =E(−λ)S(λ), E](λ) =S(λ)E](−λ),

E∓(λ) =E±(−λ)S∓(λ), E]
±(λ) =S±(λ)E]

∓(−λ).

Proof. Let us consider the second identity: assume <(λ) < −d
2 , it suffices to multiply the first

line of (4.8) by x(m)−λ− d
2 and take the limit as x(m) → 0 when m′ ∈ X is fixed, the limit makes

sense in view of our analysis of the Schwartz kernels of R(λ), E(λ), E](λ) and S(λ). Then we use
Proposition 4.6 and the definition of E](λ) and this gives the proof of the second identity of the
Corollary, at least for <(λ) < −d

2 , but this extends meromorphically to λ ∈ C. The proofs of other
identities are similar. ¤
4.3. Properties of S(λ).

Proposition 4.9. For λ such that <(λ) < −d
2 , λ /∈ −N/2 and λ not a pole of R(λ), the operator

S(λ) is a classical pseudo-differential operator on ∂X̄ of order 2λ, with principal symbol

σpr(S(λ))(ξ) = C(λ)cl(ν)|ξ|2λ−1
h0

icl(ξ), with C(λ) := 2−2λ Γ(−λ + 1/2)
Γ(λ + 1/2)

.(4.9)

Moreover S(λ) can be meromorphically extended to C \ (−N/2) as a family of pseudo-differential
operators in Ψ2λ(∂X̄; 0Σ).

Proof. Let β : X̄ ×0 X̄ → X̄ × X̄ be the blow-down map, ∂X̄ ×0 ∂X̄ := [∂X̄, ∂X̄, ∆∂ ] be the
blow-up of ∂X̄ × ∂X̄ around the diagonal ∆∂ and β∂ : ∂X̄ ×0 ∂X̄ the associated blow-down map.
Then the expression (4.5) can also be written for <(λ) < −d

2 (S(λ) and R(λ) denote also the
Schwartz kernel)

(4.10) S(λ) = 2λβ∂∗
(
β∗((xx′)−λ− d

2 R(λ))|lb∩rb

)

where lb ∩ rb is naturally identified with ∂X̄ ×0 ∂X̄. For more details, we refer to the article
of Joshi-Sa Barreto [19] which deals with the Laplacian on functions. Now using the fact that

R(λ) ∈ Ψ−2,λ+ d
2 ,λ+ d

2
0 (X̄; 0Σ), we deduce that

((xx′)−λ− d
2 R(λ))|lb∩rb ∈ ρ−2λ−d

ff,∂ C∞(∂X̄ ×0 ∂X̄; E)

where ρff,∂ := ρff|lb∩rb is a boundary defining function of the boundary (i.e., the face obtained by
blowing-up) of ∂X̄ ×0 ∂X̄. This shows that the kernel S(λ) is classically (or polyhomogeneous)
conormal to the diagonal and the leading singularity at y = y′ = p given in polar coordinates in
the conormal bundle is given by

S(λ; y, y′) ∼ c(λ)|y − y′|−2λ−dUp(p′), p′ =
y − y′

|y − y′| ∈ Sd−1

for some c(λ) ∈ C and where Up(p′) ∈ End(0Σp(X̄)) denote the limit of the parallel transport
U(ep,m) in the fiber ffp when m → p′ ∈ lb∩rb∩ffp ' Sd−1 (here ep is the center of ffp defined by the
intersection of the interior diagonal with ffp and identified with the center of hyperbolic space).
Thus we obtain S(λ) ∈ Ψ2λ(∂X̄; 0Σ), moreover the expression (4.10) can be meromorphically
extended to C \ (−N/2) as a distribution classically conormal to the diagonal, thus as a family
S(λ) ∈ Ψ2λ(∂X̄; 0Σ). As for the principal symbol, we use the expression of Up(p′) for Hd+1 given
in Corollary A.4 and Fourier transform to obtain (4.9). Notice that there might be first order
poles of infinite multiplicity at N/2 coming from the meromorphic extension of the distribution
|y − y′|2λ+j to λ ∈ C. This phenomenon is described in [11] for the case of the Laplacian on
functions. ¤

Like for functions, the scattering operator is a unitary operator on the continuous spectrum
and satisfies a functional equation.
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Lemma 4.10. The operator S(λ) is unitary on {<(λ) = 0}, it satisfies S(λ)S(−λ) = Id for λ
such that S(±λ) is defined, and it is conformally covariant in the sense that for another choice
x̂ = eωx of geodesic boundary defining function, the corresponding scattering operator is Ŝ(λ) =
e−( d

2 +λ)ω0S(λ)e( d
2−λ)ω0 , where ω0 = ω|∂X̄ .

Proof. The functional equation is a straightforward consequence of the uniqueness in Lemma 4.1
or the first equality of Corollary 4.8. The unitarity follows easily from Lemma 3.3 by taking the
solutions σ1, σ2 of Lemma 4.1 for two initial data ψ1, ψ2 ∈ C∞(∂X̄; 0Σ). The conformal covariance
of S(λ) is straightforward by using the uniqueness of the solution in Lemma 4.1. ¤

Corollary 4.11. If the metric g is even in the sense of (3.2), the operator S̃(λ) := S(λ)/C(λ) is
finite meromorphic in C, and it is holomorphic in {<(λ) ≥ 0}.
Proof. The analyticity in the right half-plane is a consequence of the last statement in Lemma
4.4 and the fact that S(λ)ψ = σ+|∂X̄ with the notation of this Lemma. We already know the
meromorphic extension outside −N/2 so we can write, using Proposition 4.9,

S(λ)/C(λ) = cl(ν)(Dh0 + i)(|Dh0 |+ 1)2λ−1(Id + K(λ))

for some K(λ) compact on L2(∂X̄; 0Σ) and analytic in {<(λ) ≥ 0}. We know from Lemma 4.10
that Id + K(λ) is invertible for almost all λ ∈ C, so we may use Fredholm analytic theorem to
show that (S(λ)/C(λ))−1 is a meromorphic family of operators with poles of finite multiplicity
at most in <(λ) > 0, so by the functional equation in Lemma 4.10, we deduce that S(λ)/C(λ) is
meromorphic in <(λ) < 0 with poles of finite multiplicity. ¤

We give another corollary of the properties of S̃(λ).

Corollary 4.12. For an AH manifold with a metric g even in the sense of (3.2), the resolvent
R±(λ) is finite meromorphic.

Proof. According to Proposition 3.2, the only problem for the meromorphy of R±(λ) can be at
−N/2, so consider the half plane {<(λ) < 0}. Since R(−λ), E(−λ), E](−λ) are holomorphic in
{<(λ) < 0}, the result is a straightforward consequence of Corollary 4.11 together with the formula

R(λ) = R(−λ) + (2λ)−1C(λ)E(−λ)
S(λ)
C(λ)

E](−λ),

itself a consequence of Lemma 4.7 and Corollary 4.8. ¤
4.4. Representation of E(λ) and S(λ) in the case XΓ. Using Proposition 4.6 and (3.10), we
obtain directly an explicit representation modulo a smoothing term. We use the functions ηj , φ

i
j , χ

i
j

of Section 3.6. We denote by SHd+1(λ) and EHd+1(λ) the scattering operator and Eisenstein series
on Hd+1, defined using a defining function of ∂Hd+1 which is equal to x0 on the half ball B̄ in the
model Hd+1 = {(x0, y0) ∈ (0,∞)× Rd−1}, i.e., in terms of distribution kernel on B̄ × ∂B̄ and on
∂B̄ × ∂B̄

EHd+1(λ; x0, y0, y
′
0) :=2λ[x′0

−λ− d
2 RHd+1(λ; x0, y0, x

′
0, y

′
0)]x′0=0,

SHd+1(λ; y0, y
′
0) :=[x−λ− d

2
0 EHd+1(λ;x0, y0, y

′
0)]|x0=0.

Lemma 4.13. If λ ∈ C \ (−N0/2) is not a pole of R(λ), then the Eisenstein series E(λ) for D2

on a convex co-compact quotient X := Γ\Hd+1 has the kernel E(λ) = E0(λ) + E∞(λ) where

E0(λ) :=
∑

j

ι∗jχ
2
jEHd+1(λ)φ1

jη
−λ− d

2
j ιj∗,

E∞(λ) = 2λ[x′−λ− d
2 (R(λ)−R0(λ))]|x′=0 ∈ xλ+ d

2 C∞(X̄ × ∂X̄; E).
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Similarly, the scattering operator S(λ) for D2 on X has the kernel S(λ) = S0(λ) + S∞(λ) where

S0(λ) :=
∑

j

ι∗jη
−λ− d

2
j φ2

jSHd+1(λ)φ1
jη
−λ− d

2
j ιj∗,

S∞(λ) = 2λ[(xx′)−λ− d
2 (R(λ)−R0(λ))]|x=x′=0 ∈ C∞(∂X̄ × ∂X̄; E).

5. Selberg zeta function of odd type

In this section, we will assume that the dimension d + 1 = 2n + 1 is odd except in Lemma 5.2.

5.1. Odd heat kernel of Dirac operator on Hd+1. By the identification (2.4), the kernel of the
odd heat operator DHd+1e−tD2

Hd+1 on L2(Hd+1; Σ(Hd+1)) can be considered as a τd-radial function
Pt over G. Hence there exists a function Pt from G to End(Vτd

) satisfying the K-equivariance
condition

Pt(k1gk2) = τd(k2)−1Pt(g)τd(k1)−1 for g ∈ G, k1, k2 ∈ K(5.1)

such that

DHd+1e−tD2
Hd+1 (gK, hK) = Pt(h−1g) for g, h ∈ G.(5.2)

Let us remark that Pt(h−1g) and Pt(k−1
1 h−1gk2) for k1, k2 ∈ K give the same map by the condition

(5.1), so that the right hand side of (5.2) does not depend on the choice of the representatives of
the K-cosets.

Recalling the Cartan decomposition G = KA+K with A+ := {ar = exp(rH) | r > 0}, any
element g ∈ G can be written as g = hark where ar = exp(rH) and r is the same as the
hyperbolic distance dHd+1(eK, gK) between two points eK and gK in Hd+1 ∼= G/K. Here e
denotes the identity element in G. Now let us recall that the spin representation τd decomposes
into two half spin representations σ+,σ− when restricting to M = Spin(d),

τd|M = σ+ ⊕ σ−,

hence the representation space Vτd
also decomposes into Vσ+ ⊕ Vσ− as M -representation spaces.

By Schur’s lemma there exists a function p±t : R→ C such that

Pt(ar)|Vσ± = p±t (r) IdVσ±

where ar ∈ A+. As in the proof of Theorem 8.5 of [6] using Theorem 8.3 of [6], one can easily
derive

Proposition 5.1. The scalar components of DHd+1e−tD2
Hd+1 are given by

(5.3) p±t (r) = ± sinh(r/2)
i23n+3/2Γ(n + 3/2)t3/2

(
− d

d(cosh r)

)n

r sinh−1(r/2) e−
r2
4t .

Let us observe that the equalities (5.1) and (5.3) determine the odd heat kernel DHd+1e−tD2
Hd+1

by the Cartan decomposition G = KA+K.

5.2. Odd heat kernels over convex co-compact hyperbolic manifolds. By abuse of no-
tation, g, h will also denote the points in Hd+1 corresponding to the cosets gK, hK in G/K.
By a usual construction, the kernel of the odd heat operator De−tD2

over XΓ is given (as an
automorphic kernel) by

(5.4) De−tD2
(g, h) =

∑

γ∈Γ

DHd+1e−tD2
Hd+1 (g, γh)

where g, h denote points in XΓ = Γ\Hd+1 which we view as a fundamental domain in Hd+1 with
sides identified through Γ. Using dHd+1(g, h) = dHd+1(e, g−1h) where e denotes the origin in the
unit disc model of Hd+1, then by (5.1), (5.3) and some elementary calculations, we have

(5.5) ||DHd+1e−tD2
Hd+1 (g, γh)|| ≤ C t−

3
2 e−

d
2 rγ(g,h)− rγ (g,h)2

4t

∑

0≤j≤n+1
0≤k≤n

rγ(g, h)jt−k.
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Here C is a positive constant independent on t and rγ(g, h) := dHd+1(g, γh). In particular the
number rγ(g, g) is independent of g in the axis of γ and is called the translation length of γ,
denoted by `γ .

Lemma 5.2. Let F be a fundamental domain of Γ and x̃ be a boundary defining function of XΓ

which we view as well as a function on F. There are positive constants C1, C2 such that for all
γ ∈ Γ with translation length `γ > C1 and all g, h ∈ F,

e−rγ(g,h) ≤ C2 e−`γ x̃(g)x̃(h).

Proof. By conjugating by an isometry of Hd+1, we can assume that, in the half space model
Hd+1 = R+

x × Rd
y, the point at ∞ is not in the limit set Λ(Γ) of the group Γ. Then, since the

group is convex co-compact, there exists a fundamental domain F which satisfies the following:
there exists C > 0 and ε > 0 such that

F ∪ Λ(Γ) ⊂ B := {z ∈ [0,∞)× Rd; |z| ≤ C, deucl(z; Λ(Γ)) ≥ ε}
where deucl denotes the Euclidean distance in Rd+1. Notice that the function x̃ is comparable
to the function x on F in the sense that 1/A < x̃/x < A for some constant A > 0. Let now
γ ∈ Γ be an isometry, whose fixed points p1

γ , p2
γ must belong to Rd

y ∩B. Composing a translation
z 7→ z− (p1

γ +p2
γ)/2 with a rotation in the Rd

y variable, we define an isometry qγ which maps p1
γ to

pγ := (0, |p1
γ − p2

γ |/2, 0 . . . , 0) and p2
γ to −pγ . Notice that, since qγ is also an Euclidean isometry,

then
qγ(F) ⊂ B′ := {z ∈ [0,∞)× Rd; |z| ≤ 2C, deucl(z;±pγ) ≥ ε}.

We identify the (x, y1) half-plane inside Hd+1 with H2 by setting z0 := y1 + ix, in particular ±pγ

belong to the boundary of H2. We consider the isometry sγ of H2 defined by

(5.6) sγ : z0 7→ z0 + pγ

−z0 + pγ
.

This isometry maps pγ to ∞ and −pγ to 0 in Hd+1. We extend sγ recursively to Hd+1 as follows:
the isometry sγ of Hk is extended to an isometry of Hk+1 by identifying Hk+1 with (0, π)θ × Hk

via the map
ιk : (θ, x, y1, . . . , yk−1) 7→ (x sin θ, y1, . . . , yk−1, x cos θ)

and defining the extension, still denoted sγ , by sγ(ιk(θ, w)) := ιk(θ, sγ(w)). Note that |ιk(θ, w)| =
|w| for each k, and thus |sγ(z0, y2, . . . , yd)| = |sγ(z0)|. Using this fact and the explicit formula
(5.6) in H2, it is easy to see that for all z ∈ B′, we have

ε

4C
≤ |sγ(z)| ≤ 4C

ε
.

We conclude that tγ := sγ ◦ qγ maps F into {z ∈ R+ × Rd, ε ≤ |z| ≤ ε−1} for some ε > 0 which
does not depend on γ. But tγ ◦ γ ◦ t−1

γ is an isometry fixing the line {y = 0} and thus it can be
written under the form

tγ ◦ γ ◦ t−1
γ : (x, y) 7→ e`γ (x, Oγ(y))

for some Oγ ∈ SO(d) where `γ is the translation length of γ. Then we have for m = (x, y),m′ =
(x′, y′) in the half-space model

cosh2(dHd+1(m,m′)/2) =
|y − y′|2 + |x + x′|2

4xx′

and by writing tγg = (x, y) and tγh = (x′, y′) in the half-space model,

(5.7) cosh2(rγ(g, h)/2) = e`γ
|e−`γ y − Oγ(y′)|2 + |e−`γ x + x′|2

4xx′
.

But since tγg, tγh ∈ tγ(F), one has ε ≤ (x2 + |y|2) 1
2 ≤ ε−1 and the same for (x′, y′), which from

(5.7) implies that

(5.8) ε2 ≤ cosh2(rγ(g, h)/2)e−`γ xx′ ≤ ε−2
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for `γ large enough (depending only on ε). Observe now that, using the embeddings H2 ⊂ · · · ⊂
Hd+1 as above using the maps ιk, we can view the point pγ as an element of (the boundary
of) each Hk for k = 2, . . . , d + 1. Moreover, as Euclidean norms, one clearly has |ιk(θ, ω) −
pγ | = |ω − pγ | for all ω ∈ Hk, and thus |z − pγ | = |z0 − pγ | where z ∈ Hd+1 corresponds
to a unique (θ1, . . . , θd−1, z0) ∈ (0, π)d−1 × H2 by the maps ιk described above. Let us denote
Im(z) := x when z = (x, y1, . . . , yd) ∈ Hd+1, then each z ∈ Hd+1 is associated to a unique
(θ1, . . . , θd−1, z0) ∈ (0, π)d−1 ×H2 by the maps ιk (here z0 is a complex coordinate on H2 viewed
as the half-space Im(z0) > 0) and we have Im(z) = Im(z0) sin(θ1) . . . sin(θd−1) and Im(sγ(z)) =
Im(sγ(z0)) sin(θ1) . . . sin(θd−1) by construction of sγ acting on Hn+1. But a short computation
gives

Im(sγ(z0)) = 2pγ
Im(z0)
|z0 − pγ |2 = 2pγ

Im(z0)
|z − pγ |2

where pγ ∈ H2 is viewed as a positive real number in C, which therefore implies Im(sγ(z))/ Im(z) =
2pγ/|z − pγ |2 for all z ∈ Hd+1. We have also shown that infz∈qγ(F) |z − pγ | > ε and 0 < pγ < 1/ε
for some ε > 0 uniform in γ ∈ Γ by convex co-compactness of Γ, thus we can combine this with
(5.8) and the fact that x ◦ qγ = x where x is comparable to x̃ on F to deduce that there exists a
constant C > 0 uniform in γ so that (x ◦ tγ)/x̃ ≤ C on F. This ends the proof. ¤

By (1.2), (5.5) and Lemma 5.2, we get that the right hand side of (5.4) converges uniformly in
g, h in a fundamental domain. We denote by tr the local trace over 0Σm(XΓ) ∼= Vτd

for m in a
fundamental domain of Γ.

Proposition 5.3. For m in a fundamental domain of Γ, we have

(5.9) tr(De−tD2
)(m) =

∑

γ∈Γ\{e}
tr(DHd+1e−tD2

Hd+1 )(m, γm).

Proof. It is enough to show that tr(DHd+1e−tD2
Hd+1 )(m,m) = 0, which is a consequence of

tr(DHd+1e−tD2
Hd+1 )(m,m) = tr(Pt)(e) = d(σ±)(p+

t (0) + p−t (0)) = 0

where d(σ±) denotes the dimension of Vσ± and the last equality follows from (5.3). ¤
By equations (5.5), (5.7) and Proposition 5.3, we deduce that there is ε > 0 such that

∣∣tr(De−tD2
)(m)

∣∣ ≤ Cε(t) x(m)2(
d
2 +ε)

∑

γ∈Γ\{e}
e−(d+ε)rγ

where Cε(t) is a constant depending only on ε, t and x a boundary defining function. Hence the
local trace function tr(De−tD2

)(m,m) is integrable over XΓ. Now we can define

(5.10) Tr(De−tD2
) :=

∫

XΓ

tr(De−tD2
)(m) dv(m)

where dv(m) denotes the metric over XΓ induced from the hyperbolic metric dvHd+1 .
By our assumption on Γ, Γ \ {e} consists of hyperbolic elements and decomposes into Γ-

conjugacy classes of hyperbolic elements. We denote by Γhyp the set of Γ-conjugacy classes of
hyperbolic elements. Each element [γ] in the set Γhyp corresponds to a closed geodesic Cγ in XΓ.
We denote by l(Cγ) the length of Cγ and by j(γ) the positive integer such that γ = γ

j(γ)
0 with a

primitive γ0. A primitive hyperbolic element γ means that it can not be given by a power of any
other elements in Γ, so that Γ-conjugacy class of a primitive γ corresponds to a prime geodesic
Cγ in XΓ. The trace of the monodromy in Σ(XΓ) ∼= Γ\(G×τd

Vτd

)
along a closed geodesic Cγ is

given by χσ+(mγ)+χσ−(mγ) since any hyperbolic element γ can be conjugated to mγaγ ∈ MA+.
A closed geodesic Cγ corresponds to a fixed point of the geodesic flow on the unit sphere bundle
over XΓ. The Poincaré map P (Cγ) is the differential of the geodesic flow at Cγ , which is given by
P (Cγ) = Ad(mγaγ) if γ = mγaγ . The unit sphere bundle SXΓ of XΓ is given by Γ\G/M , and its
tangent bundle TSXΓ is given by

TSXΓ = Γ\G×M (n⊕ a⊕ n)
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where n = θ(n) and M acts on n ⊕ a ⊕ n by the adjoint action Ad. Hence P (Cγ) preserves the
decomposition n⊕ a⊕ n. We denote by P (Cγ)|n, P (Cγ)|n its restriction to n, n part respectively.
Now we put
(5.11)

D(γ) := | det(P (Cγ)|n⊕n̄ − Id)|1/2 = e−nl(Cγ)| det(P (Cγ)|n − Id)| = enl(Cγ) det(Id− P (Cγ)|n̄).

Proposition 5.4. The following identity holds

Tr(De−tD2
) =

2πi

(4πt)
3
2

∑

[γ]∈Γhyp

l(Cγ)2

j(γ)D(γ)
(χσ+(mγ)− χσ−(mγ))e−

l(Cγ )2

4t .(5.12)

Proof. By equalities (5.2), (5.9) and (5.10),

(5.13) Tr(De−tD2
) =

∑

γ∈Γ\{e}

∫

Γ\G
tr Pt(g−1γg) d(Γg).

By Theorem 2.2 in [27], the scalar function pt(g) := tr Pt(g) is in the Harish-Chandra L1-space.
(Note that pt(g) should not be confused with p±t (r) in the subsection 5.1.) Hence we can follow
the well known path of Selberg on p. 63–66 of his famous paper [32] to obtain

(5.14)
∑

γ∈Γ\{e}

∫

Γ\G
pt(g−1γg) d(Γg) =

∑

[γ]∈Γhyp

vol(Γγ\Gγ)
∫

Gγ\G
pt(g−1γg) d(Gγg)

where Γγ , Gγ denote the centralizer of γ in Γ and G respectively. Now we show the following
equality,

(5.15) vol(Γγ\Gγ)
∫

Gγ\G
pt(g−1γg) d(Gγg) =

2πi

(4πt)
3
2

l(Cγ)2

j(γ)D(γ)
(χσ+(mγ)− χσ−(mγ))e−

l(Cγ )2

4t .

We may assume that a hyperbolic element γ ∈ Γ has the form mγaγ ∈ MA+. If γ ∈ MA+,

(5.16)
∫

Gγ\G
pt(g−1γg) d(Gγg) = vol(Gγ/A)−1

∫

G/A

pt(gγg−1) d(gA).

We also have

(5.17)
∫

G/A

pt(gγg−1) d(gA) = D(γ)−1Fpt(mγaγ)

where the Abel transform of pt is given by

Fpt(mγaγ) = aρ
γ

∫

N

∫

K

pt(k mγaγnk−1) dk dn

with aρ
γ = exp(nl(Cγ)). By Theorem 6.2 in [35], we have

(5.18) Θσ,λ(pt) =
∫

M

∫ ∞

−∞
Fpt(m exp(rH)) tr σ(m) eiλr dr dm.

Here Θσ,λ(pt) is defined by

Θσ,λ(pt) := Tr πσ,λ(pt) = Tr
∫

G

pt(g)πσ,λ(g) dg

and for (σ,Hσ) ∈ M̂ (where M̂ denotes the set of equivalence classes of irreducible unitary
representations of M) and λ ∈ a∗C the principal representation πσ,λ := IndG

MAN (σ ⊗ eiλ ⊗ Id)
of G acts on the space

Hσ,λ := { f : G → Hσ | f(xman) = a−(iλ+ρ)σ(m)−1f(x), f |K ∈ L2(K) }
by the left translation πσ,λ(g)f(x) = f(g−1x). Applying the Fourier inversion theorem and the
Peter-Weyl theorem to the equality (5.18), we get

(5.19) Fpt(mγaγ) =
∑

σ∈M̂

trσ(mγ)
1
2π

∫ ∞

−∞
Θσ,λ(pt)e−il(Cγ)λ dλ.
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Now let observe that Θσ,λ(pt) vanishes unless σ = σ± since τd|M = σ+ ⊕ σ−. Moreover, we have

(5.20) Θσ±,λ(pt) = ±λe−tλ2

as in Proposition 3.1 in [29] by (4.5) in [28]. Note that the analysis for this does not depend
on Γ, but is performed over G. Combining (5.16), (5.17), (5.19), (5.20) and observing that
vol(Γγ\Gγ)/vol(Gγ/A) = l(Cγ)/j(γ), we conclude

vol(Γγ\Gγ)
∫

Gγ\G
pt(g−1γg) d(Gγg) =

∑

σ∈M̂

l(Cγ)trσ(mγ)
j(γ)D(γ)

1
2π

∫ ∞

−∞
Θσ,λ(h)e−il(Cγ)λ dλ

=
l(Cγ)

(
χσ+(mγ)− χσ−(mγ)

)

j(γ)D(γ)
1
2π

∫ ∞

−∞
λe−tλ2

eil(Cγ)λ dλ

=
2πi

(4πt)
3
2

l(Cγ)2
(
χσ+(mγ)− χσ−(mγ)

)

j(γ)D(γ)
e−

l(Cγ )2

4t .

Taking the sum over [γ] ∈ Γhyp of this equality and by (5.13) and (5.14), we obtain (5.12). ¤
From Proposition 5.4, putting c := min[γ]∈Γhyp l(Cγ) > 0 we obtain the

Corollary 5.5. The following estimate holds

Tr(De−tD2
) = O(e−c2/t) as t → 0.

5.3. Selberg zeta function of odd type. We define the Selberg zeta functions attached to half
spinor representations σ± by

(5.21) ZΓ(σ±, λ) := exp
(
−

∑

[γ]∈Γhyp

χσ±(mγ)
j(γ)D(γ)

e−λ l(Cγ)
)

for <(λ) > δΓ−n. It is easy to see that ZΓ(σ±, λ) absolutely converges for <(λ) > δΓ−n by (1.2).

Proposition 5.6. For <(λ) > δΓ − n,

(5.22) ZΓ(σ±, λ) =
∏

[γ]∈PΓhyp

∞∏

k=0

det
(
Id− σ±(mγ)⊗ Sk(P (Cγ)|n)e−(λ+n)l(Cγ)

)

where PΓhyp is the set of Γ-conjugacy classes of primitive hyperbolic elements, and for an endo-
morphism L : V → V , Sk(L) denotes the action of L on the symmetric tensor product V ⊗k

sym.

Proof. It is easy to see that log of the right hand side (5.22) is the same as
∑

[γ]∈PΓhyp

∞∑

k=0

tr log
(
Id− σ±(mγ)⊗ Sk(P (Cγ)|n)e−(λ+n)l(Cγ)

)

=−
∑

[γ]∈PΓhyp

∞∑

k=0

∞∑

j=1

j−1tr
(
σ±(mγ)⊗ Sk(P (Cγ)|n)e−(λ+n)l(Cγ)

)j

=−
∑

[γ]∈Γhyp

∞∑

k=0

j(γ)−1tr(σ±(mγ)) tr(Sk(P (Cγ)|n))e−(λ+n)l(Cγ)

=−
∑

[γ]∈Γhyp

j(γ)−1det(Id− P (Cγ)|n)−1tr(σ±(mγ)) e−(λ+n)l(Cγ).

Now these equalities complete the proof if we use (5.11).
¤

The Selberg zeta function of odd type is defined by

(5.23) Zo
Γ,Σ(λ) =

ZΓ(σ+, λ)
ZΓ(σ−, λ)

for <(λ) > δΓ − n.
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Note that the definition in (5.23) is shifted by −n from the one in [27], [29]. From this definition,
the following equality follows easily

(5.24) ∂λ log Zo
Γ,Σ(λ) =

∑

[γ]∈Γhyp

l(Cγ)j(γ)−1D(γ)−1(χσ+(mγ)− χσ−(mγ))e−λl(Cγ).

By Proposition 5.4, and from the identity
∫ ∞

0

e−tλ2
(4πt)−

3
2 e−

r2
4t dt =

e−λr

4πr
for <(λ2) > 0,

we have

Corollary 5.7. For λ such that <(λ) > δΓ − n and <(λ2) > 0,∫ ∞

0

e−tλ2
Tr(De−tD2

) dt =
i

2
∂λ log Zo

Γ,Σ(λ).(5.25)

Let us define the function ωλ on the fundamental domain XΓ by

(5.26) ωλ(m) := tr[DR(λ; m,m′)−DRHd+1(λ; m,m′)]m=m′

where RHd+1(λ) is the meromorphic extension of the resolvent of D2
Hd+1 . The kernel of D(R(λ)−

RHd+1(λ)) is smooth in XΓ ×XΓ and, since the function ωλ is automorphic on Hd+1 with respect
to Γ, it induces a smooth function on X × X. From the analysis of the resolvent above, we see
that ωλ is in x2λ+dC∞(X̄) and thus integrable when <(λ) > 0; moreover it is meromorphic in C.
By reversing the order of integration and trace in (5.25), we can write for <(λ) > max(δΓ − n, 0)

(5.27) ∂λ log Zo
Γ,Σ(λ) =

∂λZo
Γ,Σ(λ)

Zo
Γ,Σ(λ)

= −2i

∫

XΓ

ωλ(m) dv(m)

and the integral of ωλ(m) can be decomposed under the form
∫

x>ε0
and

∫
x<ε0

for some boundary
defining function x, so that it can be decomposed under the sum of a meromorphic function of λ
and of

lim
ε→0

∫ ε0

ε

x2λ−1ω′λ(x, y) dxdvh0(y)

for some ω′λ smooth and meromorphic in λ. As ε → 0, this has an expansion of the form A(λ) +∑∞
j=0 ε2λ+jCj(λ) for some meromorphic Cj(λ), A(λ), and for <(λ) > max(δΓ − n, 0) we have

(5.27) which is equal to A(λ) +
∫

x(m)>ε0
ωλ(m) dv(m). This shows

Lemma 5.8. The function ∂λZo
Γ,Σ(λ)/Zo

Γ,Σ(λ) has a meromorphic extension to C given by the
value

∂λZo
Γ,Σ(λ)

Zo
Γ,Σ(λ)

= −2i FPε→0

∫

x(m)>ε

ωλ(m) dv(m)

where FPε→0 means the finite part as ε → 0, that is the constant coefficient in the expansion in
powers of ε, and ωλ is given in (5.26).

In addition, using that tr[DRHd+1(λ; m,m′) −DRHd+1(−λ;m, m′)]m=m′ = 0 for all λ ∈ C, we
obtain

(5.28)
∂λZo

Γ,Σ(λ)
Zo

Γ,Σ(λ)
− ∂λZo

Γ,Σ(−λ)
Zo

Γ,Σ(−λ)
= −2i FPε→0

∫

x(m)>ε

tr[DΠ(λ;m,m′)]m=m′ dv(m)

where Π(λ; m,m′) := R(λ; m,m′)−R(−λ; m,m′).
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6. Spectral side of trace formula, Maass-Selberg relation

With the only exception of Theorem 6.9, the dimension d + 1 in this Section can be either
odd or even, and X can be any asymptotically hyperbolic manifold with constant curvature near
infinity. By convention, if J(λ) is an operator depending on λ, we shall use the following notation
throughout the section

J̃(λ) := J(λ)/C(λ), with C(λ) = 2−2λ Γ(−λ + 1/2)
Γ(λ + 1/2)

where the function C(λ), already introduced in (4.9), satisfies C(λ)C(−λ) = 1.

6.1. The Maass-Selberg relation. We now describe the Maass-Selberg relation in order to
study the singularities of the odd Selberg zeta function in terms of scattering data.

A corollary of the Lemma 4.7 is that the kernel of Π(λ) := R(λ) − R(−λ) is smooth on
X ×X. Actually, in the Mazzeo-Melrose construction described before, one can choose the same
term Q0(λ) for the parametrix of R(λ) and R(−λ), proving directly that Π(λ) is the sum of a
term whose lift under β is smooth on X̄ ×0 X̄ \ (lb∪ rb) with a term in (xx′)λ+ d

2 C∞(X̄ × X̄; E) +
(xx′)−λ+ d

2 C∞(X̄×X̄; E). The local trace of Π(λ), i.e., the trace of the endomorphism Π(λ;m,m),
satisfies

tr(Π(λ;m, m)) ∈ C∞(X̄) + x2λ+dC∞(X̄) + x−2λ+dC∞(X̄).
From the composition properties of Ψ∗,∗,∗0 (X̄; 0Σ) in Mazzeo [24], the operator1 DΠ(λ) has a kernel
which has the exact same properties as Π(λ) and thus its local trace satisfies

(6.1) tr((DΠ)(λ; m,m)) ∈ C∞(X̄) + x2λ+dC∞(X̄) + x−2λ+dC∞(X̄).

Lemma 6.1. Let ε > 0 and λ ∈ C neither a pole of R(λ) nor of R(−λ), then∫

x(m)>ε

tr(DΠ)(λ; m,m)dvg(m)

=− ε−d

2

∫

x(m)=ε

∫

∂X̄

tr
(
cl(ν)∂λẼ(λ;x, y, y′)Ẽ](−λ; y′, x, y)

)
dvh0(y

′)dvhε(y).

Proof. First observe that

DẼ(λ) = −λẼ(λ)cl(ν), Ẽ](−λ)D = −λcl(ν)Ẽ](−λ)

which is a consequence of Lemma 4.4 and the remark that follows. Then we get for small t ∈ C
1
2t

(
DẼ(λ + t)Ẽ](−λ)− Ẽ(λ + t)(Ẽ](−λ)D)

)
= −1

2
Ẽ(λ + t)cl(ν)Ẽ](−λ).

From Lemma 4.7, the limit as t → 0 on the right hand side is − 1
2 Ẽ(λ)cl(ν)Ẽ](−λ) = DΠ(λ),

which by taking the local trace and using the fact that tr(AB) = tr(BA) gives

tr(DΠ(λ; m,m)) = lim
t→0

1
2t

tr
(
Ẽ](−λ)DẼ(λ + t)(m,m)− (Ẽ](−λ)D)Ẽ(λ + t)(m,m)

)
.

In particular, remark that the local trace on the right hand side has to vanish at t = 0, which will
be used in the last equality below. We use this expression and Green’s formula on {x(m) > ε} in

1The notation DΠ should not be confused with the usual notation dΠ for the spectral measure!
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the dvg(m) integral to get∫

x(m)>ε

tr(DΠ(λ;m, m))dvg(m)

= lim
t→0

1
2t

∫

∂X̄

∫

x(m)>ε

tr
[
Ẽ](−λ; y′,m)DẼ(λ + t; m, y′)

−(Ẽ](−λ)D)(y′,m)Ẽ(λ + t; m, y′)
]
dvg(m)dvh0(y

′)

=− ε−d lim
t→0

1
2t

∫

x(m)=ε

∫

∂X̄

tr
(
Ẽ](−λ; y′,m)cl(ν)Ẽ(λ + t; m, y′)

)
dvh0(y

′) dvhε(y)

=− ε−d

2

∫

x(m)=ε

∫

∂X̄

tr
(
Ẽ](−λ; y′,m)cl(ν)∂λẼ(λ;m, y′)

)
dvh0(y

′) dvhε(y).

The Lemma is proved using the cyclicity of the local trace once again. ¤
We now consider the limit of the expression in Lemma 6.1 as ε → 0. For that we introduce the

representation of Ẽ(λ) given in Lemma 4.13 and a similar one for Ẽ](λ): Ẽ](λ) = Ẽ]
0(λ) + Ẽ]

∞(λ)
obtained by restricting (3.12) times x(m)−λ− d

2 at m ∈ ∂X̄ and using (3.11), that is

Ẽ]
0(λ) :=

∑

j

ι∗jφ
1
jη
−λ− d

2
j Ẽ]

Hd+1(λ)χ2
j ιj∗,

Ẽ]
∞(λ) := 2λ[x−λ− d

2 (R̃(λ)− R̃]
0(λ))]x=0 ∈ x′λ+ d

2 C∞(∂X̄ × X̄; E)

(6.2)

where again Ẽ]
Hd+1(λ) is the corresponding operator on Hd+1 like in Lemma 4.13 and R]

0(λ) :=
R0(λ̄)∗. Notice that, using the same arguments as in (4.7), we obtain Ẽ]

0(λ; y′,m) = Ẽ0(λ̄;m, y′)∗.
Similarly we have S̃(λ) = S̃]

0(λ) + S̃]
∞(λ) with

S̃]
0(λ) :=

∑

j

ι∗jφ
1
jη
−λ− d

2
j S̃Hd+1(λ)η−λ− d

2
j φ2

j ιj∗,

S̃]
∞(λ) := 2λ[xx′−λ− d

2 (R̃(λ)− R̃]
0(λ))]x=x′=0 ∈ C∞(∂X̄ × ∂X̄; E)

(6.3)

and S̃Hd+1(λ) is the operator on Hd+1 like in Lemma 4.13. Then we can prove

Proposition 6.2. The meromorphic identity holds in λ ∈ C,∫

x(m)>ε

tr(DΠ(λ; m,m))dvg(m)

=− ε−d

2

∫

x(m)=ε

∫

∂X̄

[
tr

(
cl(ν)∂λẼ(λ;x, y, y′)Ẽ]

∞(−λ; y′, x, y)
)

+ tr
(
cl(ν)∂λẼ∞(λ; x, y, y′)Ẽ]

0(−λ; y′, x, y)
)]

dvh0(y
′)dvhε(y)

(6.4)

where tr means the local trace on End(0Σ).

Proof. The point is to prove the vanishing of

tr
(
cl(ν)∂λẼ0(λ; x, y, y′)Ẽ]

0(−λ; y′, x, y)
)

so we use the explicit formula for Ẽ0(λ) and Ẽ]
0(λ) given in Lemma 4.13 and (6.2). We have to

deal with terms of the form

(6.5) tr
(
ι∗jcl(Xj)∂λ(χ2

j ẼHd+1(λ)φ1
jη
−λ− d

2
j )γ∗jkφ1

kη
λ− d

2
k Ẽ]

Hd+1(−λ)χ2
kιk∗(m,m)

)

where γjk is the unique isometry of Hd+1 extending ιk ◦ ι−1
j : ιj(Uk∩Uj) → ιk(Uk∩Uj) (and which

acts smoothly up to the boundary) and Xj is the vector field Xj := ιj∗(ν). We use the fact that
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γ∗jkRHd+1(λ) = RHd+1(λ)γ∗jk since γjk is an isometry so if αjk := [γ∗jk(x0)/x0]|x0=0 ∈ C∞(Rd), then

one deduces that γ∗jkE]
Hd+1(−λ) = α

λ− d
2

jk E]
Hd+1(−λ)γ∗jk. Let us consider (6.5), it can be written as

Ajk(λ;x0, y0, y
′
0) :=χ2

j (x0, y0)χ2
k(γjk(x0, y0))

tr
(
cl(Xj)(∂λ[ẼHd+1(λ;x0, y0, y

′
0)ηj(y′0)

−λ− d
2 ]βjk(λ; y′0)Ẽ

]
Hd+1(−λ; y′0, x0, y0)

)

where ιj(m) = (x0, y0) and βjk(λ; y′) := ηj(y′)λ− d
2 φ1

j (y
′)φ1

k(γjk(y′)). We shall show that Ajk

vanishes for algebraic reasons. First we recall from (2.5) that

ẼHd+1(λ;x0, y0, y
′
0) = f(λ)xλ+ d

2
0 (x2

0 + |y0 − y′0|2)−λ− d
2 U((x0, y0), y′0)

and a similar expression for Ẽ]
Hd+1 , here U is the parallel transport on Hd+1 extended to the

boundary (see Appendix A) and f(λ) some explicit meromorphic function. Thus using the fact
that U(m0, y

′
0)U(y′0,m0) = Id, Ajk can be written under the form

Ajk(λ;m0, y
′
0) = bjk(λ; m0, y

′
0)tr(cl(Xj)U(m0, y

′
0)U(y′0,m0)) = bjk(λ;m0, y

′
0)tr(cl(Xj))

for some bjk where m0 = (x0, y0). But since the dimension d > 1, the trace vanishes. ¤
We deduce from this formula

Proposition 6.3. For λ ∈ C not a pole of S(λ) and S(−λ), the right-hand side term in Proposition
6.2 has a limit as ε → 0, given by

(6.6) lim
ε→0

∫

x(m)>ε

tr(DΠ(λ; m,m))dvg(m) = −1
2

Tr
(
cl(ν)[∂λS̃(λ)S̃]

∞(−λ) + ∂λS̃∞(λ)S̃]
0(−λ)]

)
,

where Tr denotes the trace for trace-class operators.

Proof. First when d + 1 is odd, we know from the discussion before Lemma 5.8 that the term
(6.4) has an expansion as ε → 0 of the form A(λ) +

∑∞
j=0 ε−2λ+jC−j (λ) +

∑∞
j=0 ε2λ+jC+

j (λ) for
some meromorphic functions A(λ), C±j (λ). But actually the same result holds for the general AH
manifolds where the metric has constant curvature near ∞ and d + 1 odd or even: indeed, using
the parametrix (3.10) and the fact that the local trace tr(D(RHd+1(λ)−RHd+1(−λ))) vanishes as
explained in the Remark following Proposition 2.1, it is clear that tr(DΠ(λ;m,m)) is a function
in the class x2λC∞(X̄) + x−2λC∞(X̄). Let us then take the limit as ε → 0 in (6.4). For instance
consider

x−dtr
(
cl(ν)∂λẼ(λ; x, y, y′))Ẽ]

∞(−λ; y′, x, y)
)
,

we can use the arguments used in the proof of Theorem 3.10 of [14] (in the present case this is
even simpler since they correspond only to the mixed terms there, which comes from the regularity
Ẽ]
∞(−λ) ∈ x−λ+ d

2 C∞(∂X̄ × X̄; E)) and we obtain

x−dtr
(
cl(ν)∂λẼ(λ; x, y, y′)Ẽ]

∞(−λ; y′, x, y)
)

= log(x)tr
(
cl(ν)S̃(λ; y, y′)S̃]

∞(−λ; y′, y)
)

+ tr
(
cl(ν)∂λS̃(λ; y, y′)S̃]

∞(−λ; y′, y)
)

+ O(x log(x)).

(6.7)

Similarly we have

x−dtr
(
cl(ν)∂λẼ∞(λ; x, y, y′)Ẽ]

0(−λ; y′, x, y)
)

= log(x)tr
(
cl(ν)S̃∞(λ; y, y′)S̃]

0(−λ; y′, y)
)

+ tr
(
cl(ν)∂λS̃∞(λ; y, y′)S̃]

0(−λ; y′, y)
)

+ O(x log(x)).

(6.8)

Thus the sum of (6.7) and (6.8) integrates in y, y′ to a function of x of the form α(λ) log(x) +
β(λ)+O(x log(x)) for some meromorphic function α(λ), β(λ) which we can express in terms of the
scattering operators. But from the discussion before, we also know that this trace has no log(x)
coefficients and so α(λ) = 0, which ends the proof by letting x → 0 and writing β(λ) in terms of
S̃(λ), S̃∞(λ), S̃]

∞(−λ) and S̃]
0(−λ) from (6.7), (6.8). ¤
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Remark 6.4. By holomorphy on the continuous spectrum, the terms O(x log x) in (6.7) and (6.8)
are continuous functions of λ ∈ iR, and thus G(ε, λ) :=

∫
x(m)>ε

tr(DΠ(λ; m,m))dvg(m) is a
continuous function on [0, ε0]× iR for some small ε0.

Let us define the super trace of a trace class operator A on L2(∂X̄, Σ) by

(6.9) s-Tr(A) :=
1
i
tr(cl(ν)A).

Corollary 6.5. Let λ ∈ C be such that S(z) and S(−z) are analytic at z = λ, then the super trace
s-Tr(∂λS̃(λ)S̃(−µ)) extends meromorphically in µ from <(λ− µ) < −d to µ ∈ C, it is analytic in
µ = λ, and the following identity holds

lim
ε→0

∫

x(m)>ε

tr(DΠ(λ;m, m))dvg(m) = − i

2
s-Tr(∂λS̃(λ)S̃(−µ))|µ=λ.

Proof. Since ∂λS̃(λ)S̃]
∞(−µ) and ∂λS̃∞(λ)S̃]

0(−µ) have smooth kernels, it is clear that their super-
trace extends meromorphically to C and is analytic at µ = λ by assumption on λ. Now if we show

(6.10) s-Tr(∂λS̃0(λ)S̃]
0(−µ)) = 0

then we have proved the corollary in view of Proposition 6.3. We have to study terms of the form

(6.11) tr
(
ι∗jcl(ν)∂λ[η−λ− d

2
j φ2

j S̃Hd+1(λ)φ1
jη
−λ− d

2
j ]γ∗jkη

µ− d
2

k φ1
kS̃Hd+1(−µ)φ2

kη
µ− d

2
k ιk∗

)

where γjk is the unique isometry of Hd+1 extending ιk ◦ ι−1
j : ιj(Uk∩Uj) → ιk(Uk∩Uj), which acts

also as a conformal transformation on ∂B̄ ⊂ Rd. As above we use the fact that γ∗jkRHd+1(−µ) =
RHd+1(−µ)γ∗jk since γjk is an isometry so if αjk := [γ∗jk(x0)/x0]|x=0 ∈ C∞(Rd), then one deduces

that γ∗jkSHd+1(−µ) = α
µ− d

2
jk SHd+1(−µ)αµ− d

2
jk γ∗jk. So the term (6.11) is equal to

(6.12)

∫

∂B̄×∂B̄

tr
(
cl(ν)∂λ

[
ηj(y)−λ− d

2 φ2
j (y)S̃Hd+1(λ; y, y′)φ1

j (y
′)ηj(y′)−λ− d

2

]

ηj(y′)µ− d
2 φ1

k(γjk(y′))S̃Hd+1(−µ; y′, y)φ2
k(γjk(y))ηj(y)µ− d

2

)
(ηj(y)ηj(y′))ddydy′.

Using the explicit formula of SHd+1(λ; y, y′), we see that the local trace of the operator above, i.e.,
the integrand in (6.12), can be written under the form

fjk(λ, µ; y, y′)tr(cl(ν)U(y, y′)U(y′, y))

for some function fjk and where U(y, y′) is the parallel transport map on spinors on Hd+1 studied
in Appendix A and extended down to the boundary Rd. Thus since U(y, y′)U(y′, y) = Id and
tr(cl(ν)) = 0, we obtain that (6.12) vanishes, which finishes the proof. ¤

6.2. Analysis of residues of s-Tr(∂λS̃(λ)S̃(−λ)). Let us define F (λ) for the value at µ = λ of
the meromorphic extension in µ of s-Tr(∂λS̃(λ)S̃(−µ))

(6.13) F (λ) := s-Tr(∂λS̃(λ)S̃(−µ))|µ=λ.

It is clear from Corollary 6.5 that F (λ) is meromorphic in λ ∈ C, but we want to prove that it
has only first order poles, the residues of which are integers. Since S̃(λ) is unitary on {<(λ) = 0}
it is analytic at λ = 0, so one can define

(6.14) S±(λ) := S̃±(λ)S̃∓(0) : C∞(∂X̄; 0Σ∓) → C∞(∂X̄; 0Σ∓)

which are the two diagonal components of S(λ) := S̃(λ)S̃(0) in the splitting 0Σ+ ⊕ 0Σ−. These
two operators are elliptic pseudo-differential operators of complex order 2λ by Proposition 4.9

S±(λ) ∈ Ψ2λ(∂X̄; 0Σ∓ £ 0Σ∗∓),

and their principal symbol is |ξ|2λ. Let D be the Dirac operator on (∂X̄, h0) and let D∓ = P±DI∓ :
C∞(∂X̄; 0Σ∓) → C∞(∂X̄; 0Σ±) be the off diagonal components of D. If |D|∓ := (D±D∓)

1
2 , it

is possible to factorize S±(λ) by (Id + |D|∓)−λS±(λ)(Id + |D|∓)−λ and this operator is of the
form Id + K(λ) for some meromorphic family of compact operators on L2(∂X̄; 0Σ∓), it is thus
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Fredholm on this space. Then we can use the theory of Gohberg-Sigal [10] like in [18] or Section
2 of [13] for these operators. In particular, one can define the null multiplicities Nλ0(S±(λ)) of
S±(λ) at a point λ0 as follows: by the theory of [10], for a meromorphic family of operators
L(λ) = Id + K(λ) acting on a Hilbert space H with K(λ) compact, with L(λ) invertible for some
λ, there exist holomorphically invertible operators U1(λ), U2(λ) near λ0, some (kl)l=0,...,m ∈ Z\{0}
(with m ∈ N) and some orthogonal projectors Pl on L2(∂X̄; 0Σ±) such that rank(Pl) = 1 if l > 0,
PiPj = δij and

(6.15) L(λ) = U1(λ)
(
P0 +

m∑

l=1

(λ− λ0)klPl

)
U2(λ),

then we define the null multiplicity at λ0 by

(6.16) Nλ0(L(λ)) :=
∑

kl>0

kl.

Note that, by [10], this is an integer depending only on S±(λ) and not on the factorization (6.15)
and that Nλ0(L(λ)) = 0 if and only if L(λ)−1 is holomorphic at λ = λ0.

Proposition 6.6. The function F (λ) of (6.13) is meromorphic in λ ∈ C, one has

(6.17) F (λ) = FPµ=λTR(∂λS−(λ)S−1
− (µ))− FPµ=λTR(∂λS+(λ)S−1

+ (µ))

where TR is the Kontsevich-Vishik trace of [20] and FPµ=λ means the finite part (or regular value)
of the meromorphic function of µ at µ = λ. The poles of F (λ) are first order poles, with residue
at a pole λ0 given by

Resλ=λ0F (λ) = Tr(Resλ=λ0(∂λS−(λ)S−(λ)−1))− Tr(Resλ=λ0(∂λS+(λ)S+(λ)−1))

= (Nλ0(S−(λ))−Nλ0(S−(λ)−1))− (Nλ0(S+(λ))−Nλ0(S+(λ)−1))

where Nλ0 is the null multiplicity defined in (6.16).

Proof. The first statement is straightforward since

s-Tr(∂λS̃(λ)S̃(−µ)) = TR(∂λS−(λ)S−1
− (µ))− TR(∂λS+(λ)S−1

+ (µ))

and we know from the work of Lesch [21] that the Kontsevich-Vishik trace of an analytic family
of log-polyhomogeneous operators A(µ) extend meromorphically to µ ∈ C, so it suffices to use the
fact that s-Tr(∂λS̃(λ)S̃(−µ)) analytically continues to µ ∈ C and is analytic at µ = λ to prove
(6.17).

As shown in Proposition 6.3, F (λ) can be written as a trace of a meromorphic family of trace
class operators, more precisely, using the fact that cl(ν) anti-commutes with S̃(λ) and S̃0(λ) for
all λ where they are defined,

F (λ) =
1
i
tr

(
cl(ν)(∂λS̃(λ)S̃(λ)−1 − ∂λS̃0(λ)S̃]

0(−λ))
)
.

Consequently, the polar part of F (λ) at a pole λ0 is given by the trace of the polar part (which
is finite rank) of cl(ν)(∂λS̃(λ)S̃(λ)−1 − ∂λS̃0(λ)S̃]

0(−λ)). But clearly from the explicit formula of
SHd+1(λ), we see that ∂λS̃0(λ)S̃]

0(−λ) is holomorphic in λ ∈ C. Now use that S̃(0)2 = Id to write

cl(ν)∂λS̃(λ)S̃(λ)−1 = + iI+∂λ(S̃−(λ)S̃+(0))(S̃−(λ)S̃+(0))−1P+

− iI−∂λ(S̃+(λ)S̃−(0))(S̃+(λ)S̃−(0))−1P−
(6.18)

and write a factorization of the form (6.15) for S±(λ), from which it is clear that ∂λS±(λ)S±(λ)−1

has only first order poles except possibly

U1(λ)(P0 +
m∑

l=1

(λ− λ0)klPl)∂λU2(λ)U2(λ)−1(
m∑

l=1

(λ− λ0)−klPl)U1(λ)−1

+U1(λ)(
m∑

l=1

(λ− λ0)klPl)∂λU2(λ)U2(λ)−1(P0 +
m∑

l=1

(λ− λ0)−klPl)U1(λ)−1.
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But this is a finite rank operator and so by the cyclicity of the trace, we deduce that the trace of
this term is holomorphic in λ. To finish the proof, it suffices to apply the main result of [10]:

tr(Resλ=λ0(∂λS±(λ)S±(λ)−1)) = Nλ0(S±(λ))−Nλ0(S±(λ)−1).

¤
Let us define the multiplicity of resonances as follows

(6.19) m±(λ0) := rank(Resλ=λ0R±(λ))

We want to identify scattering poles and resonances.

Proposition 6.7. Let λ0 ∈ C, then the following identity holds

(6.20) Nλ0(S∓(−λ)) = m±(λ0) + 1l−1/2−N0(λ0) dimker S∓(−λ0).

Proof. We just sketch the proof since it is very similar to that of Theorem 1.1. of [13], and we
strongly encourage the reader to look at [13]. The first thing to notice is that Nλ0(S±(−λ)) =
N−λ0(S±(λ)) and that Nλ0(S±(λ)−1) = Nλ0(S∓(−λ)) since S±(λ)−1 = S̃±(0)S∓(−λ)S̃±(0)−1.
Remark that R±(λ) and S±(λ) are analytic in {<(λ) ≥ 0} and so the identity (6.20) is trivial (all
terms are 0) for <(λ0) ≥ 0.

Now suppose that <(λ0) < 0. First we prove that

(6.21) Nλ0(S∓(−λ))− 1l−1/2−N0(λ0) dim ker S∓(−λ0) ≤ m±(λ0).

By (4.4) and (4.5), S±(λ) can be represented for <(λ) < −d
2 by

S±(λ; y, y′) = ±i[(xx′)−λ− d
2 R±(λ; x, y, x′, y′)]|x=x′=0

and the expression can be extended to λ ∈ C meromorphically as a singular integral kernel using
the blow-down maps like in (4.10). Then we can apply mutatis mutandis Lemma 3.2 of [13], where
S(λ) there is replaced by S±(λ) here, the function z(λ) there is λ here, and we have to multiply
the factorization (3.11) of [13] by S̃∓(0) on the right, which is harmless since it does not depend
on λ. We want to apply the factorization of S(λ) obtained from this Lemma 3.2 of [13] to prove
(6.21), in a way similar to Corollary 3.3 of [13]. First Corollary 3.3 in [13] can also be rewritten
(using the notations of [13]) under the form

Nλ0(S̃(n− λ))− 1l−n/2−N0(λ0) dim ker S̃(n− λ0) ≤ mλ0(z
′(λ)R(λ))

by using equation (3.19) in [13] if λ0 ∈ n/2 − N and the fact that c(n − λ) is holomorphic at all
λ0 /∈ n/2−N. Then the proof of this Corollary 3.3 in [13] can be copied word by word by replacing
S̃(n − λ) and c(n − λ) there by S∓(−λ) and C(−λ) here, and mλ0(z

′(λ)R(λ)) by m±(λ0). This
finally proves (6.21).

Then we need to prove the converse inequality of (6.21). From Lemma 4.7, Corollary 4.8 and
the fact that S̃∓(0)S̃±(0) = Id|0Σ∓ , we deduce

(6.22) R±(λ)−R∓(−λ) = −E∓(−λ)C(λ)S±(λ)S̃±(0)cl(ν)E]
∓(−λ)

which is the equivalent in our setting to the identity (3.15) of [13]. Since Lemma 3.4 of [13] is only
based on the identity (3.15) in [13], the structure of the resolvent kernel at the boundary and the
unique continuation principle of Mazzeo [23], the same proof applies and is actually easier in our
case since there is no pure point spectrum thus no resonance in the physical sheet {<(λ) ≥ 0}.
This implies

Nλ0(S∓(−λ))− 1l−1/2−N0(λ0) dim ker S∓(−λ0) ≥ m±(λ0).
The idea of the proof of Lemma 3.4 of [13] is to use (6.22) to write the residue of R±(λ) at λ0

with <(λ0) < 0 in terms of the singular part of the Laurent expansion of S±(λ), itself obtained
from a factorization of the form (6.15), then use the fact that R∓(−λ), E∓(−λ) and E]

∓(−λ) are
holomorphic in {<(λ) < 0} and finally count the rank of the residue in terms of the kl of the
factorization (6.15). ¤
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Theorem 6.8. The function F (λ) is meromorphic with first order poles and integer residues given
by

Resλ=λ0F (λ) = m+(λ0)−m−(λ0) + 1l−1/2−N0(λ0)Ind(S−(−λ0))

= m+(λ0)−m−(λ0).

for <(λ0) ≤ 0, where m±(λ0) is defined in (6.19).

Proof. Apply Proposition 6.7 with Proposition 6.6. To see the index of S−(−λ0) appearing, we
also use that S+(−λ0)∗ = S−(−λ0) for λ0 ∈ R, which comes from the self-adjointness of S̃(−λ0).
The fact that the index of S−(−λ0) vanishes comes from the invariance of the index by continuous
deformation and the invertibility of S̃(λ) except on a discrete set of λ ∈ C. ¤

We deduce directly our main theorem from this Theorem, Corollary 6.5 and the identity (5.28):

Theorem 6.9. The odd Selberg zeta function Zo
Γ,Σ(λ) on a spin convex co-compact hyperbolic

manifold XΓ of dimension 2n+1 has a meromorphic extension to C, is analytic in a neighborhood
of the right half plane {<(λ) ≥ 0}, and λ0 is a zero or pole if and only if the meromorphic extension
R+(λ) or R−(λ) of (D ± iλ)−1 from {<(λ) > 0} to C have a pole at λ0, in which case the order
of λ0 as a zero or pole of Zo

Γ,Σ(λ) (with the positive sign convention for zeros) is given by

rankResλ0R−(λ)− rank Resλ0R+(λ).

7. Eta invariant of Dirac operator

In this section, we will assume that the dimension of XΓ is odd, that is, d + 1 = 2n + 1. First,
we prove

Proposition 7.1. Using notation (5.10), the following estimate holds

Tr(De−tD2
) = O(t−1) as t →∞.

Proof. Since the claim easily follows from (5.5) when δΓ < n (and actually in that case one gets
directly O(t−3/2) instead of just O(t−1)), we assume that δΓ ≥ n in the following proof.

Let us write the operator De−tD2
as a contour integral

(7.1) De−tD2
=

1
2πi

∫

Λ

e−tλ2
D(D2 − λ2)−12λdλ

where Λ = {rei(π+π/8); r > 0} ∪ {re−iπ/8; r > 0} oriented from +∞e−iπ/8 towards +∞ei(π+π/8).
Let us check the identity (7.1): by Corollary 3.5, we have that D(D2 − λ2)−1 = DR(iλ) is
holomorphic in =(λ) ≤ 0 as an operator bounded from xεL2 to x−εL2 for all ε > 0, moreover
||DR(iλ)||L2→L2 = O(1/|=(λ)|) when |λ| → ∞ thus the integral converges in the operator norm of
L(xεL2, x−εL2). Moreover, applying the integral (7.1) to a C∞0 (X) function f defines a function
u(t) and since −λ2(D2−λ2)−1 = Id−D2(D2−λ2)−1, we see that the integral converges in C∞(X)
uniformly in t ∈ [0,∞) and solves ∂tu = −D2u with u(0) = Df . It is easy to prove that the Ck

norms of the integral kernels in (7.1) also converge by applying powers of D2 on the right and
the left and using Sobolev embeddings. The same is true for the integral kernel of the operator
DHd+1e−tD2

Hd+1 in terms of the resolvent kernel DHd+1(D2
Hd+1 − λ2)−1 and by Proposition 5.3 we

deduce that
tr(De−tD2

)(m) =
1

2πi

∫

Λ

e−tλ2
ωiλ(m)2λdλ

with ωλ(m) = tr(DR(λ)−DRHd+1(λ))(m). Since ωiλ ∈ x2iλ+dC∞(X̄) is holomorphic in =(λ) ≤ 0,
it is in L1(X) if =(λ) < 0, and for =(λ) ≤ 0 one has the asymptotic

K(λ, ε) := 2λ

∫

x(m)>ε

ωiλ(m)dv(m) = ε2iλF (λ) + λG(λ, ε)

where F (λ) is a holomorphic function of λ and G(λ, ε) is continuous in (λ, ε) down to ε = 0 and
holomorphic in λ. In particular for |λ| < 1, we have |K(λ, ε)| ≤ C for some constant C > 0
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independent of (λ, ε) and limε→0 K(λ, ε) = λG(λ, 0) as long as =(λ) < 0. We can thus use
Lebesgue’s dominated convergence theorem to deduce that

lim
ε→0

∫

x(m)>ε

(∫

Λ∩{|λ|<1}
e−tλ2

ωiλ(m)2λdλ
)

dv(m) =
∫

Λ∩{|λ|<1}
e−tλ2

λG(λ, 0)dλ.

Now if we can show that , for λ ∈ Λ∩{|λ| > 1}, the estimate ||ωiλ||L1(X) = O(eα|λ|) holds for some
α > 0 we can use Lebesgue’s dominated convergence theorem again for the integral corresponding
to λ ∈ Λ ∩ {|λ| > 1}, and then changing variable u =

√
tλ in the whole Λ integral gives directly

lim
ε→0

∫

x(m)>ε

tr(De−tD2
)(m)dv(m) = O(t−1) as t →∞.

We thus use that for <(λ) > d, one has

ωλ(m) = tr
(
[DR(λ; m,m′)−DRHd+1(λ; m,m′)]m=m′) =

∑

γ∈Γ\Id
tr(DRHd+1(λ; m, γm)γ∗m)

where γ∗m : 0Σm → 0Σγm is the action induced by γ on the spinor bundle. The map γ∗ is given
by γ∗[g, v] = [γg, v] for [g, v] ∈ 0Σm, [γg, v] ∈ 0Σγm under the identification in (2.4). Using (2.5),
the Euler integral formula for the hypergeometric function

F

(
d + 1

2
+ λ, λ + 1, 2λ + 1; z

)
=

Γ(2λ + 1)
Γ(λ + 1)Γ(λ)

∫ 1

0

tλ(1− t)λ−1

(1− tz)
d+1
2 +λ

dt

the expression of the Beta function B(λ + 1, λ) in terms of Gamma functions, and the obvious
bound 1− tz > 1− z = tanh2(dHd+1(m, γm)/2) when z = cosh−2(dHd+1(m, γm)/2), we obtain

|ωλ(m)| ≤ C
∣∣∣Γ( d+1

2 +λ)Γ(λ+1)

Γ(2λ+1)

∣∣∣
∑

γ∈Γ\{Id}
sinh(dHd+1(m, γm)/2)−d−2<(λ).

Using the Legendre duplication formula, the term containing Gamma functions is uniformly
bounded for <(λ) > 0. Since the injectivity radius of X = Γ\Hd+1 is strictly positive, i.e.,

inf
m∈Hd+1,γ∈Γ\{Id}

{sinh(dHd+1(m, γm)/2)} > ε

for some ε > 0, we deduce the estimate

(7.2) |ωλ(m)| ≤ eC<(λ)
∑

γ∈Γ\{Id}
e−(d/2+<(λ))dHd+1 (m,γm).

Now for those (finitely many) γ ∈ Γ \ {Id} for which Lemma 5.2 possibly does not hold we still
have the weaker inequality

e−dHd+1 (m,γm) ≤ Cx(m)2

for some C > 0, where x is a boundary defining function. In particular e−λdHd+1 (m,γm) descends to
an L1 function on X if <(λ) > d/2. Combining finally with Lemma 5.2 and (7.2), the convergence
of Poincaré series in {<(λ) > d} implies the bound in the same half-space

||ωλ||L1(X) ≤ eC<(λ)

and this ends the proof. ¤
We define the eta invariant of D by

(7.3) η(D) =
1√
π

∫ ∞

0

t−
1
2 Tr(De−tD2

) dt

where the trace Tr means the integral of the local trace like in (5.10). Note that the integral
on the right hand side of (7.3) is finite by Corollary 5.5 and Proposition 7.1. Theorem 6.9 about
meromorphic extension of Zo

Γ,Σ(λ) and its analyticity on [0,∞) implies directly the following result:

Theorem 7.2. The eta invariant of the Dirac operator over a convex co-compact hyperbolic man-
ifold XΓ satisfies

(7.4) exp(πiη(D)) = Zo
Γ,Σ(0).
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Proof. We start by writing

t−1/2 =
2√
π

∫ ∞

0

e−λ2tdλ,

then we have by (5.25)

η(D) =
2
π

∫ ∞

0

∫ ∞

0

e−λ2tTr(De−tD2
) dλ dt =

i

π

∫ ∞

0

∂λZo
Γ,Σ(λ)

Zo
Γ,Σ(λ)

dλ

and this concludes the proof by Theorem 6.9, in particular, the meromorphic extension of Zo
Γ,Σ(λ)

over C with λ = 0 as a regular value. ¤

8. Eta invariant of odd signature operator and its structure on Schottky space

For a (4m− 1)-dimensional convex co-compact hyperbolic manifold

XΓ = Γ\SO0(4m− 1, 1)/SO(4m− 1),

we consider the odd signature operator A on odd forms Λodd = ⊕2m
p=0Λ

2p−1 acting by (−1)m+p(?d+
d?) over Λ2p−1 as in Millson’s paper [27]. Recall that A2 = ∆ and A is self adjoint. We want to
make a sense of

(8.1) η(A) :=
1√
π

∫ ∞

0

t−
1
2

∫

XΓ

TrΛ(Ae−t∆)(m) dv(m) dt

where TrΛ is the local trace on the bundle Λodd. First it is easy to see that TrΛ(Ae−t∆) is the
same as TrΛ2m−1(?d e−t∆) since the other parts are off diagonal if we write Ae−t∆ as a matrix
with respect to the natural basis of Λodd. First we show that the local trace trΛ2m−1(?d e−t∆) is
integrable on XΓ. As in the spinor bundle Σ, the bundle of (2m−1)-forms can be understood as a
homogeneous vector bundle given by the representation Λ2m−1φ with the standard representation
φ of SO(4m− 1), which decomposes into

(8.2) Λ2m−1φ |SO(4m−2) = Λ2m−1
+ φ̄⊕ Λ2m−1

− φ̄⊕ Λ2m−2φ̄

where φ̄ denotes the standard representation of SO(4m− 2). As in the subsection 5.1, there is the
Λ2m−1φ-radial function Pt associated to ?d e−t∆, and we have the corresponding scalar functions
p±t (r), p2m−2

t (r) of Pt restricting to the representation spaces on the right hand side of (8.2). Now,
as in Proposition 5.1, we have

Proposition 8.1. The scalar components p±t (r), p2m−2
t (r) are given by

p±t (r) = ± (4m− 1) sinh(r)
i22m−1/2π2m+1/2t3/2

(
− d

d(cosh r)

)2m−1

r sinh−1(r) e−
r2
4t , p2m−2

t (r) ≡ 0.

Proof. The equalities follow from Lemma 7.4 and Theorem 7.6 in [31] and Theorem 1.1 in [27]. ¤
Using this proposition and repeating the same argument as in Section 5, one can easily show

that trΛ2m−1(?d e−t∆) is integrable over XΓ. By the same argument as in Proposition 5.4 and
Corollary 5.5, one can also obtain the corresponding results, which implies that the small time
part of the integral

∫∞
0
· dt in (8.1) converges. The convergence of the large time part also follows

from the corresponding computations to (5.5) and Lemma 5.2 under the condition δΓ < 2m − 1.
Hence the eta invariant η(A) given in (8.1) is well defined if δΓ < 2m−1. For <(λ) > δΓ−(2m−1),
we also have the Selberg zeta function of odd type Zo

Γ,Λ(λ) just putting σ± = Λ2m−1
± φ̄ in (5.21)

and (5.23), which coincides with the one in (1.1) introduced by Millson [27]. We first have a result
similar to the case of spinor bundle dealt with above:

Theorem 8.2. If XΓ := Γ\H4m−1 is a convex co-compact hyperbolic manifold with the Poincaré
exponent δΓ < 2m − 1, then the local trace TrΛ2m−1(?d e−t∆) is integrable on X for all t > 0, so
that the integral (8.1) converges and defines the eta invariant η(A). Moreover, we also have

(8.3) eπiη(A) = Zo
Γ,Λ(0).



34 COLIN GUILLARMOU, SERGIU MOROIANU, AND JINSUNG PARK

Proof. We already showed the first claim. The equality (8.3) also easily follows from the corre-
sponding results to Proposition 5.4 and the assumption δΓ < 2m− 1, from which we do not need
to show the meromorphic extension of Zo

Γ,Λ(λ) at λ = 0. ¤

It turns out that this eta invariant η(A) of the odd signature operator A has an intimate
relationship with the deformation space of the hyperbolic structures when XΓ is 3-dimensional.
To explain this, first we review the work of Zograf [36].

8.1. Zograf factorization formula. A marked Schottky group is a discrete subgroup Γ of the
linear fractional transformations PSL(2,C), with distinguished free generators γ1, γ2, . . . , γg satis-
fying the following condition: there exist 2g smooth Jordan curves Cr, r = ±1, . . . ,±g, which form
the oriented boundary of a domain Ω0 in Ĉ = C ∪ {∞} such that γrCr = −C−r for r = 1, . . . , g.
If Ω is the union of images of Ω0 under Γ, then YΓ = Γ\Ω is a compact Riemann surface of genus
g. The action of Γ on C naturally extends to the action on H3 where ∂H3 = C and the quotient
space XΓ = Γ\H3 is a Schottky hyperbolic 3-manifold whose boundary is the Riemann surface YΓ.
Here let us remark that δΓ is the Hausdorff dimension of the limit set Λ in ∂H3 of Γ and δΓ is
also the smallest number such that

∏
{γ}(1 − qs

γ) absolutely converges whenever <(s) > δΓ. The
function

∏
{γ}(1 − qs

γ) was briefly described in [2] where it was asserted without the proof that
with the values of qs

γ chosen appropriately, the infinite product is defined for <(s) > δΓ and has
an analytic continuation to C.

Each nontrivial element γ ∈ Γ is loxodromic: there exists a unique number qγ ∈ C (the
multiplier) such that 0 < |qγ | < 1 and γ is conjugate in PSL(2,C) to z 7→ qγz, that is,

γz − aγ

γz − bγ
= qγ

z − aγ

z − bγ

for some aγ , bγ ∈ Ĉ (the attracting and repelling fixed points respectively). A marked Schottky
group with an ordered set of free generators γ1, . . . , γg is normalized if aγ1 = 0, bγ1 = ∞, aγ2 = 1.
The Schottky space Sg is the space of marked normalized Schottky groups with g generators. It
is a complex manifold of dimension 3g − 3, covering the Riemann moduli space Mg and with
universal cover the Teichmüller space Tg.

Like the Teichmüller space Tg, the Schottky space Sg has a natural Kähler metric, the Weil-
Petersson metric. In [33], Takhtajan-Zograf constructed a Kähler potential S called classical
Liouville action of the Weil-Petersson metric on Sg, that is,

(8.4) ∂∂S = 2i ωWP

where ∂ and ∂ are the (1, 0) and (0, 1) components of the de Rham differential d on Sg respectively,
and ωWP is the symplectic form of the Weil-Petersson metric. On the other hand, from the local
index theorem for families of ∂-operators in Takhtajan-Zograf [34], the following equality also
follows

(8.5) ∂∂ log
Det∆

det Im τ
= − i

6π
ωWP

where Det∆ and τ denote the ζ-regularized determinant of the Laplacian ∆ of hyperbolic metric
and the period matrix respectively over the Riemann surface corresponding to an inverse image in
Tg of a point in Sg. Let us remark that Det∆ and det Im τ descend to well-defined functions on Sg.
Comparing (8.4) with (8.5), one can expect a nontrivial relationship between S and log Det∆

det Im τ .
Indeed, in [36], [37] Zograf proved

Theorem 8.3. [Zograf] There exists a holomorphic function F (Γ) : Sg → C such that

(8.6)
Det∆

det Im τ
= cg exp

(
− 1

12π
S

)
|F (Γ)|2

where cg is a constant depending only on g. For points in Sg corresponding to Schottky groups Γ
with δΓ < 1, the function F (Γ) is given by the following absolutely convergent product:

(8.7) F (Γ) =
∏

{γ}

∞∏
m=0

(1− q1+m
γ )
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where qγ is the multiplier of γ ∈ Γ, and {γ} runs over all distinct primitive conjugacy classes in
Γ excluding the identity.

Combining the equalities (8.6) and (8.7), these are called Zograf factorization formula. This
result was extended by McIntyre-Takhtajan to the Schottky groups without the condition for δΓ in
[26]. Here they used the ζ-regularized determinant of ∆n acting on the space of n-differentials so
that the corresponding holomorphic function is Fn(Γ) =

∏
{γ}

∏∞
m=0(1− qn+m

γ ) which absolutely
converges for any Schottky group Γ if n > 1.

8.2. Eta invariant as a functional over the Schottky space. By the construction of XΓ and
its boundary YΓ, the eta invariant η(A) can be understood as a functional over the Schottky space
Sg. Now a natural question is to describe the eta invariant η(A) as a functional over Sg. For
this, we have

Theorem 8.4. Let S0
g be a subset of Sg consisting of normalized Schottky groups Γ’s with the

property δΓ < 1. Then we have

F (Γ) = |F (Γ)| exp
(
−πi

2
η(A)

)
over S0

g,

in particular, η(A) is a pluriharmonic function over S0
g.

Proof. The proof is a simple application of the equality (8.3). For this, as in Proposition 5.6, we
rewrite Zo

Γ,Λ(λ) with respect to the group PSL(2,C) as follows:

(8.8) Zo
Γ,Λ(λ) =

∏

[γ]∈PΓlox

∞∏

k,`=0

(
1− eiθγ (µγ)−2k (µ̄γ)−2` |µγ |−2(λ+1)

)
(
1− e−iθγ (µγ)−2k (µ̄γ)−2` |µγ |−2(λ+1)

) .

Here γ runs over the set of Γ-conjugacy classes of the loxodromic elements in Γ and a loxodromic el-
ement γ can be conjugated to a diagonal matrix with the diagonal elements µγ = exp( 1

2 (lγ + iθγ)),
µ−1

γ = exp(− 1
2 (lγ + iθγ)) in PSL(2,C) (|µγ | > 1). Let us remark that the infinite product on the

right hand side of (8.8) absolutely converges for <(λ) > δΓ−1, in particular, at λ = 0 since δΓ < 1.
Now comparing the definition of qγ and µγ , one can see that qγ = µ−2

γ , that is, q
1/2
γ = µ−1

γ .
Hence the odd Selberg zeta function Zo

Γ,Λ(0) has the following expression in terms of qγ ,

Zo
Γ,Λ(0) =

∏

[γ]∈PΓlox

∞∏

k,`=0

(
1− (q̄γq−1

γ )
1
2 qk

γ q̄`
γ (qγ q̄γ)

1
2

)
(
1− (qγ q̄−1

γ )
1
2 qk

γ q̄`
γ (qγ q̄γ)

1
2

)

=
∏

[γ]∈PΓlox

∞∏

k,`=0

(
1− qk

γ q̄`+1
γ

)
(
1− qk+1

γ q̄`
γ

) =
∏

[γ]∈PΓlox

∞∏
m=0

(
1− q̄1+m

γ

)
(
1− q1+m

γ

) .

Combining this and (8.3) completes the proof.
¤

Remark. In the proof of Theorem 8.4, we assume the condition δΓ < 1 which simplifies the proof
in several steps. But, one can expect that a similar result still holds over the whole Schottky space
Sg. This extension to Sg is also related to the proof of the assertion of Bowen in [2] about the
meromorphic extension of

∏
{γ}(1− qs

γ) over C. These problems will be discussed elsewhere.

Appendix A. Computation of parallel transport in the spinor bundle

Let τm′
m denote parallel transport in the tangent bundle of the upper half-space model Hd+1 of

hyperbolic space, between points m = (x, y),m′ = (x′, y′), along the unique geodesic linking them.
We identify TmHd+1 with Rd+1 using the orthonormal basis at m given by {x∂x, x∂y1 , . . . , x∂yd

}.
We denote by τ(m,m′) the matrix of the transformation τm′

m written in these bases.
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Proposition A.1. Let r := |y − y′|, ρff :=
√

(x + x′)2 + r2. The special orthogonal matrix
τ(m,m′) has the following coefficients:

τ00 =1− 2r2/ρ2
ff

τ0j = − 2(x + x′)(yj − y′j)/ρ2
ff for j = 1, . . . , d

τj0 =2(x + x′)(yj − y′j)/ρ2
ff for j = 1, . . . , d

τjl = δl
j − 2(yj − y′j)(yl − y′l)/ρ2

ff for j, l ∈ {1, . . . , d}.
which are smooth on the stretched product Hd+1 ×0 Hd+1 defined in subsection 3.2.

Proof. Let A be the translation by (0, y′) in Rd+1, composed to the left by the homothety of factor
1/x′. This isometry of Hd+1 maps m′ to (1, 0). In the above trivialization of the tangent bundle,
A∗ acts as the identity. Moreover, since it is an isometry, A transforms the geodesic from m to
m′ into the geodesic from A(m) to (1, 0) and preserves parallelism. Thus (as matrices)

τ(m,m′) = τ(A(m), (1, 0)), where A(m) =
(

x

x′
,
y − y′

x′

)
.(A.1)

We now concentrate on τ(m, (1, 0)).
If y = 0 it is clear that τ((x, 0), (1, 0)) is just the identity matrix. Suppose y 6= 0. Let

∂r := 1
r

∑d
j=1 yj∂yj

denote the radial vector field, defined outside the vertical line through the
origin. Define R := x∂r, X := x∂x. For each j ≥ 1 set ej := x∂yj , and let Tj := ej − 〈ej , R〉R
denote the component of ej which is tangent to the sphere Sd−1. The geodesic from m to (1, 0) lives
in the totally geodesic plane Πm passing through (1, 0) and m, which is a copy of the hyperbolic
2-space. Along this plane the vector fields Tj extend smoothly at the vertical line through the
origin. It is clear that the vector fields Tj are parallel along Πm.

Lemma A.2. In the plane Πm, parallel transport between m and (1, 0) is given by the complex
number

−r + i(1 + x)
r + i(1 + x)

Proof. We use as (real) basis for TΠm the orthonormal vector fields X and R. The complex
structure rotates R to X. The formula is deduced from the similar formula in H2. ¤

Equivalently, in the basis {X, R}, parallel transport is given by the 2× 2 orthogonal matrix

ρ−2
ff

[
(x + 1)2 − r2 2r(x + 1)
−2r(x + 1) (x + 1)2 − r2

]
.

We decompose a vector V = a0X+
∑d

j=1 ajej into its tangent, respectively orthogonal components
to Πm as follows:

V = a0X +




d∑

j=1

aj〈ej , R〉

 R +

d∑

j=1

ajTj .

Since Tj are parallel, the orthogonal component is constant during parallel transport. Using (A.1)
and Lemma A.2, we write

τ(m,m′)(a0X +
d∑

j=1

ajej) =a0τ(X) +
d∑

j=1

aj〈ej , R〉τ(R) +
d∑

j=1

ajTj

=a0
(x + x′)2 − r2

ρ2
ff

X + 2a0
r(x + x′)

ρ2
ff

R +
d∑

j=1

aj(ej − 〈ej , R〉R)

+
d∑

j=1

aj〈ej , R〉
(
−2r(x + x′)

ρ2
ff

X +
(x + x′)2 − r2

ρ2
ff

R

)

from which the proposition follows, since (ρff, (y − y′)/ρff, y′, x/ρff, x′/ρff) are smooth coordinates
on the blow-up Hd+1 ×0 Hd+1. ¤
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The above oriented basis {X, e1, . . . , ed} of THd+1 extends smoothly to the boundary {0}×Rd

of Hd+1
as an orthonormal basis of the zero tangent bundle with respect to the hyperbolic metric.

Therefore, by the Proposition above, τ(m,m′) is a smooth section on Hd+1×0H
d+1

in the pull-back
vector bundle

β∗(π∗1
0THd+1 £ π∗2

0T ∗Hd+1
).

The orthonormal frame bundle PSO of the 0-tangent bundle is trivialized over Hd+1
by the frame

p = {X, e1, . . . , ed}, therefore the (unique) spin structure PSpin is identified with Hd+1×Spin(d+1).
Denote by p̃ one of the lifts of p to PSpin. By definition of the lifted connection, parallel transport
in PSpin of the section p̃ along the geodesic from m to m′ is p̃ U(m,m′), where U(m, m′) the unique
lift of the SO(d + 1)-valued function τ(m,m′) to the Spin(d + 1) group, starting at the identity
for m = m′. Thus, parallel transport of a constant section σ (with respect to the trivialization p̃)
in the spinor bundle is simply

τm′
m [p̃, σ] = [p̃ U(m,m′), σ] = [p̃, U(m,m′)σ]

where multiplication in the last term is the spinor representation. By abuse of notation we write
U(m, m′) for τm′

m .

Proposition A.3. Let m = (x, y),m′ = (x′, y′) ∈ Hd+1
. In the above trivialization of the spinor

bundle, parallel transport takes the form

U(m,m′) =
x + x′

ρ
− r

ρ
cl(X)cl(R).

Proof. We view the Spin(d + 1) group inside the Clifford algebra as the group generated by even
Clifford products of unit vectors. The projection π : Spin(d + 1) → SO(d + 1) is given by the
adjoint action in the Clifford algebra on vectors:

π(c)(V ) := cV c−1,

the kernel being precisely {±1}. We must therefore examine the adjoint action of A(m, m′) :=
x+x′
ρff

− r
ρff

cl(X)cl(R) on 0THd+1
. Note that any Clifford element of the form α+βcl(X)cl(R) with

α2 + β2 = 1 belongs to the Spin group. Next, A−1(m,m′) = x+x′
ρff

+ r
ρff

cl(X)cl(R) so

π(A(m,m′))X =
(

(x + x′)2

ρ2
ff

− r2

ρ2
ff

)
X − 2

(x + x′)r
ρ2
ff

R

which coincides with the action of τ(m,m′) on X from Proposition A.1. Similarly, for the vector
fields Tj from the proof of Proposition A.1 we have π(A(m,m′))Tj = Tj = τ(m,m′)Tj . Thus
π(A(m,m′)) = τ(m,m′). The proof is finished by noting that A(m,m′) was normalized so that
A(m,m) = 1. ¤
Corollary A.4. Let m′ = (1, 0), m = (0, rω). In the limit r →∞, the parallel transport U(m, m′)
tends to −cl(X)cl(R).
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