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Abstract. We discuss the decomposition of the ζ-determinant of the
square of the Dirac operator into the contributions coming from the
different parts of the manifold. The result was announced in [16] . The
proof sketched in [16] was based on results of Brüning and Lesch (see
[4]). In the meantime we have found another proof, more direct and
elementary, and closer to the spirit of the original papers which initiated
the study of the adiabatic decomposition of the spectral invariants (see
[7] and [21]). We discuss this proof in detail. We study the general
case (non-invertible tangential operator) in forthcoming work (see [17]
and [18]). In the Appendix we present the computation of the cylinder
contribution to the ζ-function of the Dirac Laplacian on a manifold
with boundary, which we need in the main body of the paper. This
computation is also used to show the vanishing result for the ζ-function
on a manifold with boundary.

Results

Let D : C∞(M ; S) → C∞(M ; S) be a compatible Dirac operator acting
on sections of a bundle of Clifford modules S over a closed manifold M .
Assume that we have a decomposition of M as M1∪M2 , where M1 and M2

are compact manifolds with boundary such that

(0.1) M = M1 ∪M2 , M1 ∩M2 = Y = ∂M1 = ∂M2 .

The ζ-determinant of the operator D is given by the formula

(0.2) detζD = e
iπ
2

(ζD2 (0)−ηD(0))·e− 1
2
ζ′D2 (0) ,

(see [20], see also the Introduction of [19]). In this paper we study the
decomposition of detζD on M into contributions coming from M1 and M2 .
This issue was already solved for the phase of the determinant

iπ

2
(ζD2(0)− ηD(0)) ,
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and there remains only the modulus - the square root of the ζ-determinant of
the Dirac Laplacian D2 - to study. We present here an “adiabatic” solution
of the problem in the case of an “invertible tangential operator”. The general
case will be presented in [18] (see also [17]). However, the discussion in this
paper is an important part of the study of the general case.

We start with a brief discussion of the splitting of the phase of the ζ-
determinant. The invariant ζD2(0) poses no problems. The value of the
function ζD2(s) at s = 0 is a local invariant in the sense that it is given by
a formula

ζD2(0) =

∫

M

a(x)dx ,

where a(x) is a density determined at the point x ∈ M by the coefficients
of the operator D at this point (see for instance [8]). This is the reason
why the index of an elliptic differential operator, which can be viewed as
the difference of the values of two different ζ-functions determined by the
operator D, has a nice decomposition corresponding to the decomposition
of the manifold.

The other contribution to the phase of detζD is the eta-invariant ηD(0)
and this is not a local invariant (see [2]), hence at first sight it is difficult to
expect a nice and clear splitting formula. It is therefore rather surprising
that such a formula for ηD(0) actually exists.

In the following we concentrate on the odd-dimensional case

n = dim M = 2k + 1 .

We further assume that M and the operator D have product structures
in a neighborhood of the boundary Y . More precisely, we assume that
there is a bicollar neighborhood N = [−1, 1] × Y of Y in M such that the
Riemannian structure on M and the Hermitian structure on S are products
when restricted to N . This implies that D has the following form when
restricted to the submanifold N

(0.3) D = G(∂u + B) .

Here u denotes the normal variable, G : S|Y → S|Y is a bundle automor-
phism, and B is a corresponding Dirac operator on Y . Moreover, G and B
do not depend on u and they satisfy

(0.4) G∗ = −G , G2 = −Id , B = B∗ and GB = −BG .

The operator B has a discrete spectrum with infinitely many positive and
infinitely many negative eigenvalues. In this work we consider only the case
of an invertible tangential operator, i.e. we assume that ker B = {0} . The
general case is more difficult to handle and we refer to [17] and [18] for the
discussion of the noninvertible case. However, the present work plays an
important part in the analysis of the general case.
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Let Π> denote the spectral projection onto the subspace spanned by the
eigensections of B corresponding to the positive eigenvalues. Then Π> is an
elliptic boundary condition for D2 = D|M2 (see [1]; see [3] for an exposition
of the theory of elliptic boundary problems for Dirac operators). In fact,
any orthogonal projection satisfying

(0.5) −GPG = Id− P and P − Π> is a smoothing operator,

is a self-adjoint elliptic boundary condition for the operator D2. This means
that the associated operator

(D2)P : dom (D2)P → L2(M2; S|M2)

with dom (D2)P = {s ∈ H1(M2; S|M2) | P (s|Y ) = 0} is a self-adjoint Fred-
holm operator with ker((D2)P ) ⊂ C∞(M2; S|M2) and a discrete spectrum
(see [25]).

The existence of the meromorphic extensions of the functions η(D2)P
(s),

ζ(D2)2P
(s) to the whole complex plane and their nice behavior in a neighbor-

hood of s = 0 was established in [25]. We denote by Gr∗∞(D2) the space of
P satisfying (0.5).

Let us observe that Id − P ∈ Gr∗∞(D1) , if P is an element of Gr∗∞(D2).
We denote by ηG(∂u+B)(P1, P2)(s) the η-function of the operator G(∂u + B)
on [0, 1]× Y subject to the boundary condition P2 at u = 0 and Id− P1 at
u = 1 . We have the following pasting formula proved in [25]

(0.6) ηD(0) = η(D1)Id−P1
(0) + η(D2)P2

(0) + ηG(∂u+B)(P1, P2)(0) mod Z .

A similar formula for finite-dimensional perturbations of Π> has been dis-
cussed by several authors (see [23, 24, 25] and references therein).

The proof of (0.6) offered by the second author goes as follows.
First, we replace the bicollar N by NR = [−R,R] × Y . Now ηD(0), which
can be expressed using an appropriate heat-kernel formula, splits into con-
tributions coming from each side, plus the cylinder contribution (vanishing
in the case of D) and error terms. The error terms disappear as R →∞ .
Second, though ηD(0) is not local, its variation (for instance with respect
to the parameter R) is local and therefore the value of the contributions
does not vary with R. This is enough to make explicit calculations of the
formula (0.6).

In this work we apply the strategy employed above to study

detζD2 = e−
d
ds

ζD2 (s)|s=0 .

However, we have to take into account two additional difficulties, which
arise in the case of the ζ-determinant of D2 .
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First of all, the invariant − d
ds

ζD2(s)|s=0 is much more subtle than the

η-invariant. Even the variation of − d
ds

ζD2(s)|s=0 is not given by a local
formula.

Second, the cylinder contribution is not trivial in this case.
We handled those difficulties in [16] using the technique developed in [4].

Here we choose a different path. The invariant d
ds

ζD2(s)|s=0 is given by the
formula

(0.7)
d

ds
ζD2(s)|s=0 =

∫ ∞

0

1

t
Tr e−tD2

dt .

Let us explain how to interpret formula (0.7). The trace Tr e−tD2
has an

asymptotic expansion of the form

Tr e−tD2

= t−
n
2

N∑

k=0

akt
k + O(tN+ 1−n

2 ) ,

where ak =
∫

M
αk(x)dx , and the density αk(x) at the point x ∈ M is

determined by coefficients of the operator D2 (see [8]). This shows that

ζD2(s) =
1

Γ(s)

∫ ∞

0

ts−1Tr e−tD2

dt

is a holomorphic function of s , for Re(s) > n
2

, and that it has a meromor-
phic extension to the whole complex plane with (possible) simple poles at
sk = n

2
− k . The Γ-function has the following form in a neighborhood of 0

Γ(s) =
1

s
+ γ + s h(s) ,

where γ is Euler’s constant and h(s) is a holomorphic function in a neigh-
borhood of 0 . This allows us to compute ζD2(0)

ζD2(0) = lim
s→0

1

Γ(s)

∫ ∞

0

ts−1Tr e−tD2

dt = lim
s→0

s

∫ 1

0

ts−1Tr e−tD2

dt

= lim
s→0

s

∫ 1

0

ts−1t−
n
2 (

N∑

k=0

tkak)dt = lim
s→0

s·
N∑

k=0

2ak

2s + 2k − n
= an/2 ,

where N denotes any sufficiently large natural number and we keep in mind
that

an/2 = 0 for n odd.

In particular, ζD2(0) = 0 for n odd. Though s = 0 is a regular point, the
ζ-function may have poles on the right side of 0 , and the function

κD2(s) =

∫ ∞

0

ts−1Tr e−tD2

dt
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has even more poles. In particular, following the computations presented
above, we have

Ress=0κD2(s) = an/2 .

Now, the derivative of the ζ-function at s = 0 is obtained as follows

ζ ′D2(0) =
d

ds
(
κD2(s)

Γ(s)
)|s=0 =

d

ds
(
an/2 + s(κD2(s)− an/2

s
)

1 + sγ + s2h(s)
)|s=0 =

(κD2(s)− an/2

s
)(1 + sγ + s2h(s))− (an/2 + s(κD2(s)− an/2

s
))(γ + 2sh(s))

(1 + sγ + s2h(s))2
|s=0 =

(κD2(s)− an/2

s
)|s=0 − γan/2 = (κD2(s)− an/2

s
)|s=0 − γan/2 .

This discussion provides a justification for the a priori “formal” formula
(0.7).

Remark 0.1. (a) For simplicity we presented here the ζ-function in the
case ker D = {0} . In general we define ζ-function as

ζD2(s) =
1

Γ(s)

∫ ∞

0

ts−1(Tr e−tD2 − dim ker D)dt ,

and

ζD2(0) = an/2 − dim ker D .

(b) The corresponding result for the boundary value problems is proved in
the Appendix (see also [12]). It is shown that

ζD2
i,P

(0) = −dim ker Di,P for any P ∈ Gr∗∞(Di) ,

hence we can use formula (0.7) in the situation we discuss under the as-
sumption ker D = {0}.

We split ζ ′D2
R
(0) into contributions coming from different submanifolds

plus cylinder contributions and the error terms. Here DR denotes the op-
erator D on the manifold MR equal to the manifold M with N replaced by
NR . We introduce a manifold with boundary

M1,R = M1 ∪ [−R, 0]× Y ,
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where we identify the “old” collar neighborhood of the boundary Y on
M1 with [−R − 1,−R] × Y . Similarly we introduce the manifold M2,R .
The bundle of Clifford modules S splits on Y into subbundles of spinors of
positive and negative chirality

S|Y = S+ ⊕ S− , with S± = Ran
1

2
(Id∓ iΓ) .

The operator P± = 1
2
(Id∓ iΓ) is the orthogonal projection of S|Y onto S±

and provides Di with a (local) chiral elliptic boundary condition. This again
means that the operator Di,± = Di with the domain

dom Di,± = {s ∈ H1(Mi; S) | P±(s|Y ) = 0} ,

is Fredholm and that its kernel and cokernel consist of only smooth sections.
We also have

(0.8) D∗
i,+ = Di,− .

We study the ζ-determinants of the corresponding Laplacians

(0.9) ∆i,± = Di,∓Di,± .

We denote by ∆i,R,± the corresponding operator on the manifold Mi,R .

In the present paper we avoid a discussion of the difficult issues related to
the existence of the “small” eigenvalues of the operators involved. Therefore
we assume that the tangential operator B is invertible, i.e. ker B = {0} .
However, this condition alone does not make all small eigenvalues disappear.
Careful analysis shows that we also need to assume that the operator Di,∞ ,
equal to the operator Di extended in a natural way to the manifold Mi,∞ ,
has no L2-solutions. The manifold Mi,∞ is simply Mi with the infinite
semicylinder [0,∞) × Y (or (−∞, 0] × Y ) attached (see [6], see also [23]).
The existence of L2-solutions of Di,∞ on Mi,∞ is responsible for the existence
of exponentially small eigenvalues of the operator DR. Therefore we assume
kerL2Di,∞ = {0} . The conditions we posed make the small eigenvalues
disappear. In particular, all the elliptic boundary problems we discuss in
this paper are invertible. We refer to Proposition 1.1 and Remark 1.2 for
more information.

Our first main result is the following theorem

Theorem 0.2. Let us assume that

(0.10) kerL2D1,∞ = {0} = kerL2D2,∞ and ker B = {0} .

Then

(0.11) lim
R→∞

{ln detζD2
R − ln detζ∆1,R,− − ln detζ∆1,R,+} = 0 ,
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or equivalently

(0.12) lim
R→∞

detζD2
R

detζ∆1,R,−·detζ∆2,R,+

= 1 .

This Theorem is implicit in [11]. The focus of the authors was on the
non-standard η-invariant introduced by Singer in [21] and on the analytic
torsion. Therefore no statement was made about the ζ-determinant.

In Section 1 we use Duhamel’s Principle to show that in order to study

(0.13) lim
R→∞

{ln detζD2
R − ln detζ∆1,R,+ − ln detζ∆2,R,+}

it is enough to discuss the cylinder contributions.
In Section 2 we perform the computation on the cylinder and show that

the limit (0.13) is indeed equal to 0 . Then we study the difference be-
tween the cylinder contribution for the chiral boundary condition and for
the Atiyah-Patodi-Singer condition. Straightforward computations show
that a new term appears which is equal to −ln 2·ζB2(0) . This gives the
main result of the paper:

Theorem 0.3. The following equality holds under the assumptions of our
Theorem 0.2

(0.14) lim
R→∞

detζD2
R

detζD2
1,R,Π<

·detζD2
2,R,Π>

= 2−ζB2 (0) .

The Appendix by Yoonweon Lee contains a refined version of the com-
putations of the cylinder contribution to the trace of the heat kernel of
the Atiyah-Patodi-Singer problem performed by the second author in [25].
The more careful analysis by Lee proves mod Z vanishing of the function
P 7→ ζD2

P
(0) on the Grassmannian Gr∗∞(Di) . Moreover, the formula (A.9)

(see Appendix Proposition A.4) is used in the proof of Theorem 0.3.

Remark 0.4. This paper is related to many other works on the gluing
formulas for the ζ-determinants. We refer to an excellent survey article
[14] for the review of different approaches and the extensive bibliography.
However, we want to mention that Theorem 0.3 is closely related to the
results of [10]. In [10] only the operator d + d∗ is treated, but the gluing
formula similar to (0.14) is obtained using the b-calculus technique, in the
situation where the zero eigenvalues are allowed.
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1. Duhamel’s Principle. Reduction to the Cylinder

Our assumptions about the operator DR (see (0.10)) allow us to apply
the technique developed in [7] and to reduce the proof of Theorem 0.2 and
Theorem 0.3 to the computations on the cylinder. The first important
Corollary of (0.10) is the following Proposition

Proposition 1.1. Let us assume that (0.10) holds. Then there exist positive
constants c and R0 , such that

(1.1) µ > c

for any eigenvalue µ of the operator D2
R , ∆i,R,± , D2

1,R,Π<
, D2

2,R,Π>
and for

any R > R0 .

Remark 1.2. The estimate (1.1) was observed by W. Müller. We refer
to [7] (Theorem 6.1) for the proof in the case of the Atiyah-Patodi-Singer
condition (operators D2

1,R,Π<
, D2

2,R,Π>
). A more general result was published

in [15], Proposition 8.14. The proof for the “chiral” boundary conditions
(operators ∆i,R,±) is even more simple. The case of the operator DR was
analyzed in [6] (see also [23]).

We need to recall the following result

Proposition 1.3. Let ER(t; x, y) denote the kernel of the heat operator for
∆R , where ∆R denotes one of the operators from Proposition 1.1. Assume
that (0.10) holds. Then there exist positive constants c1 , c2 and c3 such
that

(1.2) ‖ER(t; x, y)‖ ≤ c1t
−n

2 ec2te−c3
d2(x,y)

t ,

for any t > 0 and any x, y ∈ MR (M1,R , or M2,R respectively) and for any
R > R0 .

We refer to Sections 2 and 4 of [7] for the proof and related results. In
particular Proposition 1.3 implies the following estimate

(1.3) |Tr e−∆R | < c4·R .

Now, we are ready to prove that we can neglect the “large time contribu-
tion” to the ζ-determinant of ∆R .
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Corollary 1.4. Let us assume (0.10) , then for any ε > 0 the following
equality holds

(1.4) lim
R→∞

∫ ∞

Rε

1

t
·Tr e−t∆Rdt = 0 .

Proof. Assume that R > R0 and let {µk}∞k=1 denote the set of eigenvalues
of ∆R . We have

∫ ∞

Rε

1

t
·Tr e−t∆Rdt =

∫ ∞

Rε

1

t
·
∞∑

k=1

e−tµkdt =

∫ ∞

Rε

1

t
·
∞∑

k=1

e−(t−1)µke−µkdt

<

∫ ∞

Rε

1

t
e−(t−1)c·Tr e−∆Rdt ,

where c is the constant from Proposition 1.1. We use (1.3)
∫ ∞

Rε

1

t
·Tr e−t∆Rdt <

∫ ∞

Rε

1

t
e−(t−1)c·Tr e−∆Rdt < c6R

1−ε·e−c7Rε

and the Corollary follows easily. ¤

Now we follow [7]. Let ẼR(t; x, y) denote the kernel of the operator e−tD2
R

on the manifold MR and let Ecyl(t; x, y) denote the kernel of the operator

e−t(−∂2
u+B2) on the infinite cylinder (−∞ , +∞)×Y , or the kernel of the APS

- operator on ((−∞, 0] ∪ [0,∞)) × Y . We introduce a smooth, increasing
function ρ(a, b) : [0,∞) → [0, 1] equal to 0 for 0 ≤ u ≤ a and equal to 1 for
b ≤ u . We use ρ(a, b)(u) to define

φ1 = 1− ρ(
5

7
R ,

6

7
R) , ψ1 = 1− ψ2

and

φ2 = ρ(
1

7
R ,

2

7
R) , ψ2 = ρ(

3

7
R ,

4

7
R) .

We extend these functions to symmetric functions on the whole real line.
All these functions are constant outside the interval [−R ,R] and we use
them to define the corresponding functions on the manifold MR . Now we
define QR(t; x, y) as a “parametrix” for the kernel ẼR(t; x, y) , actually using
ẼR(t; x, y) , but the point here is that we will be able to separate the cylinder
and the interior contribution

(1.5) QR(t; x, y) = φ1(x)Ecyl(t; x, y)ψ1(y) + φ2(x)ẼR(t; x, y)ψ2(y) .

Standard computations show that

(1.6) ẼR(t; x, y) = QR(t; x, y) + (ẼR ∗ CR)(t; x, y) ,



10 JINSUNG PARK AND KRZYSZTOF P. WOJCIECHOWSKI

where ẼR ∗ CR is a convolution given by

(ẼR ∗ CR)(t; x, y) =

∫ t

0

ds

∫

MR

dz ẼR(s; x, z)CR(t− s; z, y) ,

and the correction term CR(t; x, y) is given by the formula

(1.7) CR(t; x, y) = −∂2φ1

∂u2
(x)Ecyl(t; x, y)ψ1(y)− ∂φ1

∂u
(x)

∂Ecyl

∂u
(t; x, y)ψ1(y)

− ∂2φ2

∂u2
(x)ẼR(t; x, y)ψ2(y)− ∂φ2

∂u
(x)

∂ẼR

∂u
(t; x, y)ψ2(y) .

The choice of the cut-off functions and the estimate (1.2) allow us to neglect
the “error” term contribution to the logarithm of the determinant in the
limit as R →∞.

Lemma 1.5. The error term CR(t; x, y) is equal to 0 outside of the cylinder
[−6

7
R , 6

7
R]× Y , moreover it is equal to 0 if the distance between x and y is

smaller than R
7

. This fact combined with (1.2) proves the following estimate
for certain positive constants

(1.8) ‖(ẼR ∗ CR)(t; x, y)‖ ≤ c1e
c2te−c3

R2

t .

The proof is elementary and follows the proof of the similar statement in
[7] (see Proposition 5.2 of [7]).

Corollary 1.6. Assume that 0 < ε < 1 , then

(1.9) lim
R→0

∫ Rε

0

dt

t

∫

MR

tr (ẼR ∗ CR)(t; x, x)dx = 0 ,

whereMR denotes any of the manifolds on which the operator ∆R (of Propo-
sition 1.3) is defined.

Proof. This follows from the estimate on the kernel (ẼR ∗ CR)(t; x, x)

|tr (ẼR ∗ CR)(t; x, x)| ≤ ‖(ẼR ∗ CR)(t; x, x)‖

≤
∫ t

0

ds

∫

MR

‖ẼR(s; x, z)CR(t− s; z, x)‖dz

≤ c1e
c2t·

∫ t

0

ds

∫

MR

e−c3
d2(x,z)

s e−c3
d2(x,z)

t−s dz .
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We use Lemma 1.5. It follows that the integral with respect to z is taken
over the cylinder and moreover that the distance d(x, z) is always larger
than R

7
, which gives

|tr (ẼR ∗ CR)(t; x, x)| ≤ c1e
c2t·

∫ t

0

ds

∫

MR

e−c3
d2(x,z)

s e−c3
d2(x,z)

t−s dz

< c1e
c2t

∫ t

0

ds

∫ R

−R

e−c4
tR2

s(t−s) dz < c5Rec2te−c6
R2

t

∫ t

0

ds < c5Rtec2te−c6
R2

t .

Now we have

∣∣∣
∫ Rε

0

dt

t

∫

MR

tr (ẼR ∗ CR)(t; x, x)dx
∣∣∣

<

∫ Rε

0

dt

t
c5Rtec2te−c6

R2

t < c5R
1+εe−c7R1−ε

,

and (1.9) is proved. ¤

The last result clearly explains that we have to analyze only the cylinder
contribution to study the ratio of the determinants in the adiabatic limit.
This is done in the next Section.

2. Computations on the Cylinder

Our study of the decomposition formula for the ζ-determinant involves
the “Laplacians” ∆i,± = Di,∓Di,± . It is well-known that ∆i,+ is the operator
D2

i subject to the Dirichlet boundary condition on S+ and the Neumann
boundary condition on S− (see for instance Lemma 1.1. in [11]).

It was explained in the previous section that it is enough to analyze the
cylinder contribution. Hence we have to write down the kernel of the heat
operator defined by

−∂2
u +B2 : C∞([0 ,∞)×Y ; S = S+⊕S−) → C∞([0 ,∞)×Y ; S = S+⊕S−)

subject to the Dirichlet condition on S+|{0}×Y and the Neumann condition
on S−|{0}×Y , in the case of the operator coming from the manifold M2,R ; and
subject to the Dirichlet condition on S−|{0}×Y and the Neumann condition
on S+|{0}×Y , in the case of the operator coming from the manifold M1,R .
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Let E+(t; x, y) denote the kernel of the first operator. The explicit formula
is well-known (see [11] for instance)

E+(t; (u, x), (v, y)) =
1√
4πt

{e− (u−v)2

4t − e−
(u+v)2

4t }e−tB2

(t; x, y)P+(y)

(2.1)

+
1√
4πt

{e− (u−v)2

4t + e−
(u+v)2

4t }e−tB2

(t; x, y)P−(y) ,

where e−tB2
(t; x, y) denotes the kernel of the operator e−tB2

. This formula
determines the cylinder contribution coming from the manifold M2,R . The
inward normal coordinate on M1 is equal to −u. As a consequence the
chirality of spinors, which is determined by the Clifford multiplication by
the normal vector, is switched as G is replaced by −G . The corresponding
cylinder contribution for the manifold M1,R is determined by the kernel

E−(t; (u, x), (v, y)) =
1√
4πt

{e− (u−v)2

4t + e−
(u+v)2

4t }e−tB2

(t; x, y)P+(y)

(2.2)

+
1√
4πt

{e− (u−v)2

4t − e−
(u+v)2

4t }e−tB2

(t; x, y)P−(y) .

Now we sum up the formulas (2.1) and (2.2) and put u = v , x = y . This
gives

(2.3)∫ R

0

du
1√
4πt

{1−e−
u2

t }TrY e−tB2

P++

∫ R

0

du
1√
4πt

{1+e−
u2

t }TrY e−tB2

P−+

∫ R

0

du
1√
4πt

{1+e−
u2

t }TrY e−tB2

P++

∫ R

0

du
1√
4πt

{1−e−
u2

t }TrY e−tB2

P− .

In the formula (2.3) we neglect the presence of the cut-off functions intro-

duced in Section 1. We also denote by TrY e−tB2
the trace of the operator

e−tB2
on the manifold Y . Therefore modulo a term exponentially decaying

with R, the boundary contribution to the sum Tr e−t∆R,1 + Tr e−t∆R,2 is
equal to

(2.4)
2√
4πt

·
∫ R

0

du (TrY e−tB2

P+ + TrY e−tB2

P−) =
1√
4πt

·
∫ R

−R

du·TrY e−tB2

.
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The right side of (2.4) is exactly equal to the trace of the heat kernel of the
operator −∂2

u + B2 on the cylinder (−∞, +∞) × Y , which is the cylinder
contribution of the operator D2

R modulo terms which disappear as R →∞.
This ends the proof of Theorem 0.2.

Now, we have to analyze the difference between the trace of E+(t; x, y)
and the trace E>(t; x, y) , where E>(t; x, y) denotes the kernel of the heat
operator defined by the operator G(∂u + B) subject to the Atiyah-Patodi-
Singer boundary condition. We introduce φ(u) a smooth cut-off function,
equal to 1 for 0 ≤ u ≤ R and vanishing for 2R ≤ u , with derivatives
bounded by c

R
, and we study the following function

(2.5) T (s) =

∫ ∞

0

ts−1dt

∫

[0 ,∞)×Y

φ(u)·tr(E>(t; (u, y), (u, y))

− E+(t; (u, y), (u, y)))dydu .

Long, but elementary computations give us the following formula for the
contribution made by the Atiyah-Patodi-Singer part (see Appendix, Propo-
sition A.4.)

∫ ∞

0

ts−1dt

∫

[0 ,∞)×Y

φ(u)·tr(E>(t; (u, y), (u, y))dydu(2.6)

=
1√
4π

∫ ∞

0

φ(u)du

∫ ∞

0

ts−
3
2 TrY e−tB2

dt

+
1

2
·
∫ ∞

0

ts−1dt

∫ ∞

0

φ′(u)du

∞∑
n=1

e2uλnerfc
( u√

t
+ λn

√
t
)

+
Γ(s + 1

2
)

4s
√

π
ζB2(s)− 1

2
√

π
·
∫ ∞

0

ts−
3
2 TrY e−tB2

(∫ ∞

0

φ(u)e−
u2

t du
)

dt .

We have three terms on the right side of (2.6), which we denote by T1(s),
T2(s) and T3(s) . The sum in T2(s) is taken over all positive eigenvalues λn

of the tangential operator B and the function erfc(u) is given by the formula

(2.7) erfc(u) =
2√
π

∫ ∞

u

e−s2

ds .

The first contribution T1(s) corresponds to the contribution to (2.5) given
by the kernel E+(t; (u, y), (u, y)) and they cancel each other when we take
the difference. We can also easily deal with the second contribution:
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Proposition 2.1. The function

T2(s) =
1

2
·
∫ ∞

0

ts−1dt

∫ ∞

0

φ′(u)du

∞∑
n=1

e2uλnerfc(
u√
t

+ λn

√
t)

is a holomorphic function of s vanishing as R →∞ .

Proof. We estimate using
∫∞

u
e−s2

ds ≤ e−u2

∫ ∞

0

ts−1dt

∫ ∞

0

φ′(u)du

∞∑
n=1

e2uλnerfc(
u√
t

+ λn

√
t) ≤

2√
π

∫ ∞

0

ts−1dt

∫ 2R

R

φ′(u)du

∞∑
n=1

e−
u2

t e−tλ2
n ≤

c

R

2√
π

∫ ∞

0

ts−1(
∞∑

n=1

e−tλ2
n)dt

∫ 2R

R

e−
u2

t du ≤

c1

R

∫ ∞

0

ts−1Tr e−tB2

dt

∫ ∞

R

e−
u2

t du ≤

c1

R

∫ ∞

0

ts−
1
2 Tr e−tB2

dt

∫ ∞

R

e−
u2

t
du√

t
≤ c1

R

∫ ∞

0

ts−
1
2 e−

R2

t Tr e−tB2

dt ,

and the Proposition follows. ¤

Now we see that T3(s) is the only source of an additional contribution.
It is not difficult to see that, modulo a function holomorphic on the whole
complex plane, T3(s) is equal to

S(s) =
Γ(s + 1

2
)

4s
√

π
ζB2(s)− 1

4
·
∫ ∞

0

ts−1TrY e−tB2

dt

=
Γ(s + 1

2
)

4s
√

π
ζB2(s)− Γ(s)

4
·ζB2(s) .

Indeed, the difference

gR(s) = T3(s)− S(s) =
1

2
√

π

∫ ∞

0

ts−1Tr e−tB2

(

∫ ∞

0

(1− φ(u))e−
u2

t
du√

t
)dt

is a holomorphic function on the complex plane, which depends on the
parameter R . We use the following elementary result:
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Lemma 2.2. The following equality holds for any complex s

(2.8) lim
R→∞

gR(s) = lim
R→∞

g′R(s) = 0 .

Proof. We have to estimate

(2.9)
∣∣∣ 1

2
√

π

∫ ∞

0

ts−1Tr e−tB2

∫ ∞

0

(
1− φ(u)

)
e−

u2

t
du√

t
dt

∣∣∣ .

We use the following elementary inequality

∣∣∣
∫ ∞

0

(1− φ(u))e−
u2

t
du√

t

∣∣∣ ≤
∣∣∣
∫ ∞

R

e−
u2

t
du√

t

∣∣∣ =
∣∣∣
∫ ∞

R√
t

(− 1

2s
)(−2s)e−s2

ds
∣∣∣

≤
∣∣∣−
√

t

2R

∫ ∞

R√
t

d

ds
(e−s2

)ds
∣∣∣ =

√
t

2R
e−

R2

t .

This allows us to estimate (2.9)

∣∣∣ 1

2
√

π

∫ ∞

0

ts−1Tr e−tB2

∫ ∞

0

(1− φ(u))e−
u2

t
du√

t
dt

∣∣∣

<
1

4
√

πR

∫ ∞

0

ts−
1
2 e−

R2

t TrY e−tB2

dt .

The last expression goes to 0 as R →∞ . The estimates on the derivatives
with respect to s go exactly in the same way. ¤

The function S(s) was given by the formula

S(s) =
(Γ(s + 1

2
)

4s
√

π
− Γ(s)

4

)
·ζB2(s) .

We see that S(s) is a holomorphic function for Re(s) > n
2

and that it has a
meromorphic extension to the whole complex plane with simple poles on the
real line, provided by both factors. Hence the poles at the positive integers
come from ζB2(s) and the ζ-function is regular in the neighborhood of 0 .
The first factor

Γ(s + 1
2
)

4s
√

π
− Γ(s)

4

is holomorphic for Re(s) > 0 and it is not very difficult to show that in fact
it is holomorphic in a neighborhood of s = 0 . We have

Γ(s + 1
2
)

4s
√

π
− Γ(s)

4
=

1

4
√

π
·Γ(s + 1

2
)− sΓ(s)

√
π

s

=
1

4
√

π
·
(Γ(s + 1/2)− Γ(1/2)

s
+ Γ(1/2)

1− Γ(s + 1)

s

)
,
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and we see that

lim
s→0

Γ(s + 1/2)

4s
√

π
− Γ(s)

4
=

1

4
√

π
·
(
Γ′(

1

2
)−√π·Γ′(1)

)
.

It is well-known that Γ′(1) = γ (once again, γ denotes Euler’s constant),
and it is not difficult to compute Γ′(1/2) using, for instance, the formula

Γ(z +
1

2
) =

√
π·Γ(2z)

22z−1·Γ(z)
,

(see for instance [22], formula (A22) on page 265).

We have

lim
s→0

Γ(s + 1
2
)− Γ(1

2
)

s
=
√

π· lim
s→0

Γ(2s)/22s−1·Γ(s)− 1

s

=
√

π· lim
s→0

21−2sΓ(2s)− Γ(s)

sΓ(s)
=
√

π· lim
s→0

1

Γ(1 + s)
· lim

s→0
(21−2sΓ(2s)− Γ(s))

=
√

π· lim
s→0

(21−2s(
1

2s
+ γ + 2sh(2s))− (

1

s
+ γ + sh(s))) ,

where h(s) is a holomorphic function in the neighborhood of s = 0 . Hence
we finally obtain

lim
s→0

Γ(s + 1
2
)− Γ(1

2
)

s

=
√

π· lim
s→0

(21−2s − 2

2s
+ 21−2sγ − γ + 21−2s2s h(2s)− s h(s)

)

=− 2
√

π·ln 2 +
√

πγ ,

and

(2.10) lim
s→0

Γ(s + 1
2
)

4s
√

π
− Γ(s)

4
= − 1

4
√

π
·2√π·ln 2 = −1

2
ln 2 .

This gives us the following result

Proposition 2.3. The adiabatic limit of the difference between the loga-
rithm of the ζ-determinant of the operator D2

2,R,Π>
and the logarithm of the

ζ-determinant of the operator ∆2,R,+ is given by

(2.11) lim
R→∞

(ln detζD2
2,R,Π>

− ln detζ∆2,R,+) =
ln 2

2
·ζB2(0) .

We have obtained “half” of the correction term which appears in Theorem
0.3 (see (0.14)). The other “half” is equal to the contribution of the manifold
M1,R . Now Theorem 0.3 is proved.



ADIABATIC DECOMPOSITION OF THE ζ-DETERMINANT I. 17

Appendix A. The value of the ζ-function at s = 0
on the smooth, self-adjoint Grassmannian

Yoonweon Lee

Acknowledgements. The author was supported by Korea Research
Foundation Grant KRF-2000-015-DP0045.

In this Appendix we write M instead of M2 and D instead of D2 . The
goal is to prove the following result

Proposition A.1. For any P ∈ Gr∗∞(D), the value of ζD2
P
(s) at s = 0 is

equal to −dim kerDP .

Remark A.2. (1) The proof depends only on the assumption that the
perturbation of Π> is an operator of the trace class. Therefore the result
holds for any orthogonal projection P = Id + GPG , such that P −Π> is a
pseudodifferential operator of order −dim Y − 1 .

(2) One of the formulas we obtain for the cylinder contribution to the
invariant ζD2

Π>
(0) (see Proposition A.4.) is used in the proof of the decom-

position formula for the ζ-determinant discussed in the main body of the
paper.

We start with the proof of Proposition A.1 in the most simple case. We
assume

(A.1) dim ker B = 0 and dim ker DΠ> = 0 .

It was explained earlier that the first condition in (A.1) implies that
Π> ∈ Gr∗∞(D) , hence DΠ> is a self-adjoint operator. The second condition
implies the invertibility of DΠ> . We have to show that ζD2

Π>
(0) = 0 .

We start with selecting a smooth cut-off function ρ : M → [0, 1] equal
to 1 on [0 , 1/3]× Y and equal to 0 on M \ ([0 , 2/3]× Y ) . We also choose
ρ1 , ρ2 : M → [0, 1] such that

ρ1|supp ρ ≡ 1 and ρ1 ≡ 0 on M \N and

ρ2|supp (1−ρ) ≡ 1 and ρ2 ≡ 0 on [0, 1/4]× Y .

Let Ecyl(t; x, y) denote the heat kernel of the Atiyah-Patodi-Singer problem

on the cylinder [0 ,∞)× Y and Ẽ(t; x, y) denote the kernel of the operator

e−tD̃2
, where D̃ is the double of the operator D, living on M̃ the double

of M (see [3] for details of the construction). Finally let E>(t; x, y) denote
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the kernel of the heat operator of D2
Π>

on M . A standard application of
Duhamel’s Principle shows that there exists a positive constant c , such that

(A.2)
E>(t; x, y) = ρ1(x)Ecyl(t; x, y)ρ(y) + ρ2(x)Ẽ(t; x, y)(1− ρ(y)) + O(e−c/t) ,

for 0 < t ≤ 1 . Now the ζ-function is given by the formula

ζD2
Π>

(s) =
1

Γ(s)

∫ ∞

0

ts−1Tr e−tD2
Π>dt =

1

Γ(s)

∫ ∞

0

ts−1dt

∫

M

tr E>(t; x, x)dx .

Equation (A.2) implies that there exist positive constants c1 and c2 , such
that

(A.3) |tr E>(t; x, x)−ρ(x)·tr Ecyl(t; x, x)−(1−ρ(x))·tr Ẽ(t; x, x)| < c1e
−c2/t

for 0 < t ≤ 1 , which implies that
∫ ∞

0

ts−1dt

∫

M

(tr E>(t; x, x)−ρ(x)·tr Ecyl(t; x, x)−(1−ρ(x))·tr Ẽ(t; x, x))dx

is a well-defined holomorphic function of s on the whole complex plane. In
particular, we have obtained the following result

Lemma A.3.

(A.4) ζD2
Π>

(0) = lim
s→0

1

Γ(s)

∫ ∞

0

ts−1dt

∫

M

ρ(x)·tr Ecyl(t; x, x)dx .

Proof. Equation (A.3) implies the following equality

ζD2
Π>

(0)

= lim
s→0

1

Γ(s)

∫ ∞

0

ts−1dt

∫

M

(
ρ(x)·tr Ecyl(t; x, x)+(1−ρ(x))·tr Ẽ(t; x, x)

)
dx .

It is well-known that in the case of the Dirac Laplacian on a closed, odd-
dimensional manifold, the “local” ζ-function disappears (see for instance
[8]), hence

(A.5) lim
s→0

1

Γ(s)

∫ ∞

0

ts−1·(1− ρ(x))·tr Ẽ(t; x, x)dt = 0 ,

which gives the result. ¤
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Now let us recall that B has a symmetric spectrum and its spectral de-
composition has the form

{λn , φn ; −λn , Gφn}∞n=1 .

The explicit representation of the kernel Ecyl(t; x, y) with respect to this
decomposition is as follows

(A.6)

Ecyl(t; (u, x), (v, y)) =
∞∑

n=1

e−λ2
nt

√
4πt

{e−(u−v)2/4t − e−(u+v)2/4t}φn(x)⊗φn(y)

+
∞∑

n=1

e−λ2
nt

√
4πt

{e−(u−v)2/4t + e−(u+v)2/4t}G(x)φn(x)⊗G(y)φn(y)

−
∞∑

n=1

λne
λn(u+v)erfc

(
(u + v)/2

√
t + λn

√
t
)
G(x)φn(x)⊗G(y)φn(y) ,

where erfc(r) is defined as in (2.7):

erfc(r) =
2√
π

∫ ∞

r

e−ξ2

dξ .

We now have an explicit representation of the integral in (A.4)

∫ ∞

0

ts−1dt

∫

M

ρ(x)·tr Ecyl(t; x, x)dx(A.7)

=

∫ ∞

0

ρ(u)du

∫ ∞

0

ts−12·
{ ∞∑

n=1

e−λ2
nt

√
4πt

}
dt

−
∫ ∞

0

∫ ∞

0

ts−1ρ(u)
{ ∞∑

n=1

λne
2λnuerfc

( u√
t

+ λn

√
t
)}

dudt

=
1

2
√

π

∫ ∞

0

ρ(u)du

∫ ∞

0

ts−3/2TrY e−tB2

dt

−
∫ ∞

0

ts−1dt

∫ ∞

0

ρ(u)
{ ∞∑

n=1

λne2λnuerfc
( u√

t
+ λn

√
t
)}

du .

We start with the second integral on the right side of (A.7)

∫ ∞

0

ts−1dt

∫ ∞

0

ρ(u){
∞∑

n=1

λne2λnuerfc(
u√
t

+ λn

√
t)}du

=
1

2

∫ ∞

0

ts−1dt

∫ ∞

0

ρ(u){
∞∑

n=1

(
d

du
e2uλn)erfc(

u√
t

+ λn

√
t)}du.
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Integration by parts leads to

1

2

∫ ∞

0

ts−1{[
∞∑

n=1

ρ(u)e2uλnerfc(
u√
t

+ λn

√
t)]|∞0 }dt

− 1

2

∫ ∞

0

ts−1dt

∫ ∞

0

ρ′(u){
∞∑

n=1

e2λnuerfc(
u√
t

+ λn

√
t)}du

− 1

2

∫ ∞

0

ts−1dt

∫ ∞

0

ρ(u){
∞∑

n=1

e2λnuerfc′(
u√
t

+ λn

√
t)

1√
t
}du

=− 1

2

∫ ∞

0

ts−1{
∞∑

n=1

erfc(λn

√
t)}dt

− 1

2

∫ ∞

0

ts−1dt

∫ ∞

0

ρ′(u){
∞∑

n=1

e2λnuerfc(
u√
t

+ λn

√
t)}du

+
1√
π

∫ ∞

0

ts−1dt

∫ ∞

0

ρ(u){
∞∑

n=1

e2λnue−(u2/t+2uλn+λ2
nt)} du√

t

=
1

2

∫ ∞

0

ts−1{
∞∑

n=1

e−λ2
nt}dt

2√
π

∫ ∞

0

ρ(u)e−u2/t du√
t

− 1

2

∫ ∞

0

ts−1{
∞∑

n=1

erfc(λn

√
t)}dt

− 1

2

∫ ∞

0

ts−1dt

∫ ∞

0

ρ′(u){
∞∑

n=1

e2λnuerfc(
u√
t

+ λn

√
t)}du .

Finally, we have

∫ ∞

0

ts−1dt

∫ ∞

0

ρ(u){
∞∑

n=1

λne2λnuerfc(
u√
t

+ λn

√
t)}du(A.8)

=

∫ ∞

0

ts−3/2Tr e−tB2

dt· 1

2
√

π

∫ ∞

0

ρ(u)e−u2/tdu

− 1

2

∫ ∞

0

ts−1{
∞∑

n=1

erfc(λn

√
t)}dt

− 1

2

∫ ∞

0

ts−1dt

∫ ∞

0

ρ′(u){
∞∑

n=1

e2λnuerfc(
u√
t

+ λn

√
t)}du .
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First, we analyze the middle term on the right side. The following calcula-
tions hold for a single eigenvalue:

∫ ∞

0

ts−1erfc(λn

√
t)dt =

1

s

∫ ∞

0

d/dt(ts)erfc(λn

√
t)dt

=
ts

s
erfc(λn

√
t)|∞0 − 1

s

∫ ∞

0

tserfc′(λn

√
t)

λn

2
√

t
dt

= −λn

2s

∫ ∞

0

ts−1/2(− 2√
π

e−λ2
nt)dt

=
λn

s
√

π

∫ ∞

0

ts−1/2e−λ2
ntdt =

Γ(s + 1/2)

s
√

π
λ−2s

n .

It follows that for Re(s) large, the middle term on the right side of (A.8) is
equal to

−1

2

∫ ∞

0

ts−1{
∞∑

n=1

erfc(λn

√
t)}dt = −1

2

Γ(s + 1/2)

2s
√

π
ζB2(s) .

This has a nice meromorphic extension, with simple poles, to the whole
complex plane. We rewrite (A.8) as

∫ ∞

0

ts−1dt

∫ ∞

0

ρ(u){
∞∑

n=1

λne
2λnuerfc(

u√
t

+ λn

√
t)}du

=

∫ ∞

0

ts−3/2TrY e−tB2

dt· 1

2
√

π

∫ ∞

0

ρ(u)e−u2/tdu

− Γ(s + 1/2)

4s
√

π
ζB2(s)− 1

2

∫ ∞

0

ts−1dt

∫ ∞

0

ρ′(u){
∞∑

n=1

e2λnuerfc(
u√
t

+ λn

√
t)}du ,

and we substitute this into (A.7).
We put the final result of the computation as an independent statement.

Proposition A.4. The following equality describes the cylinder contribu-
tion to the ζ-function of the operator D2

Π>
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∫ ∞

0

ts−1dt

∫

M

ρ(x)·tr Ecyl(t; x, x)dx

(A.9)

=
1

2
√

π

∫ ∞

0

ρ(u)du

∫ ∞

0

ts−3/2TrY e−tB2

dt

− {
∫ ∞

0

ts−3/2TrY e−tB2

dt· 1

2
√

π

∫ ∞

0

ρ(u)e−u2/tdu − Γ(s + 1/2)

4s
√

π
ζB2(s)

− 1

2

∫ ∞

0

ts−1dt

∫ ∞

0

ρ′(u){
∞∑

n=1

e2λnuerfc(
u√
t

+ λn

√
t)}du} .

The formula (A.9) is used in the study of the adiabatic decomposition of
the ζ-determinant presented in Section 2. We have to analyze (A.9) further
in order to get information about the value of the ζ-function at s = 0 .

Lemma A.5. The function

(A.10) F1(s) =

∫ ∞

0

ts−1dt

∫ ∞

0

ρ′(u){
∞∑

n=1

e2λnuerfc(
u√
t

+ λn

√
t)}du

is a holomorphic function on the whole complex plane.

Proof. We use the fact that supp ρ′ ⊂ [1/3 , 2/3] × Y , which guarantees a
nice behavior of the integral with respect to the u-variable since the sum
over the eigenvalues is absolutely convergent. We just have to show that
|F1(s)| behaves nicely with respect to s . We use the fact that erfc(r) ≤ e−r2

and estimate

|F1(s)| ≤
∫ ∞

0

ts−1dt

∫ ∞

0

|ρ′(u)|{
∞∑

n=1

e2λnuerfc(
u√
t

+ λn

√
t)}du

≤
∫ ∞

0

ts−1dt

∫ ∞

0

|ρ′(u)|{
∞∑

n=1

e−u2/t−tλ2
n}du

=
1

2
·
∫ ∞

0

ts−1TrY e−tB2

dt

∫ 2/3

1/3

|ρ′(u)|e−u2/tdu

≤ c1

∫ ∞

0

ts−1e−c2/tTrY e−tB2

dt

for some positive constants c1 , c2 and now the Lemma follows from the
well-known asymptotics of TrY e−tB2

as t → 0 and t →∞ . ¤
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Now, we consider the term

(A.11) F2(s) =

∫ ∞

0

ts−3/2TrY e−tB2

dt· 1

2
√

π

∫ ∞

0

ρ(u)e−u2/tdu .

The function ρ(u) is equal to 1 for 0 ≤ u ≤ 1/3 and we split the integral
accordingly

F2(s) =

∫ ∞

0

ts−3/2TrY e−tB2

dt· 1

2
√

π

∫ 1/3

0

e−u2/tdu

+

∫ ∞

0

ts−3/2TrY e−tB2

dt· 1

2
√

π

∫ 2/3

1/3

ρ(u)e−u2/tdu .

Let us observe that

∫ 1/3

0

e−u2/tdu =
√

t·
∫ 1/3

√
t

0

e−y2

dy =
√

t·
∫ ∞

0

e−y2

dy −
√

t·
∫ ∞

1/3
√

t

e−y2

dy

=

√
π

2

√
t−

√
π

2

√
t·erfc(1/3

√
t) ,

which allows us to represent F2(s) in the following form

F2(s) =
1

4

∫ ∞

0

ts−1TrY e−tB2

dt− 1

4

∫ ∞

0

ts−1TrY e−tB2·erfc(1/3
√

t)dt

(A.12)

+

∫ ∞

0

ts−3/2TrY e−tB2

dt· 1

2
√

π

∫ 2/3

1/3

ρ(u)e−u2/tdu .

The middle term on the right side of the above equality is again holomorphic
on the whole complex plane due to the inequality

∣∣∣
∫ ∞

0

ts−1TrY e−tB2·erfc( 1

3
√

t

)
dt

∣∣∣ ≤ c

∫ ∞

0

ts−1TrY e−tB2·e−1/9tdt .

We estimate the last term on the right side of (A.12) in the same way to
show that it is a holomorphic function of s as well. Finally, we evaluate the
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ζ-function at s = 0, using Lemma A.3:

ζD2
Π>

(0) = lim
s→0

1

Γ(s)

∫ ∞

0

ts−1dt

∫

M

ρ(x)·tr Ecyl(t; x, x)dx

= lim
s→0

1

Γ(s)
{ 1

2
√

π

∫ ∞

0

ρ(u)du

∫ ∞

0

ts−3/2TrY e−tB2

dt

−F2(s) +
Γ(s + 1/2)

4s
√

π
ζB2(s) +

1

2
F1(s)}

= lim
s→0

s·{ 1

2
√

π

∫ ∞

0

ρ(u)du

∫ ∞

0

ts−3/2TrY e−tB2

dt

−F2(s) +
Γ(s + 1/2)

4s
√

π
ζB2(s) +

1

2
F1(s)}

= lim
s→0

s·{ 1

2
√

π

∫ ∞

0

ρ(u)du

∫ ∞

0

ts−3/2TrY e−tB2

dt

− 1

4

∫ ∞

0

ts−1TrY e−tB2

dt +
Γ(s + 1/2)

4s
√

π
ζB2(s)}

= lim
s→0

s· 1

2
√

π

∫ ∞

0

ρ(u)du

∫ ∞

0

ts−3/2TrY e−tB2

dt

+ lim
s→0
{sΓ(s + 1/2)

4s
√

π
ζB2(s)− s

1

4

∫ ∞

0

ts−1TrY e−tB2

dt}

= 0 + {1

4
ζB2(0)− 1

4
ζB2(0)} = 0 .

The situation is not different in the case of non-invertible DΠ> . We have

ζD2
Π>

(0) = lim
s→0

1

Γ(s)

∫ ∞

0

ts−1(Tr e
−tD2

Π> − dim kerD2
Π>

)dt ,

where the dimension of the kernel is present in order to make the integral∫∞
1

convergent. Now we have

ζD2
Π>

(0) = lim
s→0

1

Γ(s)

∫ 1

0

ts−1(Tr e−tD2
Π> − dim ker D2

Π>
)dt

= lim
s→0

(
1

Γ(s)

∫ 1

0

ts−1Tr e−tD2
Π>dt)− dim ker D2

Π>

= lim
s→0

(
1

Γ(s)

∫ ∞

0

ts−1dt

∫

M

ρ(x)·tr Ecyl(t; x, x)dx)− dim ker D2
Π>

=− dim ker D2
Π>

.
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We also do not have problem with the case ker B 6= {0} . The Cobordism
Theorem for the Dirac operators (see for instance [3]) implies the existence
of the involution

σ : ker B → ker B ,

such that Gσ = −σG . Let πσ : ker B → ker B denote orthogonal
projection onto +1-eigenspace of σ . The orthogonal projection
Πσ = Π>+πσ is an element of Gr∗∞(D) and we can repeat our computations
to obtain

ζD2
Πσ

(0) = −dim ker D2
Πσ

.

Finally the result for arbitrary element P ∈ Gr∗∞(D) follows from the
existence of a positive constant c > 0 , such that for any 0 < t < 1

|Tr e−tD2
P − Tr e−tD2

Πσ | < c
√

t .

This result is stated as Theorem 3.2 in [25]. The proof consists of a
straightforward computation and the details are presented in [25]. The
idea is easy to understand. It was explained in Section 1 of [25], that
D2

P is unitarily equivalent to the operator of the form D2
Πσ

+ K , where
K : L2(M ; S) → L2(M ; S) is a bounded operator, with kernel K(x, y) sup-
ported in N = [0, 1] × Y . Moreover, K(x, y) is smoothing in Y -direction.
By the Duhamel’s Principle we have

Tr e−tD2
P − Tr e−tD2

Πσ = −Tr

∫ t

0

e−sD2
PKe−(t−s)D2

Πσ ds .

The expression on the right side can be written as the series, where each
next term has the better behavior with respect to t , than the previous one.
The first term is

−Tr

∫ t

0

e−sD2
ΠσKe−(t−s)D2

Πσ ds = −
∫ t

0

Tr Ke−tD2
Πσ = −t·Tr Ke−tD2

Πσ .

Now the kernel of the operator K is smoothing in the Y -direction, hence
the only singularity left is in the normal direction and we obtain

|Tr e−tD2
P − Tr e−tD2

Πσ | ∼t→0 t|Tr Ke−tD2
Πσ | ≤ t·c/

√
t ≤ c·

√
t

(we refer to [25] for the detailed presentation). It follows that

| lim
s→0

1

Γ(s)

∫ ∞

0

ts−1(Tr e−tD2
P − Tr e−tD2

Πσ )dt| ≤
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lim
s→0

1

Γ(s)

∫ 1

0

ts−1|Tr e−tD2
P − Tr e−tD2

Πσ |dt ≤

c· lim
s→0

s·
∫ 1

0

ts−1/2ds = 0 ,

and as a result we have

ζD2
P
(0)− ζD2

Πσ
(0) = dim ker DΠσ − dim kerDP .

This ends the proof of the Proposition A.1.
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