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Abstract

In this note we specialize and illustrate the ideas developed in the paper [Index theory, eta forms,
and Deligne cohomology]Families, Eta forms, andDeligne cohomology in the case of the determi-
nant line bundle. We discuss the surgery formula in the adiabatic limit using the adiabatic decom-
position formula of the zeta regularized determinant of the Dirac Laplacian in [Scattering theory,
the adiabatic decomposition of theζ-determinant and the Dirichlet to Neumann operator, Preprint].
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1. Introduction

Recently, the hirachy of geometric objects over a smooth manifold which starts with
U(1)-valued smooth functions, hermitean line bundles with connections, and geometric
gerbes in degree zero, one, and two, respectively, became a subject of intensive investigation.
One of the motivation stems from the philosophy that an object of degreek + 1 on a base
gives rise, via transgression, to an object of degreek on the free loop space of the base. So
one wants to study low degree objects like line bundles on iterated loop spaces via higher
degree objects on the original much smaller base.

From a categorial point of view the objects in degree zero form just a set. In degree-one we
have a category of objects. A proper study of gerbes already requires (weak) two-categories,
and the higher objects in this hirachy require higher categories. Currently there are many
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different notions of higher categories (see e.g.[8]), and the nature of the higher geometric
objects has to be clarified.

The different levels in this hirachy should be linked as follows: there is a monoidal
structure (a sort of tensor product) on the objects in degreek such that each object is
invertible. The geometric objects in degreek act “transitively” on the morphisms between
objects in degreek+1 such that the monoidal structure relates to composition. For example,
anU(1)-valued function acts on the space of morphisms between hermitean line bundles.

Already for gerbes we have several geometric pictures, e.g. as sheafs of categories[3], as
bundle gerbes[10], or as higher line bundles[7]. A geometric theory for the higher degree
has been proposed in[6].

Though there may be different geometric realizations there is no doubt that the isomor-
phism classes of the objects in degreek over the baseB are classified by the smooth Deligne
cohomologyHk

Del(B). This cohomology group is defined as thek − 1th Čech hypercoho-
mology group of the complex of sheaves

Rk−1
B : 0 → U(1)∞

B

(1/2πi)d log−−−−−−→ A1
B → . . .→ Ak−1

B → 0.

HereU(1)∞
B

denotes the sheaf of smoothU(1)-valued functions, andApB denote the sheaves
of real smooth differential forms.

The Čech complex provides a very simple geometric picture of the hirachy where we
can completely avoid the language higher categories. An object in degreek + 1 is just a
Čechk-cocyclec forRkB. The tensor product of objects is the sum of cocycles. A morphism
b : c0 → c1 is just given by ǎCechk−1-cochainb such thatdb = c1− c0. The difference
between two such morphismsb0− b1 can be considered as aČechk− 1-cocycle forRk−1

B

in a natural way. Note that all morphisms are invertible, and that the isomorphism classes of
objects in degreek + 1 are indeed classified byHk+1

Del (B). A formula for the transgression
was given by Gawedski[3]. A unit norm section of an objectc of degreek+1 is by definition
a k-chainb such thatdb + c is concentrated iňCech degree zero. This sum comes in fact
from a globalk-form which will also be denoted by∇cb. The difference of two sections is
a degreek-object in a natural way. A morphism from the zero object toc is the same as a
“parallel” section.

By a refinement of local index theory a geometric family of Dirac operators. We refer to
[4] for a definition of this notion. It essentially includes all information needed for doing
local index theory may give rise to objects in this hirachy. For example, in degree zero
we have the exponentiatedη-invariant of a family of Dirac operators on odd-dimensional
manifolds. The most prominent example is the determinant line bundle which is associated
to a geometric family of Dirac operators on even-dimensional manifolds. This line bundle
is equipped with the Quillen metric and the Bismut–Freed connection (see[1] for details).
Recently Lott constructed an isomorphism class of a geometric index gerbe which is again
associated to a family of Dirac operators on odd-dimensional manifolds. Under certain
conditions one can also construct isomorphism classes of higher degree objects which
however depend on additional choices (see e.g.[4,9]).

The isomorphism class of the index gerbe of Lott was first constructed using Hitchin’s
picture of gerbes. The geometric object depend on choices, and it is only the isomorphism
class which is independent of choices. Note in contrast, that in the case of the classical
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construction of the determinant bundle we really know a canonical realization of the fiber
over any point of the base (see(1)). This makes a huge difference if we want to speak about
sections or trivializations, etc.

The higher degree objects in[9], and the objects in all degrees in[4] are constructed as
Čech cocycles again depending on choices. In[4] these choices are called tamed resolutions.

The goal of the present paper is to demonstrate the flexibility of theČech complex picture.
We start with degreek = 1. So we provide a description in this language of classical
constructions related to the determinant bundle like the determinant section, theτ-section
associated to a zero-bordism due to Dai–Freed[5] and a surgery formula.

Then we turn to the next degreek = 2. We show that thěCech complex picture is strong
enough view a generalization of the determinant line bundle on a family with boundary
as a trivialization of the index gerbe associated to the boundary, and to provide a glueing
formula for these generalizations. This generalizes the Dai–Freedτ-section associated to a
zero-bordism above to degree 2.

It is now straight forward to generalize this picture to all degrees. TheČech complex
picture is of course very simple and does not reflect the true geometry nature of the higher
objects. For example, it is not clear that we have an integration over the fiber on theČech
complex level for fibers of dimension≥2, though such a transgression exists on the level of
isomorphism classes. It is also not so obvious which picture will be eventually the natural
one adapted to local index theory. In a truly higher categorial world trivializations are a very
complicated object to study.

2. Hermitian line bundles with connection and Deligne cohomology

Let B be a smooth manifold. IfL = (L, hL,∇L) is a hermitian line bundle with con-
nection onB, then byΓ(L) andΓ1(L) we denote its spaces of sections and of unit norm
sections. The set of isomorphism classes of hermitean line bundles forms an abelian group
Line(B), where the group operation is induced by the tensor product.

Consider fori = 0,1 hermitian line bundles with connectionLi and sectionsφi ∈ Γ1(Li).
We say that the pairs(φi,Li) are isomorphic iff there is an isomorphismf : L0 → L1 such
thatf(φ0) = φ1. We define a product(φ0,L0)⊗ (φ1,L1) := (φ0 ⊗ φ1,L0 ⊗ L1). The set
of isomorphism classes of such pairs forms the abelian groupΓLine(B).

Let U := (Ul)l∈I be an open covering ands := (sl), sl ∈ Γ1(L|Ul) be a family of
local sections. IfU ′ := (U ′

k)k∈J , r : J → I, is a refinement, then we obtain a family
s′ := (s′k), s

′
k := sr(k)|U ′

k
. We say that the tuples(L0,U0, s0), (L1,U1, s1) are isomorphic,

if there exists an isomorphismf : L0 → L1 such that after a common refinement of the
coveringsf(s0) = s1. We have again a tensor product of locally trivialized bundles. By

˜Line(B) we denote the abelian group of isomorphism classes of tuples(L,U, s).
Finally, we introduce the abelian groupΓ ˜Line(B) of isomorphism classes of tuples

(L, φ,U, s), whereφ ∈ Γ1(L).

Remark. Note that the forgetful maps˜Line(B)→ Line(B)andΓ ˜Line(B)→ ΓLine(B)
are isomorphisms.
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We consider the complex of sheaves

R1
B : 0 → U(1)∞

B

(1/2πi)d log−−−−−−→ A1
B → 0.

The degree-two Deligne cohomologyH2
Del(B) is by definition the degree-oněCech hyper-

cohomology ofR1
B. A cochain is given by a pairc = (c0,1, c1,0) ∈ Č1(B,R1

B), wherec0,1 ∈
Č0(B,A1

B) andc1,0 ∈ Č1(B,U(1)∞
B
). The chainc is closed ifδc0,1 = −(1/2πi)d logc1,0.

We define a homomorphism̃lB : ˜Line(B) → Ž1(B,R1
B) by l̃B(L,U, s) =: c with

c
0,1
l = (1/2πi)∇L logsl andc1,0

lk = sl/sk. It is easy to check that̃lB is an isomorphism of
groups. It induces an isomorphismlB : Line(B)→ H2

Del(B).

Remark. The remark above has a counterpart for degree-oneČech cocycles. In fact, the
projection

Ž1(B,R1
B)→ H2

Del(B)

is an isomorphism.

Let c ∈ Ž1(B,R1
B). A unit norm section ofc is by definition a chainu ∈ Č0(B,R1

B),

u = (u0,0), u := u0,0 ∈ Č0(B,U(1)∞
B
) such thatδu = c1,0. By Γ1(c) we denote the set of

all such sections. We form the groupΓ Ž1(B,R1
B) which consists of all pairs(c,u), where

u ∈ Γ1(c). Then we can extend̃lB to an isomorphism̃ΓlB : Γ ˜Line(B) → Γ Ž1(B,R1
B)

such that̃ΓlB(L, φ,U, s) = (c,u) with c = l̃B(L,U, s) andul = φ|Ul/sl.
There are natural homomorphismsR : H2

Del(B)→ A2
B(B, d = 0) (the curvature form)

and v : H2
Del(B) → Ȟ2(B,ZB) (the first Chern class), which are given in terms of a

representativec byRc
|Ul = dc0,1

l andv(c) = [δ(1/2πi)logc1,0].
Note that the compositionv ◦ lB is equal to the first Chern classc1 : Line(B) →

Ȟ2(B,ZB), whileR ◦ lB(L) = (1/2πi)R∇L .
Let(L,U, s)be given. A sectionφ ∈ Γ(L)gives rise to a family(φl)l∈I of complex-valued

functions such thatφlsl = φ|Ul for all l. If c = l̃B(L,U, s), then any family(φl) such that
φk = c

0,1
lk φl onUl ∩ Uk for all l, k ∈ I defines a section ofL.

The one-form∇L logφ is given in terms of theφl by∇L logφ|Ul = d logφl + 2πic0,1
l .

In Section 7we introduce a similar translation between gerbes and degree-three Deligne
cohomology.

3. The determinant line bundle

We consider a geometric familyE (see[4]) with closed even-dimensional fibers over a
manifoldB. This notion combines the data of a smooth fiber bundleπ : E → B with
closed even-dimensional fibers which is equipped with an orientation of the vertical bundle
T vπ, a vertical metricgT

vπ, a horizontal distributionT hπ, and a family ofZ2-graded Dirac
bundlesV := (V, hV ,∇V , c).
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Let D±(E) = (D±
b )b∈B be the associated family of chiral Dirac operators. We assume

thatindex(D+
b ) = 0 for all b ∈ B. The determinant line bundle ofD+(E) is a hermitian

line bundle with connection overB which will be denoted bydet(E). The fiber ofdet(E)
overb ∈ B is canonically isomorphic to

det(E)b ∼= Hom(Λmaxker(D+
b ),Λ

maxker(D−
b )). (1)

The determinant line bundle is equipped with the Quillen metric and the Bismut–Freed con-
nection. We refer to[2,1, Chapter 9], for the construction of the metric and the connection.

The bundledet(E) comes with a canonical sectionDet(E). It is given by

Det(E)(b) :=
{

1 ker(D+
b ) = 0,

0 ker(D+
b ) �= 0.

Note that this definition makes sense becausedet(E)b ∼= C canonically if ker(D+
b ) = 0.

LetK0
2(B) ⊂ K0(B) be the subgroup which consists of all classes which vanish on the

one-skeleton ofB. Since we assume that the index of the chiral Dirac operator on each fiber
vanishes we haveindex(E) ∈ K0

2(B), whereindex(E) ∈ K0(B) denotes the index of the
family D+(E).

In [4] we constructed a refined indexindex2
Del(E) ∈ H2

Del(B) such that

Rindex
2
Del(E) = Ω2(E),

and

v(index2
Del(E)) = c1(index(E)).

HereΩ2(E) denotes the degree-two component of the local index form which is given by

Ω(E) :=
∫
E/B

Â(∇T vπ)ch(∇W),

whereW is the (locally defined) twisting bundle with induced connection, and∇T vπ is the
connection induced by the vertical metric and the horizontal distribution. Furthermore we
have verified by holonomy comparison that

lB(det(E)) = index2
Del(E).

4. Local trivializations of the determinant line bundle

In this section we want to lift the correspondence

lB(det(E)) = index2
Del(E)

to the level of locally trivialized bundles and cycles. To this end we recall the construction of
cyclesc ∈ Ž1(B,R1

B)which representindex2
Del(E), and then we exhibit the corresponding

local trivializations of det(E) such that

l̃B(det(E),U, s) = c.
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The notions of taming and tamed resolutions were introduced in[4]. The chainsc which
represent the classindex2

Del(E) are associated to and depend on tamed one-resolutions of
E. In the following we roughly recall this construction referring to[4] for all details and
notions. We choose a coveringU such that there exists a tamingE|Ul,t for all l ∈ I. Over
Ul ∩ Uk we have an induced boundary taming ofEUl∩Uk × ∆1. We choose any extension
to a taming(E|Ul∩Uk ×∆1)t . These choices constitute a tamed one-resolutionZ of E. The
associated chainc = c(Z) ∈ Ž1(B,R1

B) is now given in terms of eta forms and eta invariants
as follows:

c
0,1
l = η1(E|Ul,t), c

1,0
lk = exp(−2πiη0((E|Ul∩Uk ×∆1)t)).

Now we fix a tamed one-resolutionZ and construct the local trivializations. First observe
that the construction of the determinant line bundle with connection and metric extend to
pretamed families. We consider the bundlep : T → B such that the fiberTb consists of
all pretamings ofEb. The model of this fiber is the space of all even self-adjoint smoothing
operators, in particular, it is a Fréchet space. Then the geometric familyF := p∗E overT
has a tautological pretamingFt . Let θ : B → T denote the zero section ofT . For l ∈ I
the tamingEUl,t induces another sectionTl : Ul → T|Ul . Let Γl : Ul × ∆1 → T be given
by Γl(b, t) = tTl(b). Then we obtain a pretamed familyΓ ∗

l Ft . The restriction ofΓ ∗
l Ft to

Ul × {1} is tamed. Therefore, the corresponding bundledet(Γ ∗
l Ft)Ul×{1} is canonically

trivialized by the sectionDet(Γ ∗
l Ft). For b ∈ Ul let γb : ∆1 → Ul × ∆1 be the path

γb(t) = (b,1 − t). Note thatΓ ∗
l Ft|Ul×{0} ∼= E|Ul Therefore we define the sectionsl of

det(E|Ul) by

sl(b) =
∥∥∥∥∥γb Det(Γ ∗

l Ft)(b,1)

hdet(Γ
∗
l
F)(Det(Γ ∗

l F)(b,1))
,

where‖γb denotes the parallel transport alongγb.

Proposition 4.1. We have

l̃B(det(E),U, s) = c.

Proof. We first show that

1

2πi
∇det(E)logsl = η1(E|Ul,t).

Fix b ∈ Ul andX ∈ TbB. Letσ : (−1,1)→ Ul be any path withσ(0) = b andσ′(0) = X.
Then we defineΣ : (−1,1) × ∆1 → Ul × ∆1 by Σ(s, t) = (σ(s), t). The curvature
of Σ∗ ◦ Γ ∗

l (det(Ft)) is given by the local index form which vanishes by construction.
Therefore we have

∇det(E)X logsl = ∇det(E|Ul,t )X log
Det(E|Ul,t)

hdet(E|Ul,t )(Det(E|Ul,t))
.

By definition of the Bismut–Freed connection the right-hand side is equal to 2πiη1(E|Ul,t).
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Next we show thatsl/sk = exp(−2πiη0((E|Ul∩Uk × ∆1)t)). Let b ∈ Ul ∩ Uk. We can
choose a pathP : ∆1 → Tb such thatP(0) = Tl, P(1) = Tk, andP(s) is a taming ofEb
for all s ∈ ∆1. We consider the mapΣ : ∆1 × ∆1 → T given byΣ(s, t) = tP(s). The
pull-backΣ∗Ft has a flat determinant bundle. It follows, that

sl

sk
= exp

(
−2πi

∫
∆1
P∗η1(Ft)

)
.

We claim that the left-hand side coincides with exp(−2πiη0((Eb×∆1)t)), where the taming
on the boundaryEb×∂∆1 is induced byTl(b) andTk(b). To do so we first deform the taming
above to the local taming given byP inside the world where both tamings and local tamings
are allowed (see[4] for the notion of local taming). By the local variation formula we see
that this does not change theη0-invariant. Then we perform an adiabatic limit. The function
η0 is independent of the parameter of the limit, and the result is just the integral of the
η1-form above.

This finishes the proof of the proposition. �

We still fix a tamed one-resolutionZ. Then we have the cyclec and the corresponding
locally trivialized bundle(det(E),U, s) such that̃lB(det(E),U, s) = c. The determinant
sectionDet(E) can be represented by a family of complex-valued functions(φl)l∈I such
thatDet(E)|Ul = φlsl.

Proposition 4.2. We have

φl(b) =


0 ker(D+
b ) �= 0,

exp(−2πiη0((Eb ×∆1)t))

√
det(∆+

b ) ker(D+
b ) = 0,

where ∆+
b = D−

b D
+
b , and where the taming of (Eb ×∆1)t along the boundary is induced

by 0 and Tl(b), respectively.

Proof. It suffices to consider the pointsb ∈ B, where ker(D+
b ) = 0. Sincehdet(E)(sl) ≡

1 we have|φl|(b) = hdet(E)(Det(E))(b) =
√
det(∆+

b ) (see [1, Proposition 9.41]). In
order to compute the argument ofφl(b) we deform the pathγb : s �→ (1− s)Tl(b) to a path
γ̃b : ∆1 → Tb with the same endpoints, but which runs through tamings. Sincedet(Ft)|Tb
is flat we still have

sl(b) =
∥∥∥∥∥γ̃b Det(FTl(b))

hdet(FTl(b))(Det(FTl(b)))
.

We then see thatφl(b) = exp(2πi
∫
∆1 η

1(γ̃∗Ft)). We now again use an adiabatic limit
argument in order to show that this integral is equal to exp(−2πiη0((Eb ×∆1)t)). �
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5. Zero-bordisms and associated sections

Assume that the geometric familyE is the boundary∂W of a geometric familyW with
boundary. We assume thatW is of product type along the boundary (see[4, Section 2]).
Then it was observed by Dai–Freed[5] that one can consider the exponentiated eta-invariant
ofW as a section ofdet(E).

Fix b ∈ B. Sinceindex(D+
b ) = 0 there exists an isometryP : kerD+

b → kerD−
b .

Let det(P) ∈ Hom(Λmaxker(D+
b ),Λ

maxker(D−
b )) be the induced isometry. The choice

of P fixes a self-adjoint boundary condition forD(Wb), and we letη0(Wb, P) be the
corresponding eta invariant. Then by[5, Proposition 2.15]

τ(W)(b) := exp

(
2πi

[
η0(Wb, P)+ dim ker(D(Wb, P))

2

])
× det(P)

hdet(Eb)(det(P))
∈ det(E)b

is independent of the choice ofP (note the ourη0 is 1/2η0 in the usual convention). In this
way we define a unit norm sectionτ(W) ∈ Γ1(det(E)).

We now fix a tamed one-resolutionZ of E and letc = c(Z) ∈ Ž1(B,R1
B) be the

corresponding cycle. Furthermore, lets be the associated local trivialization ofdet(E). We
now have a locally trivialized bundle with unit norm section(det(E), τ(W),U, s).

One of the main observations in[4] was that the zero-bordismWgives sectionsu ∈ Γ1(c).
Let us describe the construction ofu = (u), u ∈ Č0(B,U(1)∞

B
). For eachl ∈ I we can

extend the boundary tamingE|Ul,t ofW|Ul to a tamingW|Ul,t . Thenu is given by

ul = exp(2πiη0(W|Ul,t)).

Note thatu is independent of the choices. We have indeedδu = c1,0.

Proposition 5.1. We have Γ̃lB(det(E), τ(W),U, s) = (c,u) ∈ Γ Ž1(B,R1
B).

Proof. From[4] we know that

1

2πi
d logul + c0,1

l = Ω1(W|Ul).

If φ ∈ Γ1(det(E)) is the section which corresponds to byu, then this equation means that
∇det(E)logφ = 2πiΩ1(W). On the other hand, by the generalization of[5, Theorem 1.9],
to twisted Dirac operators we also have∇det(E)logτ(W) = 2πiΩ1(W). We conclude that
the quotientφ/τ(W) is locally constant.

We now argue that this constant must be equal to one. Assume thatB is connected and
that there existsb ∈ B such thatD+

b is invertible. Ifb ∈ Ul, then we can choose the taming
such thatTl(b) = 0. In this caseP = 0 andη0(Wb,t) is equal to the eta invariantη0(Wb,0)
with APS-boundary conditions. It follows thatφ(b) = τ(W)(b).

In the general case we can always perturb the family such that in some pointb ∈ B the
operatorD+

b is invertible and then apply the argument above. �
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Note that one can prove this proposition independently of the knowledge of∇det(E)
logτ(W) in the spirit of the proofs inSection 4. This would lead to an independent verifi-
cation of the computation of this derivative.

6. Surgery

In this section we consider two geometric familiesE± with boundary. We assume that the
geometry is of product type along the boundary. We assume that there are two isomorphisms
fi : ∂E+ → ∂E−, i = 0,1. Then we can glue the families along the boundaries using
f0 andf1, respectively. We denote the resulting geometric families with closed fibers by
F i := E+ ∪fi (E−)op.

We further form the geometric family

G := (∂E+ ×∆1) ∪f0∪f1 (∂E
− ×∆1)op,

where we glue the boundary component∂E+×{i}with (∂E−×{i})op usingfi. This family
is essentially the mapping torus off1 ◦ f−1

0 .
The following formula can be considered as the precise form of a surgery formula for

the determinant line bundle.

Proposition 6.1. The line bundle

det(F 0)⊗ det(F1)−1 ⊗ det(G),

admits a parallel unit norm section Φ.

Proof. We defineΦ := τ(W) for a suitable zero-bordism ofF 0 ∪B (F1)op ∪B G with
Ω1(W) = 0. To this end we considerS := ∆1 ×∆1 \ B((1/2,0),1/4). We equipS with
the structure of a geometric manifold with corners also along the deleted half disc. We
define

W± := E± ×∆1 ∪5 (∂E±geom × S)op,

by gluing along the common boundary∂E± × ∆1 ∼= ∂E± × ∆1 × {1}. Then we glueW+
with (W−)op along the boundary face

∂E± × [0,1/4]× {0} ∪ ∂E± × [3/4,1]× {0},
using(f0×id×id∪f1×id×id). The resulting familyW is the required zero-bordism.

By construction we haveΩ1(W) = 0. �

Using the sectionΦ in the proposition above we can define the complex-valued function

φ := Det(F 0)⊗ Det(F1)−1 ⊗ Det(G)

Φ
(2)

as a complex-valued function onB.
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A surgery formula for the determinant section now amounts to a formula forφ. The
philosophy is that the determinant section is of global nature. In view ofProposition 6.1
this is in strong contrast to the determinant line bundle with its Bismut–Freed connection
and Quillen metric which is of essentially local nature. A natural procedure to pin down the
global nature of the determinant sections is to perform an adiabatic limit.

In the following we investigate the adiabatic limit of|φ|. A priori it is clear that this
norm is independent of the choices involved in the construction of the bordismW. We will
see on the one hand that even the adiabatic limit of|φ| depends on more than just local
data coming from∂E± and the mapsfi. On the other hand, the global contribution to the
limit is via the scattering operator which is just an involution of a finite-dimensional vector
space.

Without loss of generality we assume thatB consists of a single point. We start with ex-
plaining the meaning of the adiabatic limit. ForR > 0 we consider the geometric manifolds
E±R := E± ∪5 ∂E± × [0, R], where the glueing identifies∂E± with ∂E± × {0}. ReplacingE±
byE±R in the constructions above we obtainFiR, andWR, respectively. ByGR we denote the
boundary component ofWR which corresponds toG. LetφR be the corresponding function
defined in(2). The adiabatic limit corresponds toR→∞. In the remainder of the present
section we consider the adiabatic limit of|φR|. The final result is stated asProposition 6.2.

Let∆0(E
±
R) denote the Laplace operatorsD(E±R)

2 onE±R equipped with Dirichlet bound-
ary condition and define the integerh := dim ker(D(∂E+)).

As an intermediate step we consider the computation[11] of the limit

lim
R→∞

R−2h det(∆(F 0
R))

det(∆0(E
+
R)) · det(∆0(E

−
R))

= 2−4hdet∗(∆(∂E+))det(I − Cf0)
2.

(3)

HereCf0 is a finite-dimensional operator which will be explained below, anddet∗ takes
the zeta regularized determinant of the operator on the complement of the kernel. This
formula holds under the condition of absence of eigenvalues ofdet(∆(F 0

R))which become
exponentially small ifR tends to infinity. We are going to apply this formula also withF 0

R

replaced byF1
R.

In order to defineCf0 we recall the definition of the scattering matrix. We completeE+
by attaching an infinite cylinder:E+∞ := E± ∪5 (∂E+ × [0,∞)). We write the restriction of
the Dirac bundleV of E+∞ to the cylindrical part asV|∂E+×[0,∞) ∼= ∂V ∗ [0,∞) (using the
notation introduced in[4]). Here the Dirac bundle∂V over∂E+ is the boundary reduction
of V. Explicitly, ∂V ∗ [0,∞) is given bypr∗∂V⊗C2 such that the Clifford multiplications
have the form

c(X) := c∂V(X)⊗
(

0 i

−i 0

)
forX ∈ T∂E+, c(∂u) := i⊗

(
1 0

0 −1

)
,

and the grading is given by

z := 1⊗
(

0 1

1 0

)
.
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Herepr : ∂E+ × [0,∞)→ ∂E+ is the projection, andu is the coordinate of [0,∞). If ψ
is a section of∂V, then we can lift it tou-independent sections

L±(ψ) := ψ ⊗
(

1
±1

)
,

of V±|∂E+×[0,∞).
For λ ∈ R we now consider the space of bounded eigensections of∆±(E+∞) to the

eigenvalueλ2. LetH+ := ker(∆(∂E+)) and recall thath = dim(H+). If λ2 is smaller
than the first non-zero eigenvalue of∆±(∂E+), then the dimension of the space of bounded
eigensections of∆±(E+∞) is given byh. All these sections have the form

e−iλuL±(ψ)+ eiλuL±(C±
E+(λ)ψ)+ o(u)

with uniquely determinedψ ∈ H+, and for a certain operatorC±
E+(λ) ∈ End(H+). This

operator is called the scattering operator. Using the fact thatD(E+)maps eigensections of
∆+(E+) to eigensections of∆−(E+)one can check thatC+

E+(λ) = −C−
E+(λ). Furthermore,

the scattering operator satisfies the functional equation

C±
E+(λ)C

±
E+(−λ) = id,

which implies thatC±
E+(0) is an involution. Note thatf0 : ∂E+ → ∂E− induces an isomor-

phismH(f0) : H+ → H−. Now we can define

Cf0 := H(f0)
−1 ◦ C−

E−(0) ◦H(f0) ◦ C+E+(0) ∈ End(H+).

In a similar manner we defineCf1 ∈ End(H+). Note thatC∗fi = C+
E+(0) ◦ Cfi ◦ C

+
E+(0).

We conclude that the non-real eigenvalues of the unitary operatorC∗fi come in pairs(µ, µ̄)
with |µ| = 1,Im(µ) > 0. Because of the assumption about the absence of exponentially
decreasing eigenvalues 1 is not in the spectrum ofCfi . We conclude thatdet(1−Cfi) > 0.

Using that

hdet(F
i
R)(Det(F iR)) = det(∆+(F iR)) =

√
det(∆(F iR)),

we conclude that

lim
R→∞

hdet(F
0
R)(Det(F 0

R))

hdet(F
1
R)(Det(F1

R))
= det(1− Cf0)

det(1− Cf1)
.

We now considerdet(∆(GR)) in the adiabatic limit. Note that

GR := (∂E+ ×∆1
R) ∪f0 f1 (∂E

− ×∆1
R)

op,

where∆1
R
∼= [0, R]. For the adiabatic limit of the determinant ofdet(∆(GR)), we have the

following formula in[12]

det(∆(GR))
R→∞∼ det(∆f0 f1)

2 · exp(4R[(ψ(−1
2)+ γ)a1/2 + ζr∆(∂E+)(−1

2)]). (4)

Here the notation∼R→∞ means that the quotient of each side converges to 1 asR→∞.
Note that the second term may blow up in general asR→∞. Here∆f0 f1 is the Laplacian
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acting on the flat vector bundle with the holonomyH(f0)
−1◦H(f1) overS1. For the second

term,ψ(x) = (d/dx) logΓ(x), γ is Euler’s constant anda1/2 andζr
∆(∂E+)(s) are the residue

and regular parts ofζ∆(∂E+)(s) at s = −1/2 such that

ζ∆(∂E+)(s) =
a1/2

s+ (1/2) + ζ
r
∆(∂E+)(s).

We eventually conclude.

Proposition 6.2. If∆(F iR) and∆(GR) have no exponentially decreasing eigenvalues, then
we have the following asymptotic behavior of |φR| in the adiabatic limit:

|φR|R→∞∼ det(∆f0 f1)
det(1− Cf0)

det(1− Cf1)
exp(2R[(ψ(−1

2)+ γ)a1/2 + ζr∆(∂E+)(−1
2)]).

Note that the right-hand side of this formula contains the term(det(1 − Cf0))/

(det(1− Cf1)) which in general depends on the global structure ofE±.
It might be an interesting problem to study the adiabatic limit of the phase ofφ.

Remark. The surgery formula for the determinant line bundle with Quillen metric and
Bismut–Freed connection can also be deduced from the splitting formula of Piazza[13].
On the other hand,Proposition 6.2does not follow from this work.

In [14], Scott also proved a splitting formula for the determinant line bundle. But he
considers a different metric and connection which are associated to Fredholm determinants
rather than zeta regularized determinants.

Assume that we have fixed an isomorphism∂E+ ∼= ∂E−. The idea to associate a de-
terminant line bundle to the familiesE± and to express the determinant line bundle of
E = E+ ∪5 (E−)op in terms of these pieces (this is the content of a splitting formula) in
order to prove a surgery formula seems to be not so natural. The point is that in order to
define the determinant line bundle forE± one must choose non-natural boundary condi-
tions. In the remainder of the present paper we want to advertise the idea thatE± give rise
to trivializations of the index gerbes of∂E±. The spitting formula for the determinant line
bundle is then equivalent to the statement that the line bundle (with metric and connection)
given by the difference of the two trivializations of the index gerbe of∂E+ ∼= ∂E− induced
by E+ andE− is isomorphic to the determinant line bundle ofE. Note that we talk here
about the determinant line bundle with the Quillen metric and the Bismut–Freed connection
and not about the determinant sections.

7. Gerbes and sections

The goal of the present and the following section is to explain that the generalization
of the determinant line bundle to families with boundaries leads to a new kind of object:
sections of gerbes. The starting point is the observation that there is no canonical choice of
boundary conditions in general. The way out is to consider all choices (in some class) at
once.
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In the preceding sections we already met a similar problem in one degree less. Here the
exponentiated eta-invariant of a manifold depends on the choice of boundary conditions.
In order to make it natural, we were led to consider it as a section of the determinant line
bundle associated to the boundary.

We consider the complex of sheaves

R2
B : 0 → U(1)∞

B

(1/2πi)d log−−−−−−→ A1
B → A2

B → 0.

Then a gerbe is by definition a cyclec ∈ Ž2(B,R2
B). It is a tuplec = (c0,2, c1,1, c2,0),

where

c0,2 ∈ Č0(B,A2
B), c1,1 ∈ Č1(B,A1

B), c2,0 ∈ Č2(B,U(1)∞
B
).

The cycle condition reads

δc2,0 = 0, δc1,1 = 1

2πi
d logc2,0, δc0,2 = dc1,1.

An isomorphismb : c0 → c1 is given by a chainb = (b0,1, b1,0) ∈ Č1(B,R2
B), where

b0,1 ∈ Č0(B,A1
B), b1,0 ∈ Č1(B,U(1)∞

B
),

such that

db0,1 = c0,2, − 1

2πi
d logb1,0 − δb0,1 = c1,1, −δb1,0 = c2,0.

By definition,H3
Del(B) is the group of isomorphism classes of gerbes.

The curvature of the gerbe is the three-formRc ∈ A3
B(B, d = 0) which characterized

by Rc
|Ul = dc0,2

l . Furthermore, there is a characteristic classv(c) ∈ Ȟ3(B,ZB), which is

represented byδ(1/2πi)logc2,0. Note that both, the curvature and the characteristic class,
only depend on the isomorphism class of the gerbe. A section of a gerbe is a chainb =
(b0,1, b1,0) as above satisfying only

− 1

2πi
d logb1,0 − δb0,1 = c1,1, −δb1,0 = c2,0.

Let Γ1(c) denote the set of all sections. Note that an isomorphismb : c0 → c1 of gerbes
induces an isomorphismΓ(b) : Γ1(c0)→ Γ1(c1) of sections byΓ(b)(b0) := b0 + b. We
let Γ Ž2(B,R2

B) be the set of pairs(c,b), whereb ∈ Γ1(c). Further, letΓH3
Del(B) denote

the set of isomorphism classes inΓ Ž2(B,R2
B).

If b ∈ Γ1(c), then there is a two-form∇cb ∈ A2(B) such that

∇cb ∈ A2(B)|Ul = db0,1
l − c0,2

l .

We call two sectionsbi, i = 0,1, isomorphic if there is a chainu ∈ Č0(B,U(1)∞
B
) such

that

δu = b
1,0
1 − b1,0

0 ,
1

2πi
d logu = b

0,1
1 − b0,1

0 .
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Observe, that the difference of two sectionsbi ∈ Γ1(c) is a an element of̌Z1(B,R1
B), i.e.

it corresponds to an isomorphism class of locally trivialized line bundles. The curvature
of this line bundle is given by∇c(b1 − b0). Similarly, the difference of two isomorphism
classes of sections of the gerbec is just a class inH2

Del(B). We thus have a pairing

〈·, ·〉 : Γ Ž2(B,R2
B)×Ž2(B,R2

B)
Γ Ž2(B,R2

B)→ H2
Del(B),

given by 〈(c,b0), (c,b1)〉 := [b1 − b0]. Note that this pairing does not factor over the
isomorphism classes [ci,bi].

8. The determinant line bundle of a family with boundary

We consider an even-dimensional geometric familyE with boundary∂E. Again, we
assume thatE is of product type along the boundary.∂E is a geometric family with closed
odd-dimensional fibers. We haveindex(E) = 0 inK1(B). The index gerbe of such a family
was first introduced in[9]. In the present note we adopt the point of view of[4], where the
isomorphism class of the index gerbe is given byindex3

Del(∂E) ∈ H3
Del(B). A gerbe

Ž2(B,R2
B) representing this class is associated to the choice of a tamed two-resolutionZ.

This resolution is given by the following choices. First we need an open coverU = (Ul)l∈I
and a taming∂E|Ul,t for all l ∈ I. Then we need an extension of the induced boundary
taming of∂E|Ul∩Uk × ∆1 to a taming(∂E|Ul∩Uk × ∆1)t for all l, k ∈ I with Ul ∩ Uk �= ∅.
Finally, we need an extension of induced boundary taming of∂E|Ul∩Uk∩Uh×∆2 to a taming
(∂E|Ul∩Uk∩Uh ×∆2)t for all l, k, h ∈ I with Ul ∩ Uk ∩ Uh �= ∅. Thenc = c(Z) is given by
(see[4])

c
0,2
l := η2(∂E|Ul,t), c

1,1
lk := −η1((∂E|Ul∩Uk ×∆1)t),

c
2,0
lkh := exp(2πiη0((∂E|Ul∩Uk∩Uh ×∆2)t)).

We now consider the familyE as a zero-bordism of∂E. It extends to a zero-bordismW of
the tamed two-resolutionZ. In order to ensure that such a lift exists we must choose the
taming of∂E|Ul,t such thatE|Ul,bt has trivial index for alll. Such a choice is possible.W
is given by extension of the boundary tamings to tamingsE|Ul,t , and further, extensions of
the boundary tamings ofE|Ul∩Uk ×∆1 to tamingsE|Ul∩Uk ×∆1. Then we have the section
b := b(W) ∈ Γ1(c) given by

b
0,1
l := −η1(E|Ul,t), b

1,0
lk := exp(−2πiη0((E|Ul∩Uk ×∆1)t)).

Note that∇cb = −Ω2(E). The following proposition generalizes from degree-two to
degree-three the observation that a geometric family with boundary gives rise to a well-defined
isomorphism class of a locally trivialized line bundle with section, namely, the determinant
line bundle of the boundary with the section introduced inSection 5.

Proposition 8.1. The pair (c,b) ∈ Γ Ž2(B,R2
B) is independent of all choices of tamings.
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Proof. Assume that we have two tamed two-resolutionsZ0 andZ1 of ∂E given without
loss of generality with respect to the same coveringU with index setI. Then we consider
the coveringV with index setJ := I × {0,1}, whereV(l,ε) := Ul. We define a tamed
two-resolutionZ′ with respect toV as follows. On∂E|Ul,ε we choose the taming given by
Zε. In the next step we choose(∂E|Ul,ε∩Uk,δ × ∆1)t as given byZε, if ε = δ, and arbitrary
else. This is again possible since we require trivial index ofE|Ul,ε,bt. We continue to define
Z′ on triple intersections in the same manner.

Now the main point is thatZε, ε ∈ {0,1}, are both obtained by a refinement ofZ′ so that
c(Z0) = c(Z1) ∈ Ž2(B,R2

B). In the same manner given the zero-bordismsWε of Zε we
can find a zero-bordismW′ of Z′ with respect toV such that the two zero-bordismsWε are
obtained by refinements. Then we haveb(W0) = b(W1) ∈ Č1(B,R2

B). �

Now assume that we have two geometric familiesE± with boundary∂E± as above together
with an isomorphism∂E+ ∼= ∂E−. Then we form the glued familyE := E+ ∪5 (E−)op. We
have two pairsγ(E±, ∂E±) ∈ Ž2(B,R2

B). Let us assume for simplicity that the numerical
index of E vanishes. The gluing formula for the determinant bundle reads the following
proposition.

Proposition 8.2. In H2
Del(B) we have the identity

〈γ(E+, ∂E+), γ(E−, ∂E−)〉 = det(E).

Proof. We construct a suitable bordismW. LetS ⊂ R2 be a pentagon. Let∂i, i = 1, . . . ,5,
be the boundary faces in cyclic order. We equipS with the structure of a geometric manifold
with corners such that all boundary components∂iS are isometric toI := [0,1]. We
form the geometric familyW by gluing (E+ × I) ∪5 ∂E+ × S ∪5 (E− × I) according to
(∂E+ × I) −→∼ ∂1(∂E

+ × S), ∂4(∂E
+ × S) −→∼ (∂E− × I)op. The resulting geometric family

W has three boundary faces which are isomorphic toE± andE.
We fix a tamed two-resolutionZ+ of ∂E+. It induces a tamed two-resolutionZ− of ∂E−.

Then we fix tamed zero-bordismsW± of Z± associated to the zero-bordismsE± of ∂E±. We
also fix a tamed one-resolutionU of E. This induces a boundary taming ofW|Ul which we
extend to a tamingW|Ul,t for eachl ∈ I.

Let c := c(Z) andb± := b(W±) ∈ Γ1(c). Furthermore, letb := b(U) ∈ Ž1(B,R1
B)

as inSection 4. We must construct an isomorphismu : b1 − b0 → b. We will consider
u ∈ Γ1(b + b0 − b1) such that∇b+b0−b1u = 0. Letu be given by

ul := exp(−2πiη0(W|Ul,t)).

Then indeed(δu)lk = [b + b0 − b1]1,0lk anddul = [b + b0 − b1]0,1l as required. �
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