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Abstract

In this note we specialize and illustrate the ideas developed in the paper [Index theory, eta forms,
and Deligne cohomologyamilies, Eta forms, andDeligne cohomology in the case of the determi-
nant line bundle. We discuss the surgery formula in the adiabatic limit using the adiabatic decom-
position formula of the zeta regularized determinant of the Dirac Laplacian in [Scattering theory,
the adiabatic decomposition of theleterminant and the Dirichlet to Neumann operator, Preprint].
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MSC: 58J25; 57R65
JGP SC : Differential geometry

Keywords: Determinant line bundles; Surgery; Adiabatic decomposition; Dirac Laplacian; Boundaries

1. Introduction

Recently, the hirachy of geometric objects over a smooth manifold which starts with
U(1)-valued smooth functions, hermitean line bundles with connections, and geometric
gerbesindegree zero, one, and two, respectively, became a subject of intensive investigation.
One of the motivation stems from the philosophy that an object of ddg#te& on a base
gives rise, via transgression, to an object of degree the free loop space of the base. So
one wants to study low degree objects like line bundles on iterated loop spaces via higher
degree objects on the original much smaller base.

From a categorial point of view the objects in degree zero form just a set. In degree-one we
have a category of objects. A proper study of gerbes already requires (weak) two-categories,
and the higher objects in this hirachy require higher categories. Currently there are many
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different notions of higher categories (see ¢8f), and the nature of the higher geometric
objects has to be clarified.

The different levels in this hirachy should be linked as follows: there is a monoidal
structure (a sort of tensor product) on the objects in degrsach that each object is
invertible. The geometric objects in degreact “transitively” on the morphisms between
objects in degrek+ 1 such that the monoidal structure relates to composition. For example,
anU(1)-valued function acts on the space of morphisms between hermitean line bundles.

Already for gerbes we have several geometric pictures, e.g. as sheafs of caf@joaies
bundle gerbegl0], or as higher line bundlgg]. A geometric theory for the higher degree
has been proposed j].

Though there may be different geometric realizations there is no doubt that the isomor-
phism classes of the objects in degkewer the bas® are classified by the smooth Deligne
cohomolong{;el(B). This cohomology group is defined as the- 1th Cech hypercoho-
mology group of the complex of sheaves

1/27i)d |
Rg_1:0—> U(l)?MA};%...—)A]gl—)O.

Here&l)%O denotes the sheaf of smoadttil)-valued functions, andl’é denote the sheaves
of real smooth differential forms.

The Cech complex provides a very simple geometric picture of the hirachy where we
can completely avoid the language higher categories. An object in degrekis just a
Cechk-cocyclec for R" The tensor product of objects is the sum of cocycles. A morphism
b : co — c1 is just given by &Cechk — 1-cochairb such thatlb = ¢, — co. The difference
between two such morphisrhg — b1 can be considered aszeechk — 1-cocycle forR’l‘;l
in a natural way. Note that all morphisms are invertible, and that the isomorphism classes of
objects in degreg + 1 are indeed classified Uyégll(B). A formula for the transgression
was given by GawedskB]. A unit norm section of an objectof degree + 1 is by definition
ak-chainb such thatlb + ¢ is concentrated iCech degree zero. This sum comes in fact
from a globalk-form which will also be denoted byb. The difference of two sections is
a degreek-object in a natural way. A morphism from the zero object is the same as a
“parallel” section.

By a refinement of local index theory a geometric family of Dirac operators. We refer to
[4] for a definition of this notion. It essentially includes all information needed for doing
local index theory may give rise to objects in this hirachy. For example, in degree zero
we have the exponentiatedinvariant of a family of Dirac operators on odd-dimensional
manifolds. The most prominent example is the determinant line bundle which is associated
to a geometric family of Dirac operators on even-dimensional manifolds. This line bundle
is equipped with the Quillen metric and the Bismut—Freed connectiorj1$éar details).
Recently Lott constructed an isomorphism class of a geometric index gerbe which is again
associated to a family of Dirac operators on odd-dimensional manifolds. Under certain
conditions one can also construct isomorphism classes of higher degree objects which
however depend on additional choices (see[d.9)).

The isomorphism class of the index gerbe of Lott was first constructed using Hitchin’s
picture of gerbes. The geometric object depend on choices, and it is only the isomorphism
class which is independent of choices. Note in contrast, that in the case of the classical
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construction of the determinant bundle we really know a canonical realization of the fiber
over any point of the base (séB). This makes a huge difference if we want to speak about
sections or trivializations, etc.

The higher degree objects[i8], and the objects in all degrees[#] are constructed as
Cech cocycles again depending on choiceBl]ithese choices are called tamed resolutions.

The goal of the present paper is to demonstrate the flexibility aE theh complex picture.

We start with degre& = 1. So we provide a description in this language of classical
constructions related to the determinant bundle like the determinant sectianséiagion
associated to a zero-bordism due to Dai—F1i@end a surgery formula.

Then we turn to the next degrée= 2. We show that th€ech complex picture is strong
enough view a generalization of the determinant line bundle on a family with boundary
as a trivialization of the index gerbe associated to the boundary, and to provide a glueing
formula for these generalizations. This generalizes the Dai—krsedtion associated to a
zero-bordism above to degree 2.

It is now straight forward to generalize this picture to all degrees.&eeh complex
picture is of course very simple and does not reflect the true geometry nature of the higher
objects. For example, it is not clear that we have an integration over the fiber Qete
complex level for fibers of dimension2, though such a transgression exists on the level of
isomorphism classes. It is also not so obvious which picture will be eventually the natural
one adapted to local index theory. In a truly higher categorial world trivializations are a very
complicated object to study.

2. Hermitian line bundles with connection and Deligne cohomology

Let B be a smooth manifold. I = (L, k%, VL) is a hermitian line bundle with con-
nection onB, then byl (L) andI';(L) we denote its spaces of sections and of unit norm
sections. The set of isomorphism classes of hermitean line bundles forms an abelian group
Li ne(B), where the group operation is induced by the tensor product.

Consider foi = 0, 1 hermitian line bundles with connectibnand sectiong; € I (L;).

We say that the pair®;, L;) are isomorphic iff there is an isomorphisfit Lo — L1 such
that f(¢o) = ¢1. We define a produaipo, Lo) ® (¢1,L1) := (o ® ¢1, Lo ® L1). The set
of isomorphism classes of such pairs forms the abelian grdtime(B).

Let U := (U))ier be an open covering and:= (s;), s; € I'n(Ly,) be a family of
local sections. 1U4" := (Ures,r : J — 1, is a refinement, then we obtain a family
s = (sp), 8 = Sr(i)|UL - We say that the tupled. o, Uo, so), (L1, U1, s1) are isomorphic,
if there exists an isomorphisrfi : Lo — L1 such that after a common refinement of the
coveringsf(sp) = s1. We have again a tensor product of locally trivialized bundles. By

Li ne(B) we denote the abelian group of isomorphism classes of typlds, s).

Finally, we introduce the abelian groupLi ne(B) of isomorphism classes of tuples
(L, o, U, s), wherep € I'1(L).

Remark. Notethattheforgetfulmapsi/rTe_(/B) — Li ne(B) andI’Li/nE(/B) — I'Li ne(B)
are isomorphisms.
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We consider the complex of sheaves
1/27i)d|
RL:0—> vy MA%; — 0.

The degree-two Deligne cohomolog;éel(B) is by definition the degree-orféech hyper-
cohomology ofR}. A cochainis given by a pair= (c%1, ¢1%) e C1(B, R}), wherec®! ¢
CO(B, A}) andc10 e CL(B, UD)%). The chaircis closed ifsc® = —(1/2ri)d log c*°.

We define a homomorphisiig : Li ne(B) — Z1(B, R}) by iz(L,U,s) =: ¢ with
c?’l = (1/27i)VE logs; andcllk’O = s1/sk. It is easy to check thdf is an isomorphism of
groups. It induces an isomorphig: Li ne(B) — H,%el(B).

Remark. The remark above has a counterpart for degreeéﬂftm cocycles. In fact, the
projection

ZY(B, RY) — HZ,(B)

is an isomorphism.

Letc € Z1(B, R%). A unit norm section of is by definition a chaini € C(B, R}),
u= %%, u:=u%0 e COB, U1)%) such thasu = 0. By I'1(c) we denote the set of
all such sections. We form the grouﬂfl(B, R}g) which consists of all pair&c, u), where
u € I'1(c). Then we can extent to an isgmorphisnﬁ/g : I'Li ne(B) - I'ZY(B,R})
such thatf7g(L, ¢, U, s) = (c, u) with c = Ig(L, U, s) andu; = ¢yu,/s1-

There are natural homomorphisiRs H%el(B) — A%(B, d = 0) (the curvature form)
andv : Hée|(B) — H?(B, Zp) (the first Chern class), which are given in terms of a

representative by RS, = dc?* andv(c) = [8(1/2ri)log L0,
Note that the composition o /g is equal to the first Chern clagg : Li ne(B) —
H?(B, Zp), while R o [5(L) = (1/27i)RV".
Let(L, U, s) be given. Asection € I'(L) givesrise to afamilye;);c; of complex-valued
functions such thap;s; = ¢y, for all 1. If ¢ = Ig(L, U, s), then any family(¢;) such that
ok = cﬁ(’ld)[ onU;NU; foralll, k € I defines a section df.
The one-formvZ log ¢ is given in terms of they by VL log ¢y, = d log¢; + Znic?’l.
In Section Ave introduce a similar translation between gerbes and degree-three Deligne
cohomology.

3. Thedeterminant line bundle

We consider a geometric family (see[4]) with closed even-dimensional fibers over a
manifold B. This notion combines the data of a smooth fiber bundle E — B with
closed even-dimensional fibers which is equipped with an orientation of the vertical bundle
TV, a vertical metrig” ™, a horizontal distributiof™ s, and a family ofZ,-graded Dirac
bundlesy := (V, hY, V", ¢).
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Let DE(E) = (Df)beg be the associated family of chiral Dirac operators. We assume
thati ndex(D,j) = 0 for all » € B. The determinant line bundle @& (€) is a hermitian
line bundle with connection ove? which will be denoted bylet (£). The fiber ofdet (€)
overb € B is canonically isomorphic to

det (£), = HomA™®ker(D}"), A™®ker(D})). 1)

The determinant line bundle is equipped with the Quillen metric and the Bismut—Freed con-
nection. We refer t¢2,1, Chapter 9]for the construction of the metric and the connection.
The bundledet (£) comes with a canonical secti@et (£). It is given by
1 kernD;) =0,
Det (&)(b) := N
0 kerD}) #0.

Note that this definition makes sense becalese(£), = C canonically if ke(Dl‘f) =0.

Let Kg(B) C K9(B) be the subgroup which consists of all classes which vanish on the
one-skeleton oB. Since we assume that the index of the chiral Dirac operator on each fiber
vanishes we haviendex (€) e Kg(B), wherei ndex () € K°(B) denotes the index of the
family DT (&).

In [4] we constructed a refined indexdex3,(€) € H3,(B) such that

Rl NdexdqeE _ 22(8).
and
v(i ndex3(&)) = c1(i ndex(&)).
Here£22(€) denotes the degree-two component of the local index form which is given by

Q&) = / AT ch(vW),
E/B

whereW is the (locally defined) twisting bundle with induced connection, ¥Ad" is the
connection induced by the vertical metric and the horizontal distribution. Furthermore we
have verified by holonomy comparison that

Ip(det (£)) =i ndex3,(6).

4. Local trivializations of the determinant line bundle

In this section we want to lift the correspondence

Ip(det (£)) =i ndex3,(6)

to the level of locally trivialized bundles and cycles. To this end we recall the construction of
cyclesc € Z1(B, R}g) which represeritndex%el(g), and then we exhibit the corresponding
local trivializations of det (£) such that

Ip(det (6),U, s) =c.
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The notions of taming and tamed resolutions were introducéd]inThe chains which
represent the classndex2,,(€) are associated to and depend on tamed one-resolutions of
. In the following we roughly recall this construction referring[43 for all details and
notions. We choose a coveriggsuch that there exists a tamidg,, , for all / € 1. Over

U; N U, we have an induced boundary taming&efny, x AL, We choose any extension

to a taming(&y,nu, x AY),. These choices constitute a tamed one-resol#iofh £. The
associated chain= c(Z) € Z1(B, R}g) is now given in terms of eta forms and eta invariants
as follows:

=t = exp=2rin’(Evnu, x AH)).

Now we fix a tamed one-resolutiahand construct the local trivialization First observe
that the construction of the determinant line bundle with connection and metric extend to
pretamed families. We consider the bungle T — B such that the fibef; consists of

all pretamings of,,. The model of this fiber is the space of all even self-adjoint smoothing
operators, in particular, it is a Fréchet space. Then the geometric family p*€ overT

has a tautological pretaming;. Let6 : B — T denote the zero section &f. Forl € I

the taming€y, ; induces another sectidf : U; — Tyy,. LetI7 : U; x Al - T be given

by I(b, t) = tT;(b). Then we obtain a pretamed family* 7;. The restriction of/}* F; to

U; x {1} is tamed. Therefore, the corresponding burité (17" F;)y,x (1) is canonically
trivialized by the sectioDet (I7*F;). Forb € U lety, : A1 — U; x Al be the path
vo() = (b, 1 —1). Note thatl}* Fjy,x 0 = &y, Therefore we define the sectionof

det (&) by

Det (I7*F,) (b, 1)

b == 9

where||,, denotes the parallel transport alopg

Proposition 4.1. We have
Ip(det (), U, s) = c.

Proof. We first show that
1

2mi

Fixb € Uy andX € T,B. Leto : (—1, 1) — U, be any path witlr(0) = b ando’(0) = X.
Then we defineX : (-1,1) x Al — U, x AL by Z(s,1) = (o(s), ). The curvature
of X* o I*(det (F;)) is given by the local index form which vanishes by construction.
Therefore we have

Vdet (g)|OgS[ = r)l(5|U1,,).

t . Det (&
Vget ©logs) = Vge € | .0 '
hdet (E\Ul.t)(mt Eve)

By definition of the Bismut—Freed connection the right-hand side is equaiitﬁa‘fw,,,).
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Next we show that; /sy = exp(—2rin®(Ejy,nu, x AY))). Leth € Uy N Uy We can
choose a pattP : A1 — T}, such thatP(0) = 7}, P(1) = T, and P(s) is a taming of&,
for all s € AL. We consider the map : Al x A1 — T given by X(s, 1) = tP(s). The
pull-back ¥* F; has a flat determinant bundle. It follows, that

A exp(—Zni/ P*nl(]-',)> )
Sk Al

We claim that the left-hand side coincides with ex@rin®((&, x AY);)), where the taming
on the boundarg, x 3A is induced byf}(b) and7} (b). To do so we first deform the taming
above to the local taming given ®inside the world where both tamings and local tamings
are allowed (sef] for the notion of local taming). By the local variation formula we see
that this does not change thinvariant. Then we perform an adiabatic limit. The function
n° is independent of the parameter of the limit, and the result is just the integral of the
nt-form above.

This finishes the proof of the proposition. O

We still fix a tamed one-resolutiafd. Then we have the cycleand the corresponding
locally trivialized bundle(det (€), i, s) such thatz(det (€), U, s) = c. The determinant
sectionDet (&) can be represented by a family of complex-valued functignsc; such
thatDet (&)\y, = ¢is1.

Proposition 4.2. e have
0 ker(D;") # 0,

$i(b) =
: exp(—2rin®((& x Ab)y)),/det (Af) ker(D}) =0,

where A" = D D}, and where the taming of (£, x A1), along the boundary is induced
by 0 and T;(b), respectively.

Proof. It suffices to consider the pointse B, where ke(D;") = 0. Sincendet @5 =

1 we havelg|(b) = h98T @ (Det (£))(h) = Jdet (Af) (see [1, Proposition 9.41])n

order to compute the argumentg@fib) we deform the path, : s — (1 —5)T;(b) to a path
7+ A — T, with the same endpoints, but which runs through tamings. SieteF) 1,

is flat we still have

Det (.7'-]',(17))

si(b) = |5 |
7, det Fno) (Det (Frp)))

We then see thap;(b) = exp(2ri fAl nt(7*F;)). We now again use an adiabatic limit
argument in order to show that this integral is equal to(ex@rin®((£, x AD),)). O
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5. Zero-bordisms and associated sections

Assume that the geometric famifyis the boundary)V of a geometric familyV with
boundary. We assume theY is of product type along the boundary (4de Section 2].
Then it was observed by Dai—Fref&d that one can consider the exponentiated eta-invariant
of W as a section oflet (&).

Fix b € B. Sincei ndex(D;) = 0 there exists an isometr§ : kerD]: — kerD,".
Letdet (P) e I—Ion(Amaner(D,j), AM®ker(D,)) be the induced isometry. The choice
of P fixes a self-adjoint boundary condition f@(;), and we lety°(W},, P) be the
corresponding eta invariant. Then By Proposition 2.15]

dim ker(tDWp, P)) j|>
2

V) (b) == exp <2ni [no(wb, P) +

det (P)

X et @ (et (p)) < OCt O

is independent of the choice #f(note the ourn? is 1/21,° in the usual convention). In this
way we define a unit norm sectiat)) € I'1(det (£)).

We now fix a tamed one-resolutiah of £ and letc = c(Z) € Z1(B, R};) be the
corresponding cycle. Furthermore, 4dte the associated local trivializationaét (£). We
now have a locally trivialized bundle with unit norm secti@tet (&), t(W), U, s).

One of the main observations[#] was that the zero-bordisi gives sectiona € I'1(c).
Let us describe the construction of= (1), u € CO(B, U(l)‘;o). For eachl € I we can
extend the boundary tamir&yy, , of Wy, to a tamingV,y, ;. Thenu is given by

u = exp(2nin0(W|U,,z))-

Note thatx is independent of the choices. We have ind&ee- ¢1-9.
Proposition 5.1. We have ITz(det (£), tW), U, s) = (¢, u) € I'ZL(B, R}).
Proof. From[4] we know that

% dlogu; + ¢t = 2*Wy)).

If ¢ € I'1(det (£)) is the section which corresponds toythen this equation means that
vdet @log¢ = 27i21(W). On the other hand, by the generalizatiofi®fTheorem 1.9]

to twisted Dirac operators we also haveet ©log (W) = 27i2Y(W). We conclude that
the quotientp/r(WV) is locally constant.

We now argue that this constant must be equal to one. Assum8 ikatonnected and
that there existé € B such tha’rD,;F is invertible. Ifb € U;, then we can choose the taming
such thaffj(b) = 0. In this case? = 0 and°(W}, ;) is equal to the eta invarian® (W, 0)
with APS-boundary conditions. It follows thai{b) = t(W)(b).

In the general case we can always perturb the family such that in somebpoiBtthe
operatorD;r is invertible and then apply the argument above. O
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Note that one can prove this proposition independently of the knowled@@%? @
log t(W) in the spirit of the proofs irsection 4 This would lead to an independent verifi-
cation of the computation of this derivative.

6. Surgery

In this section we consider two geometric famili&s with boundary. We assume that the
geometry is of product type along the boundary. We assume that there are two isomorphisms
fi 10T — 9€7,i = 0,1. Then we can glue the families along the boundaries using
fo and f1, respectively. We denote the resulting geometric families with closed fibers by
Fi=¢* Ug (E7)OP,

We further form the geometric family

Gi=ET x AH Upup (06~ x AHP,

where we glue the boundary compong#t™ x {i} with (3~ x {i})% using f;. This family
is essentially the mapping torus ¢f o fo‘l.

The following formula can be considered as the precise form of a surgery formula for
the determinant line bundle.

Proposition 6.1. Theline bundle
det (F°) @ det (FH @ det (9),

admits a parallel unit norm section @.

Proof. We define® := t(W) for a suitable zero-bordism of® Ug (F1) Ug G with
2Y(W) = 0. To this end we consides := Al x A1\ B((1/2, 0), 1/4). We equipS with

the structure of a geometric manifold with corners also along the deleted half disc. We
define

WHE = €5 x AT Uj (9 gom x 9.

by gluing along the common boundadg* x Al = dg+ x Al x {1}. Then we gluent
with W) along the boundary face

AEL x [0, 1/4] x {0} U 9ET x [3/4, 1] x {0},
using(foxi dxidUf;xidxid). Theresulting familyVis the required zero-bordism.
By construction we have (W) = 0. O
Using the sectio® in the proposition above we can define the complex-valued function

Det (F% ® Det (F1)~1 @ Det (G)

b= . @

as a complex-valued function ah
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A surgery formula for the determinant section now amounts to a formula.fdhe
philosophy is that the determinant section is of global nature. In vieRroposition 6.1
this is in strong contrast to the determinant line bundle with its Bismut—Freed connection
and Quillen metric which is of essentially local nature. A natural procedure to pin down the
global nature of the determinant sections is to perform an adiabatic limit.

In the following we investigate the adiabatic limit @f|. A priori it is clear that this
norm is independent of the choices involved in the construction of the boidisvile will
see on the one hand that even the adiabatic limjtppflepends on more than just local
data coming fromdE* and the mapg;. On the other hand, the global contribution to the
limit is via the scattering operator which is just an involution of a finite-dimensional vector
space.

Without loss of generality we assume ttatonsists of a single point. We start with ex-
plaining the meaning of the adiabatic limit. FBr> 0 we consider the geometric manifolds
& = EF U, 0 x [0, R], where the glueing identified* with a6 x {0}. Replacings™
byEfQE in the constructions above we obté‘r‘f)}, andWg, respectively. By we denote the
boundary component 3/g which corresponds t@. Let ¢ be the corresponding function
defined in(2). The adiabatic limit corresponds ®o— oo. In the remainder of the present
section we consider the adiabatic limit|gfz|. The final result is stated & oposition 6.2

Let Ao(£%) denote the Laplace operatdpg&s)? on & equipped with Dirichlet bound-
ary condition and define the integler= dim ker(D(3&™)).

As an intermediate step we consider the computdtidhof the limit

0
lim R~ dei(A(fR)) — =2""det *(AdE))det (I — Cp,)%.
koo det (Ao(EF)) - det (Ao(Ex))

®3)

HereCy, is a finite-dimensional operator which will be explained below, dat* takes
the zeta regularized determinant of the operator on the complement of the kernel. This
formula holds under the condition of absence of eigenvaluéeb(A(}"%)) which become
exponentially small iR tends to infinity. We are going to apply this formula also vmﬁ
replaced byF%.

In order to defineC 7, we recall the definition of the scattering matrix. We comptgte
by attaching an infinite cylinde€l, := £ U, (3™ x [0, 00)). We write the restriction of
the Dirac bundley of £%, to the cylindrical part a¥jyc + «[0.00) = 9V * [0, 00) (using the
notation introduced if4]). Here the Dirac bundl&) overd€* is the boundary reduction
of V. Explicitly, 3V % [0, 00) is given bypr*3) ® C2 such that the Clifford multiplications
have the form

0 i 1 0
c(X) =cop(X) ® forX € TOE", ¢(3,) =i ® ,
—-i 0 0 -1

and the grading is given by

0 1
7 =1® .
1 0
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Herepr : 3™ x [0, 00) — €T is the projection, and is the coordinate of [0x0). If ¥
is a section ob), then we can lift it tau-independent sections

TN 1
v =va ().

+
of V|a£+x[0,oo)'

For » € R we now consider the space of bounded eigensections™a€ }) to the
eigenvalue\?. Let Ht := ker(A(d€1)) and recall that: = dim(H ™). If A2 is smaller
than the first non-zero eigenvaluest (3 ), then the dimension of the space of bounded
eigensections o * (£ 1) is given byh. All these sections have the form

efi)»uL:t(w) + ei)‘“L:t(C;:+ M) +o(u)

with uniquely determineas € #*, and for a certain operatairgﬁ (A) € End(H™). This

operator is called the scattering operator. Using the factét™) maps eigensections of
At (E1) toeigensections i~ (£ 1) one can check that!, (1) = —C; (A). Furthermore,
the scattering operator satisfies the functional equation

Crr(Ce(—1) =i d,
which implies thanﬁ+ (0) is an involution. Note thafp : €+ — €~ induces an isomor-
phismH(fo) : HT — H~. Now we can define

Cp = H(fo) Lo C.(0) o H(fo) o C; (0) € End(H™).

In a similar manner we defin€;, € End(#™"). Note thatC’, = C; (0)oCyo0 C; (0).
We conclude that the non-real eigenvalues of the unitary opert‘%tmome in pairgw, 1)
with |u] = 1,1 m(u) > 0. Because of the assumption about the absence of exponentially
decreasing eigenvalues 1 is not in the spectru@mfWe conclude thadet (1-Cy) > 0.
Using that

ndet Fo pet (Fi)) = det (AT(Fk)) = \/det (A(FL)),

we conclude that

i h9eL D (Det (FY))  det (1 Cp)
oo pdet 7o) pet (£L))  det (1—Cp)’

We now considedet (A(Gg)) in the adiabatic limit. Note that
Gr = (T x ALY Uspy (06~ x AR,

whereA}e = [0, R]. For the adiabatic limit of the determinantaét (A(Gr)), we have the
following formula in[12]

det (A(Gr) "~ det (A )% - eXPARIW(—) + Parja + &y e (DD (4)

Here the notation-®—~° means that the quotient of each side converges toR.-as cc.
Note that the second term may blow up in generat as co. HereA ¢, is the Laplacian
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acting on the flat vector bundle with the holonofy fo) ~* o ( f1) overS?. For the second
term,y(x) = (d/dx) log I'(x), y is Euler’s constant ang /> and;’A(ang)(s) are the residue
and regular parts af 5+ (s) ats = —1/2 such that

ai/2
s+ (1/2)
We eventually conclude.

Sapet)() = + CrA(ag+)(S)-

Proposition 6.2. If A(F ;'3) and A(Gg) have no exponentially decreasing eigenval ues, then
we have the following asymptotic behavior of |¢| in the adiabatic limit:

det (1—Cy)

R— o0
~ t A
|#r| det ( foufl)det a-cn

eXpRI(Y(—3) + Varz + &y e, (=D

Note that the right-hand side of this formula contains the tédat (1 — Cy,))/
(det (1 — Cyp,)) which in general depends on the global structuré&-af
It might be an interesting problem to study the adiabatic limit of the phage of

Remark. The surgery formula for the determinant line bundle with Quillen metric and
Bismut—Freed connection can also be deduced from the splitting formula of Riiza
On the other hand?roposition 6.2loes not follow from this work.

In [14], Scott also proved a splitting formula for the determinant line bundle. But he
considers a different metric and connection which are associated to Fredholm determinants
rather than zeta regularized determinants.

Assume that we have fixed an isomorphigéi = 9€~. The idea to associate a de-
terminant line bundle to the familie$* and to express the determinant line bundle of
E = ET Uy (E7)P in terms of these pieces (this is the content of a splitting formula) in
order to prove a surgery formula seems to be not so natural. The point is that in order to
define the determinant line bundle f6f one must choose non-natural boundary condi-
tions. In the remainder of the present paper we want to advertise the ide# thae rise
to trivializations of the index gerbes 6£*. The spitting formula for the determinant line
bundle is then equivalent to the statement that the line bundle (with metric and connection)
given by the difference of the two trivializations of the index gerbesf = 3 ~ induced
by £T and &~ is isomorphic to the determinant line bundle&fNote that we talk here
about the deter minant line bundle with the Quillen metric and the Bismut—Freed connection
and not about the deter minant sections.

7. Gerbesand sections

The goal of the present and the following section is to explain that the generalization
of the determinant line bundle to families with boundaries leads to a new kind of object:
sections of gerbes. The starting point is the observation that there is no canonical choice of
boundary conditions in general. The way out is to consider all choices (in some class) at
once.
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In the preceding sections we already met a similar problem in one degree less. Here the
exponentiated eta-invariant of a manifold depends on the choice of boundary conditions.
In order to make it natural, we were led to consider it as a section of the determinant line
bundle associated to the boundary.

We consider the complex of sheaves

1/27i)d |
;°<—_>/ A0 AL 42 s 0,

R2:0— UQ)
Then a gerbe is by definition a cyatee Z2(B, R2). Itis a tuplec = (c®?, ¢+, ¢29),
where

e OB A,  Mel'B Ay, APeCAB.UDY).

The cycle condition reads

1
5¢®0 =0, sctl = > dlog >0, 8¢%2 = dctL.
TTi

An isomorphismb : ¢y — ¢y is given by a chaitb = (%1, b1-0) € C1(B, R%), where
p*t e CO(B, AY), b0 e CHB.UDD).
such that

dp®t = (02 —% dloght® —sp0t =t —spt0 =20,
Tl

By definition,ng,(B) is the group of isomorphism classes of gerbes.
The curvature of the gerbe is the three-foRh A%(B, d = 0) which characterized
by RfUl = dc?’z. Furthermore, there is a characteristic cla&s € H3(B, Zp), which is

represented by(1/2ri)logc>°. Note that both, the curvature and the characteristic class,
only depend on the isomorphism class of the gerbe. A section of a gerbe is achain
(b°1, p1-0) as above satisfying only

pLO _ 5p0l — L1 _spb0 = 20

’

1dlo
o g

JTl

Let I'1(c) denote the set of all sections. Note that an isomorpliisntg — c¢; of gerbes
induces an isomorphismi(b) : I'1(co) — I1(c1) of sections byl(b)(bg) := bp + b. We
let I'Z2(B, R2) be the set of pairéc, b), whereb € I'1(c). Further, letr'HS,(B) denote
the set of isomorphism classesliz2(B, R%).

If b € I'1(c), then there is a two-for¢b € A%(B) such that

Vb € AX(B)y, = dopt — 2.

We call two section®;, i = 0, 1, isomorphic if there is a chaim € CO(B, U(l)%o) such
that
1
1.0 1.0 0,1 0,1
Su=>by" — by, ——dlogu = by — by~

2mi
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Observe, that the difference of two sectidnss I'1(c) is a an element ot (B, R%), i.e.
it corresponds to an isomorphism class of locally trivialized line bundles. The curvature
of this line bundle is given by ®(b; — bp). Similarly, the difference of two isomorphism
classes of sections of the gerbis just a class irHéeI(B). We thus have a pairing

(1) TZ(B.RE) X325 g2, [Z2(B. R) — Hpo(B),
given by ((c, bp), (c, by)) := [b1 — bg]. Note that this pairing does not factor over the
isomorphism classes; b;].

8. Thedeterminant line bundle of a family with boundary

We consider an even-dimensional geometric fandilwith boundaryd€. Again, we
assume thaf is of product type along the bounda#¢ is a geometric family with closed
odd-dimensional fibers. We havadex () = 0in K1(B). The index gerbe of such a family
was first introduced if9]. In the present note we adopt the point of viewW4if where the
isomorphism class of the index gerbe is givenibydex3,(3) € H3,(B). A gerbe

22(3, RZB) representing this class is associated to the choice of a tamed two-resd@lution
This resolution is given by the following choices. First we need an open ¢bwe(U))c;

and a taming&y, , for all I € 1. Then we need an extension of the induced boundary
taming ofd&y,ny, x Alto a taming(0&y,nu, X A, forall 1, k e I with U; N Uy # @.
Finally, we need an extension of induced boundary tamidg@fny, v, x A2 to a taming
O&ununU, % A?), foralll, k, h € I with Uy N U, N U, # 3. Thenc = ¢(Z) is given by
(seef4])

2= 2@, ot i= =M@ unu, x AV,

20 := exp2rin®((OE v, X A2)0))-

We now consider the family as a zero-bordism df€. It extends to a zero-bordiskvof

the tamed two-resolutiod. In order to ensure that such a lift exists we must choose the
taming of a&)y,,; such thatfy, 1 has trivial index for alll. Such a choice is possiblev

is given by extension of the boundary tamings to tamifigs;, and further, extensions of
the boundary tamings @fiy,ny, x Al to tamingsgy,ny, x AL. Then we have the section

b := b(W e I (c) given by

byt = =0t Ep). by = exp—2in® (Eunu, x AM)).
Note thatVth = —22(&). The following proposition generalizes from degree-two to
degree-three the observation that a geometric family with boundary gives rise to awell-defined

isomorphism class of a locally trivialized line bundle with section, namely, the determinant
line bundle of the boundary with the section introduce&éction 5

Proposition 8.1. Thepair (c, b) € I'Z2(B, R%) isindependent of all choices of tamings.
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Proof. Assume that we have two tamed two-resolutidigsandZ of d€ given without
loss of generality with respect to the same covetihgith index set/. Then we consider
the covering) with index setJ := I x {0, 1}, whereV; ) := U;. We define a tamed
two-resolutionZ” with respect to) as follows. Ond& y, . we choose the taming given by
Z,. In the next step we choosef |y, Ny, ; x Ay, as given byZ,, if € = 8, and arbitrary
else. This is again possible since we require trivial indeg, of_ . We continue to define
Z’ on triple intersections in the same manner.

Now the main point is tha, € € {0, 1}, are both obtained by a refinementZifso that
c(Zo) = c(Z1) € ZZ(B, R%). In the same manner given the zero-bordidM®f Z, we
can find a zero-bordisi of Z’ with respect to) such that the two zero-bordisrifg are
obtained by refinements. Then we h&®§) = b(W) € él(B, R%). O

Now assume that we have two geometric famifiésvith boundary&* as above together
with an isomorphisnd& ™ = 3£ . Then we form the glued familg := £+ U, (£ 7)%. We
have two pairg/(E+, 9€%) e Z2(B, R%). Let us assume for simplicity that the numerical
index of £ vanishes. The gluing formula for the determinant bundle reads the following
proposition.

Proposition 8.2. In H3,(B) we have the identity
(MET,0ET), ME~,0ET)) =det (&).

Proof. We construct a suitable bordisri. Let S ¢ R? be a pentagon. Lét,i =1,...,5,
be the boundary faces in cyclic order. We eqtiigith the structure of a geometric manifold
with corners such that all boundary compone#its are isometric to/ := [0, 1]. We
form the geometric familyV by gluing (€+ x I) U; 3+ x S U (€~ x I) according to
BET x D) 3310 x ), 34(3ET x §) 3 (€~ x D°P. The resulting geometric family
W has three boundary faces which are isomorphigt@ndé.

We fix a tamed two-resolutioi* of 9€ *. Itinduces a tamed two-resoluti@r of o€ ~.
Then we fix tamed zero-bordisnig of Z* associated to the zero-bordis&is of 9+, We
also fix a tamed one-resolutidhof £. This induces a boundary taminga,;, which we
extend to a taminyV,y, , for eachl € 1.

Letc := ¢(Z) andb® := b(W) € I (c). Furthermore, leb := b(U) € Z1(B, R})
as inSection 4 We must construct an isomorphism: by — bg — b. We will consider
u € I'(b + bg — by) such thatvP+Po—b1,, — 0. Letu be given by

up = exp(—2in’ Wiy,.0))-

Then indeedsu)ik = [b + bo — b1];° anddu; = [b + b — by]>* as required. O

References

[1] N. Berline, E. Getzler, M. Vergne, Heat Kernels and Dirac Operators, Springer-Verlag, Berlin, 1992.
[2] J.M. Bismut, D. Freed, The analysis of elliptic families. |. Metrics and connections on determinant bundles,
Comm. Math. Phys. 106 (1986) 159-176.



U. Bunke, J. Park/ Journal of Geometry and Physics 52 (2004) 2843 43

[3] J.L. Brylinski, Loop spaces, characteristic classes, and geometric quantization, in: Progress in Mathematics,
vol. 107, Birkhauser, Basel, 1993.
[4] U. Bunke, Index theory, eta forms, and Deligne cohomology. arXiv:math.DG/0201112.
[5] X. Dai, D. Freed,n-Invariants and determinant lines. Topology and physics, J. Math. Phys. 35 (1994)
5155-5194. arXiv:hep-th/9405012.
[6] P. Gajer, Geometry of Deligne cohomology, Invent. Math. 127 (1997) 155-207. arXiv:alg-geom/960125.
[7] N. Hitchin, Lectures on special Lagrangian submanifolds. arXiv:math.DG/9907034.
[8] T. Leinster, A survey of definitions of n-category. arXiv:math.CT/0107188.
[9] J. Lott, Higher degree analogs of the determinant line bundle, Comm. Math. Phys. 230 (2002) 41-69.
arXiv:math:DG/0106177.
[10] J. Murray, Bundle gerbes, J. Lond. Math. Soc. 54 (2) (1996) 403—-416. arXiv:math.dg-da/9407015.
[11] J. Park, K. Wojciechowski, Scattering theory, the adiabatic decomposition af-de¢erminant and the
Dirichlet to Neumann operator, Preprint.
[12] J. Park, K. Wojciechowski, Holonomy theorems fpmvariant and;-determinant, Preprint.
[13] P. Piazza, Determinant bundles, manifolds with boundary and surgery. Il. Spectral sections and surgery rules
for anomalies, Comm. Math. Phys. 193 (1998) 105-124.
[14] S. Scaott, Splitting the curvature of the determinant line bundle, Proc. Am. Math. Soc. 128 (2000) 2763—-2775.
arXiv:math.AP/9812124.



	Determinant bundles, boundaries, and surgery
	Introduction
	Hermitian line bundles with connection and Deligne cohomology
	The determinant line bundle
	Local trivializations of the determinant line bundle
	Zero-bordisms and associated sections
	Surgery
	Gerbes and sections
	The determinant line bundle of a family with boundary
	References


