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HALF-DENSITY VOLUMES OF REPRESENTATION
SPACES OF SOME 3-MANIFOLDS AND

THEIR APPLICATION

JINSUNG PARK

1. Introduction. In this paper we compute half-density volumes of the irre-
ducible SU(2)-representation spaces of Seifert fibred manifolds and graph mani-
folds. The half-density over the irreducible SU(2)-representation space of a
3-manifold comes from the Reidemeister torsion for Ad-SU(2)-representation.
More precisely, the determinant term of the first homology of the Reidemeister
torsion gives the half-density of the irreducible representation space. This is
because the tangent space of the irreducible representation space can be identi-
fied with the first cohomology of the twisted cochain complex.
The motivation of this paper is given by two sources. The first source is E.

Witten’s method to compute the symplectic volume of the irreducible SU(2)-
representation space of a Riemann surface. In [W2] Witten suggested a useful
method to compute the symplectic volume of this space using the Reidemeister
torsion and the character theory of the Lie group SU(2).
The second source is the invariant defined by L. C. Jeffrey and J. Weitsman

in [JWl]. This invariant is motivated by the asymptotic expansion of the Witten
invariant of a 3-manifold. Jeffrey and Weitsman define this invariant using the
Reidemeister torsion as a half-density measure of the irreducible SU(2)-repre-
sentation space. Hence, to compute this invariant we must compute the Reide-
meister torsion completely, including the determinant term of the homology,
which is the half-density measure of the SU(2)-representation space. In this
paper we call this invariant the Jeffrey-Weitsman-Witten invariant.
From the above motivations, we could consider naturally that this invariant

might be computed by the method of [W2]. The examples to which we apply
the method of Witten are Seifert fibred manifolds and graph manifolds. This is
because these manifolds are made from the trivial circle bundle over the Rie-
mann surfaces by twisting finite fibres. So the method of Witten is applicable
with some modification.
To compute the half-density derived from the Reidemeister torsion, we must

compute both the scalar part and the determinant part of the Reidemeister tor-
sion. The method to compute the scalar part comes from IF]. For Seifert fibred
manifolds and graph manifolds, this value gives the weight of the half-density to
each connected component of the irreducible SU(2)-representation space. So we
combine two methods of IF] and [W2] to compute the half-density volumes of
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the irreducible SU(2)-representation spaces for Seifert fibred manifolds and
graph manifolds.
Our computing method is "to cut and paste" with a topological viewpoint.

This can be comparable to the method of P. Kirk and E. Klassen to compute the
Chern-Simons invariants for 3-manifolds [KK]. We decompose the given mani-
folds into simple pieces with which we can deal easily, and then we glue the data
of the decomposed pieces and investigate the gluing maps. The data of the pieces
and the gluing maps gives the result that we want.
Now we explain how this paper is organized. In Section 2 we study basic

examples, which are the building blocks of Seifert fibred manifolds and graph
manifolds. We study the Reidemeister torsions and the SU(2)-representation
spaces of these basic examples. In Section 3 we compute the scalar part of the
Reidemeister torsions of Seifert fibred manifolds and graph manifolds for Ad-
SU(2)-representations. The computing method of Section 3 comes from IF].
This method is exactly "to cut and paste" so that we can apply the result of Sec-
tion 2. In Section 4 we integrate the determinant term of the first homology part
of the Reidemeister torsion over the irreducible SU(2)-representation space. The
integration process of this section is also "to cut and paste." We get the half-
density volume of the irreducible SU(2)-representation space by investigation of
the pasting process for the half densities of the representation spaces of the
decomposed pieces. In Section 5 we apply the result from Section 4 to compute
the Jeffrey-Weitsman-Witten invariant for a Seifert fibred manifold whose irredu-
cible SU(2)-representation space is nondiscrete. This gives the exact value of the
Jeffrey-Weitsman-Witten invariant for a Seifert fibred manifold with the non-
discrete SU(2)-representation space combined with the result of D. R. Auckly for
the Chern-Simons invariant for this manifold.

[}2. Basic examples. In this section we study some basic examples, which we
will use in Sections 3 and 4. We study the Reidemeister torsions and SU(2)-
representation spaces of S1, T2, and pants P. These examples are the building
blocks of some 3-manifolds with which we will deal later. From now on, R-
torsion always means the Reidemeister torsion. For the definition and the basic
property of the R-torsion, see IF].
Our first example is the circle S1. Every SU(2)-representation of rI(S1) is

reducible, since 71 (S1) is abelian. Hence the representation is determined by the
holonomy parameter u so that the SU(2)-representation p has the following
form up to conjugation

e niu 0 )Pu(1) 0 e-2u

for the generator 1 e 71:1(S 1) Z. Hence the SU(2)-representation space for I(S1)
is S, which can be identified with the maximal torus T of $U(2). We denote this
space by o. This representation space will be used importantly later. The R-
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torsion of S for Ad-SU(2)-representation is denoted by z(S Ad(pu) ). R-torsion is
given by the torsion of the following chain complex C.(S1, Ad(pu) )"

0 CI(R 1) (R)= su(2) -+ Co(R 1) (R), su(2) + 0,

where R is the universal coveting space of S1, and the tensor product is taken over
the r rq(S). Then the homology of C.(S1,Ad(p,)) is

H0(S, su(2)p) R[e (R) v],

H(S1, su(2)p) R[x (R) v],

where R is the real number field, e, x are the 0,1-cells of S1, respectively, and v is
the Ad(p)-invariant vector in su(2). Then we have that

(2.1) z(S1,Ad(Pu)) 4 sin2(2nu)D(s,) det H,(S1, su(2)p)-1

where Dn.(s,) (e (R) v) (R) (x (R) v) -1 and det H.(S1, su(2)p) det H0(S1, su(2)p) (R)
det Hl(S,su(2),)-. For the notation about the determinant line, we follow the
notation of IF].
The next example is the torus T2. Since nl(T2) is also abelian, every SU(2)-

representation of n (T2) is reducible with the following form:

e2niot
p,#((1, 0))

0
0 ) (e2’ 0 )e_2ni p,((O, 1))

0 e-2i

for a basis (1,0), (0,1) of rq(T2). We know that SU(2)-representation space
R(T2, SU(2)) is an object called the "pillowcase." The R-torsion (T2, Ad(p,)) is
the torsion of the following chain complex C.(T2,Ad(p3)):

0 -- C2(R2) (R)n su(2) -- C1 (R2) (R)n su(2) -- Co(R2) (R) su(2) --* 0.

Then we have

Ho(T2, su(2)p) R[e (R) v],

H(T2, su(2)p) R[x (R) v, y (R) v],

H2(T2, su(2)p) R[x y (R) v],

where R is the real number field, v is the Ad(p)-invariant vector in su(2), and
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e, x, y, x w y are the 0,1,2 cells of T2, respectively. From the Poincar6 duality,

(2.2) z(T2, Ad(p)) (e (R) v)-1 () (x () 1) A y )/)) ) (X k.) y )/))-1

D(T2 E/det H,(T2, su(2)p) -1

where det H.(T2, su(2)p) ()=0 Hi(T2, su(2)p) (-l)’"
Our third example is the pants P. Contrary to above examples with abelian

fundamental groups, I(P) is the free group with two generators. Hence there
are irreducible SU(2)-representations of na (P). We can see that the SU(2)-repre-
sentation space R(P, SU(2)) is the quotient space of SU(2) x SU(2) by SO(3),
since P is homotopy equivalent to the figure-eight simplex P. We denote the
irreducible SU(2)-representation space of l (P) by R(P, SU(2))- c R(P, SU(2)).
Since P is homotopy equivalent to P, we consider a chain complex
C.(P’,Ad(p)) instead of the chain complex C.(P, Ad(p)) for an irreducible
SU(2)-representation p

0 C (/5,) (R), su(2) Co(/5’) (R)n su(2) O,

where P’ is the universal covering space of P’. Then we have

Ho(P, su(2)) H2(P, su(2)) 0,

Hi(P, su(2)p) R[x (R) Vl, X2 ( 1)2, X3 ( /)3],

where R is the real number field, x{s are the three boundaries of P, and vi’s are the
Ad(p(xi))-invariant vectors in su(2). The R-torsion z(P, Ad(p)) is the scalar mul-
tiple of

(2.3) (X1 () 01) A (X2 ()/)2) A (X3 () 03) 6 det H,(P, su(2)p)-1

where det H,(P, su(2)p)= det Hl(P, su(2)p) because the representation p is irre-
ducible.

In fact z(P, Ad(p)) is a volume form of R(P, SU(2))-. Now we consider more
closely the volume form z(P, Ad(p)). Let

: R(P, SU(2))- -, .W1 x .WE x .Wa

be the map induced by the restriction from P to c3P {Xl,X2,x,3}, where .Wi is the
SU(2)-representation space for a circle xi defined the same way as .Z’ for S1. Recall
that ai can be identified with the maximal torus T of SU(2). By the definition, tr

takes the conjugacy class of an irreducible representation p to the holonomies
of p(xl),p(x2),p(x3). Since tr is injeetive map, there exists an object on
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1 x 2 x 3 whose pullback is the volume form z(P, Ad(p)). We denote this by
tr, z(P, Ad(p)). Since we can identify i with the maximal torus T1, we have that

tr,z(P, Ad(p)) fvl VEV3

for some f L2(..al x ..2 x ’3), where vi is a natural volume form on the max-
imal torus T with frl vi 1. From now on, Vol(G) is the volume of the compact
Lie group G. Then we have the formula

(2.4) tr,z(P, Ad(p))
3

Vol(SU(2))2 n i=1

where the above sum is taken over all the irreducible representations of SU(2), and
n is the dimension of the representation space of an irreducible representation 0.

Note that the equality in (2.4) holds in L2-sense. The proof of (2.4) is given in
[W2].

If we assume that one boundary x3 of P has a fixed holonomy, we must mod-
ify (2.4). The following formula for a boundary with the fixed holonomy is also
used in [W2] without the explicit derivation. So we derive it here. In the follow-
ing proposition, we use the character theory of SU(2). For the details, see [BtD].

PROPOSITION 2.5. If the trace of p(x3) is fixed so that tr(p(x3)) 2 cos(0)for
some fixed O, then a,z(P, Ad(p)) is

2 Vol(S2) 1 sin(n0)
Vol(SU(E))2 n- sn( )(,(p(xl)))(,(p(x2))VlV2,

where the above sum is taken over all the irreducible representations ofSU(2) and n
is the dimension of the representation space of an irreducible representation .
Vol(S2) is the volume ofS2 inducedfrom a volumeform of SU(2).

Proof. We can consider the set of conjugacy classes of representations sat-
isfying the given condition as the inverse image of the map

P3 o tr R P, SU 2 ,2 x c’2 x L’3 -- ’3
for e(2niO) . P3, where P3 is the natural projection. We denote this inverse image by
R(P, SU(2), 0)-. And let S2(0) be the subset of SU(2) with fixed trace 2 cos(0).
Then there exists the natural projection map p SU(2) x $2(0) R(P, SU(2), 0)-
with a fibre SU(2)/Z2. As above, we have a map

tr’: R(P, SU(2), 0)- f’ x a2,

which sends [p] in R(P, SU(2), 0)- to the holonomies p(X1), p(X2).
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We push z(P, Ad(p)) by a’ so that we get a volume form tr’,z(P, Ad(p)) on
-1 x .2. Then this volume can be written by fvlv2 for some f e L2(.l .2).
To find f exactly, we integrate the character ;G of p(x), p(x2) for the irreducible
representation of SU(2). This is because the set of characters (;t) for all the
irreducible representations of SU(2) is the uniformly dense subset of the con-
tinuous function space of .x x 2. So we have the following equalities:

Z (p(x1));t2 (p(XE))ar,z(P, Ad(p))

2 Is p*tr’*(Zl(P(X))X2(P(X2))) dUE dg(O)
Vol(SU(2)) V(E)S2(O)

2
Vol(SU(2)) U(2)x$2(O)

7, (g(o)-lp(x2)-I)7.2(P(X2)) dUE dg(O)

21, [ 1 (0(0) -1) dg(O)
nl Js2(0)

;(, (g(O)-1) Vol(S2 (0))2tl,X2

We have that

a,z’(P, Ad(p)) 2 Vol(S2(O)) 1 X.o(g(O)-l)z(p(Xl))Zot(p(x2))VlV2.
Vol(SU(2))2

On the other hand, z(g(O)-1) sin(nO)/sin(O) and Vol(S2(0)) Vol(S2). So we
get the formula in the proposition.

3. R-torsion of Seifert fibred manifolds and graph manifolds. In this section
we compute the scalar part of the R-torsion of Seifert fibred manifolds and graph
manifolds for the Ad-SU(2)-representation. This quantity gives the weight of the
half-density for each connected component of the irreducible SU(2)-representa-
tion space of Seifert fibred manifold or graph manifold. Our computing method
in this section comes from [F].

First we consider the manifolds whose R-torsion we will compute. We denote
the Seifert fibred manifold with the Seifert invariant {g; (1, ill),’’’, (tm, flm)} by
M M(g; (, fl),..., (m, tim))" We have that I(M) is

{ }JhlJ 1 [ai, bi] 1ai, bi, qj, h" [h, ai] [h, bi] [h, qj] 1, qj qj
j=l i=1
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We assume that g >_ 2 from now on. The irreducible SU(2)-representation of
zrl (M) is well known. (See [A], [FS], [KK].) We review some facts that we need.

Since h is central in nl(M), an irreducible representation p takes h to 4-1 in
SU(2). So the trace of p(qj) is 2 cos(rcnj/o.i). The set of numbers {nl,... ,rim},
which are called "rotation numbers," determines a connected component of the
irreducible SU(2)-representation space R(M, SU(2))-. The rotation number ny is
even (odd) if flj is even (odd).
Next we consider a graph manifold, which is made from two Seifert fibred

manifolds M1, M2, which have a torus boundary each. We review some mate-
rials about graph manifolds of [KK]. M1 is given by deleting a solid torus
D2 S from M, where a disk D2 lies in the base surface Z0 and a circle S is the
fibre component of the Seifert fibration. Then 1 (M1) is

Zrl(M1) {ai, bi, qj, h" [h, ai] [h, bi] [h, qj] 1, q.Jh#j 1}.

The other manifold M2 can be constructed in the same way from another
Seifert manifold M(g’; (, fl’l),..., (’n, fin))" Then rl (M2) is

,fl’ k#, 1}gl (M2) {a’v, b’v, rj,, k: [k, ai, [k, b’v] [k, rl,] 1, ,j

Since OM1 0M2--T2, we can glue two manifolds M1,M2 by an auto-
morphism q of T2. We assume that the meridian, the longitude pairs of
c3M1, OM2, is given by

}{#1,21} qj [ai, bi],h
j=

]=1 i=l

Define b: OM OM2 by

(3.1)
(#1) 0{#2 + fl/-2,

where 6 fly -1. Then we have a glued manifold N M u# M2, and we call
this manifold a graph manifold. Later we need to distinguish two cases, when y 0
and y 0. When we need to clarify the dependence of y, we denote the graph
manifold by N to express the dependence of y. The natural question is how we
glue the irreducible SU(2)-representations Pl, P2 of the manifolds M1, M2 to get an
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irreducible SU(2)-representation of graph manifold N. In fact, there is a condition
of gluing representations. Since ni (t3Mi) is abelian, we have

p (li)
0 e-2,a,

Pl(21)
0 e-2’i’

P2(92)
0 e-2i2

P2(’2)
0 e-2i2

We can see that 1, 2 ff Z[1/2] since h,k are central. Then the condition that a
glued representation p exists is that

(3.2) 1 02 -I- ill]/2, I//1 )2 + t@2"

This condition comes from (3.1).
To compute the R-torsions of Seifert fibred manifolds and graph manifolds,

we decompose these manifolds into simple pieces, which we considered in
Section 2. For the Seifert fibred manifold M(9; (l,fll),..., (tXm, flm)), we can
decompose M into

m-solid toil Ay Df x S and (2(9- 1) + m)-copies of Xi Pi x S

2 lies on the base surface Zg S is the fibre component, and Pi’s arewhere a disk Dj
the pairs of pants. The decomposition is the inverse process of construction of M

m 2of Z ,D We can assume that each Xi meetsand the pants decomposition g j=. .
only one Ay or does not meet Ay by the isotopic moves of the exceptional fibres.
For graph manifolds N MI w# M2, we decompose N into M1, M2, and then

apply the same process to Mi as above. So we have

m-solid tori Ay, n-solid tori By,,

and (29 + m 1)-copies of Xi, (29’ + n 1)-copies of Y/,

where Xi, Yi, are homeomorphic to P x S and

2#+m- m 2g+n n

M1 X 1,.) Ay and M2 .) Y/, ) By,.
i=1 j=l i=1

We can assume that X1 meets M2, Y1 meets M1, and Xi (Y/,) meets only one Aj
(By,) or does not meet Ay (By,) as above.
We consider SU(2)-representations of nl(M) or n(N) such that the induced

representations by restriction to each piece Xi or Xi, Yv are irreducible. We call
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such a representation a totally irreducible representation for M or N with respect
to the above fixed decomposition.
As in the previous section, we denote the highest wedge product of a basis of

H,(X, su(2)px) by DH,(X,su(2)px and (=0 (DH,(X,su(2)px)) (-1)’ by DH,(X for a mani-

fold X of d-dimension. We denote the dimension of Hi(X, su(2)px) by hi(X) in the
following proposition.

PROPOSITION 3.3. Let PM, PN be irreducible SU(2)-representations of hi(M),
n(Nr) with rotation numbers {nj}, {nj, n,}. We assume that PM, P, are totally
irreducible for M, N. The R-torsion of the Seifert fibred manifold M(g; (j,
and the graph manifold Nr M(g; (j, flj)) M2(#’; (j,, fl,)) is given by

det H, (Nr, su(2)p )-1

where

fljfl 1 mod j, fl,fl,*’ 1 mod ,,’

1 ifv=O
f()=

if#=0,

hi(M) h2(M) is 6([/- 1) + 2m and hl(Nr) h2(Nr) is 6(0 + 0’- 1) + 2(m + n),
6(9 + O’) + 2(m + n) 7/f 0, V - 0.

Before we prove the proposition, we remark on some facts. We can see that
the R-torsion depends on the gluing torus automorphisms of the decomposed
pieces by (,fl), (,,flj,) and the representation PM, PN by rotation numbers
(nj), (n,n,). Since Ad-SU(2)-representation is unimodular, the highes_t wedge
product of DH(M,su(2)M) does not depend on the basis change of Ci(M) when
a basis of su(2) is fixed. In the above proposition, we have that Dff(.)
Dnl(.,s,(2)) (R) D(.,s,(2)), since we assume that the representations are irreducible.

Proof. We shall compute the R-torsion of graph manifold Nr for the totally
irreducible SU(2)-representation with respect to the given decomposition. For
Seifert fibred manifolds, we get the result in the process of computation of graph
manifold.
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First we define some tori from the decomposed pieces such that

Tj tghj Tj t3Bj

Tili2 Xil n Xi2 |112 T=MnM2.

We have the following formula about the R-torsions of each piece and the given
manifold Nr such that

(3.4) z(Nr) @ "c(Xi)" "c(Aj). "c(Yi,)" "c(Bj,)
{i,i,,j,j,)

() (Tj). z(T/). (T/,,2) (T..:, ). (T) ((E.)-’
{i,i’,j,j’}

’1 t2
r=l

where denotes the tensor product and the last term z(Er.) is the torsion of the
spectral sequence of the generalized Meyer-Vietoris sequence. For the proof of
(3.4), see IF]. In the above formula, we omit the representation notation for
convenience.

Since Aj, Bj, are homotopy equivalent to S1, we can consider S instead of
Aj, B, for the R-torsion. Let e be the 0-cell of each piece, and aj, bj, be 1-cells of
Sl’s which are homotopy equivalent to A,Bj,. Then we have that Dtt.(Aj)=
e(R) a- and DH.(Bj,)= e(R) bj-71. We omit the notation of invariant vectors of
Ad(p)(aj), Ad(p)(by,) for convenience. Then we have the following formulas from
the construction of Nr and (2.1)"

(3.5)

z(A,) 4 sin2 (nn?JD-1

\ Oj ] H.(Aj)

z(B,) 4 sin2
k ot, n.(n,),

where fl? 1 mod , flj,?), 1 mod ),, and ?j, ), are given by the twists of the
exceptional fibres.
For Xi, Yi, which are homeomorphic to Pi x S, P[, x S1, we can see that the

Sl-component has the trivial holonomy, since the given representations take h, k
into 1 SU(2). Hence we have that

z(X,) (x (R) x2 (R) x) (R) ((x w h) (R) (x/2 w h) (R) (x w h))-’

(3.6)
z(Yi,) (y, (R) y2i, (R) y,) (R) ((y, k) (R) (y2v k) (R) (y3i, k)) -1
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where dPi {xl, x,x} and cP[, {y,, y, y/3,}. We omit the notation of invari-
ant vectors under Ad(p(xi)), Ad(p(y),)) for convenience. For the tori T/, T$, T/.i..,
Ti,, T, we have the value of R-torsion for these tori from (2.2).

Now we compute the spectral sequence terms E.r. First E. is given by

ll 62 12
0 ,----- ( H2(Zi) H2(Ti2) 0

i=1 i=1

11 m+n
0 @ nl(Zi) @ nl(Ci) -6-- @ Hi(T/2) 0

i=1 i=1 i=1

m+n 12
@ no(C,) ’-- q3 no(r, " 0,
i=1 i=1

where 11 2(g + g’- 1) + (m + n), 12 3(g + g’- 1) + 2(m + n) and

11 2g-l+m 2g-l+n

U z, U x, U
m+n m n

U Ci=UAjUBj’’j’

12 m n

UT2= UTj U T/ U T.i.. U T!,:.T.
i=1 j=l j’=l {i.i..}

We can see that

(3.7)

60(e) e for e e H0(T/) Ho(T/),

6o(e) 0 for e e Ho(Tt,..) ) Ho(T!,t.) Ho(T).
{i.i..} {i:i:.}

Hence the dimension of the kernel of o is 3(g + g’ 1) + (m + n).
Since every gluing is made from the torus automorphism, we have that

12
t$2(/- m)- m for a basis of k3 m "0-) H2(T/2).-

Hence the dimension of cokernel of 62 is 3(g + g’ 1) + (m + n).
The map 1 depends on the gluing-torus automorphism more explicitly. To
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describe this map, we introduce a natural basis of O12=1 Hi(T/2) such that

H1 (Tj) R[l, m], HI(T/) R[l,, m,],

HI(T/.i..) R[li.i..,mi.i..], HI(T/!i:.)= R[l,.i,..,m:i:.],

Hi(T) R[l, m],

where R is the real number field. Then we have that

(3.8)
(m) xi 0 H(X) U(A),

1 (lj) yjX ] aj H1 (Xi) H1 (Aj) for some i,

where is given such that Aj meets X and 7j is given by the gluing torus auto-
morphism as (3.5). For other intersection tori, we have that

(3.9)
bl(mi.i..) xi. xi. Hl(Xi.) Hl(Xi..),

bl(li.i..) 0
_
Hl(Xi.) HI(Xi..).

Similar formulas hold in the gluing of the part of M2. And finally we have that

61(m) x 3 oy Hi(X1) Hi(Y1),

bl(l) 0 VYi Hi(X1) Hi(Y1).

The kernel of 1 is generated by

(3.10)

Hence the dimension of the kernel of 61, which is same as the dimension of the
cokernel of dil, is 3(0 + 0’ 1) + (m + n) or 3(0 + O’) + (m + n) 4 if 0 or
y-0.
From above we can see how E. is given. In fact E? is the H,(N). If we gather

(3.5) (3.10) and apply these to (3.4), then we get the result about R-torsion in
the proposition. Moreover we can see that hi (Nr) is the sum of the dimension of
the kernel of 60 and the dimension of the cokernel of 61, and that h2(Nr) is the
sum of the dimension of the kernel of 61 and the dimension of the eokernel of 69.
inE.x. [5]
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4. Half-density volumes of representation spaces. In this section we compute
the half-density volumes of the irreducible SU(2)-representation spaces of Seifert
fibred manifold M and graph manifold N. The half-density volume comes from
the R-torsion, more precisely, from the determinant term of the first homology in
the R-torsion. The tangent space of R(M, SU(2))- at [p] can be identified with
the first cohomology H(M, su(2),u). So the determinant of the first homology

DHI(M,su(2),) gives a volume form of R(M, SU(2))-.
As we studied in Section 3, the sets of the rotation numbers {ng}, (n.,nj,} of

the SU(2)-representations pu, ps determine a connected component of the irre-
ducible SU(2)-representation spaces R(M, SU(2))-,R(N, SU(2))-. We denote
the connected component of irreducible SU(2)-representation spaces determined
by {nj},{n.,n,} by R(M, (nj)), R(N,(n.,n,)). Hence we have the following
equalities about the volume of R(M, SU(2))-, Vol(R(M, SU(2))-) for the Seifert
fibred manifold M:

Vol(R(M, SU(2))-) IR z(M, Ad(pM)) 1/2

(M,SU(2))-

DHI(M,su(2):M)

The similar formula holds for the graph manifold N. Hence we restrict our concern
to the connected component R(M, (n.)), R(N, (ny, nj,)).

Before we compute the term (M,(,))DH(M,su(2),,u), we remark on some facts.
The spaces over which we integrate are noncompact open manifolds. We will use
only the totally irreducible representations in the process of the integration to get
the half-density volume of the representation space. This is possible because the
complement of the totally irreducible representations are lower-dimensional, so
that the complement can be considered as the measure zero set. Hence we can get
the volume if we use only the totally irreducible representations with respect to the
given decomposition in Section 3.
We shall use the generic fibration structure of R(M, (n.)), R(N, (n.,n,)) to

integrate the half-density volume form. So we introduce the generic fibration
structures of R(M, (ni)), R(N, (n, n,)).

Recall the base surface g of M. We delete the m-disks D’s in Eg where dD is
free homotopic to q. We denote this by g,m. From the condition q;.h 1 we
can give the holonomy conditions on Eg,m. We denote the space of the irre-
ducible SU(2)-representations of rl(Eg,m) satisfying above holonomy conditions
by R(Eg,m, (n)), where (n) can be determined as the rotation numbers which
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determine the connected component of R(M, SU(2))-. In fact, we see easily that
R(.,o,m (nj)) can be identified with R(M, (nj)), so we use this identification from
now on.
We decompose Z0,m into the 2(9 1) + 2m-pairs of pants Pi with 3(9 1) + rn

intersection circles S between the pair of pants such that Xi Pi x S for the
fibre circle S1. We denote the SU(2)-representation space over S by .Wi as in
Section 2. Then there is a natural map

p: R(Xg,m (/’/j)) --e -ql X’’’ X "-3(g-1)+m

induced by the restriction such that

P([P]) ([PISS],’",
We consider the SU(2)-representation pzo, of /I;l(Xg,m such that the repre-

sentation PI,, induced by the restriction to each piece P is irreducible. Such a
representation of rl(Eg,m) corresponds to a totally irreducible representation
of rrl(M) with respect to the corresponding decomposition of M. For such a
representation Pr,v,,, the inverse image of P(Pr,o.,) can be identified with the
3(9 1) + m copies of the maximal torus T divided by (29 + rn- 3) copies of
the center Z2 of SU(2). The maximal torus T gives the gluing data between the
pair of pants, and the center Z2 comes from some symmetry. For the details
about the proof of this fact, see [JW2, Proposition 3.8] and [W2, (4.65)]. So we
have a fibration structure of R(.,o,m, (nj)) R(M, (nj)) generically such that

3(0+m / 2#+m-3 3(a-1)+m
(4.1) 0 T/l O Z2, -- R(M, (nj)) @ .Wi O.

i=1 i=1 i=1

The "genetic fibration" means that the fibration exists only for the totally irredu-
cible representations.

In a similar way, we can consider a generic fibration for the graph manifold

Nr. But we need to distinguish the cases when y 0 and , : 0 for graph mani-
folds. We recall (3.2)

(3.2) bl X2 + ill/t2, I]/1 Y2 + l/t2,

where $i is fixed for each connected component R(N, (nj, n,)). If 0, we can see
that

I]/1 + @2 and 1 -----2 + fl2,

since di -1. So the variables 1, 2 are related by
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If V q: 0, we have that

If we combine this with the first equality of (3.2), then we have that

a 1
+72,

so the variables 1, 2 are fixed.
We can consider the base surface g,1 of M1 and the base surface g’,l of M2.

We delete m-disks, n-disks from Zg,1, Zg,,, as above. Then we get Z,m+l, Z’,n+.
Note the boundaries of Z,m+, E,,,+ consist of m + 1 circles, n + 1 circles,
respectively. We decompose Eg,m+l, X,,n+ into

(2g + m- 1)-pair of pants Pi and (2g’ + n- 1)-pair of pants P[,

such that Xi Pi S1, Y/, P, S1- Recall that X P S meets M2 and
Y1 P S meets M1.
As above, we may have the generic fibration of R(N,, SU(2))- from the corre-

spondence of X,m+ and Z,,n+i to M1 and M2. But the generic fibration of
R(No, (nj, nj,)) is not the same as the generic fibration of R(Nr, (nj, nj,)) for, : 0. If we consider the boundaries of P1 and P around which the holonomies
of PIP,, PIPI are 1, b2, respectively, then we know that i is fixed if ), # 0 and
is free witti the above relation if y 0. Hence we have generic fibrations of
R(No, (nj, nj,)), R(Nr,o, (n., nj,)) such that

(4.2)

13 1///__1 /5(0)
0 @ T Z2, R(No, SU(2), (nj, n,)) @ .Wi - 0

i=1 /=1

13 /i/__l /5(1)
0 ( T/l Z2t -’-’ R(Nr#0, SU(2), (nj, n,)) @ i --* 0,

i=l i=1

where 13 3(# + #’- 1) + (m + n), 14 2(# + #’) + (m + n) 3, and 15(0)
3(# + #’- 1) + (m + n),/5(1) 3(# + #’) + (m + n) 4.
To state our main result, we define a function (kA(s) defined for s e C with

Re(s) >> 0, a finite set A e R Z, and for k 0, 1. The function (kA (s) is defined
by

(s)-- (-1)
n=l i=l

sin(7nai)
sin(Tta)

for A {al,..., am}. For an empty set , ((s) is the Riemann-zeta function.
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THEOREM 4.3. The half-density volume ofR(M, (nj)) is given by

\ = / (a(2(O-1)+m)Vol(R(M, (nj))) cu [aj[1/2
where

CM 2m-1 Vol(S2)m Vol(SU(2))-(-l+m),

The half-density volume ofR(Nr, (nj, n,)) is given by

Vol(R(No, (nj, n,)))

m Isin()[ i, ,,cOs
Il 1/2

fl-l
(2(0 + O’- 1) + (m + n)),

where

CON-- 2m+n+lVol(s2)m+nvol(SU(2))-(o+o’+m+n-1)"

k={ 0 /f fld/2e.Z
1 /f 2 Z[1/2]- Z,

nlAv 21,22, 1,’", ’)r/m /"/ r/n
am a an

and

Vol(R(N,#o, (nj, n},)))

+m 1 o 1),)(,42(2g +n--

where

C 2m+n+l Vol(S2)re+n+2 Vol(SU(2))-(O+O’+m+n),

{ ’}rl /’lnAM2 2q2, a, ,a
n
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Proof. We shall compute only the half-density volume of R(Ny, (nj, n,)). For
R(M, (nj)), we can get the result by the same way.
From Proposition 3.3 and (4.2), we have that

Vol(R(N, (nj, nj,))) "c(N, Ad(pN,) 1/2

IR(N,(ns,nj, DH’ (N’su(2)pN

(h/5(k)where F )li1Ti/(I4Z2,, B a.xi= .L’i with k 0, 1 if 0, ), 0, and
#xv, #xit are the volume forms of F, B such that DHI(N,su(2)pN) lXF’p*IxB. We see
easily that #xv on F is the 3(9 + O’- 1)+ (m + n) copies of the natural volume
form v of the maximal torus T with frl v 1. In fact #xv is given by the volume
form of the kernel of 60 in the proof of Proposition 3.3. So we have

Iv 1
F 22(O+O,)+(m+n)_3

(---- /5 (k)The volume form g/ on B .,"i=1 -i is given by the volume form of the
cokernel of 6 in the proof of Proposition 3.3. So gB can be written by

2 /5(k)fovl"’Vts(O) or flv0""Vl5(1) for some fk L ()i= "Lai) for k 0, 1. From (2.4),
Proposition 2.5, and the pants decomposition of Eo,,,+I,Z,o,,,+, we can see that
fo f 9, f f h, where f is the product of

2(0 + g’ 2) copies of
3

VoI(SU(2))2 n i=l

m copies of
2 Vol(S2 1

n copies of Z(");t ("),
2 Vol(S2) __1 sin, j, ]

Vol(SU(2)) n
sin, , ,]
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and g is the product of

2 copies of
32 IHz(.)Vol(SU(2))2 n

and h is the product of

2 Vol(S2) 1 Isin(2nnx)l
Vol(SU(2))2 n- Isin(27tl)l

9(" )9(" )’

2 Vol(S2) 1 Isin(2:nI2)
Vol(SU(2))2Vn Isin(2#2)l

z(’)x(’),

where the value of representation p([xi]) or pcr ([Yi,]) appears at the slot of Z(.
if x or Yi, is a homotopy class of a boundary of Pi or P[,.
We use the orthogonal pairing of the characters on each intersection circle

between a pair of pants such that

l Z(pv(.));t#(pv(.)-l)vi 3, Vol(SU(2)).

These pairings on for 1 < </5(1) with respect to vi give fn /n for y # 0, so
that we get the volume of R(N,, (n., n,)) when y 0. Note that this pairing does
not occur on the intersecting circle between P1 and P since the holonomies 1 and
2 are fixed if y :/: 0.
When 0, the above pairings on i with respect to v give the same result,

except for one ..i, which comes from the intersection of P1 and P. This is
because the holonomies of PG around a boundary of Px and P which give the
pairing do not coincide but have the relation __+ 2 + tiff2. So the pairing in
this case is given by

J X(pv(D(e2’#’)));t#(pv(D(e2#2))-)v, (--1)ks,# Vol(SU(2)),

where D(e2,) is the SU(2)-matrix with the diagonal elements {e2=,, e-2, } and

0 if fl2eZ
k

1 if fl!/2 U Z[1/2]- Z.

Recall that fl is given in (3.1). We have that {n} is the set of the natural numbers
for the Lie group SU(2). For this, see the Proposition 5.3 of [BtD]. The constants
C,C are given by gathering all the constants in the above pairings. I--]
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We remark on some facts about Theorem 4.3. We compute the half-density
volumes of R(M, (nj)), R(Nr, (nj, nj,)) using the fibration structure of the repre-
sentation space R(Y.g,,, (n)), which has the symplectic structure. In [W2] Witten
computes the symplectic volume of R(,g,m, (rlj)). We use his method with some
modification. We point out two differences between the symplectic volume form
of R(,g,m, (nj)) and the half-density of R(M, (n)).

(--3(g-1)+mThe first comes from two different volume forms of the fibre ML,’i=I T/l/
20+m-3

i=1 Z2,. In our case the volume form over the fibre comes from the natural
volume form v on the maximal torus T of SU(2), but in [W2] the fibre volume
form comes from the volume form v0 induced from the volume form of SU(2). Of
course, the difference comes from the different constructions of two volume forms.
The second is the term sin(rc(nj/ot)). In [W2] this term is necessary to define

natural symplectic volume form of R(.,g,m, (nj)) so that this term cancels out a
factor of character term sin(rnn/o)/sin(rn/o) in [W2]. But we do not need
this term to give the cancelation.

5. Application to the Jeffrey-Weitsman-Witten invariant. In this section we
apply our result of the previous section to compute the Jeffrey-Weitsman-Witten
invariant of a Seifert fibred manifold M with base surface Eg_>_2. In this case the
irreducible SU(2)-representation space R(M, SU(2))- is a nondiscrete set, so
that the R-torsion is used as the half-density of R(M, SU(2))- in defining the
Jeffrey-Weitsman-Witten invariant.
We review the Chern-Simons gauge theory to understand the definition of

the Jeffrey-Weitsman-Witten invariant. For details of the Chern-Simons gauge
theory, see [RSW], [JWl].

Let X be a 2-dimensional manifold and P be a principal SU(2)-bundle over X.
Let ,F,( be the affine space of connection 1-forms of P, the space of fiat
connections of P, and the gauge transformation group of P, respectively. Let ’2
be the moduli space of the fiat connections of P.
We consider a 3-dimensional manifold Y1 with a boundary X. Moreover, we

assume that a neighborhood of X in Y1 is diffeomorphic to X x [0, 1). For
A ,g (, we consider a U(1)-valued function 6e(A, g) defined by

6e(A, g) exp(2ni(CS(i) CS())),

where and are the extensions of A and g into Y1, . is the gauge transfor-
mation of by , and the Chern-Simons invariant CS() is given by

tr dA^i+Sfi^,^cs( i) W r,

Such an extension of alw_ays exists since 7rl(SU(2))--zr2(SU(2))= 0. We
choose the extensions so that A and are pullbacks of A and # by the projection
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to X over X x [0, 1), respectively. Then 6e is independent on the extension
and the extension and . In fact, the extensions (1, 1) and (2, 2) into Y and
Y2 give a connection/) and a gauge transformation on Y Y1 w Y2 so that

exp(2ri(CS(,,()- CS(Zl)))exp(2rci(CS(,g)- CS(2)))-1

exp(2rri(CS() CS())) 1.

The above function 6a over x f is a cocycle since

se(,i, O)se(,i , se(Z

We can define a line bundle L over /’2 by

-= ZCF X C,

where the fight side is the quotient space given by the equivalence relation

(A, z) (A0, Se(A,

for A o’F, z e C.
We consider a 3-dimensional manifold Y and a principal SU(2)-bundle P,

over Y. We decompose Y into two handle bodies Y1 and Y2. Let X be the inter-
section of Y and Y2. We apply the above construction to 2-dimensional manifold
X and P’lx- P. We consider the restriction of line bundle to Lagrangian
submanifolds LI,L2 of ’2, where L1,L2 are made from the handle bodies
Y, Y2 of Y. Let Li be the restriction of the line bundle to L i. Then there is a
section 6ei(A) of -’i over L defined by

6ai(A) exp(27riCS(Ay)

for [A] ,////’2, and Ay, is an extension of A to Y/.
Now we consider the intersection of the two Lagrangian submanifolds L 1, L2

in t’2. Then we can see that this intersection is the moduli space of fiat con-
nections of Py over Y, which we denote by ’3. By the correspondence between
the fiat connection A and the SU(2)-representation py of Zrl(Y), ’3 can be
identified with R(Y, SU(2)). There may occur singularities of ’2 within ’3. But
the set of singularities is a measure zero set in ’3. So we may not consider these
singularities in the following construction, since we shall integrate over the dense
subset R(Y, SU(2))- of ’3 R(Y, SU(2)).
We consider the k-tensor power of &a, (R)k over ’2 and their restrictions to

two Lagrangian submanifolds L1, L2. We denote these by ’k, .’2. Then we
can pair two sections 6e/k 6ei(R) of i(R) in ’3 by the hermitian product of
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the complex line C. We denote this pairing by (6ek, 5e2k). Then this can be con-
sidered as an U(1)-valued function on ’3 R(Y, SU(2)). We can see easily that
(5elk, 6e2k ) at a connection A is the exponential of the Chern-Simons invariant of
Y, that is, exp(2kiCS(A)).
We recall that the half-density derived from the R-torsion z(Y, Ad(py))l/2 can

be considered as a measure of R(Y, SU(2))-. The Jeffrey-Weitsman-Witten
invariant is defined b.,y. integrating the pairing (6ek, 6e2k ) with respect to half-
density z(Y, Ad(py))l/z over R(Y, SU(2))- using the correspondence between
the fiat connection A of P and the SU(2)-representation py of I(Y). We for-
mulate this construction as the following definition.

Definition 5.1. For an integer k, the Jeffrey-Weitsman-Witten invariant
Z(Y, k) is defined by

Z(Y,k) IR (6e’St’2>z(Y’Ad(py))/2
(Y,SV(2))-

This definition is given in [JWl]. This definition is motivated from the
asymptotic expansion of the Witten invariant Zy(k) of 3-dimensional manifold
Y [Wl]. The asymptotic expansion of Zy(k) is given by

1 (3ni+2SF(Ai).) exp(2(k+2)niCSr(Ai)),Zy(k) - - (z(Y, Ai)) 1/2 exp

where the sum is taken over the finite set of flat connections Ai, z(Y, Ai) is the
Reidemeister torsion for Ai of Y, and SF(Ai) is the spectral flow from trivial con-
nection to the fiat connection Ai. The above formula is given in [FG]. We can see
that if the moduli space of fiat connections is a discrete set, then Definition 5.1 is
almost the same as the leading term of the above asymptotic expansion, since the
the square root of the R-torsion becomes a point mass in this case.
Now we compute the Jeffrey-Weitsman-Witten invariant Z(M, k) of Seifert

fibred manifold M with the nondiscrete irreducible SU(2)-representation space
R(M, SU(2))- by applying the previous result. To compute Z(Y,k), we must
integrate the pairing (6k, if’2k) with respect to the half-density of the R-torsion
over R(M, SU(2))-. We know that the value (6elk, 6e2k) at the fiat connection A
is simply the Chern-Simons invariant of A. This invariant is constant in each
connected component R(M, (nj)). By the result of [A], the value for the fixed
connected component R(M, (nj)) is given by

exp 2kri- fl;n+__ +
\ /

where e 1/2, 1 if Plvt(h) -1, 1, and flfl] 1 (mod) a as above.
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So the value of the Jeffrey-Weitsman-Witten invariant Z(Y, k) over the con-
nected component R(M, (hi)) is given by

(6e,6a)(z(M, Ad(pm)))l/2
R(M,(nj))

m sin( 3l l2m(ff’lk, if’2k) =’ / On,(M,su(2),u).
j=l ]jl 1/2 (M,(n/))

So we have the following theorem from Theorem 4.3 and (5.2).

THEOREM 5.3. For the integer k, the Jeffrey-Weitsman-Witten invariant

Z(M, k) of the Seifert fibred manifold M(#, (1, ill,..., m, tim)) is given by

CM exp 2krci - n +2enj +e2{(nj)} j--1 k Xj 0j ] j--1

where the above sum is taken over the finite set of the rotation numbers {(nj)},
CM 2m- Vol(S2)m Vol(SU(2))g+m-1, and e 1/2 or 1 if PM(h --1 or 1.

We can see that Z(M,k) depends only on the manifold M via the Seifert
invariant (g; (i, fl)) since the set of all the rotation numbers (n) is determined
by n (M).
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