Dissipation and Semigroups

Def: A semigroup G is a set of elements which is closed under composition.

Note: The composition is associative, as for groups.

G may or may not have an identity element I, and some of its elements may or may not have inverses.

Example: The set $\{\exp(-t): t>0\}$ forms a *semigroup*.

Example: The set $\{\exp(-t): \geq 0\}$ forms a semigroup with identity.

Def: **Norm** of an operator: $||A|| = \sup \{||A \psi|| / ||\psi||, \psi \in H\}$

Def: **Bounded operator** The operator A in H is a bounded operator if ||A|| < K for some real K.

Examples: $X \psi(x) = x \psi(x)$ is not a bounded operator on H; $\exp(iX)$ IS a bounded operator.

Sets of **Bounded Operators** B(H) is the set of bounded operators on H.

Bounded Sets of operators:

Consider S⁻(A) = {exp(-t) A; A bounded, $t \ge 0$ }.

Then, there exists a K such that ||B|| < K for all $B \in S^-(A)$ and $S^-(A) k = B(H)$.

Clearly $S^+(A) = \{ \exp(t) A; A \text{ bounded, } t \ge 0 \}$ does not have this (strong) property.

Evolution with Dissipation

Markovian Master Equation

1. Hamiltonian Evolution: Operator X

$$\dot{X}=i[H,X]$$

2. Lindblad Form of Dissipation: Operator X

$$L_{D}(X) = \frac{1}{2} \sum \left[V_{j}^{\dagger}, \left[X, V_{j} \right] \right]$$

3. Evolution with Dissipation ()perator X)

$$\dot{X} = i[H, X] + \frac{1}{2} \sum_{j=1}^{n} [V_{j}^{\dagger}, [X, V_{j}]]$$

Dissipation and Semigroups

One-parameter semigroups

$$T(t_1)*T(t_2)=T(t_1+t_1)$$

with identity, T(0)=I.

Important Example: If L is a (finite) matrix with *negative* eigenvalues, and $T(t) = \exp(Lt)$.

Then $\{T(t), t \ge 0\}$ is a one-parameter semigroup, with Identity, and is a Bounded Set of Operators.

Evolution with Dissipation

Markovian Master Equation

0. Dual maps
$$(X, \rho) = \text{Trace}(X \rho)$$

 $(L X, \rho) = (X, L^* \rho)$

- 1. Hamiltonian Evolution: State ρ $\rho = -i[H, \rho]$
- 2. Lindblad Form of Dissipation: State p

$$(1/2)\sum [V_j\rho, V_j^{\dagger}] + [V_j, \rho V_j^{\dagger}]$$

3. Evolution with Dissipation (State ρ)

$$\dot{\rho} = -i[H, \rho] + \frac{1}{2} \sum_{j} [V_{j}\rho, V_{j}^{\dagger}] + [V_{j}, \rho V_{j}^{\dagger}]$$

Properties: Trace-preserving, Positivity.

Bloch Sphere for Qubit

Qubit:
$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
 $|\Psi\rangle = \alpha |0\rangle + \beta |1\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$
 $\alpha = \cos(\theta/2)$ $\beta = e^{i\varphi} \sin(\theta/2)$

$$\alpha = \cos(\theta/2)$$

$$x = \sin \theta \cos \phi$$
$$y = \sin \theta \sin \phi$$

$$z = \cos \theta$$

Example: Two-level System (a)

$$\dot{\rho} = -i[H, \rho] + \sum_{j} [V_{j}\rho, V_{j}^{\dagger}] + [V_{j}, \rho V_{j}^{\dagger}]$$

Hamiltonian Part: fx and fy controls

$$H := w \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} + fx \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + fy \begin{bmatrix} 0 & -I \\ I & 0 \end{bmatrix}$$

Dissipation Part:V-matrices

$$V1 := \begin{bmatrix} 0 & 0 \\ \sqrt{\gamma_{21}} & 0 \end{bmatrix} \qquad V2 := \begin{bmatrix} 0 & \sqrt{\gamma_{12}} \\ 0 & 0 \end{bmatrix} \qquad V3 := \begin{bmatrix} \sqrt{2} & \sqrt{\Gamma_0} & 0 \\ 0 & 0 \end{bmatrix}$$

with
$$\Gamma = \Gamma_0 + (1/2)(\gamma_{12} + \gamma_{21})$$

Bloch Ball

Qubit:
$$|\Psi\rangle\langle\Psi| = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \begin{bmatrix} \alpha^* & \beta^* \end{bmatrix} = \begin{bmatrix} \alpha\alpha^* & \alpha\beta^* \\ \beta\alpha^* & \beta\beta^* \end{bmatrix}$$

$$\rho = \begin{bmatrix} \rho_{11} & \rho_{12} \\ \rho_{21} & \rho_{22} \end{bmatrix} = \begin{bmatrix} \cos^2(\theta/2) & (1/2)e^{i\phi}\sin\theta \\ (1/2)e^{i\phi}\sin\theta & \sin^2(\theta/2) \end{bmatrix}$$

$$\tau_0 \coloneqq \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \tau_1 \coloneqq \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \\ \tau_2 \coloneqq \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \\ \tau_3 \coloneqq \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} tr(\tau_x \rho) \\ tr(\tau_y \rho) \\ tr(\tau_z \rho) \end{bmatrix} = \begin{bmatrix} \rho_{12} + \rho_{21} \\ i(\rho_{12} - \rho_{21}) \\ \rho_{11} - \rho_{22} \end{bmatrix}$$

Example: Two-level System (b)

(1) In Liouville form (4-vector V_p)

$$V_{\rho} := [\rho_{1, 1}, \rho_{1, 2}, \rho_{2, 1}, \rho_{2, 2}]$$

 $\dot{V}_{\rho} = (L_{H} + L_{D}) V_{\rho}$

Where L_H has pure imaginary eigenvalues and LD real negative eigenvalues.

$$LD := \begin{bmatrix} -\gamma_{2, 1} & 0 & 0 & \gamma_{1, 2} \\ 0 & -\Gamma & 0 & 0 \\ 0 & 0 & -\Gamma & 0 \\ \gamma_{2, 1} & 0 & 0 & -\gamma_{1, 2} \end{bmatrix}$$

Example: Two-level System(c)

(1) In **Bloch vector** form (3-vector $S\rho$)

$$S\rho = [\rho_{1,2} + \rho_{2,1}, I(\rho_{1,2} - \rho_{2,1}), \rho_{1,1} - \rho_{2,2}]$$

 $(\partial/\partial~t)S\rho$ = {2 ω R_z + f_x R_x + f_v R_v + , C - (K₁₂- K₂₁) T } $S\rho$ where

$$2\omega R_z + f_x R_x + f_y R_y \text{ is a rotation in Bloch space}$$

$$C \text{ is a contraction matrix}$$

$$(M = (K_{12} - + K_{21}) / ,)$$

$$C := \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -\varepsilon \end{bmatrix}$$

and T is a translation.

'Conformal' Semigroup