IMPLEMENTATION OF QUANTUM CONTROL —

QUANTUM CONTROL:

IMPLEMENTATION AND DISSIPATION

ALLAN I. SOLOMON AND SONIA G. SCHIRMER

QUANTUM PROCESSES GROUP

THE OPEN UNIVERSITY, MILTON KEYNES, UK

Korea, JunEg, 2002

Many different approaches have been proposed for implementing quantum control:

e OPEN-LOOP CONTROL: No feedback from measurements.

— Local optimization (gradient techniques)
— Global optimization (simulated annealing, genetic or evolutionary algorithms)
— Global & local optimal control (variational calculus)
— Adiabatic passage via light-induced potentials.
— Geometric control using Lie group techniques.
Ideal for constructing arbitrary unitary operators (quantum gates)

e CLOSED-LOOP CONTROL: Feedback from measurements required.

— Learning approach using genetic algorithms and experiments.
Originally developed for quantum chemistry [Judson, Rabitz]
— Continuous feedback using weak measurements.
Originally developed for quantum optics [Wiseman, Milburn]
Ideal for protecting qubits from decoherence.

PR, | Basic MoDEL DESCRIPTION

e INTERNAL HAMILTONIAN OF THE SYSTEM: | Ho= ZLI Eyn)(n|

— Energy levels: E,,, transition frequencies w, = E,, 1 — E,,
— Complete orthonormal set of energy eigenstates: {|n) : 1 <n < N}

Fa(t) =401 [es(wma+¢m) +ewi(mmc+¢m)]

CONTROL FIELDS:
s = 2Ap,(t) cos(wmt + @m)

— A,,(t): envelope function, slowly varying compared to w,,
— @ initial pulse phase, w,,: pulse frequency

H,.(fi) = A (t) [ei@mttém)d  lm) (m + 1|

e INTERACTION: +e i Wmttdm)d |m 4 1) (m)|]

— w2 # w? for m # n, off-resonant effects negligible
— Rotating Wave Approximation applies, d,,: transition dipole moment

_ | IMPLEMENTATION OF UNITARY OPERATORS USING |
GEOMETRIC CONTROL

e Given a target evolution operator (:TT, to be realized at some time 7" > 0,
find product decomposition of this operator where the factors are elementary
generators of the dynamical Lie group Vi, e.g:

"m: +1_[ 41 - _.\ = an T .”.\
mm = i?rit(;?m - |1| +T|nm +>1(>T<T:L«I] ViU = " Viehe i+ 5
C}.. ¢ constants, Cp. = 0 - . . "
o1 [1,2,..., K] —[1,2,..., M] Vi = exp [Ck (sin ¢rdok) — €08 Prio(r)) ]

e The order of the factors in this decomposition determines the pulse sequence;
the constants C, and ¢, determine the (effective) area and initial phase of the
pulse, respectively.

e Partition time-interval into K subintervals [ty_1, ], to =0, tx =T and apply
sequence of K pulses | fi(t) = 2Ax(t) cos(wy k)t + Pr) | such that Ag(t) =0

for t & [tk—1,tk] and | dy(k) f::_l Ax(t)dr = Ci




— PossiBLE CHOICES FOR CONTROL PULSES — APPLICATION: INVERSION OF ENSEMBLE POPULATIONS |—

Square wave pulses with rise/decay time 7 1. ARBITRARY INIT. ENSEMBLE: 2. ENSEMBLE OF ENERGY EIGENSTATES:
o Effective pulse area: Akda(k}(ﬁ\tk —1p) = hCy 00 ... 01 0 0 e D e

i)
+ Easily derived from CW lasers using Pockel cells. b 00 .- 10 0 . ! i g
+ Time optimal property, smooth transfer. - {] 1 _ 0 0 | 0 8191.\:—1 _— 0 0
— High intensities / fast switching challenging. L 10 s @ 0 eioN 0 e 0 0
Gaussian wavepackets with g = 4/Aty Phases important! Phase factors e» arbitrary!

o Effective pulse area: [ Apdy(yAtr/m/4= hCy

CASE 2: DECOMPOSITION

[;TT = eiﬁoT H%zN—l (anml f/—M)

+ Easily derived from standard pulsed laser systems.

Sequence of K = 1N (N — 1) pulses:
alternating frequencies wi = wWey(k)
total pulse area m

+ Minimal frequency dispersion, high intensities possible.

a at2 al

— Precise control of pulse area and phase challenging.

In both cases, the ampiitude 2Ay of t|.1e. pL.Jlse can be adjusted by ch.an.gi.ng the Vi = exp B—(sm P — COS ¢§m)] — arbitrary initial phases ¢y,
pulse length Aty, which allows us to minimize off-resonant effects by limiting the . _ arbitrary pulse length Aty
frequency dispersion of the pulse and the Rabi frequency of the driven transitions. T, ¢ arbitrary!
EXAMPLE 1: INVERSION OF ENSEMBLE POPULATIONS FOR SYSTEMS WITH DECENERATE ENERCY LEVELS
4-LEVEL SYSTEM WITH DISTINCT TRANSITION FREQUENCIES
Three distinct transition frequencies e Standard decomposition assumes selective addressability of each transition.
Wy = Ey—E, i = Py gy e = not directly applicable to transitions between degenerate energy levels
we = FE3 — Ey Eums: : : : ) : : o1 -1 0 _—i—_l_ Feq -1 0 +1
ws=FEy— Ej Eemj [, ."“-E =) < I L\_\:[
: | i : R | i i F=0 F=1 e
= three CW lasers required LI f & 4 ¢ 0 -1 0 +1
Initial Populations: p11, p22, P33, paa, if o :N Ju o; ::; |ia .Ew e Atomic selection rules: only transitions with AF = 0,41 are permitted.
il Linearly polarized light couples only sublevels with Am = 0; left and right
Prn 7 Pmms N F M 04 = ” circularly polarized light couple only sublevels with Am = =41, respectively.
= Six pulses are required /N ;,’ ‘1 e Controllability: Assuming all three polarizations are available
e YN\ S — Transitions with AF = +1 are completely controllable
Il & L3 L Ly .04 ] N ¥ L !
Pis Pu P pu P puopu| Lo Nl Nl b — Transitions with AF = 0 are only pure-state controllable
g < P \‘ ,r‘. \'\";I
33 33 44 4 22 22 v i " A 5 7 = =
w bk dele sl OO i < L e Constructive control schemes can be derived using geometric control techniques
wi ,022)<,011 P Pm><922 p44><p33 T T by using more general decompositions.
P11 VP22 P22 P22 P33 £33 VP44 Tmalie)




S FOUR-LEVEL QUANTUM MEMORY SCHEME i

We consider a four-level atom with two degenerate ground states |g;) and |go)
and two non-degenerate excited states |e;) and |es).

We assume the |g;) — |e;) transition is
e1 an optical transition that forms part of a

5P1/2 quantum information processing scheme.

After performing a series of quantum
logical  operations, the quantum
information stored in the |[g1),le1)
subsystem is to be protected by mapping
it to the decoherence-free |g,),|g2)
subsystem by applying a series of simple
control pulses derived from optical fields.

For instance, the ground states could be Zeeman sublevels of the |581/2) ground
state for laser-cooled ®’Rb and the excited states could be |e;) = [5P3/oF =
1,m = —1) and |ez2) = |5P3/2F =0,m = 0).

— THE QUANTUM MEMORY MAP i

A1M: Map the (initial) state 5(°) onto the target state (1), where

Paigy O Pgrey O Paigr  Parer 0 0
p0) = 0 & A o0 = | Paer Pae B
ey B Y 10 0 0 00
0 0 O 0 0 0 0 0
with respect to the basis |g1), |g2). |e1), |e2).

18T STEP: Find a unitary operator I/ such that | (1) = UpO U1,

Note that U is not unique. In fact, any unitary operator of the form

e¥r 0 0 0
0 0 €% 0
0 €% 0 0
0 0 0 gt

U= with 8; — 65 works.

2ND STEP: Find a suitable product decomposition of the target operator.

To find a suitable factorization, we note that applying a control pulse of the form

fl (t) — Al(t) [ei(wggqt-f-ﬁﬁl} L e—i(w92823+¢1)]
2A1(t) cos(wggeat + 1)

which is resonant with the transition frequency wg,., and suitably polarized to
drive only the transition |g2) — |e2), gives rise to a unitary evolution operator

II;rl((:"l:’§*Tvl’1) = exp [%Cl (Sin (bl-%g'zeg — €08 @y ’!;'ggeg)]

where the constant ) is the area of the pulse

O = fml Q(t)dt= [ Aty Fazea2As(t) dt.

Note that &gy, = [ga)(€2| — [€2)(ga|, Fgoer = 7 (l92)(e2| + [e2)(g2]) and dy,e, is
the transition dipole moment of the transition |g2) — |e2).

Similarly, applying a control pulse

f2(t) — Ag(t) [ei{wglegt'i—‘ﬁ:!} -+ e“’i(“"glegﬂ'{'ﬁé?)]
2A5(t) cos(wgyext + ¢2)

which is resonant with the transition frequency wy,., and suitably polarized to
drive only the transition |g1) — |e2), gives rise to a unitary evolution operator

ffz(cza 'i’?) = exp [%CZ (Sin (ﬁzﬁgmg — CO8 ¢2ﬂgleg)]

where the constant C is the area of the pulse

Cy= fm2 Qo(t) dt = |, A, dgyey2A5(1) dt.

Note that Z4,¢, = [g1)(€2| — [€2)(91], Fg1es = i (lg1){e2| + le2){g1]) and dyg,e, is
the transition dipole moment of the transition |g1) — |e2).



Finally, applying a control pulse

f3(t) = A3(t) [ei(wylelt-}-‘iﬁa} =18 e—'i(wylelt+¢3)]
2A3(t) cos(wgye,t + P3)

which is resonant with the transition frequency wy, ., and drives only the transition
|g1) — |e1), gives rise to a unitary evolution operator

TA[S(C"" ¢3) = exp [3Cs (sin ¢ady,e; — €OS P3fgye:)]

where the constant ('3 is the area of the pulse

03 == fAtg Qg (t) dt = J‘Ata dg1612A3(t) dt

Note that &g.e, = |g1){e1] — |e1){91]. Tgie; = % (|g1) (1| + [€1)(g1]) and dg,e, is
the transition dipole moment of the transition |g1) — |e1).

Note that setting C, = Cy, = C3 = /2 gives

( 1 0 0 0
S ~ 0 0 0 —ieit
1V1(¢1) :Vl(ﬂ'/l‘i}]) = 0 1 0
0 —ae—“f’l 0 0
0 0 —iet?2
~ - 1 0 0
‘f)(qbl) == V2(Tr/21 ¢’2) = 0 1 0
—ie ‘f’ﬁ 0 0
0 L
~ ~ il 0 0
V3(¢3) = Vg(ﬂ'/?’ ¢’3) = _ze—m;ﬁg 0 0 0
0 0 0 1

Set Vy(¢ps) = T:’z(:rr/‘z, b4), Vs(¢s) = TA/l(Tr/Q, ¢5) and define

U = Vi(¢s) Va(pa) Va(h3) Valp2) Vi (¢1)

Note that the operator U is of the form

et 0 0 0

% 0 0 e 0

v 0 €% o 0
0 0 0 e

where the elements #,, are phase factors depending on the pulse phases ¢

0 =7 — o+ s O = T2 — 3+ Po— ¢y, U3 = T/2+ ¢p5 — Py + ¢3 and
6, =1 — ¢5 + ¢1. Moreover U maps the initial state p(°) to

Pg1g1 e pgie; O 0

bt *
THO T — € " Pgre Peye; 0 0
L 0 g 8 0
0 0 0 0

Hence, U maps the initial state onto the target state if
b = 7!'/2 + 2(,'{)4 = (}52 — (}53 = (}55 — O(mod 2?’7)
instance by setting ¢y = ¢ = 3 = ¢y = @5 = 7/2.

which can be achieved for

— PULSE SCHEME A =

U can be dynamically generated by applying a sequence of five m-pulses:
1. a pulse fi(t) = —2A;(f)sin(wgye,t) that drives the

transition |g2) — |e2) and has pulse area T;

2. a pulse fo(t) = —2A,(t)sin(wg,e,t) that drives the
transition |g1) — |e2) and has pulse area T;

. a pulse f3(t) = —2A3(t)sin(wg,e,f) that drives the
transition |g1) — |e1) and has pulse area 7;

Pulse Scheme A
(78]

4. a pulse fy(t) = —2A4(t)sin(wg,e,t) that drives the
transition |g1) — |e2) and has pulse area ;

5. a pulse f5(t) = —2A5(t)sin(wgge,t) that drives the
transition |g2) — |e2) and has pulse area 7.



COMPUTER SIMULATIONS

Figure 1 (A) shows the control pulse sequence and corresponding evolution of a
system initially in the superposition state (|g;) + 2|e;))/v/5. The time unit in
all plots is 1/52, where 2 is the Rabi frequency of the transition |g;) — [e1) and
the pulse envelopes have been chosen to be Gaussian.

Note that the pulse sequence maps the qubit (|gi) + 2|es))/V/5
onto the equivalent qubit (|g1) + 2|g2))/V/5, as desired.

Initial populations and coherences:

0
p!(hf'-l =04,
and all other values of p(% zero.

Final populations and coherences:
) — 0.2
Parg = V.2,
1
Péz]m = 0.8,

1
Pglgm =04

and all other values of p*) zero.

SHORTCOMINGS OF PULSE SCHEME A

A potential shortcoming of the pulse scheme above is that
the auxiliary excited state |e;), is substantially populated at
intermediate times. Since the meta-stable state |e;) has a finite
lifetime, the quantum information would be subject to degradation
through spontaneous decay.

Although this decay can be minimized by choosing short control
pulses, it would be advantageous to minimize the transient
population of state |e;).

Fortunately, using similar techniques as above, one can derive
alternative control schemes involving concurrent application of
multiple fields, which reduce the transient population of the
intermediate excited state |e,) considerably.

PuLse ScHEME B: AN IMPROVED CONTROL
SCHEME

An alternative pulse scheme that achieves the same information transfer but limits
the transient population of state |es) involves the application of four 7-pulses:

1. apply a pulse fi(t) = —2A;(t)sin{wg,e,t) that drives
the transition |g1) <+ |e1) and has pulse area T;

Pulse Scheme B

2. simultaneously apply two “congruent” w-pulses

fa(t) = —2A2(t) sin(wg,eot)
f3(t) = —2A5(%) sin(wgye,t)

which are identical except for different polarizations;

3. apply a pulse f3(t) = —2As(t)sin(wg,e,t) that drives
the transition |g1) <+ |e;) and has pulse area 7.

A control simulation for this scheme is shown in figure 1 (B). Observe that the
meta-stable excited state |es) is not significantly populated using this scheme.

Figure 1: Control pulse sequence and evolution of the populations and coherences

for control scheme A (left) and control scheme B (right)
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