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RELATIONSHIP BETWEEN QUANTUM CONTROL &
QUANTUM COMPUTATION

e QUANTUM COMPUTATION REQUIRES:

Preparation of the quantum computer in a desired initial state.
* The ability to create arbitrary superpositions for single qubits
* Entanglement between pairs of qubits.
Implementation of quantum logic operations (unitary operators)

Means to protect and store quantum information.

The ability to extract quantum information.

L QUANTUM CONTROL ADDRESSES PROBLEMS SUCH AS:

— Preparation of a quantum system in a desired quantum state.

~ Control of unitary evolution (implementation of unitary operators).
— Control of dissipative processes (decay, decoherence).

— Optimal measurements of quantum systems.

REQUIREMENTS FOR QUANTUM CONTROL

. ACCURATE MODELS: Modelling realistic quantum systems and their
interaction with control fields, the environment and a measurement
apparatus.

. CONTROLLABILITY: Assessing the feasibility of control objectives by
studying the degree of controllability of the systems to be manipulated.

. ConTRrOL FIELD DESIGN: Developing means to design control fields

to achieve various control objectives (which have been shown to be
feasible).

. APPLICATIONS: Application of control techniques to specific problems
in quantum computing, quantum optics, quantum chemistry, etc.

MODELLING QUANTUM SYSTEMS

Control of quantum systems requires a basic mathematical model.

Describing any dynamical system requires three basic ingredients:
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— MANIPULATING THE DYNAMICS —_—

e The evolution of an unperturbed quantum system is determined by its
free Hamiltonian Hy.

e Application of external control fields — e.g., derived from lasers —
perturbs the evolution of the system = new total Hamiltonian

M
ﬁ = ﬁ0+ Z fm(t)ﬁm

m=1

@ I?m, m > 0, describes the interaction of the system with field fy,.

e The controls are classical fields, i.e., bounded, measurable, real-valued
functions defined for some time interval [to,tF].

£(t) = (11(0), fo(8), -, S (t)) M <oo

= 'THE EFFECT OF THE ENVIRONMENT =

e IDEAL: The quantum system interacts only with the control fields.
= The evolution of an ideal quantum control system is unitary.

e REALITY: Most quantum systems also interact in uncontrollable ways
with the environment.
= The evolution of the system is non-unitary due to:

— PHASE DECOHERENCE, which destroys the off-diagonal elements
(coherences) of the density operator.

— POPULATION RELAXATION, which changes populations (diagonal
elements of the density operator) and leads to phase decoherence.

e Phase decoherence and population decay necessitate the introduction
of a dissipation super operator D determined by the phase and
population relaxation rates ¢, and Ygm:

ka,km = _r})gm-
Pkk,mm = Tkm.
Drk,kk = — 2 pmspk Ymk-

Combining the effect of the controls and the dissipation, leads to the
quantum Liouville equation for dissipative systems:
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Lyp(t) = [Hyn, ) for 0 <m < M and D can always be written as

DVilp = L 3, [Vied, Vil + Vi, V4]

where the V are arbitrary bounded operators [Lindblad].

= Li1oUVILLE EQUATION FOR DISSIPATIVE SYSTEMS = UNITARY EVOLUTION & MAGNUS EXPANSION =

e The evolution of a Hamiltonian quantum control system is given by

Olest) —exn, [_% f; ) dr}

e The time-ordered exponential is unitary and can be expressed in terms
of an ordinary exponential via the Magnus expansion

exp, [——/ H(T)dv'] = exp [i ;I (-—%)n fln]

where H(7) = H[f(7)] and the operators A,, are defined by

fnt ﬁ(""l) dr, Ay = fq}f [H(rs), H(7y)] dry dry
LEJ; H(T‘g) H(Tz) H(Tl )]] [[H(Tg), H(T;;)], H(Tl )] dTldedTg, S0




= Dy~NnamIcAL LIE GROUPS & REACHABLE SETS = DYNAMICAL EQUIVALENCE OF STATES FOR S ~ Sp(

e KINEMATICAL CONSTRAINT: dynamical Lie group must be subgroup of U(N)
= Partitioning of density operators into kinematical equivalence classes [KEC]
=> dynamically reachable states must be subsets of KEC

e DYNAMICAL LLIE GROUP S: determines sets of dynamically equivalent states
= po, p1 dynamically equivalent iff p; = UﬁoUJf for Ues
= set of dynamically reachable states = KEC iff S transitive on KEC

e TRANSITIVE ACTION:

— U(N), SU(N) transitive on ALL kinematical equivalence classes
— Only U(N), SU(N), and if N even, Sp(¥), Sp(&) x U(1) transitive on the
KEC of pure states [Montgomery & Samelson (1943)]

— Any other dynamical Lie group transitive only on the trivial KEC of
completely random ensembles [p = +I ]
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e Sp(&) TRANSITIVE on completely random ensembles and KEC of density
operators p with two distinct eigenvalues, one of which occurring with
multiplicity N — 1.

e OTHERWISE: kinematically equivalent, dynamically non-reachable states exist

e CRITERIA FOR DYNAMICAL EQUIVALENCE OF STATES: For any S ~ Sp(%)
there exists .J such that any U € S satisfies U7 JU = J

= pp and py (KE) are dynamically equivalent iff 3 Ue U(N) such that

07U = J

pr=UpUt and

& po. p1 dynamically equivalent (DE) iff

pr = UpoUT and

(Jpr N = U(Jpo 1)Ut

= SYeTN BT Y NANIGAL TIE GHOLE (D) = NON-REACHABLE STATES FOR Sp(2) EXAMPLE =

Consider a four-level system with H = H, + f(t)H,,
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The dynamical Lie algebra £ generated by iﬁg and iH, has dimension 10 and
both iHy and 2H; satisfy
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= L = sp(2) and the dynamical Lie group S = Sp(2).

let 0 <a,b<1,a#b a+b=3 Consider the kinematically equivalent states

a 000 a 0 00 a 0 0 0
y 0 ¢ 00| T 5 O 0 b 0 0
P=loo bo PP~ lobpsoli2=| 060 a0
00 0 b 000 a G 0 0 B

pPo and p, are NOT dynamically equivalent since

po = (Jp2Jt)* = po but po = (Jpod1)* # po

There cannot be a unitary operator such that g = ﬁﬁoﬁ’T = (’:Tﬁoﬁ"r if po # Po.

Similarly, p1 and p2 are NOT dynamically equivalent since

2= (Jp2Jt)* = po but pr=(JpJh)* # pu




Finally, po and p; are NOT dynamically equivalent since the equations (1)

pr = UpoUT and pr = UpoUT

for p = (JpJT)* cannot be simultaneously solved.

To see this, note that the associated linear equations (2)

Upo—p1U =0 and

can be re-written in matrix form (3)

HEU'=10

where R is a 2N? by N? matrix and U is a column vector of length N2. The null
space of the matrix It is empty. Thus, there is no solution U to the linear system
of equations (3), and therefore, no unitary operator U that solves (1).

! DyNAMICAL EQUIVALENCE OF STATES FOR S =~ SO(N) =

e SO(N) transitive only on trivial KEC of completely random ensembles
e Any other KEC is partitioned into subclasses of dynamically equivalent states

e CRITERIA FOR DYNAMICAL EQUIVALENCE OF STATES:
METHOD 1: Use J matrix.

— For any S ~ SO(N) there exists J such that UTJU = J forany U € §
— KE states pg, p1 dynamically equivalent iff

p1=UpoUT and (Jp,JV)* = U(JppJ1)*UT
METHOD 2: Change of basis.

— Dynamical Lie algebra £ is a representation of so(N) in terms of skew-
Hermitian operators since iH,,, skew-Hermitian

— Find unitary basis transformation B such that B(z’ﬁm)BT are real, skew-
symmetric matrices

— Real orthogonal transformations cannot map matrices with real entries onto
matrices with non-real entries.

= SYSTEM WITH DYNAMICAL LIE GROUP SO(5) =

Consider a five-level system with H=H+ f(t)Hl,

2§ @9 B 01000
) B =1 i@ o 0 ) 10200
B=| 0o o0 ooo]|, H=|02020
0 0 01 0 00 201
0 0 00 2 000 10

The skew-Hermitian matrices iH, and iH, generate the Lie algebra so(5), or
rather, a skew-Hermitian representation of so(5).

However, the unitary transformation

i
L]
= e, O O

maps iHy and iH; onto real, anti-symmetric matrices

[0 00 =2 0
000 0 -1
Hy=B@H)B'=| 0 0 0 0 0
2 0 0 0 0
\0 10 0 0
f 0 © o o
0 0 0 1 0
H =B@H)B'=| 0 o0 0 0 2v2
g =1 & @ 1
\ -1 0 -2/2 0 0

which generate a representation of so(5) in terms of real, skew-symmetric matrices.

= associated Lie group S consists of real orthogonal transformations!




= NON-REACHABLE STATES FOR SO(5) EXAMPLE = C'ONTROLLABILITY OF HAMILTONIAN SYSTEMS =

e Basis change B maps the pure states
po = [1)(1] and p1 = 3(|1) + [5))({1| + (5])

to o = BpoB' and py = By BT, where

100 —i 0 10000
000 0 O 0000 O
fo=%4l 000 0 0], A=|0000 0
§ 06 1T 00000
000 0 0O 0000 0

e jo has non-real entries, while g, has only real entries

=> There is no real orthogonal transformation U such that p, = UpoUt
[Note UT = UT]
= po and p; not dynamically equivalent!

Even for Hamiltonian quantum control systems, there are various notions
of controllability:
CC COMPLETE CONTROLLABILITY: any unitary evolution is dynamically
realizable, i.e., given any unitary operator U, there exists tp > 0
and an admissible control-trajectory pair (f, ff(t, to)) such that U=

Ultg,to).

OC OBSERVABLE CONTROLLABILITY: kinematical bounds for any
observable A dynamically realizable, i.e., there exists tp > 0 and
an admissible control-trajectory pair (f,U(t,ty)) such that (A(t))
assumes its kinematical upper or lower bound at t = ¢p.

DC DENSITY MATRIX CONTROLLABILITY: given any two (kinematically
equivalent) density matrices fpp, p;. there exists tp > 0 and
an admissible control-trajectory pair (f,U(t,t0)) such that p; =
U(tp,to)paU(tr,to)'.

PC PURE-STATE CONTROLLABILITY: given any two pure states
(wavefunctions) [Pp), [¥1), there exists £ > 0 and an admissible

~

control-trajectory pair (f, U(t,to)) such that |¥) = U(tr,to)| Vo).

= LIE ALGEBRAIC CRITERIA FOR CONTROLLABILITY =

The Magnus expansion shows that the evolution of a control-linear
system is determined by the operators of the form exp(&) where £ is an
element of the dynamical Lie algebra L generated by the operators iHym,
0<m< M.

THEOREM: [Abertini, D'Alessandro / Schirmer, Solomon, Leahy]
If dimH = N then L is a subalgebra of (V) and the system is

¢ COMPLETELY CONTROLLABLE < L ~ u(N).

e OBSERVABLE CONTROLLABLE < L ~ u(N) or L ~ su(N).

e DENSITY MATRIX CONTROLLABLE < L ~ u(N) or L ~ su(N).

e PURE-STATE CONTROLLABLE < L ~ u(N), L ~ su(N), or, if
N =2¢, sp(f), sp(f) & u(1).

Thus we have CC = 0C < DC = PC.

We shall call a system controllable if its dynamical Lie algebra is su(N)
or u(N).

RESULTS ABOUT CONTROLLABILITY =

Consider a quantum system subject to a single control field (M = 1) with
N < oo energy levels E,, with E,, < E, ., and transition frequencies
Winn = Ep — B,

THEOREM: [Altafini / Turinici] If the energy levels are non-degenerate
and the transition frequencies are unique, i.e., Wy # Wap Unless (m,n) =
(a,b), let the eigenstates |n) be the vertices of a graph and the transitions
|n) — |m) with non-zero dipole moment be the edges. If the graph is
connected then the system is controllable.

THEOREM: [Schirmer, Fu, Solomon] Given a system with nearest-
neighbor interaction, ie., dyn = 0 unless n = m=1 and dy niq =
e # 0; J6€ vy = 242 o5 — @3 5, — @5 555 The system is
controllable if either

1. dp such that wy, 541 # wWp py1 for n# p, or
2. Wpny1 =w for all n but Jp s.t. v, # v, for n # p,

and dﬁ_k £ dek for some k£ # 0 in case N = 2p.



= CONCLUSION =

In this first talk we introduced some of the ideas of quantum control:

e The relationship between quantum control and computing
e Environmental effects
e Dynamical Group approach to non-dissipative systems

e Degrees of controllability of Hamiltonian quantum systems

In the following talk we will describe how we can implement quantum
control, and discuss at greater length the effects of dissipation.




