QUANTUM CONTROL:

APPLICATIONS & LIMITATIONS

Allan I. Solomon and Sonia G. Schirmer

Quantum Processes Group

The Open University, Milton Keynes, UK

KOREA, JUNE, 2002

REQUIREMENTS FOR QUANTUM CONTROL

- ACCURATE MODELS: Modelling realistic quantum systems and their interaction with control fields, the environment and a measurement apparatus.
- 2. Controllability: Assessing the feasibility of control objectives by studying the degree of controllability of the systems to be manipulated.
- 3. CONTROL FIELD DESIGN: Developing means to design control fields to achieve various control objectives (which have been shown to be feasible).
- 4. APPLICATIONS: Application of control techniques to specific problems in quantum computing, quantum optics, quantum chemistry, etc.

RELATIONSHIP BETWEEN QUANTUM CONTROL & QUANTUM COMPUTATION

- QUANTUM COMPUTATION REQUIRES:
 - Preparation of the quantum computer in a desired initial state.
 - * The ability to create arbitrary superpositions for single qubits
 - * Entanglement between pairs of qubits.
 - Implementation of quantum logic operations (unitary operators)
 - Means to protect and store quantum information.
 - The ability to extract quantum information.
- QUANTUM CONTROL ADDRESSES PROBLEMS SUCH AS:
 - Preparation of a quantum system in a desired quantum state.
 - Control of unitary evolution (implementation of unitary operators).
 - Control of dissipative processes (decay, decoherence).
 - Optimal measurements of quantum systems.

Modelling quantum systems

Control of quantum systems requires a basic mathematical model.

Describing any dynamical system requires three basic ingredients:

	STATE SPACE	DYNAMICAL LAW	OBSERVABLES
	set of possible states of the system	determining the time evolution of states	quantities we can measure
СМ	$\begin{array}{c} \text{position, momentum} \\ \mathbf{x}, \ \mathbf{p}, \end{array}$	Newton's laws $\mathbf{F}=m\ddot{\mathbf{x}}$	state of the system \mathbf{x} , \mathbf{p}
PQM	wavefunctions $ \Psi(t) angle$	Schrodinger equation $i\hbar \frac{\partial}{\partial t} \Psi(t) angle = \hat{H} \Psi(t) angle$	expectation values $\langle \hat{A} angle = \langle \Psi(t) \hat{A} \Psi(t) angle$
QSM	density operators $\hat{ ho}(t)$	Quantum Liouville eq. $i\hbar rac{\partial}{\partial t}\hat{ ho}(t) = [\hat{H},\hat{ ho}(t)]$	ensemble averages $\langle \hat{A}(t) angle = { m Tr}(\hat{A}\hat{ ho}(t))$

Manipulating the dynamics

- ullet The evolution of an unperturbed quantum system is determined by its free Hamiltonian \hat{H}_0 .
- Application of external control fields e.g., derived from lasers perturbs the evolution of the system ⇒ new total Hamiltonian

$$\hat{H} = \hat{H}_0 + \sum_{m=1}^M f_m(t)\hat{H}_m$$

- ullet \hat{H}_m , m>0, describes the interaction of the system with field f_m .
- The controls are classical fields, i.e., bounded, measurable, real-valued functions defined for some time interval $[t_0, t_F]$.

$$\mathbf{f}(t) = (f_1(t), f_2(t), \dots, f_M(t)) \qquad M < \infty$$

LIOUVILLE EQUATION FOR DISSIPATIVE SYSTEMS

Combining the effect of the controls and the dissipation, leads to the quantum Liouville equation for dissipative systems:

$$oxed{rac{\partial}{\partial t}\hat{
ho}(t) = -rac{i}{\hbar}\left[\mathcal{L}_0 + \sum_{m=1}^M f_m(t)\mathcal{L}_m
ight]\hat{
ho}(t) + \mathcal{D}\hat{
ho}(t)}$$

 $\mathcal{L}_m\hat{
ho}(t)\equiv [\hat{H}_m,\hat{
ho}]$ for $0\leq m\leq M$ and \mathcal{D} can always be written as

$$\mathcal{D}[V_k]\hat{
ho} = rac{1}{2}\sum_k [\hat{V}_k\hat{
ho},\hat{V}_k^{\dagger}] + [\hat{V}_k,\hat{
ho}\hat{V}_k^{\dagger}]$$

where the \hat{V}_k are arbitrary bounded operators [Lindblad].

The effect of the environment

- IDEAL: The quantum system interacts only with the control fields.
 The evolution of an ideal quantum control system is unitary.
- REALITY: Most quantum systems also interact in uncontrollable ways with the environment.
- ⇒ The evolution of the system is non-unitary due to:
- PHASE DECOHERENCE, which destroys the off-diagonal elements (coherences) of the density operator.
- POPULATION RELAXATION, which changes populations (diagonal elements of the density operator) and leads to phase decoherence.
- Phase decoherence and population decay necessitate the introduction of a dissipation super operator \mathcal{D} determined by the phase and population relaxation rates γ_{km}^d and γ_{km} :

$$\mathcal{D}_{km,km} = -\gamma_{km}^d,$$

$$\mathcal{D}_{kk,mm} = \gamma_{km},$$

$$\mathcal{D}_{kk,kk} = -\sum_{m \neq k} \gamma_{mk}.$$

Unitary evolution & Magnus expansion

• The evolution of a Hamiltonian quantum control system is given by

$$\hat{U}(t, t_0) = \exp_+ \left[-\frac{i}{\hbar} \int_{t_0}^t \hat{H}[\mathbf{f}(\tau)] d\tau \right]$$

 The time-ordered exponential is unitary and can be expressed in terms of an ordinary exponential via the Magnus expansion

$$\exp_{+} \left[-\frac{i}{\hbar} \int_{t_0}^{t} \hat{H}(\tau) d\tau \right] = \exp \left[\sum_{n=1}^{\infty} \frac{1}{n!} \left(-\frac{i}{\hbar} \right)^{n} \hat{A}_{n} \right]$$

where $\hat{H}(au)=\hat{H}[\mathbf{f}(au)]$ and the operators \hat{A}_n are defined by

$$\hat{A}_{1} = \int_{t_{0}}^{t} \hat{H}(\tau_{1}) d\tau_{1}, \qquad \hat{A}_{2} = \int_{t_{0}}^{t} \int_{t_{0}}^{\tau_{2}} [\hat{H}(\tau_{2}), \hat{H}(\tau_{1})] d\tau_{1} d\tau_{2}
\hat{A}_{3} = \int_{t_{0}}^{t} \int_{t_{0}}^{\tau_{3}} \int_{t_{0}}^{\tau_{2}} [\hat{H}(\tau_{3}), [\hat{H}(\tau_{2}), \hat{H}(\tau_{1})]] + [[\hat{H}(\tau_{3}), \hat{H}(\tau_{2})], \hat{H}(\tau_{1})] d\tau_{1} d\tau_{2} d\tau_{3}, \dots$$

DYNAMICAL LIE GROUPS & REACHABLE SETS

- KINEMATICAL CONSTRAINT: dynamical Lie group must be subgroup of U(N)
- ⇒ Partitioning of density operators into kinematical equivalence classes [KEC]
- ⇒ dynamically reachable states must be subsets of KEC
- DYNAMICAL LIE GROUP S: determines sets of dynamically equivalent states
- $\Rightarrow \hat{\rho}_0, \hat{\rho}_1$ dynamically equivalent iff $\hat{\rho}_1 = \hat{U}\hat{\rho}_0\hat{U}^{\dagger}$ for $\hat{U} \in S$
- \Rightarrow set of dynamically reachable states = KEC iff S transitive on KEC
- TRANSITIVE ACTION:
 - -U(N), SU(N) transitive on ALL kinematical equivalence classes
 - Only U(N), SU(N), and if N even, $Sp(\frac{N}{2})$, $Sp(\frac{N}{2}) \times U(1)$ transitive on the KEC of pure states [Montgomery & Samelson (1943)]
 - Any other dynamical Lie group transitive only on the trivial KEC of completely random ensembles $[\hat{\rho}=\frac{1}{N}\hat{I}_N]$

Dynamical Equivalence of States for $S \simeq Sp(\frac{N}{2})$

- $Sp(\frac{N}{2})$ TRANSITIVE on completely random ensembles and KEC of density operators $\hat{\rho}$ with two distinct eigenvalues, one of which occurring with multiplicity N-1.
- OTHERWISE: kinematically equivalent, dynamically non-reachable states exist
- CRITERIA FOR DYNAMICAL EQUIVALENCE OF STATES: For any $S \simeq Sp(\frac{N}{2})$ there exists \hat{J} such that any $\hat{U} \in S$ satisfies $\hat{U}^T \hat{J} \hat{U} = \hat{J}$
 - $\Rightarrow \hat{
 ho}_0$ and $\hat{
 ho}_1$ (KE) are dynamically equivalent iff $\exists \ \hat{U} \in U(N)$ such that

$$\hat{
ho}_1 = \hat{U}\hat{
ho}_0\hat{U}^\dagger$$
 and $\hat{U}^T\hat{J}\hat{U} = \hat{J}$

 $\Leftrightarrow \hat{\rho}_0$, $\hat{\rho}_1$ dynamically equivalent (DE) iff

$$\hat{
ho}_1=\hat{U}\hat{
ho}_0\hat{U}^\dagger$$
 and $(\hat{J}\hat{
ho}_1\hat{J}^\dagger)^*=\hat{U}(\hat{J}\hat{
ho}_0\hat{J}^\dagger)^*\hat{U}^\dagger$

System with dynamical Lie group Sp(2)

Consider a four-level system with $\hat{H} = \hat{H}_0 + f(t)\hat{H}_1$,

$$\hat{H}_0 = \left(egin{array}{cccc} -rac{3}{2} & 0 & 0 & 0 \ 0 & -rac{1}{2} & 0 & 0 \ 0 & 0 & +rac{1}{2} & 0 \ 0 & 0 & 0 & +rac{3}{2} \end{array}
ight), \qquad \hat{H}_1 = \left(egin{array}{ccccc} 0 & +1 & 0 & 0 \ +1 & 0 & +1 & 0 \ 0 & +1 & 0 & -1 \ 0 & 0 & -1 & 0 \end{array}
ight)$$

The dynamical Lie algebra $\mathcal L$ generated by $i\hat H_0$ and $i\hat H_1$ has dimension 10 and both $i\hat H_0$ and $i\hat H_1$ satisfy

 $\Rightarrow \mathcal{L} = sp(2)$ and the dynamical Lie group S = Sp(2).

Non-Reachable States for Sp(2) Example

Let $0 \le a, b \le 1$, $a \ne b$, $a + b = \frac{1}{2}$. Consider the kinematically equivalent states

$$\hat{
ho}_0 = \left(egin{array}{cccc} a & 0 & 0 & 0 \ 0 & a & 0 & 0 \ 0 & 0 & b & 0 \ 0 & 0 & 0 & b \end{array}
ight), \ \hat{
ho}_1 = \left(egin{array}{cccc} a & 0 & 0 & 0 \ 0 & b & 0 & 0 \ 0 & 0 & b & 0 \ 0 & 0 & 0 & a \end{array}
ight), \ \hat{
ho}_2 = \left(egin{array}{cccc} a & 0 & 0 & 0 \ 0 & b & 0 & 0 \ 0 & 0 & a & 0 \ 0 & 0 & 0 & b \end{array}
ight).$$

 $\hat{
ho}_0$ and $\hat{
ho}_2$ are NOT dynamically equivalent since

$$ilde{
ho}_2=(\hat{J}\hat{
ho}_2\hat{J}^\dagger)^*=\hat{
ho}_2$$
 but $ilde{
ho}_0=(\hat{J}\hat{
ho}_0\hat{J}^\dagger)^*
eq\hat{
ho}_0$

There cannot be a unitary operator such that $\hat{\rho}_2 = \hat{U}\hat{\rho}_0\hat{U}^\dagger = \hat{U}\tilde{\rho}_0\hat{U}^\dagger$ if $\hat{\rho}_0 \neq \tilde{\rho}_0$.

Similarly, $\hat{\rho}_1$ and $\hat{\rho}_2$ are NOT dynamically equivalent since

$$\left[ilde{
ho}_2 = (\hat{J}\hat{
ho}_2\hat{J}^\dagger)^* = \hat{
ho}_2 \,
ight] \qquad ext{but} \qquad \left[ilde{
ho}_1 = (\hat{J}\hat{
ho}_1\hat{J}^\dagger)^*
eq \hat{
ho}_1 \,
ight]$$

Finally, $\hat{ ho}_0$ and $\hat{ ho}_1$ are NOT dynamically equivalent since the equations (1)

$$\hat{
ho}_1 = \hat{U}\hat{
ho}_0\hat{U}^\dagger$$
 and $ilde{
ho}_1 = \hat{U} ilde{
ho}_0\hat{U}^\dagger$

for $\tilde{
ho}=(\hat{J}\hat{
ho}\hat{J}^{\dagger})^*$ cannot be simultaneously solved.

To see this, note that the associated linear equations (2)

$$\hat{U}\hat{
ho}_0-\hat{
ho}_1\hat{U}=0$$
 and $\hat{U} ilde{
ho}_0- ilde{
ho}_1\hat{U}=0$

can be re-written in matrix form (3)

$$\underline{R}\mathbf{U} = 0$$

where \underline{R} is a $2N^2$ by N^2 matrix and U is a column vector of length N^2 . The null space of the matrix \underline{R} is empty. Thus, there is no solution U to the linear system of equations (3), and therefore, no unitary operator \hat{U} that solves (1).

System with dynamical Lie group SO(5)

Consider a five-level system with $\hat{H} = \hat{H}_0 + f(t)\hat{H}_1$,

The skew-Hermitian matrices $i\hat{H}_0$ and $i\hat{H}_1$ generate the Lie algebra so(5), or rather, a skew-Hermitian representation of so(5).

However, the unitary transformation

$$B = \frac{1}{\sqrt{2}} \left(\begin{array}{ccccc} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & \sqrt{2} & 0 & 0 \\ i & 0 & 0 & 0 & -i \\ 1 & i & 0 & i & 0 \end{array} \right)$$

Dynamical Equivalence of States for $S \simeq SO(N)$

- ullet SO(N) transitive only on trivial KEC of completely random ensembles
- Any other KEC is partitioned into subclasses of dynamically equivalent states
- CRITERIA FOR DYNAMICAL EQUIVALENCE OF STATES:
 METHOD 1: Use Ĵ matrix.
 - For any $S \simeq SO(N)$ there exists \hat{J} such that $\hat{U}^T\hat{J}\hat{U} = \hat{J}$ for any $\hat{U} \in S$
 - KE states $\hat{\rho}_0$, $\hat{\rho}_1$ dynamically equivalent iff $\hat{\rho}_1 = \hat{U}\hat{\rho}_0\hat{U}^\dagger$ and $(\hat{J}\hat{\rho}_1\hat{J}^\dagger)^* = \hat{U}(\hat{J}\hat{\rho}_0\hat{J}^\dagger)^*\hat{U}^\dagger$

METHOD 2: Change of basis.

- Dynamical Lie algebra $\mathcal L$ is a representation of so(N) in terms of skew-Hermitian operators since $i\hat H_m$ skew-Hermitian
- Find unitary basis transformation B such that $B(i\hat{H}_m)B^\dagger$ are real, skew-symmetric matrices
- Real orthogonal transformations cannot map matrices with real entries onto matrices with non-real entries.

maps $i\hat{H}_0$ and $i\hat{H}_1$ onto real, anti-symmetric matrices

$$ilde{H}_0 = B(i\hat{H}_0)B^\dagger = \left(egin{array}{ccccc} 0 & 0 & 0 & -2 & 0 \ 0 & 0 & 0 & 0 & -1 \ 0 & 0 & 0 & 0 & 0 \ 2 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 \end{array}
ight) \ ilde{H}_1 = B(i\hat{H}_1)B^\dagger = \left(egin{array}{ccccc} 0 & 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 2\sqrt{2} \ 0 & -1 & 0 & 0 & 0 \ -1 & 0 & -2\sqrt{2} & 0 & 0 \end{array}
ight) \ ilde{H}_1 = B(i\hat{H}_1)B^\dagger = \left(egin{array}{cccccc} 0 & 0 & 0 & 0 & 2\sqrt{2} \ 0 & -1 & 0 & 0 & 0 \ -1 & 0 & -2\sqrt{2} & 0 & 0 \end{array}
ight)$$

which generate a representation of so(5) in terms of real, skew-symmetric matrices.

 \Rightarrow associated Lie group \tilde{S} consists of real orthogonal transformations!

Basis change B maps the pure states

$$\hat{\rho}_0 = |1\rangle\langle 1|$$
 and $\hat{\rho}_1 = \frac{1}{2}(|1\rangle + |5\rangle)(\langle 1| + \langle 5|)$

to $\tilde{
ho}_0 = B\hat{
ho}_0 B^\dagger$ and $\tilde{
ho}_1 = B\hat{
ho}_1 B^\dagger$, where

- \bullet $\tilde{\rho}_0$ has non-real entries, while $\tilde{\rho}_1$ has only real entries
- \Rightarrow There is no real orthogonal transformation \hat{U} such that $\tilde{
 ho}_1=\hat{U}\tilde{
 ho}_0\hat{U}^\dagger$ [Note $\hat{U}^\dagger=U^T$]
- $\Rightarrow \hat{
 ho}_0$ and $\hat{
 ho}_1$ not dynamically equivalent!

LIE ALGEBRAIC CRITERIA FOR CONTROLLABILITY

The Magnus expansion shows that the evolution of a control-linear system is determined by the operators of the form $\exp(\hat{x})$ where \hat{x} is an element of the dynamical Lie algebra L generated by the operators $i\hat{H}_m$, $0 \le m \le M$.

THEOREM: [Abertini, D'Alessandro / Schirmer, Solomon, Leahy] If $\dim \mathcal{H} = N$ then L is a subalgebra of u(N) and the system is

- Completely controllable $\Leftrightarrow L \simeq u(N)$.
- Observable controllable $\Leftrightarrow L \simeq u(N)$ or $L \simeq su(N)$.
- Density matrix controllable $\Leftrightarrow L \simeq u(N)$ or $L \simeq su(N)$.
- Pure-state controllable $\Leftrightarrow L \simeq u(N), L \simeq su(N),$ or, if $N = 2\ell, sp(\ell), sp(\ell) \oplus u(1).$

Thus we have $CC \Rightarrow OC \Leftrightarrow DC \Rightarrow PC$

We shall call a system controllable if its dynamical Lie algebra is su(N) or u(N).

Even for Hamiltonian quantum control systems, there are various notions of controllability:

- CC COMPLETE CONTROLLABILITY: any unitary evolution is dynamically realizable, i.e., given any unitary operator \hat{U} , there exists $t_F>0$ and an admissible control-trajectory pair $(\mathbf{f},\hat{U}(t,t_0))$ such that $\hat{U}=\hat{U}(t_F,t_0)$.
- OC OBSERVABLE CONTROLLABILITY: kinematical bounds for any observable \hat{A} dynamically realizable, i.e., there exists $t_F>0$ and an admissible control-trajectory pair $(\mathbf{f},\hat{U}(t,t_0))$ such that $\langle\hat{A}(t)\rangle$ assumes its kinematical upper or lower bound at $t=t_F$.
- DC DENSITY MATRIX CONTROLLABILITY: given any two (kinematically equivalent) density matrices $\hat{\rho}_0$, $\hat{\rho}_1$, there exists $t_F>0$ and an admissible control-trajectory pair $(\mathbf{f},\hat{U}(t,t_0))$ such that $\hat{\rho}_1=\hat{U}(t_F,t_0)\hat{\rho}_0\hat{U}(t_F,t_0)^{\dagger}$.
- PC Pure-state controllability: given any two pure states (wavefunctions) $|\Psi_0\rangle$, $|\Psi_1\rangle$, there exists $t_F>0$ and an admissible control-trajectory pair $(\mathbf{f},\hat{U}(t,t_0))$ such that $|\Psi_1\rangle=\hat{U}(t_F,t_0)|\Psi_0\rangle$.

RESULTS ABOUT CONTROLLABILITY

Consider a quantum system subject to a single control field (M=1) with $N<\infty$ energy levels E_n with $E_n\leq E_{n+1}$ and transition frequencies $\omega_{mn}=E_n-E_m$.

THEOREM: [Altafini / Turinici] If the energy levels are non-degenerate and the transition frequencies are unique, i.e., $\omega_{mn} \neq \omega_{ab}$ unless (m,n)=(a,b), let the eigenstates $|n\rangle$ be the vertices of a graph and the transitions $|n\rangle \rightarrow |m\rangle$ with non-zero dipole moment be the edges. If the graph is connected then the system is controllable.

THEOREM: [Schirmer, Fu, Solomon] Given a system with nearest-neighbor interaction, i.e., $d_{mn}=0$ unless $n=m\pm 1$ and $d_{n,n+1}=d_{n+1,n}\neq 0$, let $v_n\equiv 2d_{n,n+1}^2-d_{n-1,n}^2-d_{n+1,n+2}^2$. The system is controllable if either

- 1. $\exists p$ such that $\omega_{n,n+1} \neq \omega_{p,p+1}$ for $n \neq p$, or
- 2. $\omega_{n,n+1} = \omega$ for all n but $\exists p$ s.t. $v_n \neq v_p$ for $n \neq p$.

and $d_{n-k}^2 \neq d_{n+k}^2$ for some $k \neq 0$ in case N = 2p.

Conclusion

In this first talk we introduced some of the ideas of quantum control:

- The relationship between quantum control and computing
- Environmental effects
- Dynamical Group approach to non-dissipative systems
- Degrees of controllability of Hamiltonian quantum systems

In the following talk we will describe how we can implement quantum control, and discuss at greater length the effects of dissipation.