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Statistical Signal Processing

> Statistical Signal Processing (SSP) deals with optimal methods for extracting
unknown /random signals from noisy observations.

> ‘“statistical” — noise is treated statistically.

> “signal” — feature(s) of interest.

» “unknown/random” —is the signal suitably described by a statistical model or not?

> ‘“optimal” — in terms of a performance criterion suitable to the problem.

» Detection theory studies problems in which the set of signals is finite or discrete:
M={1,...,M}

> Applications: Digital communication; radar/sonar target detection; medical diagnosis;
astronomical observations.

> Estimation theory studies problems in which the set of signals ©® C RY.
> Applications: Analog communication; measurements of physical quantities; radar
ranging; siesmology; imaging.
» Why study classical SSP?
» In quantum SSP, signals are carried by quantum systems and affected by quantum

noise, but problem objectives are similar.
» Theoretical concepts and techniques are analogous.

Classical Estimation Theory 2 /29



Probability Theory Concepts

Random variables XY, Z, R etc. (upper case).

Instances z € X,y € ), etc. (lower case).

Calligraphic case for the ranges x € X', y € ), etc.

Probability distributions P(z), P(z,y), P(z|y), etc. (sometimes Px (z), Pxy (z,y)
for clarity).

vvyyvyy

v

When the distribution function P is known, we can also consider P(X) as a random
variable.

> Statistical expectation:

B )= [ de [ ayP@y) sy W
— [ dor@) [ ayPlyie) f(ow) 2)
X y
=Ex [Ey|x=. [f(X,Y)]] . (iterated expectation) (3)
> Expectation is additive: E[f(X,Y) +g(X, V)] =E[f(X,Y)]+E[g(X,Y)].
> Statistical independence: Random variables X, ..., X/ are said to be statistically

independent if
Px, ... xpy (1, .. zm) = Px, (21)Pxy(z2) - - Pxp (xmr) Vo, ...,z (4)
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Parameter Estimation Theory

v

Classical (traditional) estimation theory vs. Bayesian estimation theory: the
parameter § € © C RY is regarded as unknown vs. random with a prior probability
distribution Pg(#). We will confine ourselves to classical estimation theory.

s0.4(t) X
Signal 6 Modulation  +n(¢) X 0 ( X)
Source + Measurement —— Estimation —
Noise

0 € O, the set of possible parameter values.
X, the space of observations.

The probability distribution P(z|6) on X induced by each value 6 € © (likelihood
function).

Estimator 6(X) : rule that gives the estimate of # from the observation (cannot
depend on 6!).

Note: 6 € © will refer to both the random variable and its instances.
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Parameter Estimation Theory

> Performance criterion is the mean square error (MSE)
. . 2
MSEy[d] := E [a - 9} (5)
. 2
- / deP(al0) [6(z) 0] 6)
x

> Ideally, we would like to find an estimator §'4** whose MSE satisfies

MSEy [éidea‘] < MSEy [e] for all 0 € ©. @)

» Very difficult to solve this problem (how to optimize over all estimators?). We will
have to restrict the class of allowed estimators.

» Bias of an estimator: by [é] =K [é] — 0.
> An estimator 6 is unbiased if

Eq [0] — 0 forall 6 c ©. (8)
» For unbiased estimators, MSEy [é] = Var [é] .
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Cramér-Rao lower bound

Theorem (Cramér-Rao bound)

Suppose the PDF P(X|60) satisfies the “regularity condition”

E{m%w]:/xdx%:ovee@. 9)

Then the variance of any unbiased estimator (X)) of § satisfies

Var [é] > (IE KW)QD_I (10)
- <IE {782 lnalngW)Dl. (11)

%‘gxw = L¢(X) = logarithmic derivative
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Cramér-Rao lower bound

OlnP(xz|f) 1 0P(xl0)
20 P(z|0) 90
_PWPlo) 1 oP(|0)]* 1 9*P(xl)
902~ P2(z|0) | 00 P(z]0) 062
[6° In P(x|0)] 0*P(z]0)
-E e =E [L;(X)] - / dacW
[0%1In P(z]6) ] 8P
-E e | =E[L§(X)] - / dz
[0%1n P(x|0)] .
—E o | =E [Lg(X)] (regularity)
DJ

dLo(X)
0

E [Lg(X)} =-E { } = Jo|X] = Fisher information (of X on 0).
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Examples

Example (DC value in additive white Gaussian noise (AWGN))

Suppose € © = R; X = (X1, X2,...,Xn)" € X =R" such that
Xn=0+W,, 1<n<N, (12)
where W, ~ A(0,5?), and are independent and identically distributed (i.i.d.).
_ 1 25:1(3771 - 0)?
__N 2y Loy (@n —0)°
In P(x|0) = — 5 In (270”) — 9572 (14)
N
n— NO
Oln P(x|6) _ D e @ (15)
00 o2
#IP(x|d) N
;. T2 = Jo[X]. (16)
N
X Xn
Sample mean 0[X] := Z"ZTl ~ N (8,0%/N). (17)
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Examples

Example (DC value in additive white noise)

Suppose € © = R; X = (X1, X2,...,Xn)" € X =R" such that

Xn=0+W,, 1<n<N,

with i.i.d. {W,} such that E[W,] = 0,E [W;] = o, but otherwise arbitrarily
distributed. £2(x)

TolXa] = /X ar (xln\9> {ananle)r

[ dei @)

Sy dz g*(2)
Take g(z) := /P(z]0)(x — ) = /X dz g°(x) = Var[W] = o°.

/def(x)g(a:) = /Xd:c (z — G)BPg;‘e) = %/demP(ﬂG) ="
= Jo[X] > N/o*.

For additive noise with a given variance, it is “hardest” to estimate a DC value if the
noise is Gaussian.
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Examples

Example (Arbitrarily modulated parameter in AWGN)

Suppose 6 € © C R is modulated onto a given discrete-time waveform s,.9,1 <n < N,

which is observed in AWGN:
Xn =58n0+Wn, 1<n<N,
with W,, ~ N(0,0?) i.i.d.
P(X]0) =

s 20

25:1 (Xn — Sn;9)2
(271_0_2)N/2 2 :

S ome1 (Xn — 5ni0)°
202

mmmwz—gm@m%—

alnP X|9) Bsng
% 022

Sn;G)

062 T o2

2 N 2 N o
_mP(X|0) _ 1{2;(32f> _2;6£$%Xﬁ—smw]
= (%) |

i () _|

o2

—> Var [H(X)] > Hé’HQ/UQ.

(19)

(20)

(21)

(22)

(23)

(24)

v
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Examples

Example (Estimating the variance of a Gaussian)

Suppose v € RT; X = RY and X,, ~ N(0,v) and i.i.d. for 1 <n < N.
N 52
X
P(X|v) = (2mv) Y2 exp |:—2:"_1” .
2v
N S Xn
In P(X|v) = —5 In(27v) — ST
dmPXy) N YL, Xi
ov T 2w 202
9% In P(X|v) N N Xx? N
o~ e A=
Vinbias i= % (3202, X2) achieves the CRB (Exercise).
Vbias := NLH (Zﬁ’zl X,%) has MSE I\Z,’fé < % (Exercise™).

* P. Stoica and R. Moses, Signal Processing, vol. 21, pp. 349-350 (1990).
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Properties of Fisher Information

Theorem (Chain Rule)

Suppose X and Y are two observations with the parameter-dependent joint probability
distribution P(X,Y|0). Their combined Fisher information on 6 equals

Jo[XY] = Jo[X] + To[Y|X]

. [(amz;gxw)ﬂ E [(alnp(;gx, 9))2]

More generally, for a vector observation X = (X1, Xo,...,Xm),

Jo [XaXo- - Xum] = To [Xa] + To [Xo| Xa]+ -+ To [Xn| X1+ - Xna—1] -
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Properties of Fisher Information

We have
(alnP((;;,YW)) (OlnlgéXW) alnp(;gx,e))?
_ (6lnlgéX|0))2+ (alnng|X,0)>2+2 (alng(gxw)) <61nng|X,9)>.

Taking expectations, we get

:jg[X]+.79[Y|X]+2/de/ydyP(az|0)P(y| )Blnl;(gXW)BlnPa(éAm ,0)

ZJG[XHJQMX]H/ P(a |0)alnP(X|9)/yd )

= Jo[X] + Jo[Y|X].
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Properties of Fisher Information

Corollary (Additivity & Data Processing)

1. (Additivity for independent observations) If X1,..., X are independent
observations, we have

Jo[X1Xz... X =Y Jo[Xom): (25)

2. (Data Processing inequality) For any function f, we have

Jo[X] = To [f(X)]. (26) |

Proof.
1. We have In P(X1, X2, ..., Xu) = M In P(X,,).

2. Using the chain rule in two ways, we have
Jo [X f(X)] = To [f(X)] + T [X|f(X)]
= Jo [X] + Jo [f(X)|X] = Jo [X].
= Jo[X] > Jo [f(X)].

Classical Estimation Theory 13/
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Is Fisher information subadditive?

If X1 and X5 are two observations with joint probability distribution P(X1, X2|6), do we
have

TJo[X1 X2] < Jo[X1] + To[Xo);
To[Xo| X1] < Jo[X2]?
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Is Fisher information subadditive?

If X1 and X5 are two observations with joint probability distribution P(X1, X2|0), do we
have

Jo[X1 Xo] < Jo[Xa1] + To[X2);
T X2|X1] < Jo[X2]?
Example 1: Suppose that, for § € R, we have observations:
X1 =6+ Ny,
Xo=0+aN: + (1 —a)N,,

for some 0 < a < 1 and N1, N2 ~ N(0,0?) are independent noises. Given X; = z; and
0,

Xo =az1+ (1 —a)f + (1 — a)N2, so that
Xo ~ N (azi 4+ (1 — ), (1 — Oé)20'2) ,

1 .
_J = ifa<l,
JolXa|Xa] = { 0  otherwise,
1

Jo[X2] = 2 +(1—a)]o?
Jo[X2| X1]< Jo[X2).
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Is Fisher information subadditive?

If X1 and X5 are two observations with joint probability distribution P(X1, X2|0), do we
have

Jo[X1 X2] < Jo[X1] + To[X2];
Jo[X2|X1] < Jo[X2]?

Example 2: Suppose that, for € R, we have observations:
X1 =0+ Ny,
X2 =0—aN1 + (1 — a)Na,
for some 0 < a < 1 and N1, N2 ~ N(0,?) are independent noise variables. Given
X1 =2z and 0,
Xo = —az1+ (1 + a)f + (1 — a)Na2, so that
Xo ~ N (—azy + (14 a)0, (1 — a)’c”).

To[Xa|X1] = %
TolXa] = !

[@? + (1 —a)o?
Jo| X2 X1]> To[X2].



Fisher Information & the Bhattacharyya coefficient

> Given a family of probability distributions P(X0) on X, for any 6,6’ € ©, the
Bhattacharyya coefficient B(0,0’) is defined as:

B(e,e’):/ da\/P]0) P@]0');

0< B, <1

> We have
oB(0,0') / ) OP(x0")
o0 m|6” o0
9°B(6,6") __1/ dp L P(z]0) [oP(x]0")]?
902~ 4/, PEe)\| Ple) | oo
/ 0) 0°P 9°P(x]0")
x|0’ 967
> Setting 0’ = 0, we get
L O°B0,0)
JolX] = ~4=5gm—
6'=6
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Statistical Detection (Decision) Theory/ Hypothesis Testing

» Given an observation z € X drawn from one of a finite family of probability
distributions { P(z|i)}Z, on X, we wish to determine the index i.

» Two paradigms: i is a nonrandom parameter (Neyman-Pearson) / I is a random
variable (Bayesian).

> Applications (Neyman-Pearson): medical diagnosis, target detection, gravitational

wave detection.
(Bayesian): digital communication, theoretical bounds on other

problems.
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Binary Hypothesis Testing

> Two possible hypotheses i € {0,1}:

Hy :P(z|0); z € X (null hypothesis).
H, :P(z|1); = € X (alternative hypothesis).
> A decision rule J(X) = I(X) representing the “best” decision that can be taken
given the observation.

» Equivalent to partitioning the observation space into two regions Xy and &’ such
that X = XoUX1; AN = 0.

» Two kinds of errors:
Pr [X1|Ho] = / dxz P(x|0) = Pr (false-alarm probability),

X1

Pr [Ap|H,] = dz P(x|1) = Py (miss probability).

Xo

» In the Bayesian approach, [ is a random variable with its two values having the prior
probabilities {mo, 71 }.
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Nonrandom case: Neyman-Pearson lemma

» Minimizing Pr (“expand X,") and minimizing Py (“expand X41") are conflicting
objectives.

» For each value of Pr € [0, 1], find the minimum achievable Py, (and the
corresponding AXp).

» The resulting curve of minimum Py vs. Pr is called the receiver operating
characteristic (ROC).

Theorem (Neyman-Pearson lemma)

For a given Pr = «, the decision rule that minimizes Py is to decide Hy whenever the
likelihood ratio

Le) = 5ois > 7

where the threshold + is determined by the condition

Pr = / P(z|0)dz = a.
z:L(xz)>y
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Random case: Binary hypothesis testing

» When prior probabilities {mo, w1} are assigned, we choose to minimize the average
error probability

Pr = noPr + 71 P (27)

» Using the decision function I1(x) as before, we can write
Pr = / dz [I (z) mo P(z|0) 4 Io(x) m1 P(x|1)],
x

> /X dz min {mo P(z|0), m1 P(z|1)},

a<b = a(b)=(a+0b)/2F |a—b|/2.

1
Pr = 5/ dx [TroP(m|0) + mP(x|1) — ‘WOP($|O) - wlP(x\l)H
x
1 1
-1 5/ d|moP(x]0) — m1 P(z]1)]
x
1 1 .
=5 5||7|-0P(X|0) —mP(X[1)||, (lh-distance).

» Optimum decision rule J(z) = argmax;e (0,1} {m; P(x|7)}.
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Random case: M-ary hypothesis testing

> M > 2 hypotheses { H; = Px(X|i)}}~, with prior probabilities {m;}2,.
> Define the decision functions {M;(z)}}L, such that

OSMJ(Q:)S17 vj:]‘7"'7M7
M

> Mj(x) =1, Vo e X.

j=1

» The probability of correct decision is:

Pc—zwg | daPx(eli) by (o)

/dx ZM z) 7 Px(x|j)

< [ do max{m, Px(ali)}.
x J
» Optimum decision rule: When = € X is observed, set
J(z) = arg max {m;Px(z|7)}.
20 / 29



Bounds on binary error probability

> In most cases, the exact error probability cannot be calculated (absolute
value/minimum).

» In many cases, we have N independent copies of the observation:

X —xv,

z—=x=(z1,...,2ZN),

N
Px (z]i) = Px(z1,...,2N]i) H (zali) = P (x).

» The asymptotic behavior of PéN) as N — oo is of interest.

» M-ary error probabilities can be bounded in terms of pairwise binary error
probabilities.
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Bhattacharyya Lower Bound on binary error probability

» Consider the case g = m1 = 1/2 for simplicity.

Py — % _ E/de |P(]0) — P(x]1)],

D[P(X0), P(X|1)] = %/deypmo) — P(/1)].

(Kolmogorov distance)
D? [P(X0), P(X|1)] =
1 2
1| [ o [VPGI) + VPGID| VPG - VPG|
< i/ dz [/PGI) + VP x /de [VPGl) - PE]

1o V dz x|0)Pm1)]2

=1- B*[P(X0), P(X|1)].
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Upper bound on binary error probability (Chernoff bound)
» We can upper-bound Pg as follows:
Pg :/ dz min {mo P (z|0), m1 P(z|1)},
x
min{a,b}< a’b'"* < sa+ (1 —s)b, Vs e [0,1].
Pg :/ dz min {mo P (z|0), m1 P(x|1)}
x

S’/TS’/T%_S/ dzP*(z|0) P' % (z|1)
x
=nmim °Cl:

C := min C; < 1 (Chernoff bound).
s€[0,1]

» The Chernoff bound is multiplicative: P,((N)(x) — oM =N,

> |t is exponentially tight in the large N-limit:

aC™ < PN < BCN for N > No.
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Analogies betwen Classical vs. Quantum SSP

Classical Quantum

Observation space X Hilbert space H

Probability distribution Density operator p; € S(H)

0 < P(zfi); 1 <i< M. 0<pi; 1<i< M.
fxde(mﬁ):l;lSiSM. Trp,=1; 1<i< M.

Decision functions POVM (Positive-operator-valued Measure)

0<M(z) <1; 1<j<M 0<M; <I; 1<j< M.
S Mj(x) =1; Vo e X SN =1
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POVMs

» Quantum Measurements first described by orthogonal projection operators (von
Neumann, Liiders):

In; = 11i; I, =113,
M

Hij:Hj(Sjk; ZH]:I
J=1

» These Projection-valued measurements (PVMs) insufficient for quantum detection
and estimation: Maximum number of outcomes < dim H.

oYM
» For an arbitrary state p, any set of positive operators {M]} satisfying
1

j=
Z;‘il M; = I generates a probability distribution on j € {1,..., M} via
Pr[jlp] = Tr pM;.
> By attaching a measuring system (ancilla) to the system of interest, evolving via a
joint unitary, and then measuring the ancilla using a PVM, one can realize any given
SNM
POVM {Mj}

(Naimark's theorem).
Jj=1
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Binary Quantum Hypothesis Testing

> Bayesian problem: po(mo)/p1(m1).
» Quantum decision rule : 2-element POVM 0 < Mo,Ml; Mo+ My = 1.
» Error probability

Pg [Mo,Ml] = mo Tr POMI +m Tr PIMO

=m0 + Tr (m1p1 — Top0) Mo.

» Difference operator:

A= T1pP1 — TopPo = AT = Z)‘m |$> <x|7

Ay = Z Az |I> <$|,
T:Ag >0

Aoi= Y allz) (al,
z: A <0

A = A4 — A_ such that
0< AL, A_; Ay A_ =0. (Jordan decomposition).

Py := projection operators onto the range of A4.
Py P_=0.
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Binary Quantum Hypothesis Testing: Helstrom bound

» Minimum error probability

P2 . min Py [Mo,Ml]
0<Nip<Tl

=+ Tr A+M0 —Tr A_M().

"<:’ :3>>
:'>> UJ>
AV
CJ C>

» Since

Tr A_Mo =Tr P_A_P_MO

=Tr A_P_MyP_<Tr A_P_IP_
=Tr A_P_.

> Let's take Mo = P_: A
T A Mo =0
= {Mo =P M = P+} is the optimum POVM.

Classical Estimation Theory
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Minimum Error Probability: Helstrom bound

» Minimum error probability
PEin— o — Tr A
TrTA=Tr Ay —Tr A_ =m1 — 7o
mo—Tr A =m — Tr AL

> S
° min TFO—TI'A_—Fﬂ'l—TI‘A_,r
PE = 2
1 1
- Ty _
ST (AL 44
1 1
- STr|A
TN
» where

Tr |X| =Tr VXX = ||X||; (trace norm).
1 1

1%m=§—ﬂmm—mmm&MWWmmm
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