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The Sea of Errors
QEC
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|ψ〉

‣ All physical devices are not perfect.


‣ Classical digital computation is normally very robust to noise (bit-flip error).


‣ Quantum computation is hard: Protect not only against bit-flip errors, but also 
from the environment constantly interacting to the quantum system. But we want 
qubits to interact strongly and accurately with each other. 


‣ Also, at first glance, quantum computers resembles classical analog computers.

|ψ〉 = cos(θ)|0〉+ sin(θ)eiφ|1〉

What is the problem?

Peter Shor (1995) Alexei Kitaev (1997)

I have one too!I have an idea!

What errors are we talking about here?

‣ Can’t just correct any errors.


• Errors should be not too strong.


• Errors should be not too strongly correlated.



Classical repetition code

• Probability to fail is changed from p to 3p(1-p)2+p3: improvement as long as p<1/2.

• Can add more bits (redundancy) to correct more errors, e.g., 5 bits to correct 2 errors

• Quantum case is not as simple!

3-bits encoding &
majority vote

(1-p)3 no error O(1)

3p(1-p)2 1 error O(p)

3(1-p)p2 2 errors O(p2)

p3 3 errors O(p3)

000 
001 
010 
100

000

111 
110 
101 
011

111} }
1→1110→000

QEC has to overcome…

‣ Measurement destroys superposition.


‣ No cloning theorem: Can’t copy qubits.


‣ Must correct multiple types of errors, i.e., bit-flip (X) and phase-flip (Z).


‣ Continuous errors.



The Promised Land of Quantum Info.

The Sea of Errors
QEC

H(t) = HS(t) +HE(t) +HSE(t)

ρS(τ) = Λτ [ρS(0)] = TrE
[
U(τ)ρS ⊗ ρEU

†(τ)
]
=

∑
i

AiρS(0)A
†
i

U(τ) = T exp[−i
∫ τ

0
dt′H(t′)]

Kraus representation!

Completely Positive, Trace Preserving (CPTP) map

Kraus operator

Interaction with environment

can control reasonably well usually unknown, uncontrollable

∑
i

A†
iAi = I



Trivial example

|ψ〉S =
|0〉+ |1〉√

2
|ψ〉E = |0〉

CNOT |ψ〉S |ψ〉E = |Φ〉 = |00〉+ |11〉
2

TrE(|Φ〉〈Φ|) =
|0〉〈0|+ |1〉〈1|

2

Errors can be digitized
|1〉S |0〉E → |0〉S |e10〉E + |1〉S |e11〉E|0〉S |0〉E → |0〉S |e00〉E + |1〉S |e01〉E

Similar Pauli-expansion holds for n-qubits:

Design QECC so that a subset of Pauli errors can be detected.

|ψn〉 ⊗ |φ〉E → ∑
j Ej |ψn〉 ⊗ |ej〉E

(α|0〉S + β|1〉S)|0〉E → α(|0〉S |e00〉E + |1〉S |e01〉E) + β(|0〉S |e10〉E + |1〉S |e11〉E)
= (α|0〉+ β|1〉)S ⊗ (|e00〉+ |e11〉)E/2
+ (α|0〉 − β|1〉)S ⊗ (|e00〉 − |e11〉)E/2
+ (α|1〉+ β|0〉)S ⊗ (|e01〉+ |e10〉)E/2
+ (α|1〉 − β|1〉)S ⊗ (|e01〉 − |e10〉)E/2
= I|ψ〉 ⊗ |eI〉E +X|ψ〉 ⊗ |eX〉E + Y |ψ〉 ⊗ |eY 〉E + Z|ψ〉 ⊗ |eZ〉E

E ⊆ {Ej} ≡ {I,X, Y, Z}⊗n



The Promised Land of Quantum Info.

The Sea of Errors
QEC

What is “Qubit”?

‣ A unit of quantum information… Two level quantum system?


‣ Pauli operators:

[X,Z] = −2iY, {X,Z} = 0

‣ In principle, any system in which one can define X and Z operators that satisfy 
above relations can be used as a qubit, even if the system has more than two 
levels.


‣ physical qubit vs logical qubit, physical operation vs logical operation

[X,Y ] = 2iZ, {X,Y } = 0X2 = Y 2 = Z2 = I



I

Smallest code: a bit-flip error

|ψ〉L = α|000〉+ β|111〉

Encoding

Redundancy, not  copying

Measure the error, not the data

Error Syndrome

Encoding Decoding Recovery

Mz

Mz

X |ψ〉|ψ〉
|0〉
|0〉

What about a phase-flip error?

|ψ〉L = α|+++〉+ β|−−−〉

Encoding Decoding
Recovery

Mz

Mz

X |ψ〉|ψ〉
|0〉
|0〉

H

H

H

H

H

H

Z = HXH, X = HZHSince



Shor 9-qubit code

• 1st QEC code which encodes a single qubit and corrects any single-qubit  error.


• Code concatenation: take the elementary qubits of the codewords of a code C, 
replace them by encoded qubits of a new code C’.


• Also correct Y=-iXZ error (global phase irrelevant).

α|0〉+ β|1〉 → α|+++〉+ β|−−−〉
= α(|0〉+ |1〉)⊗3 + β(|0〉 − |1〉)⊗3

→ α(|000〉+ |111〉)⊗3 + β(|000〉 − |111〉)⊗3

Corrects a Z error

Corrects an X error

QEC has to overcome…

‣ Measurement destroys superposition.


‣ No cloning theorem prohibits repetition.


‣ Must correct multiple types of errors, i.e., bit-flip (X) and phase-flip (Z).


‣ Continuous errors.



Error correction condition

• Theorem: A QECC can correct a set of errors      iff

where              form an orthonormal basis for the code subspace (“codewords”), 
and 

〈ψi|E†
aEb|ψj〉 = Cabδij

{|ψj〉}

E

Ea, Eb ∈ E

non-degenerate codeCab = δab

The Promised Land of Quantum Info.

The Sea of Errors
QEC



Encoding Decoding Recovery

Mz

Mz

X |ψ〉|ψ〉
|0〉
|0〉

Error syndromes: Another view

‣ For correctly-encoded state 000 or 111: Any pair of bits have even parity.


‣ For state with an error on one of the bits: A pair of bits with an erroneous bit 
has odd parity.


‣ Equivalently, a codeword is a +1 eigenvector of Z⊗Z⊗I and Z⊗I⊗Z, but 
becomes a -1 vector of either Z⊗Z⊗I and/or Z⊗I⊗Z when there is an error.

X3 : α|001〉+ β|110〉
X2 : α|010〉+ β|101〉
X1 : α|100〉+ β|011〉
I⊗3 : α|000〉+ β|111〉

Error syndromes: Another view

‣ Likewise, a codeword is a +1 eigenvector of X⊗X⊗I and X⊗I⊗X, but 
becomes a -1 vector of either X⊗X⊗I and/or X⊗I⊗X when there is an 
error.


‣ Z⊗Z detects bit flip (X) errors, X⊗X detects phase (Z) errors.

I⊗3 : α|+++〉+ β|−−−〉
Z1 : α|−++〉+ β|+−−〉

Z2 : α|+−+〉+ β|−+−〉
Z3 : α|++−〉+ β|−−+〉

Encoding Decoding
Recovery

Mz

Mz

X |ψ〉|ψ〉
|0〉
|0〉

H

H

H

H

H

H



The Stabilizer code
‣ Encode k logical qubits into n physical qubits using the code space 

spanned by the states       that are invariant (+1 eigenstates) under the 
action of a stabilizer group    .


‣     is the Abelian subgroup of the Pauli group such that -I is not in    .


‣ If     has r generators on n qubits, the QECC has k = n-r encoded qubits.


‣ Instead of specifying the code space by a basis of 2n dimensional vectors, 
specify the code space by the generators of the stabilizer group which fix 
(or stabilize) these vectors.

S
|ψ〉

S S

S

L = {|ψ〉 ∈ (C2)⊗n : M |ψ〉 = |ψ〉 ∀ M ∈ S}

How does it work?
M ∈ S {M,E} = 0

ME|ψ〉 = −EM |ψ〉 = −E|ψ〉 E|ψ〉

ME|ψ〉 = EM |ψ〉 = E|ψ〉

[M,E] = 0 ∀M ∈ S

is a -1 eigenstate of M

Suppose

Then

But if

Then E|ψ〉 is a +1 eigenstate of M

,

,

,

Error syndrome: a list of eigenvalues obtained from measuring the stabilizer generators

detectable error

undetectable error

Can correct a set of errors if they all have distinct error syndromes



Code distance

‣ The weight of a Pauli operator (|P|): the number of single-qubit Pauli operators 
that are unequal to I, i.e., the number of qubits on which P acts nontrivially.


‣ Normalizer:


‣ Distance:


‣ Why minus S? “Errors” in S doesn’t change codewords, so are not really errors.


‣ [[n,k,d]] notation: The QEC code encodes k qubits into n, and has distance d.

d = min
P∈N (S)\S

|P |
N (S) = {N ∈ P : MN = NM ∀ M ∈ S} undetectable errors

Error correction condition revisited

‣ In order to correct t errors, we need distance d=2t+1. 

‣      and      have same error syndrome iff                        . Why?


• They commute with same elements of S 

‣ If                        , then the error syndrome can identify them.


‣ If                  , then


‣ Thus the QECC corrects a set of errors for which                           .

E1 E2 E†
1E2 ∈ N (S)

E†
1E2 /∈ N (S)

E†
1E2 ∈ S E†

1E2|ψ〉 = |ψ〉, ∴ E2|ψ〉 = E1|ψ〉

E†
iEj /∈ N (S)\S{

2t errors at most



Shor 9-qubit code revisited
|ψ〉L = α(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)

+ β(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)

M1 = ZZIIIIIII

M2 = IZZIIIIII

M3 = IIIZZIIII

M4 = IIIIZZIII

M5 = IIIIIIZZI

M6 = IIIIIIIZZ

M7 = XXXXXXIII

M8 = XXXIIIXXX

Identifies an X error Identifies a Z error

These generate a Stabilizer group of the 
code, consisting of all Pauli operators M with 
the property that

M |ψ〉L = |ψ〉L ∀|ψ〉L

The smallest QEC code

‣ For an arbitrary single qubit error, we can form the smallest QECC, [[5,1,3]] 
code, by picking following stabilizer generators

M1 = XZZXI

M2 = IXZZX

M3 = XIXZZ

M4 = ZXIXZ

‣ 16 possible errors, also 16 possible combinations of +1 & -1 eigenvalues.



CSS codes
‣ A general construction of QECC by choosing two classical linear codes C1 

and C2, and replacing 1’s in the parity check matrix of C1 with Z’s and 1’s 
in the parity check matrix of C2 with X’s.


‣ Not all pairs of C1 and C2 are possible: the stabilizers must be Abelian!

H =

⎡
⎣1 1 1 1 0 0 0
1 1 0 0 1 1 0
1 0 1 0 1 0 1

⎤
⎦

M1 = ZZZZIII

M2 = ZZIIZZI

M3 = ZIZIZIZ

M4 = XXXXIII

M5 = XXIIXXI

M6 = XIXIXIX

C1}
}C2

Ex. parity check matrix for a classical code

[[7,1,3]] code

Eigenvalue measurement

U |ψ〉 = s|ψ〉, s = ±1
|ψ〉
|0〉 H H

U

{0 : s = +1

1 : s = −1

s|ψ〉

QEC possible without 
ever decoding!

Mz

|0〉
|0〉

Z
Z

Z

Z
{Encoded


state

{Error syndrome
H

H

H

H

Mz

Mz



Are we happy now?

‣ Any realization will suffer from imperfections. There is no guarantee that 
QEC can help as it may introduce more errors than it takes away.


‣ The theory of fault-tolerance comes to rescue!

The Promised Land of Quantum Info.

The Sea of Errors
QEC



Overview

‣ Goal: To simulate the ideal quantum circuit accurately using the 
imperfect operations, such as gates and measurements, that can be 
executed by an actual device.


‣ For simplicity, we assume that every elementary gate, wait step, or 
measurement can fail independently with some error probability p.


‣ If coding leads to a lower logical error rate, then how does one proceed 
to get an even lower logical error rate?

• Recursively apply code concatenation.

• Topological: Increase the block size.

The Clifford group

‣ Maps Pauli operators onto Pauli operators


‣ Generators: Controlled NOT (CNOT), Hadamard (H), S gate.


‣ Not universal by itself, but universal with any one qubit non-Clifford gate.


‣ Popular choice: T gate.

Cn = {U ∈ U(2n)|∀P ∈ Pn, ∃P ′, UPU † = P ′}

S =

[
1 0
0 i

]

T =

[
1 0
0 ei

π
4

]



Error propagation

‣ A multi-qubit gate can propagate an error from one qubit to other qubits 
even if the gate is perfect.


‣ Ex: Controlled-Not gates

X X

X X

X

Z Z

Z Z

Z

Transversal gates

‣ We don’t want errors to propagate within a block of the QECC. Then one 
wrong gate could cause the whole block to fail.


‣ When performing logical operations, apply physical gates only between 
corresponding qubits in separate blocks.

7-qubit code

7-qubit code

|ψ1〉L

|ψ2〉L

Transversal gates 
are fault-tolerant!

7-qubit code: Clifford operations are transversal.



But Eastin & Knill say…
‣ Transversal logical gates are not universal!

‣But fault-tolerant quantum computation is still possible.

T gate by state injection & distillation

T |ψ〉SX

|ψ〉
H T|0〉 S =

[
1 0
0 i

]

T =

[
1 0
0 ei

π
4

]

?

|A〉 = |0〉+ eiπ/4|1〉√
2

‣ Where do we get this fault-tolerantly?


‣ State distillation: Starts from a state faulty, but close to it. Then distill to a 
higher precision using only Clifford operations and Pauli measurements.


‣ Probabilistic, but convergence is very fast.


‣ Other gates can also be implemented similarly.
Also see Magic State Distillation - Bravyi & Kitaev, PRA 71, 022316 (2005)

Mz



Concatenated codes

…

… … …

… … …

Logical qubit

p → cp2

cp2 → c(cp2)2

level-1:

level-2:

level-k: pk = (cp)2
k

/c

‣ Concatenation uses exponentially increasing 
amount of resources, but improves the error 
rate double-exponentially as long as p<1/c!


‣ We’re ready to see the Threshold theorem.

Threshold theorem for fault-tolerance

‣ There exists a threshold error probability      such that, if the error rate 
per gate and time step is            , arbitrarily long quantum 
computations are possible.


‣ More precisely, a quantum circuit of size N can be simulated with a 
probability of final error at most    using

gates whose components fail with probability at most             , given 
reasonable assumptions about the underlying hardware.

See “An introduction to Quantum Computing” by Kaye, Laflamme, Mosca, Ch. 10.6.1 for easy-to-follow proof

O(poly(log(N/ε))N)

ε

pt
p < pt

p < pt



Fault-tolerant measurement

‣ Suppose we want to measure the stabilizer X⊗X⊗X⊗X:

|0〉

X
X

X
{Encoded


state

Error syndromeH H

X

An X error at any of these locations will result in multiple errors in the code block

Mz

Fault-tolerant measurement

Z
Z

Z
{Encoded


state

Error syndrome

H

Z

Mz

Mz

|0000〉+ |1111〉√
2

Preparation
Verification

Repeat and take majority 
vote to reduce 

measurement error

‣ Encoded ancilla (the cat state) for fault-tolerant error syndrome extraction:

{
‣ Can also be used for fault-tolerant state preparation.



Still challenges remain

‣ Concatenated codes face some practical issues, such as:


• Require long distance interaction among qubits.


• To increase a level of concatenation, the resource must increase 
exponentially.

The Promised Land of Quantum Info.

The Sea of Errors
QEC



Surface code

rough boundary

sm
o

o
th

 b
o

un
d

ar
y

XX
X

X
ZZ

Z

Z

I I|0〉
1
2
3

4

H H|0〉
1
2
3

4

ZZ
Z

Z
1

2

3

4

XX
X

X
1

2

3

4

syndrome qubits data qubits

For X error

For Z error

Logical Pauli Operators
X2

L = 1l, Z2
L = 1l

YL = iZLXL

{XL, ZL} = 0

Distance d = min. # of physical qubit X or Z 
flips needed to define an XL or ZL operators

Z6

Logical operators commute with all 
stabilizers

X1 X2 X4 X5
Z3

Z7

Z8

X3

Z9

Error chains that connect boundaries are 
undetectable errors. But loops are ok!

ZL

XL



Error identification

X Z

Y

M

M

‣ Just need to identify errors that 
are topologically equivalent to the 
actual errors, i.e. any differences 
can be written as products of 
stabilizers.


‣ Classical decoding algorithm tries 
to find a minimum-weight error 
consistent with the error 
syndrome: Works well for 
sufficiently sparse errors.

Misidentification

Z

X

X Z

Z

Actual error



Misidentification

Y

Y

Z

Z

Predicted error

Misidentification

Z

Z

Z Z

Z

Z

ZLogical error:

‣ Large lattices are less prone to errors.


‣ Need similar distance in time (surface code cycle), assuming the measurement 
error rate is similar to the qubit error rate.



Logical error/Threshold

A. Fowler et al. PRA 86 032324 (2012)

Implementing Logical Pauli Gates in Software 



Creating More Logical Qubits

ZZ
Z

Z
1

2

3

4

XX
X

X
1

2

3

4
Z

Z

Z

X
X X

X

Z Z
Z

Z

X X X

XL

ZL

ZL

XL

For X error

For Z error

X-cut qubit

Z-cut qubit

Creating More Logical Qubits

Logical errors: any error chains that
1) loops around the holes, or 
2) connect boundaries. X-cut qubit

Z-cut qubit



CNOT by braiding

‣ Braiding between a Z-cut and an X-cut qubit produces a transformation 
that is equivalent to a logical CNOT.


‣ To verify, it is sufficient to check whether the braiding yields the following 
operator transformations:

IL ⊗ ZL → ZL ⊗ ZL

ZL ⊗ IL → ZL ⊗ IL

XL ⊗ IL → XL ⊗XL

IL ⊗XL → IL ⊗XL

control target

CNOT by braiding example

X-cut qubit

Z-cut qubit

XL

XL
XL ⊗ IL → XL ⊗XL



CNOT by braiding example

X-cut qubit

Z-cut qubit

ZL

ZL

IL ⊗ ZL → ZL ⊗ ZL

Code comparison

Concatenated codes Topological codes

Lower error threshold Higher error threshold

Long distance operations Local operations

Easier error decoding Optimal decoding hard

Double exponential error reduction / 
exponential additional resources

Exponential error reduction / linear 
additional resources



M.H. Devoret and R.J. Schoelkopf (2013)

“Though thy beginning was small, yet thy latter end should greatly increase”
- Job 8:7 (KJV)
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Extra Slides

Continuous error
• What about a continuous rotation? What does QEC do to it?

Rz(θ) =

[
1 0
0 eiθ

]
, Rz(θ)(α|0〉+ β|1〉) = (α|0〉+ eiθβ|1〉)

R(k)
z (θ)|ψ〉L = cos(θ/2)|ψ〉L − i sin(θ/2)Z(k)|ψ〉L

cos2(θ/2) : |ψ〉L sin2(θ/2) : Z(k)|ψ〉L

cos(θ/2)|ψ〉|I〉 − i sin(θ/2)Z(k)|ψ〉|Z(k)〉

• Measuring the ancillary part with error syndrome collapses the state

with prob. with prob.

Rz(θ) = cos(θ/2)I − i sin(θ/2)Z



Small error on every qubit

• What if we have a small error Uε on every qubit in the QECC, where 
                                      ? Then, 


• If the code corrects one-qubit errors, it corrects the sum of the E(i)s. 
Therefore it corrects the O(ε) term, and the state remains correct to order ε2.


• A code correcting t errors keeps the state correct to order εt+1.

U⊗n
ε |ψ〉 = |ψ〉+ ε(E(1) + . . .+ E(n))|ψ〉+O(ε2)

Uε ≈ I + εE, |ε|  1


