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2. Why Quantum Information Processing?

The shortest of answers to this question would be, why not? The manipulation and trans-

mission of information is today carried out by physical machines (computers, routers, scan-
ners, etc.), in which the embodiment and transformations of this information can be de-
scribed using the language of classical mechanics. But the final physical theory of the
world is not Newtonian mechanics, and there is no reason to suppose that machines follow-
ing the laws of quantum mechanics should have the same computational power as classical
machines; indeed, since Newtonian mechanics emerges as a special limit of quantum me-
chanics, quantum machines can only have greater computational power than classical ones.
The great pioneers and visionaries who pointed the way towards quantum computers,
DEeutscH [8], FEYNMAN [9], and others, were stimulated by such thoughts. Of course, by a
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So, how much is gained by computing with quantum physics over computing with
classical physics? We do not seem to be near to a final answer to this question, which is
natural since even the ultimate computing power of classical machines remains unknown.
But the answer as we know it today has an unexpected structure; it is not that quantum
tools simply speed up all information processing tasks by a uniform amount. By a stand-
ard complexity measure (i.e., the way in which the number of computational steps re-
quired to complete a task grows with the “size” n of the task), some tasks are not sped
up at all [10] by using quantum tools (e.g., obtaining the nth iterate of a function
f(f(...f(x)...)) [11]), some are sped up moderately (locating an entry in a database of n
entries [12]), and some are apparently sped up exponentially (Shor’s algorithm for factor-
ing an n-digit number [13]).
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What is the problem?

» All physical devices are not perfect.
» Classical digital computation is normally very robust to noise (bit-flip error).

» Quantum computation is hard: Protect not only against bit-flip errors, but also
from the environment constantly interacting to the quantum system. But we want
qubits to interact strongly and accurately with each other.

» Also, at first glance, quantum computers resembles classical analog computers.
Z

1) = cos(6)[0) + sin(6)e?|1)

Peter Shor (1995) Alexei Kitaev (1997)

What errors are we talking about here?

» Can’t just correct any errors.
* Errors should be not too strong.

* Errors should be not too strongly correlated.



Classical repetition code

@.‘ 3-bits encoding &
:s“ majority vote

1—3p 0—000 1-111
0 c--mmmmmmm e > 0
000 111
P 001 110
111
2 -> 010}000 101
100 011
] Tmmmemmmmmeeenaas > 1
L=y

(1-p)3 | no error / o(1)
3p(1-p)?| 1 error / O(p)
31-pp2 2 errors| - 3| 0

p3 |3 errors x O(p3)

* Probability to fail is changed from p to 3p(1-p)2+p3: improvement as long as p<1/2.

» Can add more bits (redundancy) to correct more errors, e.g., 5 bits to correct 2 errors

* Quantum case is not as simple!

QEC has to overcome...

v

Measurement destroys superposition.

v

No cloning theorem: Can’t copy qubits.

v

v

Continuous errors.

Must correct multiple types of errors, i.e., bit-flip (X) and phase-flip (2).
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Interaction with environment

H(t) =Hs(t) + Hp(t) + Hse(t) U(r) =T exp[—i [ dt'H(t')]

f N/

can control reasonably well usually unknown, uncontrollable
ps(r) = Arlps(0)] = Tre[U(r)ps @ ppUT(7)] = Y Aips(0)4]

L T
Z A’i Ap=1 Kraus operator
VA

Kraus representation!

Completely Positive, Trace Preserving (CPTP) map



Trivial example

C.

[Y)s = +‘1 DW ye = |0)

CNOTIY)slb) s = @) = LTI
eiayap < 20U 100

Errors can be digitized

0)s10) e = [0)sleoo) & + |1)sleor) 1)s10)e = [0)slewo) e +[1)slenn) e

(@]0)s + B8|1)s)0) g = a(]|0)sleco) £ + |1)sleo1) e) + B(|0)slero) e + [1)slei1) k)
= (a]0) + B]1))s ® (leoo) + le11)) /2
+ (a]0) = BI1))s @ (|eoo) )E/2
+ (af1) + B|0))s @ (leo1) + |€10)) £/2
+ (af1) — B[1))s @ (leo1) — |e10)) /2
=1IY) ®ler)e + X|¢) ® lex)e + YY) @ ley)E + Z|¢) ® |ez)E

~—

- |€11

~ ~—— ~——
S~ S~ ~— ~_~

Similar Pauli-expansion holds for n-qubits:|¢n> 0%y \¢>E — Zj E3|¢n> X |€j>E

Design QECC so that a subset of Pauli errors £ C {F;} = {I, X,Y, Z}®" can be detected.
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QEC Codes

What is “Qubit”?

» A unit of quantum information... Two level quantum system?

» Pauli operators:
X2=v?2=2%2=7] [X,Z]=-2iY,{X,Z}=0 [X,Y]=2iZ, {X,Y}=0

» In principle, any system in which one can define X and Z operators that satisfy
above relations can be used as a qubit, even if the system has more than two

levels.

» physical qubit vs logical qubit, physical operation vs logical operation



Smallest code: a bit-flip error

Encoding Decoding Recovery |Qp> = Oé|0> -+ /8|1>
oy [9)
’O> g f % Mz l Encoding
O D\ D\ 5
Vo o )1 = a]000) + B[111)
Error Resulting State |
I%% | a[000) + B [100) = [1)) f|00) )

£ |l 2 el

X a |001) + B101) = |¢) ®

What about a phase-flip error?

Since £/ =HXH, X=H/H

Recovery

Encoding Decoding

[4) = a|0) + B]1)




Shor 9-qubit code

al0) + B|1) = al+++) + 8| ———)
= a(]0) + [1))®* + B(|0)y — [1))®?
— (]000) + [111))®3 4 5(]000) — [111))®3

* 1st QEC code which encodes a single qubit and corrects any single-qubit error.

* Code concatenation: take the elementary qubits of the codewords of a code C,
replace them by encoded qubits of a new code C".

» Also correct Y=-iXZ error (global phase irrelevant).

QEC has to overcome...

» Measurement destroys superposition. _|

» No cloning theorem prohibits repetition. |

<

» Must correct multiple types of errors, i.e., bit-flip (X) and phase-flip (2).

» Continuous errors. |




Error correction condition

« Theorem: A QECC can correct a set of errors £ iff
(il B Evlts) = Candiy
where {|%>} form an orthonormal basis for the code subspace (“codewords”),

and F,, E, € £
Cup = Oqb » non-degenerate code

The Promised Land of Quantu
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Error syndromes: Another view

Encoding Decoding Recovery

[4)) ) 197+ @|000) + B[111)
0) g Mo X1 : al100) + B|011)
0) D Ms Xs : «]010) + 5|101)
X3 : «|001) + $]110)

T

» For correctly-encoded state 000 or 111: Any pair of bits have even parity.

» For state with an error on one of the bits: A pair of bits with an erroneous bit
has odd parity.

» Equivalently, a codeword is a +1 eigenvector of Z®Z®/ and Z&®I®Z, but
becomes a -1 vector of either Z&®Z&®/[ and/or Z&®I®Z when there is an error.

Error syndromes: Another view

Recovery

Encoding Decoding

I9%: al4+4+) + fl———)
Zy s al=++) + B+

Zy: al+—+) + B[+
Zz: al++-) + p]——+

)
)
)

T

» Likewise, a codeword is a +1 eigenvector of X®X®/ and X®/®X, but
becomes a -1 vector of either X®X®/[ and/or X®/®X when there is an
error.

» Z®Z detects bit flip (X) errors, X®X detects phase (£) errors.



The Stabilizer code

Encode k logical qubits into n physical qubits using the code space
spanned by the states |¢)) that are invariant (+1 eigenstates) under the
action of a stabilizer group S.

v

L={ly) € (C*)®": M[p) =)V M €S}

v

S is the Abelian subgroup of the Pauli group such that -/is notin S.

v

If S has r generators on n qubits, the QECC has k = n-r encoded qubits.

v

Instead of specifying the code space by a basis of 2" dimensional vectors,
specify the code space by the generators of the stabilizer group which fix
(or stabilize) these vectors.

How does it work?

Suppose M eS,{M,E} =0,

Then ME)) = —EM|¢) = —E|¢) == El))is a-1 eigenstate of M

detectable error
Butif [M,E]=0VM €S ,

Then ME)) = EM)) = E|) —} E|1) is a +1 eigenstate of M
undetectable error

Error syndrome: a list of eigenvalues obtained from measuring the stabilizer generators

Can correct a set of errors if they all have distinct error syndromes



Code distance

» The weight of a Pauli operator (|P|): the number of single-qubit Pauli operators
that are unequal to I, i.e., the number of qubits on which P acts nontrivially.

> Normalizer: \/(S) = {N € P: MN = NM VY M € S} €mm yndetectable errors

> Distance: d = min |P|
PeN(S\S
» Why minus S? “Errors” in S doesn’t change codewords, so are not really errors.

> [[n,k,d]] notation: The QEC code encodes k qubits into n, and has distance d.

Error correction condition revisited

» |In order to correct t errors, we need distance d=2t+1.

» E4 and E5 have same error syndrome iff EIEQ e N(S) . Why?
* They commute with same elements of S

> If EJE, ¢ N(S), then the error syndrome can identify them.

> If B1E, € S, then ETE|¢) = o), - Eol) = Eq|i)

> Thus the QECC corrects a set of errors for which EIE; ¢ N(S)\S.

—
2t errors at most



Shor 9-qubit code revisited

) = a(]000) + [111))(]000) + [111))(|000) + [111))
+ £(]000) — [111))(]000) — [111))(]000) — |111))

M, =ZZIIIIIII M; = XXXXXXIII

My =1ZZ111111 Mg = XXXIIITXXX

Mz = 111221111 These generate a Stabilizer group of the

My =1111ZZ111 code, consisting of all Pauli operators M with
Ms =IIIIIIZZI the property that
Mg =1IIIIIIIZZ M) = [¥)L ViY)L

The smallest QEC code

> For an arbitrary single qubit error, we can form the smallest QECC, [[5,1,3]]
code, by picking following stabilizer generators

M, = XZZXI
My, =IXZZX
M= XIXZZ
M, =ZXIXZ

» 16 possible errors, also 16 possible combinations of +1 & -1 eigenvalues.



CSS codes

» A general construction of QECC by choosing two classical linear codes C;
and C,, and replacing 1’s in the parity check matrix of C; with Z’s and 1’s
in the parity check matrix of C, with X’s.

Ex. parity check matrix for a classical code

My =7ZZ11Z71

1 11100 0
H=1{1 100 110 _} My = 2121212 [[7,1,3]] code
1 010101 My=XXXXIII
Ms;=XXIIXXI } Co
Mg =XIXIXIX

M =ZZZZIII
}C1

» Not all pairs of C; and C, are possible: the stabilizers must be Abelian!

Eigenvalue measurement

Ul) = sl¢), s ==+1

QEC possible without
ever decoding!

Encoded
state

} Error syndrome



Are we happy now?

» Any realization will suffer from imperfections. There is no guarantee that
QEC can help as it may introduce more errors than it takes away.

» The theory of fault-tolerance comes to rescue!

The Promised Land of Qua
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Overview

» Goal: To simulate the ideal quantum circuit accurately using the
imperfect operations, such as gates and measurements, that can be
executed by an actual device.

» For simplicity, we assume that every elementary gate, wait step, or
measurement can fail independently with some error probability p.

» If coding leads to a lower logical error rate, then how does one proceed
to get an even lower logical error rate?

* Recursively apply code concatenation.

* Topological: Increase the block size.

The Clifford group

C. ={U ecU2")|VP € P,, 3P, UPU' = P}
» Maps Pauli operators onto Pauli operators
» Generators: Controlled NOT (CNOT), Hadamard (H), S gate. S = [(1) ?]
» Not universal by itself, but universal with any one qubit non-Clifford gate.

> Popular choice: T gate. 7 — [é Oﬂ]
ez



Error propagation

» A multi-qubit gate can propagate an error from one qubit to other qubits
even if the gate is perfect.

» Ex: Controlled-Not gates

PR
o

G

Transversal gates

» We don’t want errors to propagate within a block of the QECC. Then one
wrong gate could cause the whole block to fail.

» When performing logical operations, apply physical gates only between

corresponding qubits in separate blocks.
Transversal gates
are fault-tolerant!

7-qubitcode @ @ © © © © O© |¥1)L
R

vovy oY v v v ¥
7-qubitcode @ @ © © © © O© |Y2)1

7-qubit code: Clifford operations are transversal.



But Eastin & Knill say...

» Transversal logical gates are not universal!

PRL 102, 110502 (2009) PHYSICAL REVIEW LETTERS 20 MARCH 2009

Restrictions on Transversal Encoded Quantum Gate Sets

Bryan Eastin® and Emanuel Knill

National Institute of Standards and Technology, Boulder, Colorado 80305, USA
(Received 28 November 2008; published 18 March 2009)

Transversal gates play an important role in the theory of fault-tolerant quantum computation due to
their simplicity and robustness to noise. By definition, transversal operators do not couple physical
subsystems within the same code block. Consequently, such operators do not spread errors within code
blocks and are, therefore, fault tolerant. Nonetheless, other methods of ensuring fault tolerance are
required, as it is invariably the case that some encoded gates cannot be implemented transversally. This
observation has led to a long-standing conjecture that fransversal encoded gate sets cannot be universal.
Here we show that the ability of a quantum code to detect an arbitrary error on any single physical
subsystem is incompatible with the existence of a universal, transversal encoded gate set for the code.

» But fault-tolerant quantum computation is still possible.

T gate by state injection & distillation

il O

1
T — s
» Where do we get this fault-tolerantly? [O ezZ]

» State distillation: Starts from a state faulty, but close to it. Then distill to a
higher precision using only Clifford operations and Pauli measurements.

» Probabilistic, but convergence is very fast.

» Other gates can also be implemented similarly.
Also see Magic State Distillation - Bravyi & Kitaev, PRA 71, 022316 (2005)



Concatenated codes

Logical qubit é
® o -
Y W '......C' Y ¥ )

level-1: p — cp2 » Concatenation uses exponentially increasing
’ amount of resources, but improves the error

level-2: cp? — c(cp?)? rate double-exponentially as long as p<1/c!

k
level-k: Px = (Cp)2 /c > We’re ready to see the Threshold theorem.

Threshold theorem for fault-tolerance

» There exists a threshold error probability Pt such that, if the error rate
per gate and time step is p < pt, arbitrarily long quantum
computations are possible.

» More precisely, a quantum circuit of size N can be simulated with a
probability of final error at most € using

O(poly(log(N/e))N)
gates whose components fail with probability at most p < p: , given
reasonable assumptions about the underlying hardware.

See “An introduction to Quantum Computing” by Kaye, Laflamme, Mosca, Ch. 10.6.1 for easy-to-follow proof



Fault-tolerant measurement

» Suppose we want to measure the stabilizer X®X®X®X:

Encoded

state m

H

Error syndrome

An X error at any of these locations will result in multiple errors in the code block

Fault-tolerant measurement

» Encoded ancilla (the cat state) for fault-tolerant error syndrome extraction:

Encoded

state
Error syndrome
:10000) + [1111): P Repeat and take majority
V2 o A vote to reduce
5 )| AY measurement error
Preparation AN %

» Can also be used for fault-tolerant state preparation.



Still challenges remain

» Concatenated codes face some practical issues, such as:
* Require long distance interaction among qubits.

* To increase a level of concatenation, the resource must increase
exponentially.

The Promised Land of Qua
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Surface code

‘ Q syndrome qubits O data qubits
For X error
® 0){THPBHP!
Z ‘@_D ;Y
® Z‘Z @ © &
Z ® ¢
® ® ¢
For Z error
(;2 <>|@g> H] H]
O XOX® 0—
X ® S
® @ <

rough boundary

Logical Pauli Operators

{Xp,Zp}=0 X2 =1, 77 =1

Y, =141 Xy,

Logical operators commute with all
stabilizers

Error chains that connect boundaries are
undetectable errors. But loops are ok!

Distance d = min. # of physical qubit X or Z
flips needed to define an X, or Z. operators



Error identification

» Just need to identify errors that
are topologically equivalent to the
actual errors, i.e. any differences
can be written as products of
stabilizers.

» Classical decoding algorithm tries
to find a minimum-weight error
consistent with the error
syndrome: Works well for
sufficiently sparse errors.

Misidentification

Actual error




Misidentification

Predicted error

Misidentification

Logical error:

» Large lattices are less prone to errors.

» Need similar distance in time (surface code cycle), assuming the measurement
error rate is similar to the qubit error rate.



Logical error/Threshold

| ——rrry
- (a) Simulation E

107F ] 3
m:--31 l E
Q —_— =3 ]
£ 1072 cee-d=5
S — d=7 i
5 L e Y |
> 10 v d=11 1
3 : d=15 1
& 104 t ——d=25 |
5 JR
Ve d=45 ]
10°°F Pth i —— d=55 3
- R P, i g oo d

104 103 1072

A. Fowler et al. PRA 86 032324 (2012)

Implementing Logical Pauli Gates in Software

1921) 1 Z1 [ Hi /L Hy, My ' 19.1? | HL 1 XL /L Hy, My
19120 — Lt U My 19L.2) I Y My
1911 1 Ho ,L X1, [ H, My ' lqr1) - Ho fL H, R Z My
19L2) Ry My 912) O XL [ Mx
» l9.1) - He fL H; H-Mx
191.2) N, My




Creating More Logical Qubits

For X error

@

Z O O
@z‘z @ X -cut qubll
V4
® :.
uuh.’uﬁtqbtcn
For Z error

OO ®

; lllllzllllltﬁ
@ XOX@ -

 mmQn| (O

Creating More Logical Qubits
0000000000

OES T OT o 0 e O mQun >

Logical errors: any error chains that n
1) loops around the holes, or .

2) connect boundaries. o X-cut qubit
°"”'ﬂﬂkdn

QO

O ®

00000000




CNOT by braiding

» Braiding between a Z-cut and an X-cut qubit produces a transformation
that is equivalent to a logical CNOT.

» To verify, it is sufficient to check whether the braiding yields the following
operator transformations:

control target

Xp®Ip — X1 ® X
It @ Xp — 1 @ Xt
Zp 1, — Zrp @1
IL®7Zp =72 ® 7L

CNOT by braiding example

CQLODOP O PO YO 0 0 Q000 &0

‘, an

O & O © O © O
@ X-cut qubit g @

XL®IL—>XL®XL .
‘

l.
ll- I dll

O 0 © O Q ’ Z-cut qubit ‘ 0 ® O



CNOT by braiding example

QP OoOQPOPO VO VOOV OOLOOO SO OO

Qo’o’o’oto‘o‘o‘o
IL®ZL—>ZL®ZL ann

(e X-cut qubit g%

gonaiaie
EIRacIERT LN ItI ey
gNSSRSSInn

OQ 0 0® 0 9 Zcutqublt Q O0Q 0 09 O @ O

Code comparison

Concatenated codes Topological codes
Lower error threshold Higher error threshold
Long distance operations Local operations
Easier error decoding Optimal decoding hard
Double exponential error reduction / | Exponential error reduction / linear
exponential additional resources additional resources




Fault-tolerant quantum computation

Algorithms on multiple logical qubits

Operations on single logical qubits

Logical memory with longer lifetime than physical qubits

Complexity

QND measurements for error correction and control

Algorithms on multiple physical qubits

Operations on single physical qubits

M.H. Devoret and R.J. Schoelkopf (2013)

“Though thy beginning was small, yet thy latter end should greatly increase’
- Job 8:7 (KJV)
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Extra Slides

Continuous error

 What about a continuous rotation? What does QEC do to it?

RO)= g o] RO0)+ B1) = (@) +e*]D)

R (O)[¢) 1 = cos(6/2)[¢)r — isin(8/2) 2" |¢)

R.(0) = cos(0/2)] —isin(0/2)Z
0 0r2) 072) # cos(6/2)[)|1) — isin(/2) 2" [y)| 2H))

* Measuring the ancillary part with error syndrome collapses the state

with prob. cos?(0/2) : |¢) 1, with prob.  sin®(6/2) : Z" |y)



Small error on every qubit

« What if we have a small error U, on every qubit in the QECC, where
Us~I+¢cFE, |g| < 17?Then,

UL ) = i) + (B + ...+ EM)|y) + O(?)

* If the code corrects one-qubit errors, it corrects the sum of the Els.
Therefore it corrects the O(g) term, and the state remains correct to order €2.

* A code correcting t errors keeps the state correct to order t+7.



