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Lecture 1

1 Introduction

1.1 Philosophy of open systems

What is an open system? An open system is any object that interacts with its environment. So what is
an environment? Strictly speaking, everything that is not part of what we define as the system is lumped
into the environment. Therefore everything in the universe is an open system, the only system that is truly
closed (i.e. not open) is the universe itself. Clearly, such a definition is too broad if we want to be successful
at modelling open systems because it just ‘forces’ us to consider too many objects in our theory, even ones
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that have no influence on our system. Nevertheless, it at least suggests that a realistic (i.e. nonidealised)
description of physical systems should in some way incorporate the system’s environment.

The question as to what should be defined as the environment depends on the system in question and
what sort of interactions it has with its surrounding. It may also depend on what we want to know about
the system. In general there are two guiding principles about how to divide many degrees of freedom into
those that belong to a system Hilbert space HS, and those belonging to a bath1 Hilbert space HB:

1. The effect of the environment on the system simply cannot be ignored but neither are we interested in
tracking how the environment changes in time.

2. The environment is typically a large system. It may consist of many spins, many atoms, or say many
bosonic degrees of freedom. Therefore keeping track of the environment is simply out of the question
even if one wants to. The size of the environment is an especially important problem for quantum open
systems (as opposed to classical open systems) because the state of a quantum system is described in
a Hilbert space, whose dimension scales exponentially in the number of degrees of freedom (or systems
in the environment). For example, if the environment has N two-state particles, then we need 2N

dimensions.

The philosophy of open-systems theory is thus to develop some methods that allows us to describe the system
evolution accurately and effectively without having to track the environment. To be more concrete, if we
denote the full Hamiltonian for the system and environment (including their interaction) by Ĥ, and their
joint state by ρ(t) in HS ⊗ HB, then we would like to know, starting from some initial system-bath state
ρ(0), the system state ρS(t) at some future time t where

ρS(t) = TrB
[
ρ(t)

]
. (1)

Note that we are using TrB to denote a partial trace over the environment. Clearly, it is possible to obtain
ρS(t) from

d

dt
ρS(t) = − i

~
TrB

{[
Ĥ, ρ(t)

]}
. (2)

But this is not helpful as the right-hand side of (2) still involves ρ(t). It is equivalent to evolving the joint
system-bath state from ρ(0) to ρ(t) and then taking the partial trace over the environment. The aim is thus
to write the right-hand side of (2) as a function of ρS(t) only:

d

dt
ρS(t) = LS(t) ρS(t) . (3)

An equation in the form of (3) is called a master equation. In (3) we have denoted the functional dependence
on ρS(t) by using a superoperator LS(t) which acts on HS. A superoperator acts on an operator and returns
an operator. Superoperators will be written in calligraphic font except for the identity, which we will write
as 1. The master equation reduces the problem of solving for ρ(t) to one of solving for ρS(t). Hence (3) is
also referred to as an equation of motion for the reduced state, where the reduced state is simply ρS(t).

1.2 Markovian evolution

An important point about (3) is that its right-hand side depends on the system state at the present time
t. This means that if we are given the system state at multiple times, say {ρS(tk)}K

k=1 where t1 < t2 <
· · · < tK < t, then only the most recent specification given by ρS(tK) is required for us to say what ρS(t)
is for any future time i.e. for any t > tK . Systems that have this property are said to be Markovian and
the corresponding differential equation is said to be time local. Equation (3) is thus referred to as a time-
local master equation. Another commonly used terminology is to say that (3) has the property of being
memoryless.

This is nothing that you do not already know about ordinary differential equations. So what is special
about Markovianity? The reason why this is interesting is that (3) is derived from (2) and how this can be
achieved is quite nontrivial. That is to say, we would not make a big fuss about Markovianity if we were
interested in closed systems, because all closed systems evolve according to the Schrödinger equation which

1Often the word ‘environment’ is used interchangeably with ‘bath’, (the latter being more common in statistical mechanics)
and so will we. In this case it makes sense to use a subscript ‘B’ for operations acting on the bath.
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is a time-local equation. Therefore all unitary evolution is trivially Markovian. Note the converse statement,
i.e. all Markovian evolution are unitary is not true because not all physically permissible2 time-local equations
for ρS(t) have to be unitary. It should not be hard to accept that LS(t) in (3) will be more than a simple
commutator with a Hermitian operator so that it describes non-unitary evolution. Here we have reached a
fundamental difference between open systems and closed systems: For open systems, Markovian evolution
is non-unitary and is understood as an emergent, or special property.

2 A perturbative treatment of the reduced dynamics

We now show how it is possible to arrive at a time-local equation like (3) if certain conditions are fulfilled.

2.1 Definitions

2.1.1 Interaction picture

Let us write the full Hamiltonian as

Ĥ = ĤS + ĤB + V̂ , (4)

where ĤS is the free Hamiltonian for the system and acts only on the system Hilbert space HS while ĤB is
the free Hamiltonian for the bath and acts only on the bath Hilbert space HB. The interaction Hamiltonian
V̂ accounts for their interaction and acts on the joint space HS ⊗HB. We also define the joint system-bath
state in HS ⊗HB as ρ(t). In the Schrödinger picture the evolution of ρ(t) is thus given by

∂

∂t
ρ(t) = − i

~
[
Ĥ, ρ(t)

]
. (5)

Our derivation of the master equation will be a perturbative one where the time evolution due to Ĥ0 is
known (which is typically the case) and we regard V̂ as a perturbation. In this case it will be convenient to
define

Ĥ0 = ĤS + ĤB , (6)

and transform (5) into the interaction picture where Ĥ0 does not appear. This gives

∂

∂t
ρ̃(t) = − i

~
[
Ṽ (t), ρ̃(t)

]
≡ L̃(t) ρ̃(t) . (7)

Remember that an arbitrary operator Â and an arbitrary state ρ in the interaction picture is defined with
respect to the Schrödinger picture by

Ã(t) = eiĤ0 t/~ Â(0) e−iĤ0 t/~ , ρ̃(t) = eiĤ0 t/~ ρ(t) e−iĤ0 t/~ . (8)

We would like to express the evolution of the system, now given in the interaction picture as

ρ̃S(t) = TrB
[
ρ̃(t)

]
, (9)

as a perturbative series in the interaction Hamiltonian. To make the order of interaction strength easy to
track we introduce a constant α into V̂ by hand:

V̂ −→ α V̂ . (10)

This simply changes the interaction picture evolution to

∂

∂t
ρ̃(t) = α L̃(t) ρ̃(t) . (11)

This allows us to simply read off the order of the perturbative expansion from the power of α and in the end
set α = 1.

2This opens up a can of worms because it now begs an answer to how ‘physically valid’ should be captured mathematically.
This will lead us to a discussion about theorems in open systems which we will not go into. I am simply sweeping this entire
branch of open-systems theory under the rug here.
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2.1.2 Projection operators

A perturbative expansion for ρ̃S(t) can be arrived at systematically by using projection operators which act
on any ρ ∈ HS⊗HB. The projection operators are defined for an arbitrary reference state ρB ∈ HB, and an
arbitrary joint state ρ as

Pρ = TrB[ρ]⊗ ρB = ρS ⊗ ρB ,

Qρ = ρ− ρS ⊗ ρB .

(12)
(13)

We define the reference state to be normalised so that ρS may be extracted directly from Pρ by taking the
partial trace over HB. For us the reference state will be a bath state which we will specify later. Note that
P and Q are defined to satisfy (

P +Q
)
ρ = ρ . (14)

Often one calls Pρ the relevant part of ρ, and Qρ the irrelevant part. We will follow this terminology here
as well. It can be shown from (12) and (13) that P and Q are projection operators

P2ρ = P
(
Pρ

)
(15)

= TrB
[
ρS ⊗ ρB

]
⊗ ρB (16)

= ρS ⊗ ρB = Pρ , (17)

Q2ρ = Q
(
Qρ

)
(18)

= Q(ρ− ρS ⊗ ρB) (19)
= Qρ−Q(ρS ⊗ ρB) = Qρ . (20)

Clearly we also have

QPρ = Q(ρS ⊗ ρB) = 0 , (21)
PQρ = Pρ− P(ρS ⊗ ρB) = 0 . (22)

Let us summarise these as operator identities which we will use in our perturbative expansion.

P +Q = 1 ,

P2 = P , Q2 = Q ,

QP = PQ = 0 .

(23)

(24)
(25)

Note also that P and Q are linear and time-independent so that they will commute with differential and
integral operators in time.

2.2 Time-local master equation

2.2.1 Exact time-local evolution for the relevant part

We first project the evolution of ρ̃(t) into its relevant and irrelevant parts:

d

dt
P ρ̃(t) = αPL̃(t)ρ̃(t) , (26)

d

dt
Qρ̃(t) = αQL̃(t)ρ̃(t) . (27)

It is not possible to do anything with these equations because their right-hand sides are not functions of the
relevant and irrelevant parts. However, we can express their right-hand sides in terms of P ρ̃(t) and Qρ̃(t)
by inserting an identity in front of ρ̃(t) and using (23):

d

dt
P ρ̃(t) = αPL̃(t)1ρ̃(t) (28)

= αPL̃(t)P ρ̃(t) + αPL̃(t)Qρ̃(t) , (29)

d

dt
Qρ̃(t) = αQL̃(t)1ρ̃(t) (30)

= αQL̃(t)P ρ̃(t) + αQL̃(t)Qρ̃(t) . (31)
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We now have a set of coupled differential equations for the relevant and irrelevant parts of ρ̃(t). Hence we
first solve (31) for Qρ̃(t) first. The solution for (31) is

Qρ̃(t) = NQ(t, t0)Q ρ̃(t0) + α

∫ t

t0

dt′NQ(t, t′)QL̃(t′)P ρ̃(t′) , (32)

where we have defined NA(t, t0) as a time-evolution superoperator generated by AL̃(t) for any A:

NA(t, t0) = T/

{
exp

[
α

∫ t

t0

dt′AL̃(t′)
]}

, t > t0 . (33)

This is a superoperator Dyson series where T/ is the chronological time-ordering operator. This is defined,
for any O1,O2, . . . ,ON , by

T/

[
O1(t1)O2(t2) · · · ON (tN )

]
= ON (tN ) · · · O2(t2)O1(t1) , ∀ t1 < t2 < · · · < tN . (34)

Note that T/ does nothing if its argument is already ordered with time increasing from right to left.

Exercise: Check that (32) is a solution to (31).

Normally one would substitute (32) back into (29). However, we can see from (32) that Qρ̃(t) depends on
the history of P ρ̃(t) so that a time-local equation cannot be reached simply by plugging (32) in (29). In
order to get a time-local equation we express ρ̃(t′) in the integral of (32) in terms of ρ̃(t) for t > t′. Since
we know ρ̃(t) = N1(t, t′) ρ̃(t′) for t > t′ we can simply invert this equation to obtain

ρ̃(t′) = N−1
1

(t, t′) ρ̃(t) . (35)

One may also write the time-reversed evolution superoperator as

N−1
1

(t, t0) = T.

{
exp

[
− α

∫ t

t0

dt′ L̃(t′)
]}

, t > t0 , (36)

where T. is the antichronological time-ordering operator defined by

T.

[
O1(t1)O2(t2) · · · ON (tN )

]
= ON (tN ) · · · O2(t2)O1(t1) , ∀ t1 > t2 > · · · > tN . (37)

Exercise: Verify that N−1
1

(t, t0) can be written explicitly in terms of T. as in (36). Note the time-evolution
superoperator has the property that N−1

1
(t, t0) = N1(t0, t).

We now substitute (35) into (32), and using again (23),

Q ρ̃(t) = NQ(t, t0)Q ρ̃(t0) + α

∫ t

t0

dt′NQ(t, t′)QL̃(t′)PN−1
1

(t′, t)ρ̃(t) (38)

= NQ(t, t0)Q ρ̃(t0) +
[
α

∫ t

t0

dt′NQ(t, t′)QL̃(t′)PN1(t′, t)
]
P ρ̃(t)

+
[
α

∫ t

t0

dt′NQ(t, t′)QL̃(t′)PN1(t′, t)
]
Q ρ̃(t) . (39)

This motivates us to define

S(t) = α

∫ t

t0

dt′NQ(t, t′)QL̃(t′)PN1(t′, t) . (40)

Equation (39) can then be written compactly as[
1− S(t)

]
Qρ̃(t) = NQ(t, t0)Q ρ̃(t0) + S(t)P ρ̃(t) . (41)

Assuming 1− S(t) to be invertible, we may write

Q ρ̃(t) =
[
1− S(t)

]−1NQ(t, t0)Q ρ̃(t0) +
[
1− S(t)

]−1S(t)P ρ̃(t) . (42)
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This now allows us to obtain a time-local equation of motion for P ρ̃(t). Subustituting (42) into (29) we
arrive at the following equation of motion for the relevant part of ρ̃(t):

d

dt
P ρ̃(t) = K(t)P ρ̃(t) + I(t)Q ρ̃(t0) , (43)

where K(t) and I(t) are defined, on using the projector property (24), by

K(t) = αPL̃(t)P + αPL̃(t)
[
1− S(t)

]−1S(t)P ,

I(t) = αPL̃(t)
[
1− S(t)

]−1NQ(t, t0)Q .

(44)

(45)

The form of K(t) now makes the relevant part independent of its own history. For this reason K(t) is also
called a time-convolutionless generator for the relevant part. The irrelevant part at the initial time in (43)
makes the evolution of the relevant part inhomogeneous I(t) is often called the inhomogeneity superoperator.
It plays the role of a forcing term. Note that (43) [along with (44) and (45)] expresses the relevant dynamics
exactly. However, it is also extremely complicated. This is where the expansion in terms of powers of α that
we mentioned in Sec. 2.1.1 becomes useful. It is possible, under certain assumptions, to express the evolution
of the relevant part [i.e. the right-hand side of (43)] as a superoperator power series in α and approximate
the dynamics of the relevant part by truncating the series.

2.2.2 Perturbative expansion of relevant dynamics

Let us first deal with the inverse of 1− S(t). If Λ[S(t)] ≤ 1, where Λ(O) denotes the spectral radius3 of O,
then we can use a power series representation for the inverse of 1− S(t):

[
1− S(t)

]−1 =
∞∑

n=0

Sn(t) . (46)

We can see from (40) that S(t) = 0 if either α = 0 for any t < ∞, or t = t0 for any α < ∞. In general we
will start with S(t0) = 0 for some nonzero but finite α (otherwise there is no interaction between the system
and bath). In this case, the condition for Λ[S(t)] ≤ 1 can be guaranteed for sufficiently small t − t0. The
power series (46) then gives

[
1− S(t)

]−1S(t) =
∞∑

n=0

Sn+1(t) =
∞∑

n=1

Sn(t) . (47)

Using this we can then write the time-convolutionless generator K(t) as

K(t) = αPL̃(t)P + αPL̃(t)
∞∑

n=1

Sn(t)P . (48)

Ultimately K(t) must have the form of a power series in α so we define

K(t) =
∞∑

n=1

αnKn(t) . (49)

Note that Kn(t) for any value of n is defined to be independent of α so it will be convenient to also express
S(t) as a power series in α. Evidently S(t) may also be written as

S(t) =
∞∑

n=1

αn Sn(t) , (50)

where Sn(t) is independent of α for every value of n. We can therefore make the expansion of K(t) more
systematic by substituting (50) into (48). This allows us to express the set of superoperator expansion

3The spectral radius of O is the absolute value of the largest eigenvalue of O.
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coefficients {Kn(t)}∞n=1 in terms of {Sn(t)}∞n=1. Up to fourth order in α we have

K1(t) = PL̃(t)P ,

K2(t) = PL̃(t)S1(t)P ,

K3(t) = PL̃(t)
[
S2

1 (t) + S2(t)
]
P ,

K4(t) = PL̃(t)
[
S3

1 (t) + S1(t)S2(t) + S2(t)S1(t) + S3(t)
]
P .

(51)

(52)

(53)

(54)

Exercise: Derive (51)–(54).

Thus to calculate the time-convolutionless generator we just have to find {Sn(t)}∞n=1 . The higher the order
of α we carry the expansion to, the more accurate K(t) will be for a fixed α. In what follows we will expand
K(t) up to second order in which case only S1(t) is required. This defines the weak-coupling regime (i.e. when
the system and environment are not strongly interacting).

There is also the inhomogeneity in (43), so what about I(t)? This can also be expanded as a power series
in α but we note that I(t) acts on Qρ̃(t0), which depends on the initial state. For a system-bath state that
is initially factorised, we have

ρ̃(t0) = ρ̃S(t0)⊗ ρB = P ρ̃(t0) , (55)

and hence, by (25),

Qρ̃(t0) = 0 . (56)

Thus for a factorised initial state the relevant dynamics is given by a homogeneous differential equation.
The form of (55) says that our system starts in a state that is unentangled with the environment. This is a
reasonable assumption for many systems as the system is usually prepared in a known state independently
of the environment. We will assume this in the following. Although we will not be considering other non-
factorised initial states, we highlight here that this case can in principle be handled perturbatively by the
inhomogeneity superoperator I(t).

2.2.3 Weak-coupling master equation for an initially factorised state

For an initially unentangled system-bath state we have

d

dt
P ρ̃(t) = K(t)P ρ̃(t) . (57)

Up to second order in the system-bath interaction, valid in the weak-coupling regime, this is

d

dt
P ρ̃(t) = αP L̃(t)P ρ̃(t) + α2 P L̃(t)S1(t)P ρ̃(t) . (58)

To determine S1(t) we need to go back to (40) and expand it in powers of α. This requires that we use (33)
and (36) for NQ(t, t0) and N−1

1
(t, t0). The result is simply

S1(t) =
∫ t

t0

dt′ QL̃(t′)P . (59)

Equation (58) now becomes

d

dt
P ρ̃(t) = αP L̃(t)P ρ̃(t) + α2

∫ t

t0

dt′ P L̃(t)QL̃(t′)P ρ̃(t) (60)

= αP L̃(t)P ρ̃(t) + α2

∫ t

t0

dt′ P L̃(t) L̃(t′)P ρ̃(t)− α2

∫ t

t0

dt′ P L̃(t)P L̃(t′)P ρ̃(t) . (61)

where we used Q = 1− P in the last line. Recall that for any Â

L̃(t) Â = − i

~
[
Ṽ (t), Â

]
. (62)
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The first term in (61) is thus

P L̃(t)P ρ̃(t) = − i

~
TrB

{[
Ṽ (t), ρ̃S(t)⊗ ρB

]}
⊗ ρB (63)

If Ṽ (t) has zero mean then this term is zero. This will be the case when the bath operators which couple
to the system have zero mean in the state ρB. This is commonly encountered in practice so we will assume
this to be the case. However, even if it is not the case one can always make this true by redefining Ĥ0 and
V̂ so that V̂ always averages to zero.

Exercise: Show that Ṽ (t) can always be arranged to have zero mean.

In this case,

P L̃(t)P ρ̃(t) =
∫ t

t0

dt′ P L̃(t)P L̃(t′)P ρ̃(t) = 0 . (64)

Using (62) we obtain

d

dt
P ρ̃(t) = − 1

~2

∫ t

t0

dt′ TrB
{[

Ṽ (t),
[
Ṽ (t′), ρ̃S(t)⊗ ρB

]]}
⊗ ρB . (65)

Taking the partial trace over the bath and setting α = 1 we finally arrive at

d

dt
ρ̃S(t) = − 1

~2

∫ t

t0

dt′ TrB
{[

Ṽ (t),
[
Ṽ (t′), ρ̃S(t)⊗ ρB

]]}
≡ L̃S(t) ρ̃S . (66)

This now defines L̃S(t)—the LS(t) in (3) but in the interaction picture. Equation (66) is often used as a
starting point for deriving the evolution of open systems. In the next lecture I will present a simple example
and explore the physical consequences that such an equation describes.

Lecture 2

3 Example: Damped harmonic oscillator

3.1 Model Hamiltonian

Here we consider the dissipation of a single harmonic oscillator with frequency ω0. The system Hamiltonian
is

ĤS = ~ ω0 â†â , (67)

where â and â† are annihilation and creation operators, defined by[
â, â†

]
= 1̂S . (68)

We choose our bath to be a collection of harmonic oscillators with the set of annihilation operators {ĉk}k

with the corresponding set of frequencies {ωk}k. The model for the bath is thus defined by the Hamiltonian

ĤB =
∑

k

~ ωk ĉ†k ĉk . (69)

This is an infinite sum over k and the members of {ĉk}k satisfy the commutation relations[
ĉj , ĉk

]
=

[
ĉ†j , ĉ

†
k

]
= 0 ,

[
ĉj , ĉ

†
k

]
= δjk 1̂B . (70)

We now assume that the system oscillator interacts with the kth bath oscillator with coupling constant gk

and that the system-bath interaction is such that we can apply the rotating-wave approximation to describe
it. The interaction Hamiltonian is thus

V̂ =
∑

k

~
(
g∗k â⊗ ĉ†k + gk â† ⊗ ĉk

)
. (71)
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This model can be used to describe the transfer of energy from a single-mode electromagnetic field (often
engineered by an optical cavity) to free space (modes of the electromagnetic field outside the cavity). Finally,
we need to specify the state of the bath. Here we will take it to be a multimode thermal state at temperature
T , given by

ρB =
⊗

k

ρk , (72)

where ρk is a thermal state for the kth mode, defined by

ρk = e−β~ωk ĉ†k ĉk
(
1− e−β~ωk

)
. (73)

We have defined β = 1/kBT and kB is the Boltzmann constant.

3.2 Master equation

There is in fact still some work that you have to do to simplify the form of L̃S(t). I will outline the steps
here but they are covered in most quantum-optics textbooks:

1. Expand the nested commutator
[
Ṽ (t),

[
Ṽ (t′), ρ̃S(t)⊗ ρB

]]
and work out Ṽ (t).

2. Take the partial trace of the nested commutator over the bath. This gives rise to bath correlation
functions of the form

Cj,k(t, t′) ≡
〈
b̃j(t) b̃k(t′)

〉
= TrB

[
b̃j(t) b̃k(t′) ρB

]
, j, k = 1, 2 , (74)

where

b̃1(t) = ~
∑

n

g∗n ĉ†n eiωnt , b̃2(t) = ~
∑

n

gn ĉn e−iωnt . (75)

Calculating the partial trace amounts to calculating the bath correlation functions.

3. Calculate the time integral by assuming that Cj,k(t, t′) decays sufficiently fast when t 6= t′. Mathemat-
ically this approximation can be expressed by extending t− t0 −→∞ which allows one to write

d

dt
ρ̃S(t) = − 1

~2

∫ ∞

0

dτ TrB
{[

Ṽ (t),
[
Ṽ (t− τ), ρ̃S(t)⊗ ρB

]]}
. (76)

The time integral contributes a small shift to the natural frequency of the oscillator which is usually
neglected.

Exercise: Perform steps 1–3 above. You may want to consult a textbook on quantum optics.

At the end of all this we find

d

dt
ρS(t) = LS ρS(t) ≡ −i ω0

[
â†â, ρS(t)

]
+ γ (n̄ + 1)D[â]ρS(t) + γ n̄D[â†]ρS(t) , (77)

where the master equation is now parametrised by two real and positive numbers γ and n̄. We have also
defined for any Â and B̂,

D[Â]B̂ ≡ Â B̂ Â† − 1
2

Â†Â B̂ − 1
2

B̂ Â† Â . (78)

The parameter n̄ is simply the average photon number of the bath at temperature T and frequency ω0:

n̄ =
e−β~ω0

1− e−β~ω0
. (79)

The parameter γ is determined by the coupling constants gk in V̂ . Clearly we can see that if

γ = 0 , (80)
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then we obtain the Schrödinger equation for a free oscillator

d

dt
ρS(t) = −i ω0

[
â†â, ρS(t)

]
. (81)

Thus only for γ nonzero do we couple the system with the bath. Loosely speaking, it will suffice to think of
n̄ as the energy of the environment at temperature T , and γ as the strength of coupling between the system
and bath, and just remember that n̄ is given by (79) and

γ ≥ 0 . (82)

4 Understanding the damped harmonic oscillator

4.1 Zero-temperature environment

To understand the master equation let us first consider the simpler case of a zero-temperature environment:

T = 0 =⇒ n̄ = 0 . (83)

Note that this is the same as saying the bath is in the vacuum state. The master equation is then

d

dt
ρS(t) = −i ω0

[
â†â, ρS(t)

]
+ γ

[
â ρS(t)â† − 1

2
â†âρS(t)− 1

2
ρS(t)â†â

]
. (84)

Equation (84) now requires us to interpret D[â]. We can get a rough idea of D[â] if we note that âρSâ† is
proportional to a photon subtracted state in quantum optics. In particular, if ρS is a Fock state then âρSâ†

is again a Fock state with one photon less while ‘nohting happens’ in the remaining two terms in (84) (since
a Fock state is an eigenstate of â†â). This hints that D[â] is associated with the loss of energy. By the same
token we might associate D[â†] with a gain in energy for the system. We already know that n̄ measures how
much energy the bath has and we expect some of this energy to enter the system since it is coupled to the
system. At the same time we expect the system to dissipate energy to the bath. If however we set n̄ = 0
then no energy can enter the system and the exchange of energy between the system and bath becomes
unidirectional. In other words, we can interpret the effect of D[â] on the system in (84) to be dissipative.
If we interpret D[â†] as argued, i.e. its effect is to raise the system’s energy, then we would not expect it
to appear in the master equation when n̄ = 0 since in this case there is no energy in the bath to excite
the system. This is indeed what we see in (77). This way of thinking about the master equation is rather
hand-waving so we will spend more time to make sense of the dissipative terms in Sec. 4.2. Hopefully then,
it will become much clearer what these terms mean.

Exercise: Think about what happens to the photons leaked to the environment. Can they re-enter the
system?

4.2 Nonzero-temperature environment

The superoperators D[â] and D[â†] have somewhat complicated forms. In the above we have made a little
bit of sense of them by considering different limiting values of γ and n̄ but can we do more? In particular,

• What roles do γ and n̄ play in the system evolution?

• Can we get a more precise understanding of the superoperators D[â] and D[â†]?

To answer these questions we consider the effects of D[â] and D[â†] on system observables. This will translate
their action on the system into something tangible.
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4.2.1 Damping and thermalisation

Let us consider how the average amplitude of the oscillator evolves first. Using the master equation (77) we
find

d

dt
〈â〉t = − i ω0 〈â〉t −

1
2

γ (�̄n + 1) 〈â〉t +
�

����1
2

γ n̄ 〈â〉t (85)

= −
(

γ

2
+ i ω0

)
〈â〉t . (86)

The solution of this equation is

〈â〉t = 〈â〉0 e−iω0t e−γt/2 . (87)

It is clear from (87) that γ is to be interpreted as a damping coefficient. At time t = 0, the oscillator’s
amplitude starts somewhere on the complex plane at 〈â〉0 and then revolves around the origin as time goes
by. If γ = 0 then the oscillator would circle the origin at a period of T0 = 2π/ω0 indefinitely. For γ 6= 0, the
amplitude spirals a little bit towards the origin on each cycle until it eventually gets to the origin and stays
there forever.

Next we consider the average energy of the oscillator. Its equation of motion is

d

dt
〈n̂〉t = −γ 〈n̂〉t + γ n̄ . (88)

Again, we see that γ is a damping coefficient but now n̄ also appears which is replenishing the oscillator’s
energy. Solving (88) gives

〈n̂〉t = 〈n̂〉0 e−γ t + n̄
(
1− e−γ t

)
(89)

Unlike the average amplitude, the system’s average energy does not decay to zero but is lower bounded:

〈n̂〉ss ≡ lim
t→∞

〈n̂〉t = n̄ . (90)

Physically this is because thermal energy from the bath is entering the system. Note that 〈n̂〉ss can also be
obtained directly from (88). Recall that this is exactly the average energy of an oscillator with frequency ω0

and temperature T :

n̄ =
e−~ω0/kBT

1− e−~ω0/kBT
, (91)

where we have also written out β = 1/kBT to make the temperature dependence explicit. However, we did
not specify the temperature of the system, T is actually the temperature of the environment, so (90) tells
us that the system will eventually thermalise to the temperature of the environment. The master equation
that we have derived seems to capture the process of thermalisation!

Exercise: Derive (85) and (88) from the master equation (77).

4.2.2 Pauli master equation

We can get an even more detailed understanding of the master equation by thinking about it in the energy
basis. More specifically we consider the probability for the system oscillator to be in its nth energy eigenstate
at time t. That is to say we will just focus on

℘(n, t) ≡ 〈n|ρS(t)|n〉 . (92)

The equation of motion for ℘(n, t) is called the Pauli master equation and ℘(n, t) is often referred to as the
population of the nth state. The evolution of ℘(n, t) can thus be calculated directly as the diagonal elements
of the master equation (77). The result is

∂

∂t
℘(n, t) = γ (n̄ + 1) (n + 1) ℘(n + 1, t)− γ (n̄ + 1)n ℘(n, t) + γ n̄ n ℘(n− 1, t)− γ n̄(n + 1) ℘(n, t) .

(93)
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TRANSITION RATE 

CORRESPONDING TERMS IN  THE MASTER EQUATION 

Fig. 1: Interpretation of the population dynamics of the damped harmonic oscillator. Each term in (93) describes a transition
indicated by an arrow. The corresponding rate for the transition is shown next to the arrow. Furthermore, the derivation of
(93) shows us exactly which terms in the superoperators D[â] and D[â†] contribute to a given transition which is also shown
by the operators appearing to each arrow.

The population of each energy eigenstate can thus be seen to couple only to the population of other energy
eigenstates, there is no coupling between populations and coherences. We can interpret the positive contri-
butions in (93) [γ(n̄ + 1)(n + 1)℘(n + 1, t) and γ n̄ n ℘(n− 1, t)] as transitions to state |n〉 from |n + 1〉 and
|n− 1〉, while the negative contributions [−γ (n̄ + 1) n ℘(n, t) and −γ n̄(n + 1) ℘(n, t)] can be interpreted as
transitions out of state |n〉 and into states |n + 1〉 and |n− 1〉. We depict the correspondence between each
term in (93) and the transition they describe in Fig. 1.

4.2.3 Steady-state photon statistics—thermalisation revisited

We obtained the steady-state average energy of the oscillator in (90). In principle this should be consistent
with the steady-state solution of the Pauli master equation. That is, we expect

〈n̂〉ss =
∞∑

n=0

n ℘ss(n) , (94)

where ℘ss(n) is the steady-state solution of (93), i.e.

℘ss(n) = lim
t→∞

℘(n, t) . (95)

Solving for the steady state of the Pauli master equation we find

℘ss(n) =
1

n̄ + 1

(
n̄

n̄ + 1

)n

. (96)

This now gives us all the photon statistics of the system oscillator at steady state.

Exercise: Show that (96) gives an average photon number consistent with (90).

We did not obtain

(ρS)ss = lim
t→∞

ρS(t) (97)

from the master equation. However, with (96) we can now solve for (ρS)ss directly by noting that it must
be the solution to

〈n|(ρS)ss|n〉 = ℘ss(n) =
1

n̄ + 1

(
n̄

n̄ + 1

)n

. (98)
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It is simple to see that the solution to (98) is

(ρS)ss =
1

n̄ + 1

(
n̄

n̄ + 1

)â†â

. (99)

We can express (99) in what might be a more familiar form using (91):

(ρS)ss =
(
1− e−β~ω0

)
e−β~ω0â†â , (100)

which is a thermal state! If we are to be rigorous then we should show that it really is the long-time solution
of the master equation by substituting (100) back into (77) and verify that

LS (ρS)ss = 0 . (101)

Exercise: Derive (100) from (99), using (91).
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