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PREFACE

These proceedings contain abstracts for the tutorials, talks and posters of the 2019 Asian Quantum Informa-

tion Science conference, AQIS’19, being held at Korea Institute for Advanced Study, Korea, 19-23 August

2019.

AQIS, the successor to the EQIS conferences held in Japan from 2001-2005, is widely regarded as the

foremost Asian conference series covering all aspects of the burgeoning cross-disciplinary field of quantum

information science. This includes theoretical and experimental research in all of the following areas: quan-

tum computation and simulation, from programming semantics to gate design; quantum-inspired classical

computation and simulation; quantum cryptography, communication, and more general network tasks; de-

vice characterisation and decoherence mitigation; quantum information science more broadly; and research

influenced by quantum information in related fields such as quantum foundations, quantum metrology,

many-body quantum (thermo)dynamics, and quantum space-time.

Though located in Asia, the reach of AQIS is cosmopolitan, serving to foster exchange of methods and

experiences and development of the field both in Asia and around the world. Last year’s conference at

Nagoya University was the largest AQIS ever, and this year’s is almost as large. Next year it will be held

for the first time in Sydney, Australia, a country on the edge of Asia which is becoming increasingly part of

the Asian community in quantum information science.

This year’s program comprises 10 invited talks (including the 2 tutorials), 52 contributed talks, and 130

posters. There were 212 submission, only 7% fewer than the record-breaking 2018 conference in Japan.

Of these, 162 requested a talk, so the work of the Program Committee was highly selective, with the

acceptance rates for talks being 32%. The abstracts selected are of excellent quality and cover a very broad

range of topics. The assessment was done by an international Program Committee, chaired by Howard

Wiseman, with co-chairs Runyao Duan and Eleanor Rieffel, and comprising Koji Azuma, Kristin Beck,

Mario Berta, Michael Bremner, Daniel Burgarth, Areeya Chantasri, Yu Chen, Giulio Chiribella, Oscar

Dahlsten, Usha Devi, Daoyi Dong, Omar Fawzi, Marissa Giustina, Mile Gu, Qiongyi He, Itay Hen, Richard

Jozsa, Elham Kashefi, Kihwan Kim, Myungshik Kim, Aleks Kissinger, Ping-Koy Lam, Troy Lee, Chuan-

Feng Li, Yeong-Cherng Liang, Nana Liu, Xiongfeng Ma, Aikaterini Mandilara, Peter McMahon, Tomoyuki

Morimae, Milan Mosonyi, Yasunobu Nakamura, Yoshifumi Nakata, Hidetoshi Nishimori, Sergei Novikov,

Kevin O’Brien, Francis Paraan, Stephen Piddock, Ravi Ramanathan, Jacqui Romero, Barry Sanders, Eyob

Sete, Urbasi Sinha, Wonmin Son, Nora Tischler, Xin Wang, Zhihui Wang, Paul Warburton, Nathan Wiebe,

Andreas Winter, Rebing Wu, Guoyong Xiang, Yanhong Xiao, Peng Xue, and Naoki Yamamoto.

We would like to thank the Program Committee members, the invited speakers, and everyone who submitted

an abstract in response to the call for papers. We would also like to thank the conference Steering Commit-

tee, chaired by Jaewan Kim, especially its secretary, Shigeru Yamashita, and the Organizing Committee,

also chaired by Jaewan Kim.

— Howard Wiseman (PC chair), Runyao Duan (PC co-chair), and Eleanor Rieffel (PC co-chair).
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Embezzlement and Applications
Debbie Leung

Abstract. Embezzlement of entanglement is the (impossible) task of producing an entangled state from
a product state via a local change of basis, when a suitable *catalytic* entangled state is available. The
possibility to approximate this task was first observed by van Dam and Hayden in 2002. Since then,
the phenomenon is found to play crucial roles in many aspects of quantum information theory. In this
tutorial, we will explore various methods to embezzle and discuss applications (such as an extension to
approximately violate other conservation laws in macroscopically controlled unitary gates, a Bell inequality
that cannot be violated maximally with finite amount of entanglement, and the quantum reverse Shannon
theorem).

References

[1] Wim van Dam and Patrick Hayden. Univer-
sal entanglement transformations without commu-
nication. Physical Review A, 67(6):060302, 2003.
quant-ph/0201041 https://arxiv.org/abs/quant-
ph/0201041

[2] Debbie Leung, Ben Toner, and John Watrous. Co-
herent state exchange in multi-prover quantum inter-
active proof systems. Chicago Journal of Theoreti-
cal Computer Science, 11:118, 2013. arXiv:0804.4118
https://arxiv.org/abs/0804.4118

[3] Zhengfeng Ji, Debbie Leung, Thomas Vidick.
A three-player coherent state embezzlement game.
arXiv:1802.04926 https://arxiv.org/abs/1802.04926

[4] Andrea Coladangelo. A two-player dimension witness
based on embezzlement, and an elementary proof of
the non-closure of the set of quantum correlations.
arXiv:1904.02350 https://arxiv.org/abs/1904.02350
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Introduction to Quantum Machine Learning
Nathan Wiebe

Abstract. In recent years, quantum machine learning has emerged as one of the most exciting potential
applications of quantum computing. This tutorial aims to provide an introduction to machine quantum
machine learning that will allow the attendees to understand the goals of machine learning, the promises
of the field and the challenges that remain in the field. We will begin with an introduction to machine
learning including neural networks, support vector machines and nearest neighbor classification. Next,
we will discuss how quantum computing can impact these areas and discuss the different forms of access
models that are needed for the data in order to make such algorithms practical. Finally, we will provide
a discussion of how to train quantum Boltzmann machines using quantum computers and argue that
such quantum neural networks may have a valuable role in characterizing and preparing broad families of
quantum states.

References

[1] Biamonte, Jacob, et al. ”Quantum machine learning.”
Nature 549.7671 (2017): 195.

[2] Rebentrost, Patrick, Masoud Mohseni, and Seth
Lloyd. ”Quantum support vector machine for big data
classification.” Physical review letters 113.13 (2014):
130503.

[3] Wiebe, Nathan, Ashish Kapoor, and Krysta M.
Svore. ”Quantum nearest-neighbor algorithms for
machine learning.” Quantum Information and Com-
putation 15 (2018).

[4] Kieferov, Mria, and Nathan Wiebe. ”Tomography
and generative training with quantum Boltzmann
machines.” Physical Review A 96.6 (2017): 062327.

2



Testing quantum causal structures
Giulio Chiribella

Abstract. Identifying cause-effect relations is a fundamental primitive in a variety of areas. The identifi-
cation of causal relations is generally accomplished through statistical trials where alternative hypotheses
about the causal relations are tested against each other. Traditionally, such trials have been based on
classical statistics. However, classical statistics becomes inadequate at the quantum scale, where a richer
spectrum of causal relations is accessible. In this talk, I will show that quantum strategies can greatly
speed up the identification of causal relations. As a working example, I will analyse the task of iden-tifying
the effect of a given variable, and show that the optimal quantum strategy beatsall classical strategies by
running multiple equivalent tests in a quantum superposition.The same working principle leads to advan-
tages in the detection of a causal link between two variables, and in the identification of the cause of a
given variable. These results open up the study of quantum speedups in causal discovery algorithms, and
may have applications to the design of automated quantum machines and new quantum communication
protocols. Reference for this work: G Chiribella and D Ebler, Nature Communications 10, 1472 (2019).
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Efficiently computable bounds for magic-state distillation

Xin Wang1 Mark M. Wilde2 Yuan Su1
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Abstract. Magic state manipulation is a crucial component in the leading approaches to realizing scal-
able, fault-tolerant, and universal quantum computation. Related to magic state manipulation is the re-
source theory of magic states, for which one of the goals is to characterize and quantify quantum “magic.”
In this paper, we introduce the family of thauma measures to quantify the amount of magic in a quantum
state, and we exploit this family of measures to address several open questions in the resource theory of
magic states. As a first application, we use the min-thauma to bound the regularized relative entropy of
magic. As a consequence of this bound, we find that two classes of states with maximal mana, a previously
established magic measure, cannot be interconverted in the asymptotic regime at a rate equal to one. This
result resolves a basic question in the resource theory of magic states and reveals a fundamental difference
between the resource theory of magic states and other resource theories such as entanglement and coher-
ence. As a second application, we establish the hypothesis testing thauma as an efficiently computable
benchmark for the one-shot distillable magic, which in turn leads to a variety of bounds on the rate at
which magic can be distilled, as well as on the overhead of magic-state distillation. Finally, we prove that
the max-thauma can outperform mana in benchmarking the efficiency of magic-state distillation.

Keywords: Magic state distillation, fault-tolerant quantum computing, resource theory

1 Introduction

Quantum computers hold the promise of a substan-
tial speed-up over classical computers for solving certain
algebraic problems [1, 2] and simulating quantum dy-
namics [3]. One of the main obstacles to the physical
realization of quantum computation is the decoherence
that occurs during the execution of quantum algorithms.
Fault-tolerant quantum computation (FTQC) [4, 5] pro-
vides a framework to overcome this difficulty and allows
reliable quantum computation when the physical error
rate is below a certain threshold value.

According to the Gottesman–Knill theorem [6, 7], a
quantum circuit comprised of only Clifford gates con-
fers no quantum computational advantage because it can
be simulated efficiently on a classical computer. How-
ever, the addition of a so-called magic state can lead to
a universal gate set via a technique called state injec-
tion [8, 9], thus achieving universal quantum computa-
tion. The key of this resolution is to perform magic-state
distillation [10] (see [11, 12, 13, 14, 15, 16, 17] for re-
cent progress), wherein stabilizer operations are used to
transform a large number of noisy magic states into a
smaller number of high quality magic states. Therefore,
a quantitative theory is highly desirable in order to fully
exploit the power of magic states in fault-tolerant quan-
tum computation.

Quantum resource theories (QRTs) offer a powerful
framework for studying different phenomena in quantum
physics, and the seminal ideas of QRTs have recently
been influencing diverse areas of physics [18]. In the con-
text of the magic-state model of universal quantum com-
putation, the resource-theoretic approach reduces to the
characterization and quantification of the usefulness of
the resourceful magic states [19, 20]. In the framework

This submission is based on arXiv:1812.10145.

of [19, 20], the free operations are the stabilizer opera-
tions, those that possess a fault-tolerant implementation
in the context of fault-tolerant quantum computation,
and the free states are the stabilizer states (STAB). Sta-
bilizer operations include preparation and measurement
in the computational basis, as well as a restricted set
of unitary operations, called the Clifford unitaries. The
free states consist of all pure stabilizer states, which are
eigenstates of the generalized Pauli operators, and their
convex mixtures. The resource states, namely, the magic
states (or non-stabilizer states), are key resources that
are required to achieve some desired computational tasks.
For quantum computers acting on qudit registers with
odd dimension d, the resource theory of magic states (or
equivalently contextuality with respect to stabilizer mea-
surements [21, 22]) has been developed [19, 23, 20]. The
resource theory of magic states for multiqubit systems
was recently developed in [24, 25, 26].

2 Overview of results

In this work, we develop resource-theoretic approaches
to study the non-stabilizer resources in fault-tolerant
quantum computation. In particular, we establish the
following:

(i) We introduce the family of thauma1 measures to
quantify the amount of magic in a quantum state,
several of which can be efficiently computed via con-
vex optimization.

(ii) We show that two classes of states with maximal
mana, a previously established magic measure, can-
not be interconverted asymptotically at a rate equal
to one. This resolves an open question in [20] and
reveals the difference between the resource theory
of magic states and other resource theories.

1Greek for “wonder” or “marvel”
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(iii) We establish efficiently computable benchmarks for
the rate and efficiency of magic-state distillation via
thauma measures and quantum hypothesis testing.

3 Background

We now recall the definition of the discrete Wigner
function, which is essential in the analysis of the re-
source theory of magic states. Let Hd be a Hilbert
space of dimension d, and let {|j〉}j=0,...,d−1 denote
the standard computational basis. For a prime num-
ber d, we define the respective shift and boost opera-
tors X,Z ∈ L(Hd) as X|j〉 = |j ⊕ 1〉 and Z|j〉 = ωj |j〉,
with ω = e2πi/d. We define the Heisenberg–Weyl oper-
ators as Tu = τ−a1a2Za1Xa2 , where τ = e(d+1)πi/d and
u = (a1, a2) ∈ Zd × Zd. For each point u in the dis-
crete phase space, there is a corresponding operator Au,
and the value of the discrete Wigner representation of a
quantum state ρ at this point is given by

Wρ(u) := TrAuρ/d,

where {Au}u are the phase-space point operators Au :=
TuA0T

†
u and A0 := 1

d

∑
u Tu.

4 Main results

4.1 Thauma measures for magic states

It is well known that quantum computations are classi-
cally simulable if they consist of only stabilizer operations
acting on quantum states with a positive discrete Wigner
function. Such states are thus useless for magic-state dis-
tillation [19] and are analogous to states with a positive
partial transpose in entanglement theory. To address fun-
damental questions in the resource theory of magic states,
we are motivated by the idea of the Rains bound from en-
tanglement theory [27]. As developed in [27] and the later
work [28], the Rains bound and its variants consider sub-
normalized states with non-positive logarithmic negativ-
ity [29, 30] as useless resources, and they use the diver-
gence between the given state and such sub-normalized
states to evaluate the behavior of entanglement distilla-
tion. Thus, inspired by the main idea behind the Rains
bound, we introduce the set of sub-normalized states with
non-positive mana: W := {σ : M(σ) ≤ 0, σ ≥ 0},
with the mana M(ρ) of a quantum state ρ defined as
[20] M(ρ) := log2 ‖ρ‖W,1, where the Wigner trace norm
of an operator V is defined as ‖V ‖W,1 :=

∑
u |WV (u)|.

Note that the mana [20] is analogous to the logarithmic
negativity [29, 30].

Our first contribution is to introduce the family of
thauma measures to quantify the magic of a state:

Measures Acronym Definition
Max-thauma θmax(ρ) infσ∈W Dmax(ρ‖σ)
Thauma θ(ρ) infσ∈W D(ρ‖σ)
Regularized Thauma θ∞(ρ) limn→∞ θ(ρ⊗n)/n

Min-thauma θmin(ρ) infσ∈W D0(ρ‖σ)

We prove that these two members of the thauma
family are efficiently computable by semidefinite pro-

grams (SDPs) [31] and are particularly useful for ad-
dressing fundamental questions in the resource theory
of magic states. In particular, we prove that the min-
and max-thauma are additive wtih respect to tensor-
product states. Additionally, for any pure state |ψ〉,
θmin(ψ) = − log2 maxσ∈W F (ψ, σ) ≤ − log2 FStab(ψ),
where FStab(ψ) is the stabilizer fidelity [32]. In the fol-
lowing sections, we demonstrate applications of thauma
in magic-state conversion and magic-state distillation.

4.2 Inequivalence between magic states with
maximal mana

A fundamental problem in any quantum resource the-
ory is to determine whether the resource conversion is
asymptotically reversible under the free operations [18].
For example, in bipartite entanglement theory, the maxi-
mally entangled state |Φ〉 = (|00〉+ |11〉)/

√
2 is a natural

choice for a standard resource, and the asymptotic in-
terconversion between Φ and any pure bipartite state is
reversible under local operations and classical communi-
cation [33].

In any resource theory, maximally resourceful states
play a unique role in quantifying the resourcefulness of
other states and accessing the performance of resource
manipulation. Considering entanglement theory (or co-
herence theory) as an example, the interconversion be-
tween a given state and maximally entangled (coherent)
states leads to fundamental tasks such as entanglement
(coherence) distillation and dilution. Notably, any two
maximally entangled (coherent) states in the same di-
mension are equivalent under free operations.

However, our first main result shows that this is not
the case in the resource theory of non-stabilizer states.
Surprisingly, we find that even though the Strange state
and the Norrell state [20] each have maximum mana and
are thus the most costly resource to simulate on a clas-
sical computer [20, 34], they are not equivalent even in
the asymptotic regime. In particular, recall that mana
is a non-stabilizerness measure analogous to logarithmic
negativity, and the logarithmic negativity of a bipartite
state is equal to its maximal value if and only if the state
is maximally entangled.

Solving the asymptotic transformation rate between
states is usually very difficult. However, here we uti-
lize the thauma measures to show that the following in-
equality holds for the Strange state |S〉 and the Norrell
state |N〉:

R(N→ S) ≤ log2(3/2)/log2(5/3) < 1.

This result demonstrates a fundamental difference be-
tween the resource theory of non-stabilizer states and the
resource theory of entanglement or coherence. Specif-
ically, we show that the maximally resourceful non-
stabilizer states cannot be interconverted at a rate equal
to one, even in the asymptotic regime, while the max-
imally resourceful states in entanglement theory or co-
herence theory can be interconverted equivalently in the
single-copy setting.
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4.3 Limits for magic-state distillation

The basic task of magic-state distillation [10] can be
understood as follows. For any given quantum state ρ,
we aim to transform this state to a collection of magic
states (e.g., |T 〉) with high fidelity using stabilizer oper-
ations. The goal is to maximize the number of target
states while keeping the transformation infidelity within
some tolerance ε.

Figure 1: Magic state distillation.

Our second main result gives the fundamental limit
for magic-state distillation of a given pure target magic
state. In a realistic setting, the resources are finite, the
number of independent and identically distributed (i.i.d.)
prepared states is limited. Therefore, it is important to
characterize how well we can distill magic states from a
finite number of copies of prepared states. In the non-
asymptotic setting, one has to make a trade-off between
the distillation rate and infidelity tolerance. Formally,
for any triplet (ρ, φ, ε) consisting of a given initial state
ρ, a target pure state φ, and an infidelity tolerance ε,
the one-shot ε-error distillable φ-magic of ρ, denoted by
Mε

φ(ρ), is defined to be the maximum number of φ magic
states achievable via stabilizer operations, with an error
tolerance of ε:

Mε
φ(ρ) = sup{k : Λ(ρ) ≈ε |φ〉〈φ|⊗k, Λ ∈ SO},

where |ψ〉〈ψ| ≈ε σ is a shorthand for 〈ψ|σ|ψ〉 ≥ 1− ε and
SO for stabilizer operations.

There are certain qutrit magic states of interest [35,
36]: |T 〉 = 1√

3
(ξ|0〉 + |1〉 + ξ−1|2〉) with ξ = e2πi/9 and

the eigenstate |H+〉 of the qutrit Hardmard gate with cor-
responding eigenvalue 1. Here we focus on the one-shot
distillable H+-magic Mε

H+
(ρ) and the one-shot distill-

able T -magic Mε
T (ρ). We establish the following upper

bounds:

Mε
H+

(ρ) ≤ minσ∈W Dε
H(ρ‖σ)

log2(3−
√

3)
, (1)

Mε
T (ρ) ≤ minσ∈W Dε

H(ρ‖σ)

log2(1 + 2 sin(π/18))
, (2)

where Dε
H(ρ0‖ρ1) := − log2 min

{
TrMρ1

∣∣ 0 ≤ M ≤
1, 1 − TrMρ0 ≤ ε

}
is the hypothesis testing relative

entropy [37, 38].
We then establish the fundamental limits for magic-

state distillation in the asymptotic limit. We show that
the distillable non-stabilizerness of a state ρ satisfies

MH+(ρ) = lim
ε→0

lim
n→∞

1

n
Mε

H+
(ρ⊗n) ≤ θ(ρ)

log2(3−
√

3)
,

MT (ρ) = lim
ε→0

lim
n→∞

1

n
Mε

T (ρ⊗n) ≤ θ(ρ)

log2(1 + 2 sin(π/18))
.

4.4 Efficiency of magic-state distillation

We further consider the efficiency of magic-state dis-
tillation. The efficiency of distilling a magic state ξ from
several independent copies of a resource state ρ is given
by the minimum number of copies of ρ needed, on aver-
age, to produce ξ using stabilizer operations:

Neff(ρ→ ξ) = inf

{
n

p
: Λ(ρ⊗n)→ ξ w/ prob. p, Λ ∈ SO

}
.

We show that the efficiency of distilling magic state ξ
from resource states ρ is lower bounded by

Nθmax
(ρ, ξ) := θmax(ξ)/θmax(ρ).

We demonstrate that our lower bound can outperform
the lower bound in [20] via a certain example, as depicted
in Figure 2, thus giving an improved estimation of the
efficiency of magic-state distillation.
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Figure 2: Comparison between Nθmax(ρin → H+) and
NM(ρin → H+) for input ρin = (1− p1 − p2)|H+〉〈H+|+
p1|H−〉〈H−|+ p2|Hi〉〈Hi| with p2 = 1/10.

5 Conclusions

We have introduced the thauma family of measures to
quantify and characterize the non-stabilizerness resource
possessed by quantum states that are needed for univer-
sal quantum computation. The min- and max-thauma
are efficiently computable by semi-definite programming
and lead to bounds on the rates at which one can inter-
convert non-stabilizer states. These bounds have helped
to solve pressing open questions in the resource theory
of non-stabilizer states. More generally, our work estab-
lishes fundamental limitations on the processing of quan-
tum non-stabilizerness, opening new perspectives for its
investigation and exploitation as a resource in quantum
information processing and quantum technology. Along
this line, we suspect that our results will have immedi-
ate impact on the quantum optics community working on
the resource theory of non-Gaussianity [39, 40, 41] and
continuous-variable quantum computing [42, 43], because
the main idea behind the thauma measure can be gener-
alized to this setting.
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All fermionic non–Gaussian states are magic states
for matchgate computations
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Abstract. Magic states were introduced in the context of Clifford circuits as a resource that elevates
classically simulatable computations to quantum universal capability, while maintaining the same gate set.
Here we study magic states in the context of matchgate (MG) circuits, where the notion becomes more
subtle. We show that every pure fermionic state which is non–Gaussian, i.e. which cannot be generated by
MGs from a computational basis state, is a magic state for MG computations. This result has significance
for prospective quantum computing implementation since MG circuit evolutions coincide with the quantum
physical evolution of non-interacting fermions.

Keywords: Quantum computing, matchgates, magic states

The full paper version of this submission is at [1].

1 Introduction

Exploring the landscape intermediate between classi-
cal and quantum computing is one of the most interest-
ing issues in quantum information science for both theory
and potential implementational impact. It provides the
natural context for the consideration of novel trade-off
possibilities between the individual constituents of the
respective theories, that may then provide new applica-
tions for emerging near-term quantum hardware of likely
limited quantum capability. One fruitful approach in this
direction is to determine the classical simulation com-
plexity of a restricted class of quantum processes (that
may perhaps enjoy some implementational benefit), and
then identify minimal extra resources that would suffice
to regain full universal quantum computing power.

The theory of fermionic linear optics underpins a large
number of important physical systems, such as Gaussian
communication channels [2] and important phenomena
in condensed matter physics [3, 4], including Majorana
fermions in quantum wires [5] and Kitaevs honeycomb
lattice model [6]. Together with the development of ex-
perimental systems such as cold atoms [7], atoms in opti-
cal lattices [8], and quantum dots [9, 10] it is well-suited
for a range of information processing tasks.

Early on, it was shown that the computational capabil-
ities of unassisted fermionic linear optics can be described
by matchgate circuits (MGCs) and they are entirely clas-
sically efficiently simulatable [11, 12, 13, 14], the latter
holding also for some extensions of fermionic linear optics
with dissipative processes [15]. Another class of quantum
processes that is classically simulatable is given by Clif-
ford circuits, albeit for different reasons in comparison to
MGCs [16] and indeed the classically simulatable compu-
tational power of MGCs has the neat characterisation of

∗Martin.Hebenstreit@uibk.ac.at
†rj310@cam.ac.uk
‡Barbara.Kraus@uibk.ac.at
§ss870@cam.ac.uk
¶my332@cam.ac.uk

being equivalent to log-space bounded universal unitary
quantum computation [17].

Determining extra ingredients for Clifford circuits [19,
18] or for MGCs that suffice to regain universal compu-
tational power, can give avenues for boosting the power
of corresponding near-term quantum computing devices
that are based on implementing such gates. In the case
of Clifford circuits a fundamentally important such in-
gredient is the provision of a so-called magic state [19]
i.e. a suitably chosen additional input state whose avail-
ability gives universal computing power while still using
only the same gate set, via introduction of an associated
“gate-gadget” construction.

In this paper we establish and study the notion of
magic states for MGCs. We will see that this notion
becomes more subtle in the matchgate context, as match-
gate actions are subject to a locality constraint, and also
the SWAP gate is not available to freely move magic
states into arbitrary positions amongst the qubits. Nev-
ertheless a similar picture of gate-gadget constructions
applies, and our main result will be to show that every
pure fermionic state which is non–Gaussian, i.e. which
cannot be generated by a MGC from a computational ba-
sis state, is a magic state for MGCs. Along the way we
will see that the matchgate locality constraint imposes a
necessary condition that magic states be fermionic states;
and we will give an explicit example of a gate-gadget con-
struction (with associated 4-qubit magic state) for imple-
menting the SWAP gate, which is known to extend the
power of MGCs to full quantum universal power [13].

Preliminaries: The Pauli operators are denoted by
X,Y, Z. For n qubits, the even (resp. odd) parity sub-
space, is the subspace spanned by all computational ba-
sis states containing an even (resp. odd) number of 1’s
i.e. the +1 (resp. −1) eigenspace of the n-qubit op-
eration Z⊗n. An operator is called even if it preserves
the even and odd parity subspaces. A matchgate (MG)
is a two–qubit unitary even operator G(A,B) = A ⊕ B
where A,B ∈ U(2) act on the even and odd parity sub-
spaces respectively and satisfy detA = detB. Whereas
the fermionic SWAP gate, fSWAP = G(Z,X), is a MG,
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the SWAP gate, SWAP = G(1, X) is not (as the deter-
minants of the two unitaries do not match). A matchgate
circuit (MGC) is a quantum circuit which comprises MGs
acting only on nearest neighbor (n.n.) lines. Correspond-
ingly, in the following the term MG will always refer to a
nearest neighbor matchgate. The action of any MGC is
always an even operator. It has been shown [21, 11, 13]
that for any MGC, if the input is a computational basis
state and the output is a final computational basis mea-
surement on any single qubit, then the output is classi-
cally efficiently simulatable. Moreover, in [17] it has been
shown that MGCs running on n qubits can be compressed
into a universal quantum computer running on O(log(n))
qubits. However, supplementing MGCs with additional
gates, such as the SWAP-gate, makes the circuits uni-
versal for quantum computing [13, 22, 23, 24]. This is
analogous to the situation of classically simulatable Clif-
ford computations being elevated to universal quantum
computing power by the inclusion of a non-Clifford gate
such as the T gate.

We will use the following terminology. An n qubit state
|Ψ〉 is called fermionic if it is an eigenstate of Z⊗n i.e. it is
supported entirely in the even or odd parity subspace. An
n-qubit operation W is called Gaussian if it arises as the
action of a MGC (which in turn always corresponds via
the Jordan-Wigner transformation, to evolution under a
quadratic fermionic Hamiltonian). An n-qubit state |Ψ〉
is called Gaussian if it arises as the action of a Gaussian
operation on a computational basis state. We call two
states |φ1〉 and |φ2〉 MG–equivalent if there exists a free
operation which transforms |φ1〉|b1〉 into |φ2〉|b2〉 where
|b1〉, |b2〉 are computational basis states. Clearly MG-
equivalence is an equivalence relation.

As MGs can be freely applied in circuits without alter-
ing the classical simulability of the computational out-
put, we call a product of MGs, i.e. a Gaussian unitary
operator, a free or resourceless operation, and introduce a
resourceful gate as one which leads to a universal gate set
if used in conjunction with free operations. Here quan-
tum computational universality may occur in an encoded
sense wherein the logical |0〉, |1〉 states may be repre-
sented by suitably simple multi-qubit states upon which
the free and resourceful gates act to effect logical gates
(e.g. as in [13] where it is shown that n.n. SWAP is a
resourceful gate).

2 Magic states

The notion of magic state has been introduced in the
context of Clifford circuits [19] which then comprise the
free operations. While circuits composed solely of Clif-
ford gates acting on computational basis state inputs
are classically efficiently simulatable, adding the T gate
makes the gate set universal. But instead of enlarg-
ing the gate set, one can alternatively consider allowing
more general input states, so-called magic states, and
adaptive measurements. In this way one can realize a
T gate via the so-called T -gadget [19], that consumes
one copy of the magic state |T 〉 = 1/

√
2
(
|0〉+ eiπ/4|1〉

)
and uses one adaptive measurement in the computational

basis together with only Clifford gates. Let us stress
here that neither copies of the magic state, nor adaptive
measurements in the computational basis by themselves
give rise to universal quantum computation (assuming
quantum is more powerful than classical computing). In-
deed these situations are classically efficiently simulatable
[26, 27, 28, 29, 30]. Henceforth adaptive measurements
will alwys be in the computational basis only.

In generality, we introduce the following natural defi-
nition: if R is a resourceful k-qubit gate for a set of free
operations, we say that an m-qubit state |M〉 is a magic
state for R if
(M1): there is a circuit C of free gates and adaptive mea-
surements such that for any k-qubit state |α〉, C maps
|α〉|M〉 to (R|α〉)|M̃〉 (where |M̃〉 is any state, that may
depend on the intermediate measurement outcomes too.
However, it may not depend on |α〉.)
Actually we will need a slightly more general version of
(M1) as follows. We will require that for any ε > 0, C
(of circuit size O(poly(1/ε))) acting on |α〉 together with
O(poly(1/ε)) copies of |M〉, produces R|α〉 with prob-
ability 1 − ε (where the probabilistic randomness here
arises from the intermediate measurement outcomes.)
For bounded error computations with input size n we
take ε = 1/poly(n), which then maintains efficiency of
the computation.

We wish to develop the theory of magic states for
matchgate computations (so that henceforth free opera-
tions will always be Gaussian operations), but note that
right from the start there are key differences that will
require special care in the MG compared to the Clifford
scenario, necessitating a further condition (M2) as be-
low. For Cliffords, SWAP is a free operation, so any
free (multi-qubit) gate can be placed to act on any (dis-
tant) lines, and magic states can be freely moved to any
position amongst the qubit lines when required or else
placed there at the outset in the initial input state, all
without affecting any action of free gates. But for MGCs
none of these features hold! - MGs can act on n.n. lines
only and SWAP is not a free gate so states cannot gen-
erally be freely moved around amongst the qubit lines.
In particular magic states cannot be freely moved into
the positions needed for their use in implementing a re-
sourceful gate; and nor can they be placed in their needed
positions from the start, as this would partition the cir-
cuit lines into sectors that must then remain independent
under processing by n.n. gates, at least until the magic
state has been suitably disposed of. In view of these fea-
tures, in addition to (M1) we impose a second condition
(M2) on a state |M〉 for it to be a magic state:
(M2): The state |M〉 can be swapped through arbitrary
states via use of free gates only.

Thus as for Clifford circuits, magic states can be pre-
pared prior to the computation and can then be used
whenever and wherever needed.

Magic states for MG computations: To begin our char-
acterisation, we note that magic states for matchgate cir-
cuits cannot be single qubit states nor products of single
qubit states. This follows from the fact that matchgate
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circuits remain classically simulatable even if arbitrary
product input states and adaptive measurements are al-
lowed [32]. Next we have the following result relevant for
(M2).

Lemma 1 A multi-qubit state |ψ〉 on adjacent lines can
be swapped through a neighboring line in an arbitrary
state using free gates iff it is fermionic.

The proof (including specification of allowable swapping
processes) is given in Appendix A of [1].

Before presenting our main result we give a simple
explicit example of a 4-qubit magic state, thus also
showing that (M1) and (M2) are not mutually incon-
sistent. Note that the smallest number of qubits that
can be used is 4, as all 2- and 3-qubit fermionic states
are Gaussian [33]. The state |M〉 = |φ+〉13|φ+〉24 =
1/2 (|0000〉+ |0101〉+ |1010〉+ |1111〉)1234 is a magic
state. It is the Choi state corresponding to the SWAP
gate. In fact one copy of this state can be utilized to
deterministically implement the resourceful SWAP gate
using MGs and adaptive measurements in a gadget rem-
iniscent of gate teleportation [34], as shown in Figure 1.
|M〉 is a state on four consecutive qubit lines, where its
uppermost line (qubit 1) and the lowermost line (qubit
4) are the qubits on which the input will be teleported,
and the inner lines, qubits 2 and 3 will carry the output.
After teleporting the input with Bell measurements, the
swapped input states are available on lines 2 and 3 up
to local Pauli corrections. In contrast to Clifford circuits
where the Pauli correction operators can be postponed
until the end of the computation, here they must be cor-
rected right after the measurement. This can be achieved
with the help of an auxiliary line and using MGs solely
- one can compensate the Pauli corrections and thus de-
terministically implement the SWAP gate. Note that in
this SWAP -gadget, σz ⊗ I and σx ⊗ σx are MGs (but
e.g. σx ⊗ I is not a MG). Note further that the required
Bell measurements can be realized by two local computa-
tional basis measurements preceded by the MG G(H,H)
as shown in the inset of Figure 1. |M〉 hence fulfills (M1)
for R = SWAP . Moreover, |M〉 is a fermionic state and
hence (by Lemma 1) fulfills (M2) (see Figure 2). As in
the case of Clifford circuits, neither the magic state it-
self (and copies thereof), nor the adaptive measurement
alone results in a circuit which is no longer classically
simulatable [35]; it is only the combination of both that
makes them resourceful.

Lemma 2 |ψφ〉 = 1/2(|0000〉 + |0011〉 + |1100〉 +
eiφ|1111〉) is a magic state for matchgate circuits for all
φ ∈ (0, 2π). The resourceful controlled-φ-phase gate can
be realized with arbitrary high success probability 1 − ε
(ε > 0) by consuming O(poly(1/ε)) copies of the state
|ψφ〉.

The proof is given in Appendix B of [1].
Clearly any state which is MG–equivalent to a magic

state is magic too. Next we show that any entangled
4–qubit fermionic state which is non–Gaussian is MG–
equivalent to |ψφ〉 for some φ ∈ (0, 2π). We show this

|ψ〉
Bell

• •

σz

σx ⊗ σx
|φ〉

σz

σx ⊗ σx

|ψ〉

Bell

•


|M〉

|φ〉

|0〉 |0〉/|1〉

Bell ≡
0/1

G(H,H)
0/1

Figure 1: The SWAP -gadget deterministically imple-
ments a SWAP gate with the help of the magic state
|M〉 = |φ+〉13|φ+〉24. Inset: the Bell measurements can
be implemented by G(H,H) followed by single qubit
measurements in the computational basis.

-1

Figure 2: Non-fermionic states do not satisfy (M2).
Swapping them through other lines with e.g. fSWAP ,
a relative phase (-1) is picked up. The state |M〉 satisfies
(M2), thus it can be swapped through arbitrary states
via free operations. It moreover satisfies (M1), i.e., it
allows implementation of a resourceful operation, here
the SWAP -gate. Our a main result is that actually all
non-Gaussian fermionic states can be swapped through
arbitrary states via free operations, and moreover they
allow the implementation of resourceful gates.

by constructing an explicit MGC of depth three, which
transforms any given 4–qubit fermionic state into a state
of the form |ψφ〉. The construction is given in Ap-
pendix B of [1]. Hence it follows that any entangled
4–qubit fermionic state which is non–Gaussian is magic.

Finally we use the above results to prove the main
result of the paper:

Theorem 3 Any pure fermionic state which is non–
Gaussian is a magic state for matchgate computations.

The proof is by induction on the number k ≥ 4 of
qubits of the fermionic state, and it is given in Ap-
pendix B of [1].

Recall that a Gaussian state can be generated from a
computational basis state via a MGC, so it can never be
a magic state. Furthermore, we have seen already that
(M2) implies that any magic state must be fermionic.
Hence Theorem 3 shows that the largest set of possible
states is indeed magic.
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Abstract. Non-adiabatic holonomic quantum computation (NHQC) has been developed to shorten the construction
times of geometric quantum gates. However, previous NHQC gates require the driving Hamiltonian to satisfy a set
of rather restrictive conditions, reducing the robustness of the resulting geometric gates against control errors. Here
we show that non-adiabatic geometric gates can be constructed in an extensible way, called NHQC+, for maintaining
both flexibility and robustness. Consequently, this approach makes it possible to incorporate most of the existing
optimal control methods, such as dynamical decoupling, composite pulses, and shortcut to adiabaticity, into the
construction of single-looped geometric gates. Furthermore, we propose experimentally demonstrate that HQC via
shortcut to adiabaticity can be constructed with only three energy levels, using a superconducting qubit in a scalable
architecture. With this scheme, all holonomic single-qubit operations can be realized non-adiabatically through a
single cycle of state evolution. As a result, we are able to experimentally benchmark the stability of NHQC+ against
NHQC in the same platform.

Keywords: Geometric quantum gate, NHQC+, optimal control

The related theoretical and experimental articles are
arXiv:1806.07904 (2019) and Phys. Rev. Lett. 122, 080501
(2019).

Introduction.— When a quantum system is driven slowly
through a parametric cycle in a degenerate Hilbert space, the
state would acquire a non-Abelian geometric phase, which is
stable and forms the foundation for holonomic quantum com-
putation (HQC) [1, 2, 3] . However, in the adiabatic limit,
the environmental decoherence becomes a significant source
of errors. Recently, various nonadiabatic holonomic quantum
computation (NHQC) schemes have been proposed [4, 5], but
all at the price of increased sensitivity to control errors [6].
Furthermore, the restriction imposed in the previous NHQC
schemes excludes the flexibility for incorporating most of
the optimization techniques, limiting its applicability. These
problems motivate us to search for a new approach to GQC
that is non-adiabatic, robust against the control errors, and
compatible with other optimization techniques for maximiz-
ing the gate fidelity against different types of noises.

Our main contributions are: (i) we demonstrate that non-
adiabatic GQC is also possible under much general condi-
tions, relative to traditional NHQC [4, 5]. Our approach
leads to a new form of single-looped GQC that is compatible
with most of the existing pulse-shape optimization methods,
including Derivative Removal by Adiabatic Gate (DRAG)
[7], Shortcut to adiabaticity (STA) or counteradiabatic driv-
ing (CD) [8, 9], dynamical decoupling (DD) [10, 11, 12],
dynamically-corrected gates (DCG) [13, 14, 15], and Floquet
optimal control [16, 17], etc, as shown in Fig 1. Given the
extensibility of this approach and the fact that the traditional
NHQC method can be regarded as a special case, we refer to
∗zyxue83@163.com
†x.wang@cityu.edu.hk
‡yung@sustech.edu.cn

this method as NHQC+. For example, when combined with
STA, we label it as STAHQC.

(ii) We employ a three-level quantum systems to illustrate
the working mechanism of NHQC+. In particular, we are in-
terested in comparing our method with the NHQC gates im-
plemented in recent experiments with NV centers [18, 19].
Numerical simulations indicate that our optimized NHQC+
method can achieve a significant improvement over the
NHQC gates in Refs. [18, 19], using the experimental param-
eters.

(iii) We propose experimentally demonstrate that HQC via
shortcut to adiabaticity can be constructed with only three en-
ergy levels, using a superconducting qubit in a scalable archi-
tecture. With this scheme, all holonomic single-qubit opera-
tions can be realized non-adiabatically through a single cycle
of state evolution [20]. As a result, we are able to experimen-
tally benchmark the stability of STAHQC against NHQC in
the same platform.

General framework.— Let us start with a general
time-dependent Hamiltonian H(t). For any complete set
of basis vectors, {|ψm (0)〉} at t = 0, U (t, 0) =

T e−i
∫ t
0
H(t′)dt′ =

∑
m |ψm (t)〉 〈ψm (0)|, where the time-

dependent state, |ψm (t)〉 = T e−i
∫ t
0
H(t′)dt′ |ψm (0)〉, fol-

lows the Schrödinger equation. Now, at each moment of time,
we can always choose a different set of time-dependent basis,
{|µm (t)〉}, which satisfies the boundary conditions at time
t = 0 and t = τ :

|µm (τ)〉 = |µm (0)〉 = |ψm (0)〉 , (1)

but in general their time dependence do not follow
Schrödinger’s equation. In this way, we can always
write, |ψm (t)〉 =

∑
k vkm (t) |µk (t)〉, which means

that the time-evolution operator becomes, U (t, 0) =∑
m,k vkm (t) |µk (t)〉 〈ψm (0)|. Applying the boundary
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Figure 1: Schematic of combining various optimal control
pulses with geometric quantum computation in our scheme.

conditions, we obtain the following unitary transforma-
tion matrix at the final time t = τ , U (τ, 0) =∑
m,k vkm (τ) |ψk (0)〉 〈ψm (0)|. The matrix element vmk (τ)

satisfies the following equation,

d

dt
vkm (t) = i

∑
l=1

(Akl (t)−Hkl (t))vlm (t) , (2)

where Hkl (t) ≡ 〈µk (t)|H (t) |µl (t)〉 and Akl (t) ≡
i 〈µk (t)| ddt |µl (t)〉, which can be combined to form an
effective Hamiltonian: Heff (t) ≡ V (t)†H (t)V (t) −
iV † (t) d

dtV (t), where V (t) ≡
∑
k |µk(t)〉〈µk(0)|. In other

words, written in the initial basis {|µk (0)〉}, the matrix ele-
ments are given byAkl (t)−Hkl (t). With these tools, various
forms of GQC can emerge as different settings (or approxima-
tions) of these equations.

Conditions of NHQC+.— Our strategy is to find an aux-
iliary basis {|µk (t)〉} such that for all k 6= m, the effective
Hamiltonian Heff is always diagonal in the initial basis, i.e.,

〈µm (0)|Heff (t) |µk (0)〉 = 0 , (3)

Consequently, Eq. (2) implies that vmk(t) = δmk vkk (t) is
also diagonal and hence the unitary operator,

U (t, 0) =
∑

k
vkk (t) |µk (t)〉 〈µk (0)| (4)

are all diagonal, where vkk (t) =
e−i

∫ τ
0
〈µk(t)|H(t)|µk(t)〉dt−

∫ τ
0
〈µk(t)| µ̇k(t)〉dt. Note partic-

ularly that if the following condition,∫ τ

0

〈µk(t)|H(t)|µk(t)〉 dt = 0. (5)

is further satisfied for each k, then the resulting unitary evolu-
tion becomes purely geometric, i.e.,

U (τ, 0) =
∑
k

e−
∫ τ
0
〈µk(t)|µ̇k(t)〉dt |µk (0)〉 〈µk (0) | , (6)

which is the main goal that can be achieved through the fol-
lowing theorem:

Theorem 1 (NHQC+ equation) The condition in Eq. (3) is
satisified only if the Hamiltonian H(t) and the projector
Πk(t) ≡ |µk (t)〉 〈µk (t)| of the auxiliary basis {|µk (t)〉} fol-
lows the von Neumann equation, i.e.,

d

dt
Πk(t) = −i [H(t),Πk(t)] , (7)

The proof of this theorem is given in Ref. [21].
Note that the key difference between the previous NHQC

schemes and the NHQC+ approach introduced here is that
the Hamiltonians are subject to different constraints. In the
NHQC case, the Hamiltonian is required to satisfy a set of
constraints: 〈ψm (t)|H (t) |ψk (t)〉 = 0, which is required (i)
at each moment of time and (ii) for all possible k,m. How-
ever, for NHQC+, the Hamiltonian needs to vanish only in the
integral sense (see Eq. (5)). More importantly, the NHQC+ re-
moves the constriants for k 6= m, which makes it possible for
our method being compatible with most of the optimization
schemes (see Fig. 1).

Application of NHQC+ gates.— We focus on the three-
level system with a one-photon detuning ∆(t), in the interac-
tion picture, is given by,

H(t) = ∆(t)|e〉〈e|+ 1

2
[(ΩP (t)|0〉+ ΩS(t)|1〉) 〈e|+H.c.] ,

(8)
where ΩP (t) and ΩS(t) denote, respectively, the pump-
ing and Stokes pulses driving the |0〉 ↔ |e〉 and |1〉 ↔
|e〉 transitions. Here, we choose the pluses to have
the following form, ΩP (t) = Ω(t) sin(θ/2)eiφ1(t) and
ΩS(t) = Ω(t) cos(θ/2)ei[φ1(t)+φ], but we maintain the ratio
ΩP (t)/ΩS(t) of the two pulses to be time-independent, i.e.,
ΩP (t) /ΩS (t) ≡ tan (θ/2) e−iφ. Consequently, the Hamil-
tonian in Eq. (8) can be simplified as,

H(t) = ∆(t)|e〉〈e|+ Ω(t)

2

[
eiφ1(t) |Φ〉 〈e|+H.c.

]
, (9)

where we defined a time-independent bright state as, |Φ〉 ≡
sin(θ/2)|0〉+ cos(θ/2)eiφ|1〉.

Recall that for realizing NHQC+ gates, we need to choose
a set of auxiliary states satisfying the boundary conditions
in Eq. (1). Here our choice is (i) a dark state |µ0〉 =
cos(θ/2)|0〉 − sin(θ/2)eiφ|1〉 which is decoupled from sub-
space of |Φ〉 and |e〉, and (ii) an orthogonal state in the follow-
ing form:

|µ+(t)〉 = sin χ(t)
2 |Φ〉+ cos χ(t)

2 e−iα(t)|e〉 , (10)

The variables χ(t) and α(t) are determined by requiring the
corresponding projector, Π+(t) = |µ+(t)〉〈µ+(t)|, to satisfy
the von Neumann equation in Eq. (7).

Construction of NHQC+ gates.— We are now ready to
demonstrate how to build up universal non-Abelian geometric
single-qubit gates, i.e., holonomic quantum gates.

Let us start with the following set of basis states,
{|µ0〉, |µ+ (0)〉}. States |µ+ (0)〉 evolve cyclically and gain
the phase, i.e., eiγ |µ+ (0)〉 including both geometric and dy-
namical components. We can erase the accumulated dynam-
ical phases by using the spin echo pulses, and thus pure ge-
ometric phases can be obtained. Under those conditions, we
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Figure 2: (b) (experiment) and (c) (theory): performance of
an X gate with control errors for various HQC schemes. The-
oretical results are obtained using master-equation numerical
simulation. α represents magnitude of the control error.

obtain the following unitary transformation matrix in the basis
states {|µ0〉, |µ+ (0)〉} at the final time t = τ ,

U(τ, 0) = |µ0〉 〈µ0|+ eiγ |µ+ (0)〉 〈µ+ (0)| = ei
γ
2 e−i

γ
2n·σ ,

(11)
wheren = (sin θ cosφ, sin θ sinφ, cos θ), σ are the Pauli ma-
trices. Eq. (11) describes a rotational operation around the n
axis by a γ angle, up to a global phase factor e−i

γ
2 . As both n

and γ can take any value, Eq. (11) denotes a set of universal
single-qubit gates in the qubit subspace.

Experimental realization with superconducting
qubits.— For the purpose of demonstration, we report
an experimental realization of our proposal using an Xmon
superconducting qutrit, which has a ladder Ξ energy
structure in Ref. [20] In the experiment, we constructed non-
commutative holonomic gates by varying three independent
control parameters to generate the SU(2) transformation
group elements, following our STAHQC proposal. The ex-
perimental results are in good agreement with our numerical
simulations, with both control and environmental noise being
taken into account. As a result, both NHQC and STAHQC
gate, can now be compared within the same experimental
platform.

Before optimization, the performance of NHQC and
STAHQC are on par with each other; this is consistent with
the results of a recent experimental demonstration of NHQC
using superconducting qubits. However, for many gates, the
approach in Ref. [22] requires at least two cycles to imple-
ment, which takes a longer time, making the system more sus-
ceptible to environmental noise and control error. In addition,
the noise robustness of STAHQC can be further enhanced by
pulse optimization as shown in Fig. 2b-c. Overall, the advan-
tage of STAHQC over NHQC is expected to be more signif-
icant as environmental noise and control error become more
prominent.

Conclusion.— We have presentedand experimentally
demonstrated an extensible framework of non-adiabatic ge-
ometric quantum computation, NHQC+, which is compati-
ble with many techniques in optimal control theory, such as
SSSP, KDD, and more. Our approach relaxes the constraint
imposed for the driving Hamiltonian in the previous approach
of NHQC. This method should also be of interest to other plat-
forms such as trapped ions, quantum dots, and nuclear mag-
netic resonance, etc.
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[2] E. Sjöqvist, Physics 1, 35 (2008).

[3] Y. Aharonov, and J. Anandan, Phys. Rev. Lett. 58, 1593
(1987).
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Achieving the Heisenberg limit in quantum metrology using quantum
error correction
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Abstract. Quantum metrology has many important applications in science and technology, ranging
from frequency spectroscopy to gravitational wave detection. Quantum mechanics imposes a fundamental
limit on measurement precision, called the Heisenberg limit, which can be achieved for noiseless quantum
systems, but is not achievable in general for systems subject to noise. Here we study how measurement
precision can be enhanced through quantum error correction, a general method for protecting a quantum
system from the damaging effects of noise. We find a necessary and sufficient condition for achieving the
Heisenberg limit using quantum probes subject to Markovian noise, assuming that noiseless ancilla systems
are available, and that fast, accurate quantum processing can be performed. When the sufficient condition
is satisfied, the quantum error-correcting code achieving the best possible precision can be found by solving
a semidefinite program. We also show that noiseless ancilla are not needed when the signal Hamiltonian
and the error operators commute. Finally we provide two explicit, archetypal examples of quantum sensors:
qubits undergoing dephasing and a lossy bosonic mode.
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Experimental multi-level quantum teleportation
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Quantum teleportation provides a way to transmit unknown quantum states from one location to
another via previously shared quantum entanglement and classical communications. Teleportation
of various physical systems has been completed in experiments, focusing on qubit systems and
continuous variables. However, in the quantum world, multi-level systems are more prevalent. Here,
we demonstrate the teleportation of multi-level states of a single photon in a three-dimensional six-
photon system. We exploit the path mode of a single photon as the multi-level system, use two
auxiliary entangled photons to realize a deterministic three-dimensional Bell state measurement. We
teleport three-level states to another photon assisted by pre-shared entangled two-photon three-level
states and classical communications. The teleportation fidelities are all above 0.630, and obviously
exceed the classical limit 0.5. Our work paves the way to rebuild complex quantum systems remotely
and to construct complex quantum networks.

Quantum teleportation [1] enables the rebuilding of
arbitrary unknown quantum states without the trans-
mission of a real particle. Previous efforts have shown
the capability to rebuild qubit states [2–8] and continu-
ous variable states [9–12]. Recent work has also demon-
strated the capability of teleporting multiple degrees of
freedom of a single photon [13]. However, to teleport
quantum states of a real particle, for example, a sin-
gle photon, one needs to consider not only the two-level
states (polarization), but also those multi-level states.
For example, the orbital angular momentum [15, 16], the
temporal mode [17], the frequency mode [18] and the s-
patial mode [19, 20] of a single photon are all natural
attributes of multi-level states, which are exploited as
high-dimensional systems. However, to teleport multi-
level quantum states is still a challenge for two reasons.

One is the generation of high-quality multi-level entan-
glement feasible for quantum teleportation. There has
been much work on high-dimensional entanglement gen-
eration [15–20], including attempts to observe interfer-
ence between different high-dimensional entangled pairs
[21, 22]. Nevertheless, the interference visibility between
different pairs is still quite low at 63.5%. The other con-
cerns performing a deterministic high-dimensional Bel-
l state measurement (HDBSM). Here, we use the spa-
tial mode (path) to encode the three-level states that
has been demonstrated to extremely high fidelity [20]
and use an auxiliary entangled photon pair to perfor-
m the HDBSM. We thereby overcome these obstacles
and demonstrate the teleportation of a three-level (three-
dimensional) quantum state using the spatial mode of a
single photon [23–25]. See all the technical details in [26].
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FIG. 1. Scheme for quantum teleportation of the multi-level states of a single photon. Alice wishes to teleport the
multi-level (three-dimensional) quantum state of single photon 1 to Bob. Initially, Alice and Bob share a three-dimensional
entangled photon pair 2–3. Then, Alice performs a high-dimensional Bell state measurement (HDBSM) assisted by another
entangled photon pair 4–5 and sends the results to Bob through a classical channel. Finally, according to the results of HDBSM,
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FIG. 2. Experimental setup for teleporting a qutrit state of a single photon. A pulsed ultraviolet (UV) laser is
focused on three sets of β-barium borate (BBO) crystals and produces three photon pairs in 2–3, 1–t, and 4–5. The first pair,
2–3, is qutrit-qutrit entanglement in path DOF shared by Alice and Bob. The second pair, 1–t, photon 1 is initialized in various
states (|φ1⟩ − |φ10⟩) to be teleported, triggered by its twisted photon t. The third pair, 4–5, is a polarization-entangled state,
used as an ancillary pair for performing a HDBSM on photons 1 and 2. BD-beam displacer, PBS-polarizing beam splitter,
HWP-half wave plate.
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High precision parameter estimation is one of the main driving force for science and technolo-
gy. For the estimation of a single parameter, the fundamental limit, as well as the protocols to
achieve it, have been extensively studied. However, for practical applications, such as imaging and
spectroscopy, there are typically multiple parameters, for which the fundamental limits remain elu-
sive. It is a wide belief that tradeoffs are unavoidable for the estimation of multiple parameters
whose generators do not commute with each other. Here by relating the precision limit directly
to the Heisenberg uncertainty relation we show that to achieve the highest precisions for multiple
parameters simultaneously is fundamentally equivalent to saturate multiple Heisenberg uncertainty
relations at the same time. Guided by this insight, we experimentally demonstrate that, contrary to
the wide belief, the highest precisions for the estimation of all three parameters in SU(2) operators
can be achieved simultaneously. With eight optimally designed controls, we achieve a 13.8 dB im-
provement over the shot-noise limit. Our work not only deepens the connection between quantum
metrology and the Heisenberg uncertainty relation, but also marks a crucial step towards achiev-
ing the ultimate precision of multi-parameter quantum estimation, which has wide implications in
magnetometry, quantum gyroscope, quantum reference frame alignment,etc.

One distinct feature of multi-parameter quantum es-
timation is the tradeoff among the precisions of differ-
ent parameters, as the optimal strategy to achieve the
highest precision for each parameter can be different and
incompatible. A wide belief is that the tradeoffs are un-
avoidable for the estimation of different parameters that
have noncommuting generators[1–7]. In particular it is
believed that the tradeoff is unavoidable for the estima-
tion of the three parameters in the SU(2) operators,
which itself is also a fundamental problem in quantum
metrology as it arises frequently in many practical appli-
cations, such as quantum gyroscope, quantum reference
frame alignments, quantum sensing, etc. Here by exper-
imentally demonstrating the zero-tradeoff estimation for
the three parameters in the SU(2) operators we show the
contrary to the shared belief.

A general operator in SU(2) can be written as Us =
e−iαn·σ with n = (sin θ cosφ, sin θ sinφ, cos θ) and σ =
(σ1, σ2, σ3) are the Pauli operators. The three parameter-
s that charaterize the operator are α ∈ [0, π/2], θ ∈ [0, π]
and φ ∈ [0, 2π), which are the parameters to be esti-
mated in our dynamically controlled scheme as shown in
Fig. 1 a. For the estimation of a single parameter, the
precision is limited by the parameter-based uncertainty
relation as [8, 9]

δx̂2〈∆H2
x〉 ≥

1

4
, (1)

where x ∈ {α, θ, φ}, δx̂2 is the variance of the estima-
tor, 〈∆H2

x〉 = 〈Ψx|H2
x|Ψx〉−〈Ψx|Hx|Ψx〉2 is the variance

of Hx with Hx ≡ i(∂xUs)U
†
s as the corresponding gen-

erator of the parameter[9]. This limit is fundamentally
related the general Heisenberg uncertainty principle(see
Methods).

The three generators Hα, Hθ and Hφ do not commute
with each other. To achieve the best precision for each
parameter, one should maximize the variance of the cor-
responding generator. For the three parameters, α, θ,
and φ, the variance of their generators are bounded re-
spectively as

〈∆H2
α〉 ≤ 1, 〈∆H2

θ 〉 ≤ sin2 α, 〈∆H2
φ〉 ≤ sin2 α sin2 θ.

(2)
These upper bounds can be saturated separately by
choosing the corresponding optimal states. The condi-
tion for an observable, denoted as O, to achieve the min-
imal uncertainty in Inequality (1) for a particular param-
eter is

(Hx − 〈Hx〉)|Ψx〉 = iγ(O − 〈O〉)|Ψx〉, (3)

where γ is arbitrary real scalar[10]. For each particu-
lar parameter, by performing the projective measurement
on the eigenvectors of such O, the minimum δx̂ can be
achieved(See Methods).

If N copies of the operator can be used in each time,
the architecture of arranging the N operators also needs
to be optimized. The variance of the generator for N
operators is always upper bounded as

〈∆
[
H(N)
x

]2
〉 ≤ N2〈∆H2

x〉, (4)
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FIG. 1. Control-enhanced sequential simultaneous measure-
ment: a Sequential scheme with controls. The system qubit
is maximally entangled with an ancilla and operated by N
copies of a multi-parameter channel sequentially with con-
trols inserted in between and maximally entangled measure-
ments are performed on the system-ancilla state to measure
all parameters simultaneously. b Generators of one opera-
tor Us. The Bloch vectors of the three generators, nx with
x ∈ {α, θ, φ} are plotted with the length represents its maxi-
mal variance. The width in the other direction of the ellipsoid
is the minimum variance of the parameter. c Generators with
N copies of operators (N = 3 in c). Without the controls, due
to the noncommutativity the length of the generators do not
all increase linearly with N , but with the optimally designed
controls, the length of all three generators increase linearly
with N thus minimizing the uncertainty of the correspond-
ing parameters simultaneously. d The variances of the three
generators with respect to N . While the variance of the gen-
erator for α increases linearly with N even without control,
the variances of the generators for θ and φ increase linearly
with N only with the optimally designed control.

which corresponds to the Heisenberg limit of the estima-
tion,

δx̂2 ≥ 1

N2〈∆H2
x〉
. (5)

When the procedure is repeated m times, this gives a
lower bound on the minimal variance of the estimation as
δx̂2 ≥ 1

mN2〈∆H2
x〉
. For each parameter, this lower bound

can always be saturated. To achieve these minimal vari-
ance for all parameters simultaneously, however, may not
be possible, as the conditions for saturating the inequal-
ities are typically different for different parameters. The
minimal variance can be achieved simultaneously only if
the optimal probe states and the optimal architecture of
arranging theN operators are the same for all parameter-
s and the optimal measurements for different parameters
are compatible, which is generally believed to be impos-
sible. For example, under the common parallel scheme
where N qubits are prepared in a large entangled state
with each qubit go through one operator, it is not possible

to achieve the minimal variance for all three parameters
of the SU(2) operators simultaneously[6]. A wide belief
is that the tradeoffs are unavoidable when the generators
of the parameters are noncommuting.

Here we implement a dynamically controlled sequen-
tial scheme. In this scheme the N operators, Us, are
arranged sequentially where additional controls, Uc, can
be inserted in between (see Fig. 1a). The total evolution
is then UNcs with Ucs = UcUs. Under this evolution, the
generators for the parameters are

H(N)
x = i

(
∂xU

N
cs

) (
UNcs
)†

=
N−1∑
k=0

UkcsHx

(
Ukcs
)†
. (6)

The Heisenberg limit in Inequality (4) can be easily ob-
tained with the above equation where the bound is satu-
rated when Ucs commute withHx. As shown in Fig. 1c,d,
without controls(which corresponds to Uc = I), the vari-
ance of the generator for θ or φ cannot saturate the upper
bound in Inequality (4) since Us do not commute with
Hθ or Hφ. However, if additional controls are available,
one can find proper controls to make UcUs commute with
Hx, then H

(N)
x = NHx, the bound in Inequality (4) is

then saturated. To simultaneously achieve the minimal
variance of all three parameters, the same control needs
to work for all three parameters, i.e., the control should
make UcUs commute with all three generators Hα, Hθ

and Hφ. Such control actually exists. Specifically we
can choose Uc = U†s , in this case UcUs = I, which com-
mutes with all generators. However, as the parameters
are not known a-priori, this control can only be imple-
mented adaptively as Us(α̂, θ̂, φ̂) with α̂, θ̂, φ̂ as the esti-
mators obtained from previous data. In the asymptotical
limit the upper bound in Inequality (4) can be saturated
simultaneously for all three parameters with noncommut-
ing generators. Additionally with an ancillary qubit, the
optimal probe state for each parameter can all be taken
as the maximally entangled state, and the optimal O sat-
isfying Eq. (3) for different parameters are compatible.

The experiment consists of three modules: prepar-
ing the optimal probe state, implementing the optimal
control and performing the optimal measurement. The
probe state is first prepared as the maximally entangled
state, 1√

2
(|H,up〉 + |V, down〉), with one qubit encoded

in the polarization degree of the photon with the Hori-
zontal (H) and vertical (V) polarization as the basis and
the other qubit encoded in the path degree of the photon
with the up and down path as the basis. The polariza-
tion qubit then goes through the unknown operator, Us,
and the control, Uc, sequentially for N times. The op-
timal control is chosen as Uc = U†s (α̂, θ̂, φ̂) and updated
adaptively with collected data. A projective measure-
ment on the common eigenvectors of three commuting
observables, σ3σ2, σ1σ3 and σ2σ1, which are optimal for
the estimation of the three parameters, are performed.

In the first set of experiments, the parameters are as-
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FIG. 2. Experimental results of the control-enhanced sequential simultaneous estimation with the theoretical performances of
the classical individual, entangled individual (with N ≥ 3) and entangled simultaneous estimation(see Supplementary Material
for these schemes) plotted for comparison. The three plots a, b and c are the experimental results for Us with α = π

4
and

θ = φ = π
6
. For the experiments with the optimal controls, each measurement is repeated with 1000 times to get one estimate

and this process is repeated 1000 times. The standard deviation of the estimation is then obtained from the 1000 estimates. For
the experiments with the adaptive controls, each measurement is repeated 250 times during each step of the four-step adaptive
process, an estimate is obtained after the same 1000 number of measurements(the estimation is obtained with all measurement
results obtained during the four steps). This four-step adaptive process is then similarly repeated for 1000 times to get 1000
estimates, from which we obtain the standard deviation of the estimate. The analyze of the error bars is given in Methods.

sumed to be within a small neighborhood of known values
and the adaptive controls are designed with this prior in-
formation. A unitary operator is considered with α = π

4
and θ = φ = π

6 . It can be seen in Fig. 2, the experiment
reaches the theoretical optimal precision for the three pa-
rameters simultaneously, which is 3N

N+2 times better than
the best value achievable under the parallel scheme. This
is also the best one can hope to achieve for the simulta-
neous estimations of all the parameters as the precision
of each parameter has reached the highest value. There
are zero tradeoffs among the precisions of different pa-
rameters.

In the second set of experiments, we do not assume
the parameters are within very small neighborhoods and
adaptively update the controls after each 250 experi-
ments and 1000 experiments are carried out in each
round. The controls are randomly chosen in the first 250
experiments, and then updated based on the obtained
data. In each adaptive step, we use maximum likeli-
hood estimation, which maximizes the posterior prob-
ability based on all previous data, to update the esti-
mation of the parameters. As shown in Fig. 2, the ex-
periment results (diamonds) are close to the theoretical
optimal values for all three parameters for the cases of
N = 1, 2, 3, 4, 6, which indicates that the controls are al-
ready close to be optimal after 4 steps of adaptation. In
the case of N = 8, the standard deviation of the experi-
ment is slightly larger than the theoretical optimal value
due to systematic errors, but still outperforms the theo-
retical optimal value for the parallel scheme with approx-
imately 1.32-fold improvement (the ideal improvement

ratio is 1.55 for comparison).
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Abstract. In pursuing scalable quantum communications, naturally arising questions are thus whether
or not any ultimate limit exists in all-optical scalability, and whether and how it can be achieved. Mo-
tivated by these questions, we derive the fundamental limits of the efficiency and loss-tolerance of the
Bell measurement with multiple photons, restricted not by protocols but by the laws of physics, i.e. linear
optics and no-cloning theorem. We then propose a Bell measurement scheme in a concatenated manner
with linear optics, which enables one to reach both the fundamental limits. Remarkably, the quantum
repeater based on our scheme allows one to achieve fast and efficient quantum communication over arbi-
trary long distances, outperforming previous all-photonic and matter-based protocols. Our work provides
a fundamental building block to reach the ultimate limits of all-optical scalability and paves an alternative
route towards scalable quantum networks.

Keywords: quantum communication, quantum repeater, Bell-state measurement

1 Introduction

Photons are ideal carriers for quantum communica-
tion. However, there have been two major obstacles to
scalability in photonic quantum communication. One is
‘photon loss’ during transmission. The other is ‘non-
deterministic Bell measurement’ with single photons.
Bell measurement is an essential requirement to extend
the communication range by teleportation or entangle-
ment swapping, but its success probability with single
photons cannot exceed 50% with linear optics. As a re-
sult, all-optical approaches to quantum communication
has suffered from exponential scaling in time and re-
sources with distance. To overcome these, a quantum
repeater (a device to extend the communication range
with polynomial scaling) has been developed. While,
in its standard model, transmission losses are circum-
vented through heralded entanglement generation be-
tween nodes with the help of long-lived quantum memo-
ries, some recent proposals employ quantum error correc-
tion schemes with multiple photons. Quantum repeaters
in this direction could enhance the performance further
without use of long-lived quantum memories.

Multi-photon encoding approach hence opens the pos-
sibility of all-optical scalability, resolving both photon
loss and the probabilistic nature of Bell measurement to
some extent. In pursuing scalable quantum networks,
possible questions that come to mind is thus (i) whether
or not any fundamental limits exist in the realization of
quantum communication with multiple photons, and (ii)
whether and how the limits can be reached (if they exist).
In this work [1], we address these questions. We derive,
for the first time, the fundamental limits of all-optical
scalability in quantum communication. These limits are
determined not by protocols but by the laws of physics,

∗swleego@gmail.com

i.e., linear optics and the no-cloning theorem. We then
propose a Bell measurement scheme with linear optics
and multi-photon encoding, which surpasses all the previ-
ous schemes and allows us to reach both the fundamental
limits. We finally show that the quantum repeater based
on our scheme enables fast and efficient quantum com-
munication over arbitrary long distances, outperforming
all the previous quantum repeater protocols. Our work
provides a fundamental building block for quantum net-
works towards reaching the ultimate limits of all-optical
scalability.

2 Fundamental limits

We have derived the fundamental limits of the Bell
measurement with linear optics and arbitrary N -photon
encoding (see Fig. 1 and [1] for details): (i) We have
proved that the success probability of the Bell measure-
ment has the upper bound 1−2−N by linear optics, which
is the generalization of the 50% limit of the Bell measure-
ment with single photons (N = 1). (ii) Then, we have
shown that the loss-tolerance of Bell measurement (with
any error correction scheme) is fundamentally limited by
ηη′ > 0.5 due to the no-cloning theorem, when two input
qubits experience losses with rate η and η′. These two
limits not only determine the ultimate limit of all-optical
scalability in quantum communication but also are valid
for any photonic quantum information processing.

3 Concatenated Bell measurement

We then propose a Bell measurement scheme with
linear optics and multi-photon encoding in a concate-
nated manner in Fig. 2, referred to as concatenated Bell
measurement (CBM). In our approach, the logical basis
|0L〉 = |+(m)〉⊗n and |1L〉 = |−(m)〉⊗n, where |±(m)〉 =
|H〉⊗m ± |V 〉⊗m are used. Each logical qubit contains n
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Figure 1: (a) General Bell measurement setup with linear
optics and N -photon encoding. (b) If any Bell measure-
ment were able to tolerate 50% (or more) loss of photons,
i.e., ηη′ ≤ 0.5, it would violate the no-cloning theorem.

blocks of m (total N = nm) photons. The logical Bell
states, |Φ±〉 = |0L〉|0L〉±|1L〉|1L〉 and |Ψ±〉 = |0L〉|1L〉±
|1L〉|0L〉, can be completely decomposed into the block
size Bell states, |φ±(m)〉 = |+(m)〉|+(m)〉 ± |−(m)〉|−(m)〉
and |ψ±(m)〉 = |+(m)〉|−(m)〉±|−(m)〉|+(m)〉, which are also

completely decomposed into the Bell states with photon
pair, |φ±〉 = |+〉|+〉±|−〉|−〉 and |ψ±〉 = |+〉|−〉±|−〉|+〉
[1]. We denote the logical, block size, photon pair Bell
states as the 2nd, 1st, 0th level Bell states, respectively.
The Bell states in higher levels can be fully characterized
by the type and number of lower level Bell states that
appear in the decomposition (see Table 1). CBM enables
one to discriminate Bell states near-deterministically and
loss-tolerantly, outperforming all other proposals with re-
spect to the attained success probability with given num-
ber of photons and loss rate, and is the first and so far
the only Bell measurement saturating both fundamental
limits by optimization (see Bottom of Fig. 2). This can
be implemented by the standard linear-optic Bell mea-
surement scheme and feedforwards.

Table 1: Bell states decomposition
Level Bell states Decomposed into

2nd even(odd) number of |φ−(m)〉,
(logical)

|Φ+(−)〉
and |φ+(m)〉 for others

even(odd) number of |ψ−(m)〉,|Ψ+(−)〉
and |ψ+

(m)〉 for others

1st even number of |ψ+(−)〉,
(block)

|φ+(−)
(m) 〉 and |φ+(−)〉 for others

odd number of |ψ+(−)〉,|ψ+(−)
(m) 〉 and |φ+(−)〉 for others

4 Scalable quantum communication

We then construct a building block of long distance
quantum communications (either for transmitting infor-
mation along the network or for distributing entangle-
ment across the network) based on CBM as illustrated in
Fig. 3(a). Our repeater model in Fig. 3(b) does not re-
quire long-lived quantum memories, photon-matter inter-
actions, nor complicated circuit operations. Each photon
survives with probability ηL = η0e

−L/Latt in one cycle of
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Figure 2: Concatenated Bell measurement scheme. The
(logical) 2nd level is composed of n independent B(1),
each of which is performed with m-times of B(0) =
{Bψ,B+,B−} (three variations of the standard Bell mea-
surement) with feedforwards. Bottom: The maximum
success probability Ps of CBM for N = nm and ηη′.

the generation, transmission (over distance L), and mea-
surement process, where η0 is the loss rate during the sta-
tionary process in the repeater. The total distance L be-
tween Alice and Bob is divided into L0 by equally spaced
nodes. The success probability of each building block
is thus Ps(ηL0 , η0), and the total success probability of
transmission can be obtained by Ps(ηL0

, η0)L/L0 ≡ Rt0,
where R is the transmission rate and t0 is the time taken
in the repeater. The maximum transmission probabilities
over 1,000 and 10,000 km are plotted in Fig. 4. It shows
that arbitrarily high success probability approaching to
unit (≈ 1) can be attained by increasing the encoding
size N = nm.

We optimize our protocol for the total cost of photons
Q = 2nmL/Rt0L0 to be minimized. The optimized re-
sults by numerical searches over {n,m, j, L0} with exem-
plary parameters are presented in Table 2. For example,
for the transmission over 1,000 km (when η0 = 0.93), the
best choice of encoding parameters and the repeater spac-
ing are (n,m, j) = (58, 8, 1) and L0 = 1.8 km, by which
Rt0 ∼ 0.7 can be achieved with total Qmin = 7.38 × 105

photons. The overall transmission fidelity is estimated
as F = 0.96 by assuming depolarizing errors. The trans-
mission rate R is determined by the processing time t0
in the repeater. We first assume that the slowest com-
ponent in the repeater is the measurement process, and
it takes t0 = 10 µs (1 µs) (for fair comparison with
[2, 3]). Our protocol then achieves R ∼ 70 KHz (0.7
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information travels L0 between repeater nodes. The other qubit is staying in the repeater. Then, CBM is performed
on the transmitted and stationary qubits. (Bottom) for entanglement distribution between remote places, in which
CBM is performed to link the entangled pairs |Φ+〉 from adjacent nodes. Each qubit travels L0/2 to meet in the
middle before CBM. (b) A quantum repeater for one-way communication is composed of two parts: the preparation
of entangled pair |Φ+〉 and CBM on two qubits (one is received from the previous node and the other from |Φ+〉).
The other qubit of |Φ+〉 is transmitted to the next node. The result of CBM is directly sent to Bob via classical
communication. Losses during preparation and measurement process also affect the performance. The effective loss
rate of photons inside of the repeater is referred as η0, estimated with source efficiency εs, detector efficiency εd, and
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circle indicates the optimal choice for minimum cost..

MHz) for 1,000 km transmission (almost the same for
10,000 km). Compared to the standard repeater, it is at
least 5 to 6 order of magnitude faster. It also outperforms
all the recent advanced matter-based [2] and all-optical
[3] protocols; it costs an order of magnitude less (∼ 18%)
photons to achieve near the best performance of those
protocols, or yields almost unit transmission probability
with similar cost. Ultrafast communications with rates
up to or beyond GHz may also be expected along with
the progress of on-demand entangled photon sources and
(sub)nanosecond feedforward technologies.

5 Remarks

Our work addresses both the limits and potentials of
all-optical scalability as an alternative route towards long
distance quantum communication. While the conven-
tional route based on the standard quantum repeater

Table 2: Optimal strategies to minimize the total cost:
η0 denotes the loss rate in the repeater, Rt0 and F are
the overall transmission probability and fidelity, (n,m, j)
and L0 are the optimal encoding and repeater spacing.
L(km) η0 Qmin Rt0 F (n,m, j) L0

1,000 0.99 1.3e5 0.70 0.98 (13, 6, 2) 1.7
0.93 7.4e5 0.70 0.96 (58, 8, 1) 1.8

10,000 0.99 2.4e6 0.77 0.97 (16, 7, 2) 1.2
0.93 1.9e7 0.70 0.92 (92, 10, 2) 1.4

relies more on the development of the platforms for light-
matter interaction and long-lived quantum memories, our
approach puts more weight on the photon source tech-
nologies. The major challenge of our protocol is the
preparation of large, multi-photon entangled encoded
states. The recent progress of the technologies of on-
demand photon sources and platforms with integrated
optics may enhance its feasibility. We also emphasize
that our result is not limited to all-optical quantum com-
munication but generally applicable and valid for any
photonic quantum information protocols.
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Abstract. This presentation is based on paper arXiv:1904.09314. The Quantum Alternating Operator
Ansatz (QAOA) is a promising gate-model meta-heuristic for combinatorial optimization. Applying the
algorithm to problems with constraints poses a significant implementation challenge for near-term quantum
resources. In this work we explore enforcing hard constraints by using XY -model Hamiltonians as mixing
operators. Performance is validated on graph coloring problems. The general strategy of using XY -mixers
is borne out numerically, demonstrating a significant improvement over the standard X-mixer. Despite the
complexity of simulating the XY model, we demonstrate that within a relevant subspace, XY mixers can
be realized in circuits of linear depth. We also specify general strategies for efficiently implementing QAOA
circuits on hardware graphs of ideal (all-to-all) and realistic (limited) connectivity inspired by fermionic
simulation techniques.

Keywords: quantum heuristics, QAOA, circuit depth

This presentation is based on paper
arXiv:1904.09314. [16]

1 QAOA: a quantum heursitics suitable
for near-term quantum hardware

While full fault-tolerant quantum computing is
still in the cradle, noisy Intermediate-Scale Quantum
(NISQ) [12] hardware is rapidly developing. Current
gate-model quantum computing hardware features a few
to a few tens of qubits, and the precision in gate imple-
mentation, without error correcting schemes built in, can
only tolerate a quantum circuit of shallow depth. In spite
of these issues, NISQ era hardware is not simply a bridge
to the full fault-tolerant future, but is also expected to be
useful in exploring applications such as simulating quan-
tum many-body systems, solving classical optimization
problems, and sampling for machine learning.

Other than the handful of algorithms with proven
quantum advantage, like Grover’s algorithm for search
an unstructured database and Shor’s algorithms for fac-
toring, [6, 14] more general-purpose quantum heuris-
tic algorithms have been proposed that have not yet
proven speedup but hold great potential nonetheless. [1,
11, 7] Quantum approximate optimization algorithm
(QAOA) [1] is one among them that has attracted sig-
nificant research interest. Originally proposed for classi-
cal optimization problems, QAOA features a simple high
level structure that repeats two families of parameterized
unitaries, one based on the Hamiltonian that encodes
the cost function itself, HC , and the other Hamiltonian
HM , called the mixer, that generates transitions between
the eigenstates of HC . Among many important results,
QAOA has been demonstrated to be able to generate a
distribution hard to simulate classically, [4] has inspired a
better classical algorithm for certain combinatorial opti-

∗zhihui.wang@nasa.gov

mization problems, [2], has been studied for approximate
solutions to MAXCUT [1, 15, 18], network detection [13],
simple machine learning models [5, 10] and sampling [4],
has been adapted with different quantum hardware in
mind, has been generalized to the Quantum Alternating
Operator Ansatz (QAOA) that aims to achieve a broader
family of quantum states, [7] has been shown to demon-
strate quantum speedup on Grover’s problem, [8] and has
been proved with well-chosen parameters to be equiva-
lent to universal quantum computing. [9] These studies
suggest that there is a path forward to obtaining high
quality solutions with QAOA under a noiseless environ-
ment. The variational nature of this algorithm implies
that noise of physical qubits can be tolerated to some
extent. [3, 18]

2 QAOA with XY model: a superior
design for optimization problems with
hard constraints

For optimization problem with hard constraints, the
prototypical method in quantum annealing is to encode
constraints as penalty terms in the cost Hamiltonian such
that the ground state corresponds to the optimal state
with no constraints violated. The method can in prin-
ciple be implemented for QAOA. However, we will show
in this work that the resulting algorithm is extremely
inefficient, due to the lack of energy-guidance in the al-
gorithm. [16] It also significantly resource-demanding: of-
ten the penalty terms would demand two-qubit gates
between all pairs of qubits involved in the constraints.
This would lead to significant increase in circuit depth on
NISQ hardware, which typically has limited qubit con-
nectivity.

Alternatively, we in this work explore a variant to
the original QAOA: using as the mixer a Hamiltonian
that has close ties with condensed matter physics: the

26

https://arxiv.org/pdf/1904.09314.pdf
https://arxiv.org/pdf/1904.09314.pdf


XY model. The XY coupling between two qubits,
σx
i σ

x
j +σy

i σ
y
j , can be readily realized through the iSWAP

gate, which is often considered a natural choice to in-
clude in basic gate sets since it can be naturally realized
in superconducting systems. [17]

One distinctive feature of the XY interaction is that
it preserves the total spin-Z component. We will show
that this feature can find broad application in systems
in which a subset of qubits are confined to a subspace of
fixed total spin-Z. Optimization with hard constraints
(i.e., equality constraints) fall in this category. For exam-
ple, optimization problems with k-ary variables that need
to be encoded into binary variables to perform quantum
computing – in particular when the variable is encoded
into a subspace of k qubits expanded by bit strings of
Hamming-distance-1.

Using the graph coloring problem as an example, we
first show how the XY mixer significantly outperforms
the standard mixer used in QAOA, the single-qubit Pauli
X. Figure 1 shows the difference in approximation ratio
(a figure of merit for performance) using the two mixers
for a small coloring problem. The superior performance
is demonstrated numerically and explained by the fact
that the XY mixer keeps the quantum evolution in a
subspace defined by the constraints in the system and
in dimension exponentially smaller than the full Hilbert
space. In the case of k-coloring of a graph of size n, the
ratio of the feasible subspace sizes to the size of the full
Hilbert space is

dim(Hfea)

dim(H)
=

kn

2nk
=

( k
2k

)n
, (1)

which for any k ≥ 1 shrinks exponentially with the graph
size n.

We also show that W state, a well-known 3-qubit en-
tangled state, and its multi-qubit generalization, is a
natural choice for the initial state of the QAOA algo-
rithm with XY mixers, and significantly outperforms an
intuitive classical initial state. Figure 2 shows such a
comparison for 3-coloring of a representative graph (our
benchmarking set include 64 and 475 many 3-colorable
connected graphs of size 6 and 7 respectively.)

3 Circuit design and compilation of XY
models: on ideal and realistic hard-
ware

When a quantum algorithm is executed on hardware,
it needs to be broken into single-qubit gates and a given
(by hardware design) set of two-qubit gates. To fully re-
alize the theoretical advantage of using XY model for
QAOA, circuit complexity for realizing the XY interac-
tions among the relevant subset of qubits needs to be
evaluated. Furthermore, NISQ hardware often does not
have all-to-all connectivity to facilitate all 2-qubit gates
required by the algorithm, hence SWAP gates are needed
and quantum compilation needs to be performed to mini-
mize the duration of the final circuit on hardware. In this
talk we also describe how to implement the various com-
ponents of QAOA into short depth circuits, on hardware
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Figure 1: Significantly improved performance for level-1
QAOA on the problem of 3-coloring of a triangle graph
using XY mixer (Bottom) compared to (Top) standard
QAOA using the X mixer.
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with ideal (all-to-all) and realistic (limited) connectivity.
The major results are highlighted as the following.

• Most notably, on an all-to-all connected hardware
platform, we propose a scheme that can generate
the exact evolution of the XY -model on a complete
graph in linear depth.

• Exploiting the fermionic transformation, we show
that the XY model on a ring can be realized in
logarithmic depth.

• Due to the commuting nature of the cost Hamilto-
nians, a SWAP-network, akin to sorting networks,
can be used to implement any 2-local cost operator
requiring all-to-all connectivity in linear depth on
a linearly connected graph of qubits.

• Although the XY -mixer is significantly more com-
plicated than the standard X-mixer, we demon-
strate that under numerous scenarios this driver
term can be implemented in linear depth by taking
a fermionic perspective.

• If approximate evolution of the XY unitary is
found to be tolerable, for all-to-all connected archi-
tectures, the first-order Trotter implementation of
the XY -mixer drops to logarithmic circuit depth.

In summary, We numerically demonstrate and theo-
retically motivate that the XY Hamiltonian is a natural
choice for QAOA on optimization problems with hard
constraints. We provide circuit design for efficiently re-
alizing the XY mixers on ideal and realistic hardware
layout.

This work establishes the possibility of using more so-
phisticated mixers in a QAOA framework for naturally
enforcing constraints. Our analysis will be helpful for
near-term experimental validations of the QAOA algo-
rithm and evaluating its merit for real-world optimization
problems.
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Approximately recompiling NISQ circuits via energy dissipation

Tyson Jones1 ∗ Simon C. Benjamin1 †
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Abstract. Re-expressing noisy intermediate-scale quantum (NISQ) circuits in alternate gate sets can be
essential for enforcing hardware constraints or suppressing errors. We describe a method for automatically
recompiling a quantum circuit A into a parameterised target circuit B(φ), with the goal that both circuits
have the same action on a specific input, i.e. B(φ) |in〉 = A |in〉. This is of particular usefulness to hybrid,
NISQ-era algorithms which involve many repetitions of imperfect, constrained circuits. Recompilation
can be efficiently performed on the quantum device, or otherwise classically simulated, and is driven by a
recently introduced variational imaginary-time technique [2]. We demonstrate successful recompilation of 7-
qubit spin-chain simulation circuits in order to extend real-time simulation, and are currently investigating
its scalability with respect to circuit size, qubit count and noise. The full manuscript is available on
arXiv [1].
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1 Introduction

1.1 NISQ recompilation

In conventional computing, compilers are essential to
translate programs into efficient low-level instructions for
execution at the hardware level. Quantum computers
will also benefit greatly from efficient compilation, but
the nature of the compilation goal depends on whether
the quantum machine is a near-term device or a fully
fault-tolerant, code-protected quantum processor.

For the era of Noisy Intermediate Scale Quantum
(NISQ) devices, the costly gates are those with the great-
est error burden. Typically these are two-qubit gates
(and higher degree gates) in today’s prototypes, while
single-qubit gates are higher fidelity [3, 4, 5, 6]. Moreover
a given physical device will have certain operations that
are native to it, so that e.g. it may be that a control-NOT

is impossible to implement directly but is instead realised
though a parity-dependent phase shift together with ad-
ditional single-qubit gates. Furthermore the device will
have a native connectivity: certain qubits will be able to
directly link to others, for example in a two-dimensional
nearest-neighbour topology or a more flexible networked
architecture [7]. Thus one would wish to compile directly
to the device’s native gate set and connectivity.

∗tyson.jones@ccc.ox.ac.uk
†simon.benjamin@materials.ox.ac.uk

A compiler that is capable of targeting an arbitrary
family of gates could recompile from a standard ‘white
board’ description of a circuit into a truly native for-
mat where the gate operations are bespoke for a specific
device. Presently we take this idea further and suggest
that one could compile into a device whose gates are an
unknown function of the control parameters.

This paper describes a general method of translating
one quantum circuit into another, i.e. recompiling it.
The approach allows one to do the following:

• Target an arbitrary (user-specified) circuit layout,
• Target an arbitrary (user-specified) set of gates, in-

cluding bespoke gates not used in analytic treat-
ments,

• Support approximate recompilation, so that if the
specified target template is too shallow for perfect
recompilation then an approximate circuit will be
found,

• Minimise the impact of noise (although in the
present paper our examples use noise-free gates).

However the present scheme is also limited in important
ways:

• Compilation of circuits beyond the classical sim-
ulation limit will require quantum hardware, and
will consume considerable time on that hardware.
We note that all-classical software to recompile cir-
cuits involving parameterised gates does exist [9]
and can make significant savings. However no clas-
sical compiler can be expected to approach optimal-
ity for general circuits since even the task of veri-
fying that two circuits are near-identical is QMA-
complete [10].

• Compilation from the original circuit A is not to
an equivalent unitary circuit, but rather to a target
circuit B that (ideally) has the same effect on just
one specific input state |in〉, so that B |in〉 = A |in〉.
This is a profoundly more permissive goal, but
is in fact the right goal for many quantum algo-
rithms including so-called hybrid quantum-classical
approaches [11].
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1.2 Variational algorithms

We here provide a very brief overview of the class
of variational algorithms for use on hybrid classical-
quantum computers, which is a promising NISQ archi-
tecture [13, 12]. In these algorithms, the classical co-

processor maintains a tractable set of real parameters ~θ
which control the state |ψ(~θ)〉 produced by the quantum

co-processor, via an “ansatz” circuit U(~θ). That is,

|ψ(~θ)〉 = Û(~θ) |in〉 . (1)

where |in〉 is some fixed input state.

Measurements on |ψ(~θ)〉, such as the energy under
some problem Hamiltonian, can often be efficiently per-
formed and the outcomes used by the classical processor
to update ~θ. This can be repeated in iterative strate-
gies to, for example, perform eigensolving [13], simulate
realtime dynamics [8] and imaginary time evolution [2].

By costing more circuit evaluations, variational algo-
rithms can often avoid deep circuits and better tolerate
noise. Our recompilation technique itself is a variational
algorithm, and we also demonstrate its use in recompiling
the circuits used in other variational algorithms.

2 Approximate recompilation

2.1 Overview

Consider a fixed state |out〉 produced by acting a fixed
circuit A on a fixed input state |in〉, i.e. |out〉 = A |in〉.
Given an alternate circuit template B(~φ), which is a prod-
uct of m parameterised unitaries

B(~φ) = b̂1(φ1) b̂2(φ2) . . . b̂m(φm), (2)

we seek to find an assignment of ~φ such that

B(~φ) |in〉 ≈ |out〉 . (3)

That is, as the ‘user’, we fix the gate types and the se-
quence of B, but this template is ‘blank’ i.e. free of pa-
rameter information. Note Equ (3) does not necessitate

B(~φ) ≈ A, but is instead the weaker constraint that their
actions on the specific state |in〉 are approximately equal.

We assume each gate b̂j(φj) in B, and its inverse, is a sim-
ple function of φj so that the mapping between B and its

inverse is tractable. For example, if b̂j(φj) = exp(iφσx),

then b̂−1j (φj) = b̂j(−φj) and

B−1(~φ) = b̂m(−φm) . . . b̂2(−φ2)b̂1(−φ1). (4)

Since ~φ which satisfy B(~φ) |in〉 = |out〉 must also satisfy

|in〉 = B−1(~φ) |out〉, recompilation is the task of finding
~φ such that

|in〉 ≈ B−1(~φ)A |in〉 . (5)

Generally finding ~φ is a hard search problem since there
may be thousands of parameters even for NISQ-era ma-
chines. One must therefore select the strategy carefully,
giving consideration to potential problems with iterative

solutions such as becoming ‘stuck’ in a local minimum
as we evolve the parameter set. There are also issues
relating to the device size: ideally recompilation will be
achieved without the need for additional qubits.

The approach we take here coopts recent ideas relat-
ing to finding the ground state energy of a Hamiltonian.
It requires no additional qubits, and moreover although
the scaling and performance of such approaches are not
fully understood there is a developing literature on these
topics [11].

2.2 Via energy dissipation

We assume the input state |in〉 is sufficiently well un-
derstood so that we can construct a Hamiltonian Ĥrec for
which |in〉 is the unique ground state. Note |in〉 is not the
state to be re-expressed by B; it is the state input to the
original circuit A and is likely to be a well understood
state, such as the initial state of a realtime simulation.
Furthermore, Ĥrec does not correspond to any physical
system of interest; it is a fictitious construct purely to en-
able the recompilation process. We denote it Ĥrec where
the subscript stands for ‘recompilation’. Finding Ĥrec is
of course trivial for any input that has a product form:
for example if |in〉 = |0 . . . 0〉, then the obvious choice is
Ĥrec =

∑
j σ

z
j .

Given that we have selected a suitable Hrec, then the
recompilation process has become an eigensolving task:

Given a (fixed) input A |in〉 to ‘ansatz’ circuit B−1(~φ),

find the parameter values ~φ for which the output has the
lowest possible energy with respect to Hrec.

We can adopt any one of several [11] techniques to
solve this problem. The technique that we use here is the
deterministic imaginary-time evolution which has been
recently analysed [2] and found to have good efficiency
with respect to a range of other techniques.

A reasonable measure of the success of recompilation
is the fidelity between the input state |in〉 and its at-
tempted reconstruction B−1A |in〉, equivalent to that be-
tween A |in〉 and B |in〉. In the case that the compilation
process is being performed with a quantum computer
(rather than a classical emulation of the process), this
fidelity can be lowered bounded through measuring the
expected energy 〈Hrec〉; indeed the imaginary-time varia-
tional approach involves repeatedly estimating quantities
of this kind. This fidelity F satisfies

F ≥ E1 − 〈Hrec〉
E1 − E0

. (6)

where E0 and E1 are the lowest lying energy eigenstates
of the fictitious Hamiltonian Ĥrec. Note that if, as in
the example above, Ĥrec has a gap E1−E0 of unity then
the accuracy with which we can bound F simply depends
on the shot noise in our estimate 〈Hrec〉. Recall this is
the gap of the fictitious Hamiltonian, chosen by the user
such that |in〉 is the ground-state, but is otherwise freely
modified. Ergo there is no computational difficulty in
resolving this gap; it is instead constructed!
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2.3 Further gate elimination

After recompiling A |in〉 into B(~φ) |in〉, we can attempt
to further shrink the circuit by eliminating gates with
small parameters (thus deviating from the user-specified
template). We choose a parameter φj whose current
value φj = δ is closest to 0 (or more strictly, since we
may be dealing with periodic functions, we identify j for
which b̂j(~φj) is closest to the identity). We then continue
our imaginary-time evolution under modified variational
equations, where we additionally constrain

φ̇j = − δ

N∆t
. (7)

Here N limits the change in φj in a single iteration. This
simultaneously drives φj toward zero while retaining the
pressure toward the ground state. Generally we will reach
φ̇j = 0 having suffered a small penalty in energy (and
thus fidelity of the new circuit). Once zero is reached,

we remove gate b̂j(φj) and then repeat the process. This
continues until the energy has unacceptably risen. What
is ‘unacceptable’ will depend on the application, but for
the examples here we set the threshold to be twice the gap
between true ground and the original energy of B−1A |in〉
under Ĥrec. In other words, we permit the energy defect
to double in return for circuit compression. We empha-
sise that this entire phase is an optional post-process after
the main recompilation. We denote the resulting circuit
of this additional gate elimination process as Belim.

3 Demonstration

Having thus described the compilation and optimisa-
tion process in general terms, we now illustrate it with
a specific example: recompilation of a 7-qubit, 186-gate
circuit into a quite different template.

3.1 Choosing an interesting circuit

Rather than randomly generating the circuit A, we
focus on the likely application areas for our recompila-
tion technique: hybrid algorithms that aim at dynamical
simulation or eigensolving. Given that the recompilation
technique itself involves a kind of eigensolver, for clarity
we opt instead to make the circuit A relevant to a dy-
namical simulation task. Specifically, we assume that we
wish to model the evolution of a certain 7−spin network,
with the topology of spin-spin interactions shown in the
upper right of Fig. 1a. We take it that the Hamiltonian
of this system is

Hsys =
∑
i

Biσ
z
i +

∑
i,j

∑
S∈x,y,z

JS
i,jσ

S
i σ

S
j (8)

where σ are the standard Pauli operators and Bi < 0
and JS

i,j > 0 are constants. This is therefore a rather
general spin network with irregular antiferromagnetic in-
teractions and local fields. In order to create an interest-
ing evolution we select the initial state |in〉 = |Ψ(0)〉 =

|1〉 |+〉⊗6 i.e. a product state where one qubit is orien-
tated such that it has maximum energy with respect to
its local field and the others have zero expected energy

in their local fields. We choose a simple recompilation
Hamiltonian for which |in〉 is the ground state, namely

Ĥrec = σz
1 −

7∑
j=2

σx
j . (9)

As a relevant test of our recompilation technique, we stip-
ulate that the purpose of original circuit A is to model
the evolution of this system, i.e. to create (a good ap-
proximation to) the state

|Ψ(t)〉 = exp(iHsyst) |Ψ(0)〉 (10)

for some time t which we presently specify. A naive ap-
proach might be to use a number of Trotter ‘cycles’ i.e.
to use a number q of identical circuit blocks each of which
contains one gate for each Pauli term in Hsys. For suffi-
ciently small t this approach is guaranteed to provide an
accurate simulation. Fig. 1a shows a circuit of this kind.
Each gate in the Trotter cycle however can be viewed as
a parametrised gate with a prescribed value θj ,

Tj = exp(−iθj σ̂/2) (11)

Given the same gate layout, one can instead use the
variational algorithm described in Ref. [8] to adjust the
‘strength’ θj of each gate independently of all others in an
optimal fashion. We indeed apply this algorithm, which
we refer to as Li’s algorithm [8] to create our circuit A.
We choose the time t = 1.75 as this is toward the outer
limit of the range for which the circuit structure in Fig. 1a
can produce an accurate simulation using Li’s algorithm.
The resulting parameters successfully replicate the state
of the simulated spin system at time t = 1.75 with a
fidelity of 0.995.

3.2 Recompilation and simulation

We freeze realtime simulation at t = 1.75 and perform
approximate recompilation of A, with and without sub-
sequent gate elimination, to discover B(~φ) and Belim(~φ′)
respectively. The template B is shown and motivated in
Figure 1b; it has a smaller family of gates, 72 two-qubit
gates (in lieu of 144 inA) though has 35 additional single-
qubit gates. The performance of the iterative recompi-
lation and additional gate removal is shown in Figure 2.
Recompiling A into B costs a fidelity loss of ≈ 2× 10−3,
bringing the fidelity of the ansatz state against the sim-
ulated spin system down to 0.994.

By exploiting the shorter depth, we are then able to ap-
pend additional Trotter cycles (though with freely vary-
ing parameters) to B and Belim and continue realtime
simulation using Li’s algorithm beyond what was possi-
ble with the original ansatz circuit. This is demonstrated
in Figure 3, along with resource counts of all circuits in-
volved in the realtime simulation and recompilation.

While the results here demonstrate excellent perfor-
mance for both recompiling and extending variational
realtime simulation, we are currently investigating the
scaling of the method with qubit count and gate depth,
and its resilience to noise.
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(a) The circuit A which we opt to use as the input to our
compilation process. The upper right figure summarises
the two-qubit gate connections. The circuit has the struc-
ture of that that prescribed by Trotterisation for simulating
the dynamics of a 7-qubit spin chain, but for recompilation
purposes one can regard it as an arbitrary pattern of 186
unique non-Clifford gates (including 144 two-qubit gates).
Here Z(θ) = exp(−i θ

2
σZ), ZZ(θ) = exp(−i θ

2
θσZ⊗σZ), and

similarly for the Y and Z gates.
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(b) The template for the recompiled circuit B(~φ). The tem-
plate is user-specified, and the recompilation process will
determine the φ value for each gate. In comparison to the
original circuit A, this template has a smaller family of gate
types (Y Y and XX type gates are omitted), has half as
many two-qubit gates in total (72 rather than 144), and a
larger number of single-qubit gates (77 versus 42). More-
over the topology of the two-qubit gates is different: it is a
triangular lattice forming a hexagon as shown in the inset.
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Figure 2: The process of recompiling circuit A into the
template B(~φ) (top panel) then additionally eliminating

30 more gates to produce Belim(~φ′) (bottom two pan-
els). The light blue curves show the fidelity with which

B(~φ) |in〉 matches the target A |in〉, as the parameters ~φ
are evolved under imaginary time evolution [2]. Since this
is not necessarily measurable for the user, we also plot
the measurable quantity 〈Hrec〉 in red, which bounds the
fidelity as stated in Eqn. (6). (Also shown in dark purple
is the fidelity with respect to the true state of the simu-
lated spin system. The circuit A itself has a finite sim-
ulation fidelity of 0.995 and thus the recompiled circuit
is somewhat lower.) The bottom panel shows the evo-
lution of parameters which, during the gate elimination
post-processing stage, are constrained to become zero (in
turn) so that their corresponding gates can be removed.
The parameter closest to zero is selected and forced to
become zero over several iterations until eliminated (indi-
cated by a vertical line), then the next closest parameter
is chosen. This continues until 〈Hrec〉 deviates from the
ideal (−7) by significantly more that it did immediately
following the recompile; in this case, the ‘defect’ with re-
spect to −7 is 0.02, and the elimination process continues
until this approaches 0.04 i.e. until it doubles. In total,
30 gates are eliminated, bringing the total number in B
from 149 to 119.
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Figure 3: Realtime simulation (top) of the spin system
specified in Eqn. (8) using Li’s algorithm [8] with various
possible circuits, and their resource costs (bottom). T m

indicates m cycles of the circuit (though with freely vary-
ing parameters) prescribed by Trotterisation. In blue,
the original structure A suffers a precipitous drop in fi-
delity after t = 1.75. In red, the recompiled circuit B (a

compacting of A(~θt=1.75)) naturally fares worse. How-
ever, the green line corresponds to the performance of
the recompiled and augmented circuit (appended with 3
Trotter cycles) and is superior: it can sustain high fi-
delity simulation for a further ∼ 0.4 time units. With
a near identical total gate cost, the purple line replaces
further eliminated gates with an additional Trotter cy-
cle; this has no benefit as expected, since the number of
variational parameters has not increased.
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Abstract. The exploration of quantum algorithms that possess quantum advantages is a central topic
in quantum computation and quantum information processing. One potential candidate in this area is
quantum generative adversarial learning (QuGAL), which conceptually has exponential advantages over
classical adversarial networks. However, the corresponding learning algorithm remains obscured. In this
paper, we propose the first quantum generative adversarial learning algorithm—the quantum multiplicative
matrix weight algorithm (QMMW)—which enables the efficient processing of fundamental tasks. The
computational complexity of QMMW is polynomially proportional to the number of training rounds and
logarithmically proportional to the input size. The core concept of the proposed algorithm combines QuGAL
with online learning. We exploit the implementation of QuGAL with parameterized quantum circuits, and
numerical experiments for the task of entanglement test for pure state are provided to support our claims.

Keywords: Quantum Machine Learning, Quantum Information Processing

1 Introduction
The principal interest in quantum computation is the

exploration of potential applications that outperform their
classical counterparts. The rapid development of quan-
tum hardware divides this interest into short-term and
long-term goals. The short-term goal is to devise quantum
algorithms that not only possess quantum advantages but
can also be implemented on near-term devices [18]. The
long-term goal is to employ fault-tolerant quantum com-
puters that are capable of providing remarkable quantum
speedups over classical methods [20] to tackle practical
real-world problems.

Quantum machine learning is one of the most promising
candidates for achieving both short-term and long-term
goals [2], and the proposed quantum generative adversar-
ial learning (QuGAL) strengthens this belief [15]. The
main theoretical conclusion of QuGAL is that exponential
quantum advantages may exist under the assumption that
the target data distribution can be efficiently encoded
into a density matrix [15]. Conceptually, QuGAL involves
two players, a generator and a discriminator, which play
a zero-sum game. At each training round, the generator
tries to approximate the target data to fool the discrimi-
nator, while the discriminator tries to distinguish the fake
data from the real data. When the generator and dis-
criminator are both constructed by quantum operations,
the adversarial quantum learning game has the poten-
tial to converge to Nash equilibrium with an exponential
speedup.
Despite promising theoretical results, two issues re-

lated to QuGAL have not been explored. First, it is
unclear what kinds of learning tasks can be accomplished
by QuGAL to potential advantages. Second, an explicit
∗yudu5543@uni.sydney.edu.au
†min-hsiu.hsieh@uts.edu.au
‡dacheng.tao@sydney.edu.au

learning algorithm of QuGAL that can fast converge to
the equilibrium remains unexplored. Previous studies
mainly focus on the implementation of QuGAL under
near-term quantum devices as so-called quantum genera-
tive adversarial networks (QuGANs) [8, 21, 24, 19, 26]. In
particular, the generator and discriminator of QuGANs
are constructed by employing parameterized quantum
circuits (PQCs) that are composed of a set of trainable
parameterized single qubit gates and two-qubit CNOT
gates [9]. However, the intrinsic optimization mechanism
of PQCs that iteratively updates each gate destroys the
required convex-concave property in QuGAL, which im-
plies that the obtained result may not converge to Nash
equilibrium and may induce additional training difficul-
ties, e.g., mode collapse and vanishing gradients [1]. Two
key issues therefore exist for QuGANs, i.e., how to im-
prove stability and convergence in training QuGANs, and
whether QuGANs deliver potential quantum advantage.

To tackle the aforementioned issues, we revisit the
theory of QuGAL in this paper from the perspective of
online learning [11]. The integration of online learning
with QuGAL is motivated by the fact that online learning
algorithms can efficiently approximate the optimal result
for the zero-sum game associated with the convex-concave
property, and the training of QuGAL satisfies this condi-
tion. This observation enables us to devise a quantum ad-
versarial learning algorithm with online learning features
and to theoretically analyze its potential quantum advan-
tages. Additionally, online learning has been employed as
a powerful tool for relieving training difficulties in classi-
cal generative adversarial networks (GANs) [10], which
motivates us to introduce such a method in optimizing
QuGANs. Lastly, we investigate how to use QuGAL to ac-
complish learning quantum information processing tasks,
such as the quantum entanglement test for pure state
and quantum state discrimination [12, 6, 4, 5, 7]. Our
study opens avenues for exploring quantum information
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processing tasks using quantum generative adversarial
learning models.

We summarize the main results of this work as follows.

• We propose a quantum generative adversarial learn-
ing algorithm, the quantum multiplicative matrix
weight (QMMW) algorithm, which rapidly con-
verges to Nash equilibrium as expected from Qu-
GAL. QMMW is inspired by the multiplicative ma-
trix weight algorithm, which is a popular online
learning algorithm that efficiently finds optimal so-
lutions to the zero-sum game [14]. We prove that the
convergence rate of QMMW is O(

√
N/T ), where

N is the number of qubits corresponding to the tar-
get density matrix and T is the number of training
rounds. An attractive feature of QMMW is that
the output states of both the generator and discrim-
inator can be viewed as Gibbs states. By exploiting
the efficient Gibbs sampling method proposed by
[23], we prove that the computational complexity
of QMMW is O(N3T 4).

• We introduce a multiplicative weight training
method to overcome the training difficulty encoun-
tered in QuGANs. The core ingredient of this
method is to seek the most possible optimized di-
rection for achieving global equilibrium through
the inherent mechanism of online learning. In the
training process, a multiplicative weight training
method puts more weight to the gradient that is
more probable to fool the discriminator. Since the
multiplicative weight training method only focuses
on re-weighting the gradient, it can be seamlessly
embedded into other optimization methods used in
QuGANs.

• We investigate the potential quantum advantages by
applying QMMW and QuGANs to solve quantum
information tasks, i.e., the pure state entanglement
test and the quantum state discrimination. In partic-
ular, we numerically validate that QuGANs are ca-
pable of accomplishing the pure state entanglement
test with modest quantum resources, which sheds
light on using QuGANs to handle other quantum
information learning tasks. All numerical simula-
tions demonstrated in this paper are implemented in
Python, leveraging the pyQuil and QuTiP libraries
to access the numerical simulators [22, 13].

2 Main results
Quantum Multiplicative Matrix Weight—Here we pro-

pose a no-regret quantum generative adversarial learning
algorithm—the quantum multiplicative matrix weight
(QMMW) algorithm—to efficiently reconstruct the given
mixed state under the fault-tolerant quantum circuits
setting. Conceptually, QMMW is inspired by the multi-
plicative matrix weight algorithm [14], an advanced meta-
algorithm with the no-regret property that is broadly used
in online convex optimization [11]. This convergence rate
of QMMW is assured by the following theorem:

Theorem 1 Given a mixed state ρ represented by N
qubits, and setting the training rounds as T , QMMW
yields

|L(σ̄G, σ̄D)− L(σ∗
G, σ

∗
D)| ≤ 3

√
N

T
. (1)

QMMW can be efficiently executed on fault-tolerant quan-
tum circuits, since both σ(t)

G and σ(t)
D are Gibbs states that

can be prepared by using efficient Gibbs sampling meth-
ods [3, 23]. The efficiency of the Gibbs sampling methods
proposed in [23] presents another attractive advantage of
QMMW:

Theorem 2 Given an N -qubit state, let Uρ be the unitary
that prepares the purification state of ρ. Denote T as the
total number of training rounds. If there is quantum
query access to Uρ, the computation cost of the QMMW
algorithm is O(N3T 4).

QuGANs with multiplicative weight training method.—
The investigation of applying QuGANs to tackle quantum
information processing problems is of practical interest in
the near term when there are only limited available qubits
and shallow quantum circuit depth [18]. Although several
studies have confirmed the feasibility of using QuGANs to
achieve certain tasks, the variational optimization method
collapses the desired convex-concave property and heav-
ily challenges the performance of QuGANs. The disap-
pearance of the convex-concave property results in an
inevitable difficulty, since the optimization may get stuck
in local minima. This topic has been widely investigated
in classical GANs [25]. Inspired by the weighted training
algorithm proposed by [17], which has demonstrated its
effectiveness in classical GANs, we propose the multiplica-
tive weight training method [17] to relieve the training
difficulty in QuGANs. The proposed training method
can be seamlessly embeded into advanced optimization
algorithms used to train parameterized quantum circuits
(PQCs). The loss function of QuGAN gives the following
theorem:

Lemma 3 The loss function of QuGAN has the convex-
concave property with the equilibrium value L(U∗

G, U
∗
D) =

1/2.

3 Numerical Simulation
We employ QMMW is employed to distinguish entangle-

ment from a bipartite pure state, we impose an ‘constraint’
step in updating the generated state. We define the tar-
get state as ρAB = |Ψ〉 〈Ψ|AB at each training rounds,
and two copies of σG are generated following the rule of
QMMW. The ‘constrained’ step refers to a partial trace
step, i.e., by partial trace system A for the first copy
and system B for the second copy, we have the product
state TrA (σG) ⊗ TrB (σG). The integration of the ‘con-
straint’ step and naive QMMW naturally results in Nash
equilibrium being reached if and only if the input state
is separable, since the generated state must be separa-
ble. Meanwhile, the ‘constraint’ step satisfies the two
standards rules. It is easy to prove that the no-regret
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property of the varied QMMW is conserved. The par-
tial trace can be executed with O(1) complexity. We
validate its performance by approximating a separable
mixed state ρsep = 1

2 |0000〉 〈0000|+ 1
2 |1111〉 〈1111|. The

total number of training rounds is set as T = 400 and
T = 1600, respectively. As illustrated in Figure 1, the
final training loss for T = 400 is 0.561 with fidelity of
0.929. The final training loss for T = 1600 is 0.532 with
fidelity of 0.965. The simulation results indicate that
the training loss rapidly converges to the equilibrium
value and the fidelity between the generated state and
ρsep tends to be 1 with increased T . The simulation re-
sults are in accordance with the conclusion of Theorem
1, where the theoretical results are 1/2 + 3

√
4/400 = 0.7

and 1/2 + 3
√

4/1600 = 0.65, respectively. The numerical
simulations are implemented in Python in conjunction
with QuTiP [13].

The Training Loss and Fidelity with 𝜌"#$

Figure 1: The left panel is the simulation result of QMMW
with setting T = 400. The right panel is the simulation result
of QMMW with setting T = 1600.

We then benchmark the performance of the QuGANs to
accomplish the entanglement test for bipartite pure states.
The detailed procedure for constructing QuGAN is as fol-
lows. The trainable parameters θ (for UG) and γ (for UD)
are randomly initialized and updated by the zero-order dif-
ferential method [16]. We set the total number of training
rounds T as 500. The prior is set as P (G) = P (R) = 1/2.
The detailed quantum circuit structure is illustrated in
Figure 2. The number of blocks required to implement
UG and UD is set as L1 = 7 and L2 = 3, respectively. The
quantum circuit architecture is demonstrated in Figure 2.
All numerical simulations are implemented in Python in
conjunction with the PyQuil library [22].

When QuGAN is employed to distinguish entanglement
from a bipartite pure state, we redesign the arrangement
of quantum gates in each block of UG. No CNOT gate
exists whose controlled qubit is in system A and whose
target qubit is in system B. The detailed quantum circuit
architecture is shown in the right panel of Figure 2. The
modified quantum circuit structure indicates that Nash
equilibrium can be reached if and only if the input state
is separable, since UG can only generate a separable state.

...
...

...

0

|0〉⊗NA

UG/Uρ
UD

|0〉⊗NB

|0〉

UG(θ) UD(θ)

...
. . . ...

...
. . . ...

. . .

0

|0〉⊗NA

U U U

U U U

|0〉⊗NB

U U U

U U U

|0〉 U

Figure 2: The quantum circuit of QuGAN to accomplish the
entanglement test for bipartite pure states. In the left panel,
Uρ (or UG) is selected to to produce the real (or generated)
state with prior P (R) (or P (G). In the right panel, the
circuit architecture of UG and UD is expanded. The notation
U is defined as U = RX ◦RY ◦RZ , where RX , RY , and RZ
are trainable parameterized single qubit gates along X, Y , Z
axis.

We now employ QuGAN to accomplish the entangle-
ment test for two bipartite pure states, i.e., a separable
state |Ψ〉 = (|00〉A+ |10〉A)⊗|00〉B /

√
2 and an entangled

state |GHZ〉 = (|00〉A⊗|00〉B + |11〉A⊗|11〉B)/
√

2, where
A and B refer to the bipartite system. The simulation
results are illustrated in Figure 3. The total number of
single and two qubit quantum gates is 143 to implement
QuGAN. When the input state is separable state |Ψ〉,
the training loss oscillates around the optimal value after
around 100 steps and ranges from 0.444 to 0.559, as shown
in the outer plot. The corresponding fidelity between the
target state and the generated state is always larger than
0.702. The training loss for the entanglement state case is
far away from the optimal value, which oscillates around
0.850 after 300 steps, as shown in the inner plot. The
fidelity between the generated state and the given state
|GHZ〉 is always below 0.250.

The Training Loss and Fidelity with 𝜌"# = |Ψ⟩⟨Ψ|

𝜌"# = |GH𝑍⟩⟨GH𝑍|

Figure 3: The outer plot is the simulation result of QuGAN
when the input is |Ψ〉. The inner plot is the simulation result
of QuGAN when the input is |GHZ〉.

The technical version is in Arxiv 1904.09602.
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Probing modified commutation relations via quantum noise  
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Abstract Recent advances in precision measurements have opened the possibility of probing 
quantum gravity and bounding modifications of quantum mechanics in tabletop experiments. We 
have studied modifications to a quantum optomechanical effect, radiation pressure noise (RPN), 
due to corrections to the canonical position-momentum commutator that are present in certain 
quantum gravity theories. We show that high power driven atomic and nano-scale systems, under 
suitable control, will allow beating known bounds by several orders of magnitude. This advance 
in quantum metrology could provide strong evidence to eliminate or support modifications of 
quantum mechanics, and new perspectives on such models of quantum gravity.  

Keywords: quantum metrology, modifications of quantum mechanics, commutation relations, 
quantum gravity, quantum noise, optomechanics,

In the modern ‘effective field theory’ view of 
physics, phenomena are described in terms of 
quantised fields on a background space-time. 
But several theories of quantum gravity 
predict that on scales close to the Planck 
length LP i.e. ∼ 10−35m such a description 
breaks down; such theories have a ‘minimal 
length’ in that it is not meaningful to describe 
quantities smaller than a certain length [1]. For 
example this is a feature of string theory, 
associated with ‘T-duality’ and manifested in 
high-energy string scattering [2]. The standard 
Heisenber1g position-momentum uncertainty 
relation however does not account for such a 
minimal length. It has been suggested across 
the literature [1], [2], [3] to modify it, via a 
dimensionless parameter β0, such that the 
associated modified canonical commutation 
relation is: 

 

From scratch, we derive and solve the 
equations describing interaction of a quantum 

                                                             
1 pgir1104@uni.sydney.edu.au 

optical field and thermal bath with a 
macroscopic oscillator under the assumption 
of this modified commutation relation. 
Through this we derive the modified 
mechanical noise spectra for an oscillator in an 
optomechanical system such as the mirrors in 
Advanced LIGO or the nanomechanical 
oscillators in recent optomechanical 
experiments. The altered shape and magnitude 
of the spectra allows us to infer a bound that 
β0 < 1020 for the centre-of-mass degree of 
freedom. This is 10 orders of magnitude better 
than bounds on centre-of-mass of other 
systems, such as precision measurements of 
Lamb shift [6] and ground state of 
gravitational wave bar detector[5]. It is 
comparable to bounds on nonlinear effects on 
macroscopic harmonic oscillators [6] and 
unlike a recently proposed optomechanical 
method it does not require achieving 
challenging cavity finesse or working with 
cooled nano-oscillators [7]. We examine the 
bounds for future upgraded experiments and 
show infact the target bound of β0 ∼ 1 can be 
achieved by driving oscillators sufficiently 
rapidly. We also explore the bounds inferred 
on commutation relations of constituent 

4

The simplest modified isotropic (direction symmetric) translational invariant commutator is:

[x, p] = i~
 
1 + �0
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This ‘�-modified commutator’ corresponds to the GUP:

�x�p � ~
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1 +

�0

(MP c)
2�p2

!
(3)

which implies that �x � LP

p
�0. So if �0 = 1 then the minimal length is the Planck length. This GUP was suggested

in [7] as a consequence of T-duality in the framework of string theory which says that an e↵ective minimal string
length emerges from the equivalence of high energy (small radius) and low energy (large radius) string physics. A
high energy string used as a probe to measure another string’s position will not only ‘disturb’ its momentum (as in
the usual picture of the Heisenberg microscope) but will leave the scattered string with a size proportional to the
energy[8]. The corresponding modified commutator was studied in [23].

In another approach to quantum gravity the ‘doubly special relativity’ theory [13] proposes that the Lorentz
transformations are modified in order to keep an invariant energy-momentum scale and maximal possible momentum.
In [24] the following commutator was given consistent with doubly special relativity:

[x, p] = i~
 
1� �0

p

MP c
+ �2

0

✓
p

MP c

◆2
!

= i~
�
1�Ap+A2p2

�
(4)

where Mp is Planck mass, c is speed of light, �0 is a numerical parameter that quantifies interaction, A = �0

MP c
. We

call this a �-modified commutator’.
The standard canonical commutator [x, p] = i~ is component-wise scale invariant in the sense that if it applies

to components of an object then it also applies to the object’s centre of mass (so long as quantum theory extends
to mesoscopic systems). However this is not true in general for modified commutators [25][26] and furthermore the
existence of an absolute minimal length is in conflict with Lorentz invariance. Nevertheless, constraints on these
parameters have been obtained through a variety of experimental observations, assuming the commutator applies at
some scale accessible to the experiment. Some of the best constraints on �0 are shown below.

TABLE I: Experimental bounds on �0

Experiment Max �0

Lamb Shift [27] 1036

Electroweak scale 1034

AURIGA detector [28] 1033

Scanning Tunneling Microscope [27] 1021

Harmonic Oscillators [29] 108 � 1020

The general reason for the large order of magnitudes of the upper bounds is that the modifications are applied in
these experiments to particles with momenta much smaller than the Planck momentum MP c that appears in the right
hand side of each commutator and the parameters being probed constrain the size of the minimal length in Planck
length units.

It was proposed in [25] that quantum optical control and readout of a mechanical oscillator, which would have a
relatively large momentum compared to experiments on subatomic particles, can be used to significantly improve the
constraints on these parameters. The interaction of pulses of an input radiation field with the oscillator produces a
geometric phase on the output field that depends on the canonical commutator associated with the oscillator. They
show that the challenge is to perform a large number of measurement runs in which each run involves measuring a
large photon number coherent state interacting with an optically cooled macro-oscillator in a cavity of high finesse,
but in principle if the commutators are applied to the centre of mass the parameters can be constrained to the Planck
scale i.e. �0, µ0, �0 ⇠ 1.
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particles of the oscillators and demonstrate the 
feasibility of parameter regimes required to 
infer new values approaching the Planck scale.  

Overall, our methods show how the scope of 
quantum metrology achievable in modern 
experiments is able to penetrate a new realm 
of fundamental physics. 
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Abstract. The black hole information paradox was recently investigated from the quantum
information theoretic approach. Using the decoupling method, it was shown that radiation carries
information away from black holes extremely quickly. The key mechanism is the information
scrambling of black holes, but most black holes, in reality, have symmetries so that the dynamics
cannot be fully scrambling. Here, we explore information leakage from black holes with symmetry
by generalizing the decoupling method to the one applicable without full scrambling. We then
consider uncharged rotating black holes and show that extremely quick information leakage
continues only when the black hole is su�ciently large.

Keywords: decoupling, black hole information paradox, scrambling, channel coding

1 Introduction and Results

The black hole information paradox has been a
long-standing problem since the discovery of Hawk-
ing radiation from quantum black holes [1]. The
original question was if information in a black hole
is eventually carried away by the radiation. How-
ever, recent developments of the holographic princi-
ple suggests that information should be preserved as
a whole and the radiation should necessarily carry
the information away. This opens a new question of
how, and how quickly, it occurs.

In recent years, an elegant approach based on
decoupling [2, 3] was proposed from the theory of
quantum information [4]. Using a unitary evapora-
tion model of quantum black holes, it was pointed
out that complex internal dynamics of black holes
leads to information scrambling [5, 6] and further
to decoupling [7], and thus, information leaks out
extremely quickly from old black holes. The result
was recently demonstrated even in an ion-trap ex-
periment [8]. This approach, rephrasing the infor-
mation leakage in terms of transmitting quantum in-
formation, opens a fruitful interplay between quan-
tum information and high energy physics, such as
scrambling [5, 6], OTOCs [9, 10, 11], quantum dual-

⇤yoshifumi.nakata@yukawa.kyoto-u.ac.jp
†e.wakakuwa@gmail.com
‡koashi@qi.t.u-tokyo.ac.jp

ity [12, 13], and a new approach to the holographic
principle [14, 15, 16].

However, black holes in reality have symmetries
and conserved quantities, which prevent the dynam-
ics from being fully information scrambling. It is
thus not clear whether information is indeed quickly
leaked out from black holes with symmetry. One of
the common beliefs is that any global symmetries
are weakly violated in the regime of quantum grav-
ity [17, 18]. However, to fully understand informa-
tion leakage from black holes, analysis that properly
takes the symmetry into account is of crucial impor-
tance.

Here, based on the first part of Ref. [19] and the
technical manuscript, we provide a deep analysis of
the information leakage from quantum black holes
with symmetry. Since decoupling approach cannot
be directly applied due to the absence of full scram-
bling, we first provide a generalization of decoupling
theorem, which we call partial decoupling [19]. We
then apply partial decoupling to the information
leakage problem of uncharged rotating black holes,
often referred to as Kerr black holes, where the
angular momentum in one direction is conserved.
Based on the assumption that the dynamics scram-
bles each subspace with di↵erent angular momen-
tum independently, we obtain the following:

1. The information invariant under the symmet-
ric action leaks out from old Kerr black holes
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extremely quickly as if there were no symme-
try.

2. The information variant under the symmet-
ric action, or equivalently, coherence between
di↵erent angular momenta, leaks out quickly
only when the black hole is su�ciently large.
Small Kerr black holes keep a part of the
symmetry-variant information unevaporated
until the last moment.

In short, the larger a quantum Kerr black hole is, the
more information the radiation carries away quickly.
This is due to various quantum e↵ects, such as quan-
tum fluctuations, entanglement, and an intriguing
encoding method that we call observable imprint-
ing. Our analysis is fully general and quantitative,
so that it can be applied to black holes with any
symmetries or even to the problem of channel cod-
ing restricted by symmetry.

Our result is insightful not only in high energy
physics, providing an information theoretic insight
to symmetry in quantum gravity [17, 18], but also
in quantum information because our result reveals
that symmetry enriches the structure of information
transmission, where many quantum e↵ects come
into play. Thus, we think that our analysis opens a
new playground in quantum information theory in
relation with symmetry, which is not only interest-
ing in its own right but also accelerates the fruitful
relation between quantum information and complex
quantum many-body physics. We also emphasize
that our technical contribution, the partial decou-
pling theorem, is potentially applicable to various
problems in quantum information, such as simulta-
neous transmission of quantum and classical infor-
mation [20], and the theory of coherence [21].

2 Results in detail

Hereafter, we often write the system on which an
operator acts as a superscript.

Our analysis is based on the toy model of black
holes proposed in Ref. [4]. The initial black hole Xin

is composed of N qubits and is in the state ⇠Xin that
is purified by the past Hawking radiation Xout. Al-
ice throws quantum information source A of k qubits
into Xin. We especially consider the case where the
quantum source A is purified by the reference R to
be the maximally entangled state �AR. After the in-
ternal unitary dynamics US of the whole black hole
S = AXin, an `-qubit subsystem S1 is evaporated
from the black hole S. Bob collects the radiation S1

and tries to recover A by applying recovery opera-

Figure 1: A diagram of the information leakage
problem [4]. The blue lines represent the paths of
qubits, and the green wave lines indicate that they
may be entangled. The red line is the Hawking ra-
diation S1.

tion D. He may additionally make use of the past
Hawking radiation Xout (see Fig. 1 as well).

If Bob can successfully recover the quantum
source A, it implies that the information has been al-
ready carried away by the radiation S1. Thus, based
on this toy model, the information leakage problem
can be rephrased by transmitting quantum informa-
tion via noisy quantum channel, especially via the
partial trace channel TrS2 , which enables us to apply
the technique in quantum information theory.

When a system W has symmetry (W is e.g. A or
S), the associated Hilbert space H

W is decomposed
into invariant subspaces. For an axiall symmetry,
which is the case for Kerr black holes, HW is sim-
ply decomposed into

L
mH

W
m , where m is the Z-

component of the angular momentum. Accordingly,
quantum information on the system W , defined by
a purified source �WW 0

, is decomposed into �
WW 0

=
�
WW 0
diag + �

WW 0
off , where �

WW 0
diag =

P
m P

W
m �

WW 0
P

W
m ,

and �
WW 0
off =

P
m 6=m0 P

W
m �

WW 0
P

W
m0 with P

W
m being

the projector onto H
W
m . This is useful to classify in-

formation with respect to the symmetry. Since �diag
is invariant under any symmetric actions, we refer to
the information in �diag as symmetry-invariant ion-
formation of W . The remaining information is then
called symmetry-variant information of W , which
is closely related to �off , or more specifically, the
coherence of � between di↵erent angular momenta.
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Since the unitary dynamics U
S
Kerr should respect

the symmetry of the Kerr black hole, it is also
decomposed into

L
m U

S
m. In the same spirit as

Ref. [4], we assume that the dynamics is su�ciently
complex that each U

S
m fully scrambles each subspace

H
S
m. However, since US

Kerr does not vary the angular
momentum m, it is not fully scrambling and hence,
decoupling theorem [7] cannot be directly applied.
Thus, we first show a new type of decoupling by the
unitary in the form of

L
m U

S
m:

Theorem 1 (Simplified and informal) Let
 SR be a state on H

SR, where H
S =

L
mH

S
m, and

C
S!E be a quantum channel. If the conditional

min-entropy Hmin(S⇤
|RE)� for the state �S

⇤ER is
su�ciently large, it holds for almost any U

S in the
form of

L
m U

S
m that

C
S!E

�
U

S SR
U

S†�
⇡

X

m

DS

dm
⇣
E
m ⌦ R

m, (1)

where DS = dimH
S, dm = dimH

S
m, ⇣

SE

is the Choi-Jamio lkowski state of C
S!E, ⇣

E
m =

TrS [PS
m⇣

SE
P

S
m], and  R

m = TrS [PS
m 

SR
P

S
m].

The formal and more general statement, includ-
ing the one-shot version, is given in Theorem 1 in
Ref. [19] and the technical manuscript. There, the
state �S

⇤ER, which consists of the initial state  ,
the channel C, and the decomposition ofHS , and the
explanation of the system S

⇤
ER are also provided.

Note that Theorem 1 reduces to the one-shot decou-
pling theorem [7] when the decomposition is trivial,
implying that this is a proper generalization.

We then investigate the information leakage from
Kerr black holes. We first introduce two recovery
errors: one is the error in recovering the symmetry-
invariant information of A and the other is for the
whole information of A, which are respectively de-
noted by �inv(⇠ : UKerr) and �(⇠ : UKerr). Both
are measured by the average trace distance (see the
technical manuscript for the details). Note that the
errors depend on the state ⇠ of the initial black hole
Xin, and also the dynamics UKerr.
In the technical manuscript, we consider various

initial states ⇠. Here, we show only the case where
the black hole is su�ciently old that ⇠Xin is the com-
pletely mixed state [22]. In this case, for almost any
UKerr, it holds that

�inv(� : UKerr) . 2
k�c`

2 , (2)

�(� : UKerr) .
p
2k�c` +N�C , (3)

Figure 2: A semi-log plot of upper bounds of
�inv(�) (yellow dash-dotted line), and �(�) as a
function of ` for k = 1 and various size N of the ini-
tial black hole Xin, i.e. N = 100 (black �), 300 (red
⇧), and 500 (blue⇤). While�inv(�) decreases expo-
nentially quickly, �(�) first decreases exponentially
quickly, then stops decreasing, and eventually drops
again when ` gets closer to N + k. The inset shows
�(�) as functions of N for k = 1, ` = 10k (black
�), 2 logN (red ⇧), 0.1N (blue 4), and 0.3N (green
⇤). By fitting these plots, we obtain Ineq. (3).

where 1/2 . c . 1 and C ⇡ 0.5 are numerically
evaluated, and depend on k and ` only weakly (see
also Fig. 2). In the technical manuscript, we ar-
gue the mechanism behind these results, which is
related to not only partial decoupling, but also an
intriguing encoding method, fluctuations of angular
momentum in the initial black hole Xin, and the en-
tanglement between S1 amd S2 generated by UKerr.
Since Ineq. (2) is independent of N , we clearly

observe that, no matter how large the initial black
hole is, symmetry-invariant information of A con-
tinues leaking out extremely quickly. On the other
hand, the error�(�) can be small only when the ini-
tial black hole Xin is su�ciently larger compared to
the Alice’s quantum source A. Otherwise, a certain
amount of information of A, which should be mostly
symmetry-variant one, remains unevaporated until
the last moment.

In the technical manuscript, we also argue that
these bounds are likely to be optimal.
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Abstract. The generation of entanglement between disparate physical objects is a key ingredient in the
field of quantum technologies, since they can have different functionalities in a quantum network. Here we
propose and analyze a generic approach to steady-state entanglement generation between two oscillators
with different temperatures and decoherence properties coupled in cascade to a common unidirectional
light field. The scheme is based on a combination of coherent noise cancellation and dynamical cooling
techniques for two oscillators with effective masses of opposite signs, such as quasi-spin and motional
degrees of freedom, respectively. The interference effect provided by the cascaded setup can be tuned
to implement additional noise cancellation leading to improved entanglement even in the presence of a
hot thermal environment. The unconditional entanglement generation is advantageous since it provides a
ready-to-use quantum resource. Remarkably, by comparing to the conditional entanglement achievable in
the dynamically stable regime, we find our unconditional scheme to deliver virtually identical performance
when operated optimally.

Keywords: Unconditional entanglement, hybrid system, coherent noise cancellation

1 Theoretical model

We consider a generic hybrid system composed
of two subsystems with effective masses sgn(mS) =
−sgn(mM) < 0 coupled to a unidirectional optical field

b̂(t) = (2π)−1/2
∫∞
−∞ b̂(Ω)e−iΩtdΩ (defined in a rotat-

ing frame with respect to the optical carrier) [Fig. 1].
Both subsystems are driven by individual thermal reser-
voirs. The positive/negative mass subsystem is referred
to as a motional/collective spin (M/S) degree of free-
dom and represented by a localized bosonic mode with
dimensionless canonical variables X̂j = (âj + â†j)/

√
2 and

P̂j = (âj − â†j)/(
√

2i), j ∈ {M,S}. The free evolution of
the hybrid system is (~ = 1)

Ĥ0 =
∑

j∈{M,S}

sgn(mj)
ωj
2

(X̂2
j + P̂ 2

j ), (1)

where ωj is the oscillator resonance frequency, and we
specialize to the resonant scenario ωj = ω. The Hamil-
tonian for two-mode quadratic interaction between the
localized oscillators and the light field is [1, 2]

Ĥint =
∑

j∈{M,S}

(
√

ΓjBâ
†
j b̂(tj)+

√
ΓjPâ

†
j b̂
†(tj)+H.c.), (2)

where we assume tS < tM, i.e., the optical field inter-
acts with S first. Equation (2) comprises two kinds of

∗xyhuang.bnu@gmail.com

interaction: beam-splitter (B), ∝ (â†j b̂+ H.c.), and para-

metric down-conversion (P), ∝ (â†j b̂
† + H.c.). These pro-

cesses produce sidebands at rates ΓjB = Γj sin2 θj ,ΓjP =
Γj cos2 θj [Fig. 1, inset], which we parametrize by Γj =
ΓjB+ΓjP and θj ∈ [0, π/2], the coupling rates and angles.

Taking the rotating wave approximation in the regime
of interest (ω � Γj & γ̃j,0), the interaction with
the light field is confined to two disjoint sidebands

b̂−(t) + b̂+(t) := (2π)−1/2(
∫ 0

−∞+
∫∞

0
)b̂(Ω)e−iΩtdΩ =

b̂(t), [b̂±(t), b̂†±(t′)] = δ(t − t′), centered at frequencies
Ω = ∓ω (relative to the carrier). By eliminating the
light field, the Heisenberg-Langevin equations can be ex-
pressed in terms of the forces f̂j :=

√
γj,0âj,in + f̂j,ba as

d

dt
âS = −γS

2
âS + f̂S,

d

dt
âM = −γM

2
âM + f̂M +

√
1− εRâ†S, (3)

where

f̂S,ba := − i(
√

ΓSBb̂−,in +
√

ΓSPb̂
†
+,in),

f̂M,ba := − i
√

1− ε(
√

ΓMBb̂+,in +
√

ΓMPb̂
†
−,in)

− i
√
ε(
√

ΓMBb̂
′
+,in +

√
ΓMPb̂

′†
−,in). (4)

Here, an additional uncorrelated vacuum b̂′±,in im-
pinges on M due to transmission loss ε between the
subsystems. [âj,in (t) , â†j,in (t′)] = δ(t − t′), represent
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Figure 1: Hybrid system consisting of two oscillators with
negative (S) and positive (M) mass, respectively. These
are coupled in cascade to a common unidirectional light
field via quadratic interactions induced typically by a
strong, classical carrier. For each oscillator, this results
in Stokes and anti-Stokes sidebands proportional to rates
ΓjP/B and of width γj , j ∈ {S,M} (see inset); the effective
resonance frequency Ωj ≡ sgn(mj)ω accounts for, e.g.,
the fact that energy must be extracted from a negative-
mass oscillator to excite it. The negative mass system
is driven by X̂L,in only (ΓSP = ΓSB) and its response is

mapped onto P̂L. The positive mass system is likewise
coupled to X̂L,in, but also to P̂L (ΓMP < ΓMB) at an ad-
justable rate R, so that the response of the negative mass
system drives the positive mass system. Additionally, the
oscillators are driven by distinct thermal reservoirs with
decoherence rates γ̃j,0 (wavy arrows).

the thermal noise fluctuations with 〈âj,in (t) â†j,in (t′)〉 =
(n̄j + 1)δ(t − t′) in terms of the thermal occupancy n̄j .
Finally, due to the unidirectionality of the light field, in-
formation can only propagate from the first to the second
subsystem in the cascade. The corresponding unidirec-
tional coupling rate is R =

√
ΓSBΓMP −

√
ΓMBΓSP =

−
√

ΓMΓS sin(θM − θS). R 6= 0 gives rise to a nontrivial
asymmetry of the cascaded system (3), which is found
to be advantageous for improved noise cancellation and
entanglement generation.

2 Unconditional steady-state solution

The steady-state solution to Eqs. (3) is

âS(t) =

∫ t

−∞
dt′e−(t−t′)γS/2f̂S(t′),

âM(t) =

∫ t

−∞
dt′{e−(t−t′)γM/2f̂M(t′) (5)

+
2
√

1− εR
γM − γS

[e−(t−t′)γS/2 − e−(t−t′)γM/2]f̂†S(t′)}.

When the second system (M) in the cascade is rela-
tively short-lived, γM > γS, then for R 6= 0 the unidi-
rectional coupling term ∝ Ra†S effectively prolongs the
memory time 1/γM by driving M with the spin response
contained in the light field, resulting in improved coher-
ent noise cancellation for R < 0 ⇔ θM > θS. Ideal can-
cellation can be achieved in the adiabatic limit γM � γS

and 2R/γM → −1 (for ε = 0) [Eq. (5)], which is compat-
ible with the demand for near-ground-state dynamical
cooling of the motional mode γM � γ̃M,0.

From Eqs. (5) the entries of the covariance matrix in
steady state are

∆2X̂S =
1

γS
(
ΓS

2
+ γ̃S,0),

∆2X̂M =
1

γM
(
ΓM

2
+ γ̃M,0 +

√
1− εR〈X̂S, X̂M〉), (6)

〈X̂S, X̂M〉 = −2
√

1− ε
γS + γM

(
√

ΓSΓM sin(θM + θS)− 2R∆2X̂S),

where 〈X̂S, X̂M〉 := 〈X̂SX̂M〉+ 〈X̂MX̂S〉 − 2〈X̂S〉〈X̂M〉.
As our entanglement figure of merit we consider the

variance of generalized EPR variables of the form [3, 4]

ξg =
∆2(X̂S + gX̂M) + ∆2(P̂S − gP̂M)

1 + g2
< 1, (7)

where g =
√

ΓM/[(1− ε)ΓS] cos(θM−π/4)/ cos(θS−π/4).

3 Spin-optomechanical implementation

Considering a spin-optomechanical implementation [5],
Fig. 2 presents the optimized unconditional steady-state
entanglement [Eq. (7)] as a function of quantum cooper-
ativities Cj := Γj/γ̃j,0, and illustrates the relaxation of
parameter requirements compared to dissipative entan-
glement generation (R = 0). Entanglement optimization
shows that for θM, beam-splitter interaction is optimal,
π/2 ≥ θM,opt > π/4, while for S, the Stokes and anti-
Stokes processes should be balanced, θS,opt ≈ π/4 ⇔
ΓSB ≈ ΓSP (QND interaction) yielding R < 0 [Fig. 3,
inset]; this is the scenario illustrated in Fig. 1.

Figure 2: Entanglement ξg (< 1 in the colored region)
as a function of Cj for optimized θS and θM while fixing
the parameters γS,0 = 2π×5kHz, n̄S = 1, γM,0n̄M = 2π×
10kHz, and assuming ε = 0. Optimal CM for given CS

is indicated by the dashed-dotted curve. Imposing the
additional constraint θS = θM ⇒ R = 0, entanglement
ξg < 1 is only possible in the subregion delineated by the
solid contour.

The optimal ξg is illustrated in Fig. 3. when ε = 0,
the asymptotic scaling of the unconditional entangle-
ment is ξg ≈

√
[1 + r + 1/(2n̄S + 1)]/(2CS), where r =

γ̃M,0/γ̃S,0. An improvement by up to a factor of 2 can be
found when comparing to the dissipative case (R = 0),
ξg ≈

√
2(1 + r)/CS. The presence of loss ε > 0 imposes
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Figure 3: Entanglement ξg as a function of CS for opti-
mized θS, θM and CM when R = 0 (thin black curves)
and R 6= 0 (thick red curves), when ε = 0 (solid),
and ε = 0.1 (dashed). (Inset) Plot of −2

√
1− εR/γM

(right scale, brighter green curves) as a function of CS

used in evaluating the optimized curves of the main plot,
and the relative entanglement improvement (left scale,
darker red curves) of the conditional scheme over the op-
timal unconditional scheme (referenced to the latter) for
ε = 0.1; the conditional performance is evaluated us-
ing parameters optimized for the unconditional scheme
(dashed) and optimal conditional parameters for QND
readout θS = θM = π/4 (solid). The fixed parameters
are γS,0 = 2π×5kHz, n̄S = 1, and γM,0n̄M = 2π×10kHz.

a lower bound ξg ≥
√
ε/(4− 3ε), which is also an im-

provement of up to a factor of 2 compared to R = 0.

4 Comparison with conditional scheme

Another benchmark is the conditional steady-state en-
tanglement generated by performing a continuous homo-
dyne measurement of the light field emanating from the
hybrid system [2]. The evolution of the system con-
ditioned on the measurement record is described by a
stochastic master equation whose steady state can be
found numerically and even analytically in our regime of
interest, n̄M � 1 [6]. For the fixed parameters considered
above [Fig. 3], we find in the limit of substantial entan-
glement that, remarkably, the conditional steady-state
entanglement matches that of our unconditional scheme
within a few-percent margin, even when separately opti-
mized under the same conditions in the dynamically sta-
ble regime (see Fig. 3, inset). We thus conclude that our
unconditional scheme leaves practically no information in
the output light about the noise affecting the squeezed
EPR variables. From a practical standpoint this is bene-
ficial as it allows optimal performance without the need
to measure the output field nor perform the feedback
required to make the conditional entanglement uncondi-
tional. Moreover, the dynamical cooling of the motional
mode occurring in the unconditional scheme facilitates
technical stability in the apparatus.

5 Conclusion

In conclusion, unconditional steady-state entangle-
ment in a cascaded negative-positive mass hybrid system
can be efficiently generated by engineering an asymmetric
interaction between the subsystems via the light field con-

necting them. Applications for such a resource of ready-
to-use entanglement include quantum teleportation [7]
and key distribution [8] in hybrid quantum networks.
The scheme can compete with conditional schemes, a fact
which we speculate can be elucidated by formally framing
our unconditional scheme in terms of a coherent-feedback
master equation. Moreover, we have evidence that this
sensing enhancement is closely linked to the generation
of EPR-type entanglement studied here [6], warranting
further study.
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Abstract. We describe a quantum algorithm to estimate the α-Renyi entropy of an unknown density
matrix ρ ∈ Cd×d for α 6= 1 by combining the recent technique of quantum singular value transformations
with the method of estimating normalised traces in the one clean qubit model. We consider the oracular
input model, where the input state is prepared via a quantum oracle that outputs a purified version of the
state. Our method requires O(daα/δε2) queries and dlog de+ 3 qubits to estimate the α-Renyi entropy to
additive precision ε, in contrast to results in the sample complexity model that generically require O(d2/ε2)
samples. here a is the dimension of the ancillary register used, and δ is a lower bound on the smallest
eigenvalue of ρ, assumed to be non-singular.

Keywords: Matrix functions, entropy estimation, DQC1

1 Introduction

Entropy functions are an extremely important charac-
terization of a quantum system. In entanglement the-
ory, they characterize the amount of entanglement con-
tained in bipartite quantum systems. They are also often
used as operational measures in quantum information-
processing tasks. As one of the most famous examples,
they provide the asymptotic lower bound for the quan-
tum systems to be compressed in a noiseless fashion,
i.e. Schumacher’s noiseless compression (Schumacher
(1995)). Hence it stands a fundamental question to eval-
uate these entropy functions efficiently.

For α > 0 and α 6= 1, the family of α-Renyi entropies
of a positive semidefinite (PSD) operator ρ ∈ Cd×d are
defined by

Sα(ρ) :=
1

1− α
log [ Tr (ρα)] . (1)

Taking the limit α → 1 gives the familiar von Neumann
entropy, S1(ρ) = − Tr (ρ log ρ). Hastings et al. (2010)
discuss a quantum Monte Carlo method to measure the
2-Renyi entropy of a many-body system by evaluating
the expectation value of a unitary swap operator using
a number of samples that scales polynomially number in
the system size. More in the flavour of quantum algo-
rithms, Acharya et al. (2017) study the copy complexity
of estimating von Neumann and Renyi entropies of mixed
states of quantum systems, in a model where as input one
gets n independent copies of an unknown d-dimensional
density matrix ρ. They allow arbitrary quantum mea-
surements and classical post-processing. The experimen-
tal measurement of the entropy of specific quantum sys-
tems has also recently been investigated (Islam et al.,
2015).

While it enables a tight characterisation of the copy
or sample complexity of the problem (table 1), other in-
put models are also possible which are not captured in

∗ss2310@cam.ac.uk
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this picture. In this paper, we consider an oracular in-
put model that is popular in quantum query algorithms,
wherein data is accessed in the form of a quantum state.
This state may be the output of some other quantum
subroutine, in which case that subroutine itself is the or-
acle. Such input models can also capture the fact that we
have access to the process generating the unknown quan-
tum state, which we may a priori expect to be useful in
reducing the effort required in estimating properties of
the state.

2 Main Result

We constructively prove the following theorem:

Theorem 1 Given a unitary process Uρ on Cd+a which
produces a purification |ψρ〉 of the actual input state ρ ∈
Cd×d with 1/δ � ρ � 1, there exists a quantum algorithm
that outputs an estimate of the α-Renyi entropy of ρ to
additive precision ε, making O(daα/δε2) uses of Uρ and
O(daα/δε2) additional 1- and 2-qubit gates, where α > 0
and α 6= 1.

The algorithm is constructed using the technique of
block-encodings and quantum singular value transforma-
tions (Chakraborty et al., 2018; Gilyén and Li, 2019) in
order to implement unitaries on the system plus ancil-
lary qubit registers that are block encodings of the power
functions ρα, and subsequently estimating the trace of
these unitaries in the DQC1 or “one-clean qubit” model
of computation (Knill and Laflamme (1998)).

The key contributions that set our idea apart from pre-
vious work are (1) the direct (without projections) use of
unitary block encodings of the target operator functions
obtained using quantum matrix function implementation
techniques, and (2) the replacement of amplitude estima-
tion using the quantum counting techniques of Brassard
et al. (2002) with trace estimation in DQC1. In essence,
this means that our algorithm outputs a deterministic
ε-additive approximation of the target quantity, and fur-
thermore, since we use the one-clean qubit model, our
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Functional Copies Θ(·) Queries O(·)

α < 1 d2/α d
α = 1 (von Neumann) d2 -

α > 1 integer d2−2/α dα
α > 1 non-integer d2 dα

Table 1: Dimension dependence of copy complexity char-
acterisations from Acharya et al. (2017) for estimating
the Renyi entropies of an unknown d-dimensional mixed
state for exponents of various ranges, contrasted with
query complexity in this paper (see section 4).

method does not require long coherence times or high
circuit depth where powers (controlled on ancillary reg-
isters) of an input unitary and need to be performed for
phase estimation.

3 Preliminaries

In this section we outline the main technical tools we
use, and provide a proof outline of our main result.

3.1 Input model

We assume access to a unitary process Uρ on Cd+a
which produces a purification |ψρ〉 of the actual input
state ρ in Cd×d

Uρ |0〉⊗d+a = |ψρ〉 =
n∑
i=1

√
pi |φ〉a |ψ〉d , (2)

so that Tra (|ψρ〉〈ψρ|) = ρ. The {|φ〉a} and {|ψ〉d} are
sets of orthonormal vectors on the ancillary and system
subspaces respectively. This model, known as the pu-
rified quantum query access model, is also discussed by
Gilyén and Li (2019) and Belovs (2019) in the context of
property testing.

Note that the case of a classical probability distri-
bution on d points with sampling access is subsumed
into this model by embedding it into the diagonal state
ρp =

∑d
i=1 pi |i〉.

3.2 Implementing power functions of Hermitian
matrices

A block-encoding UA of a Hermitian matrix A is essen-
tially a unitary that encodes a (sub-)normalised version
of A in its top left block, i.e.

UA =

(
A/‖A‖ ·
· ·

)
, (3)

and the behaviour and use of such encodings has been ex-
tensively studied in the last two years (Low and Chuang,
2017; Chakraborty et al., 2018; Gilyén et al., 2018).
Given access to UA, a variety of smooth matrix functions
(defined on the spectrum of A) may be implemented, in

the sense that a new block encoding UfA can be obtained
such that

UfA =

(
f(A)/β ·
· ·

)
, (4)

where β ≥ ‖f(A)‖. In particular, here we are interested
in power functions f(x) = xα for an exponent α > 0.
These can be realised using e.g. Lemma 9 of Chakraborty
et al. (2018) or Corollary 67 of Gilyén et al. (2018), with
minor modifications. The first step is to notice that by
Lemma 45 of Gilyén et al. (2018), the input oracle Uρ
in Eqn. (2) gives an exact block encoding Vρ on Cd+a;
indeed we have

Vρ =
(
U†ρ ⊗ 1d

)
(1a ⊗ SWAPd) (Uρ ⊗ 1d) . (5)

With the slightly technical assumption that ρ is full rank,
if 1

δ � ρ � 1 for δ > 0, then for ε ∈ (0, 1/2] and α > 0
an ε-approximate block encoding of ρα can be created

with O(max(1,α)
δ log 1

ε ) uses of Vρ and dlog ae+2 ancillary
qubits. The precision ε specifies how close the top left
block of the new encoding is to ρα in the operator norm.
We quote all the lemmata that we use in the appendix
for convenience.

The assumption of full rank is reasonable if we expect
to deal with noisy or random states, since lower rank
indicates being closer to a pure state, as measured by
the S0 or max-entropy. Furthermore, there are ways to
implement the matrix function only on the non-singular
part of the input (e.g. Harrow et al. (2009)), and for
classical distributions, we can consider the restriction to
the support of the distribution by pre-processing using
e.g. sparse PCA.

3.3 DQC1 Model

The DQC1 or “one-clean qubit” model of computation
is based on the use of a single well-controlled or ‘clean’
qubit, and a number n of noisy qubits that are taken to be
in the maximally mixed state (Knill and Laflamme, 1998;
Shor and Jordan, 2008). Algorithms in this model are
embedded into some controlled n-qubit unitaries, and the
outputs are encoded into the probability of observing 0
on measuring the clean qubit. Estimating the normalised
trace of a unitary is known to be a DQC1-complete prob-
lem (Knill and Laflamme, 1998).

|0〉 H • H
1

2

U

1

2

...
...

1

2

Figure 1: A DQC1 circuit that can be used to estimate
Tr(U), for which no classical efficient algorithm is known.
Measurements are made in the computational basis.

The initial state consists of one qubit set to the |0〉
state, and n qubits in the maximally mixed state, i.e.
ξin = |0〉〈0| ⊗ 1n/2

n = 1+Z
2 ⊗ 1n/2

n. We can write the
final state after the application of the circuit but before
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measurement in figure 1 as

ξout =
1

2n+1

(
1n U†

U 1n

)
, (6)

from which we see that the expectation values of the Pauli
X and Y operators for the clean qubit give the estimates
〈X〉 = 2−nRe( Tr (U)) and 〈Y 〉 = −2−nIm( Tr (U)).

Here we are obtaining an ε additive approximation Ã
to some unknown quantity A, i.e. |A− Ã| ≤ ε. Often we
may be interested in an ε multiplicative approximation
with (1− ε)A ≤ Ã ≤ (1 + ε)A. Given a lower bound 0 <
λ ≤ |A|, an appropriate additive precision can be chosen
to get a desired precision multiplicative approximation.
The complexity of multiplicative approximation increases
by a factor of O(λ−1) over additive approximation. If we
know independent of the problem size that |A| > 1, then
an ε-additive approximation immediately gives a good
ε′ < ε multiplicative approximation.

4 Outline of the Algorithm

Using the block encoding technique, we first convert
the block encoding of ρ into an ε-approximate block en-
coding for ρα (note that for integral values of α we can ob-
tain an exact encoding with ε = 0, e.g. using Chebyshev
polynomial methods as in Subramanian et al. (2018)):

Uρ =

(
ρ ·
· ·

)
7→
(
fα(ρ) ·
· ·

)
≈ Uρα ,

where ||fα(ρ) − ρα|| < ε. This conversion requires

O
(

max(1,α)
δ log 1

ε

)
uses of the block encoding of Uρ, and

dlog ae+2 ancillary qubits, where δ > 0 lower bounds the
least eigenvalue of ρ (Corollary 67, Gilyén et al. (2018)).

The trace of this d+ a-dimensional unitary Uα can be
estimated to precision ε with probability at least 1 − η
with O(log 1

η/ε
2) uses of the unitary (or more precisely

of the DQC1 circuit in Fig. 1).
Since this unitary has the block form

Uα =

(
ρα ·
· ·

)
,

its trace contains a contribution from Tr (ρα). What we
would like is to isolate this term alone. Importantly, we
know that Tr (ρα) will be real and positive.

Using the same unitary, but applying an appropriate
block-encoded phase operation to convert the target ma-
trix function to iρα allows us to use the difference be-
tween the real and imaginary parts of the trace of the
two unitaries Uα and U ′α to recover Tr (ρα), i.e. consider
the unitary U ′α = UαVphase where the unitary Vphase is
defined by

Vphase = i |0〉〈0| ⊗ 1 +
n−1∑
k=1

|k〉〈k| ⊗ 1, (7)

which can easily be arranged using an ancillary qubit
initialised to the |+〉 state to which a condition rotation
of Ry(π/2) is applied.

Thus, exploiting the fact that the trace we are in-
terested in is purely real, we can estimate Tr (ρα) by
Re( Tr (Uα)) − Re( Tr (U ′α)), using twice as many mea-
surements and uses of Uα as required for estimating
Re( Tr (Uα)) itself.

Finally, since we get the normalised trace, the error in
the actual target functional we are estimating increases
by the factor of 2log d+log a, which means that we need to
choose ε′ = 2log d+log aε in the DQC1 step. This results
in a net query complexity of O(daα/ε2), which is similar
to the copy complexity results in Acharya et al. (2017),
but closer to linear in the dimension of the input state.
The logarithmic factor in ε appearing in the block encod-
ing contributes at most a logarithmic factor to the final
complexity, which we leave out of the expression above.

5 Discussion and Outlook

One way to motivate trace estimation in DQC1 is the
well-known Hadamard test. The same asymptotic com-
plexity in terms of the number of queries, qubits, and
measurements might also be achievable using a SWAP
test based approach, scaling as O(d/ε2) (although the
constants and exact gate complexities are expected to
be different, and we hope to perform a thorough analy-
sis). The advantage in using the DQC1 method is that
only one well controlled, ‘clean’ qubit is required. On
the other hand, using the SWAP test to estimate mea-
surement outcome frequencies requires the preparation of
suitable initial states which introduces additional sources
of error and circuit complexity. The same is true of
the amplitude estimation methods which have previously
been used for entropy estimation in quantum property
testing algorithms, which in addition requires long coher-
ence times and the application of Uρ and U†ρ controlled on
large ancillary registers, and the quantum fourier trans-
form for phase estimation.

One of the drawbacks of our method is that we obtain
estimates of the target entropic quantities to additive pre-
cision rather than multiplicative precision — multiplica-
tive precision is particularly preferred when the quantity
of interest could be small, and entropies can indeed take
values in [0, 1) ⊆ [0, log d] where d is the dimension of the
system — although this happens only when the input is
not very random (and close to being a pure state), as
quantified by the small entropy.

We do not claim that the method we have proposed
is optimal in either the dimension or the precision, and
are considering different techniques in ongoing work, in
order to improve the query complexity. We remark that
the block encoding methods allow the implementation
of several other matrix functions, which may facilitate
the estimation of other entropy-like matrix functionals;
there are also several possible applications of estimating
entropic functionals as a subroutine in algorithmic pro-
cedures for pattern matching, compression tasks, and so
on, that could take advantage of our method.
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A Implementing power functions of den-
sity matrices

The conversion of a purified access oracle as in Eqn. 2
into a block encoding for ρ can be achieved using the
following result.

Lemma 2 (Lemma 45, Gilyén et al. (2018))
Given a unitary Uρ acting on n + a-qubits, which
prepares a purification Uρ |0〉 |0〉 = |ψρ〉 of an n-qubit
density operator ρ, such that Tra (ψρ) = ρ the unitary(
U†ρ ⊗ 1n

)
(1a ⊗ SWAPn) (Uρ ⊗ 1n) gives an exact block

encoding of ρ.

A block encoding as above can be used to implement ε-
approximate block encodings of power functions ρα given
the promise that the spectrum of ρ ∈ [δ, 1] for δ > 0 by
using polynomial approximations, resulting in the follow-
ing corollary.

Lemma 3 (Gilyén et al. (2018)) Given an exact
unitary block encoding Vρ of a d-qubit density matrix
ρ, that uses a- ancillary qubits, we can implement an
ε-approximate block encoding of ρc for c > 0 using

O(max(1,c)
δ log 1

ε ) applications of Vρ, and a+ 2- ancillary
qubits. Here we assume that ‖ρ‖ ≥ δ > 0.
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Abstract. The indirect measurement of unitary operators such as the Hadamard test plays an important
role in many quantum algorithms. In certain cases, the indirect measurement can be reduced to the direct
measurement, where a quantum state is destructively measured. Here, we investigate in under what
conditions such a replacement is possible and develop a general methodology. The results can be applied
to construct quantum circuits to evaluate the analytical derivatives of a parameterized quantum state and
one to measure the out-of-time-order correlator. Our protocols can reduce the depth of a quantum circuit
by making the controlled operation unnecessary, and thus are suitable for near-term quantum algorithms.

Keywords: Hadamard test, indirect and direct measurement, near-term quantum device

1 Introduction

The output from quantum computation is measured
in two ways: indirect and direct measurements of ob-
servables. In the former, the measured quantum state
is not completely destructed, whereas, in the latter, the
state collapses to the basis on which we perform the mea-
surement. The simplest and most important protocol for
the indirect method is the Hadamard test (Fig. 1). In
the Hadamard test, we add an ancillary qubit and ap-
ply a controlled unitary gate, a unitary U to a target
quantum state |ψ⟩ conditioned on the ancilla being |0⟩
or |1⟩ to measure the expectation value of U , ⟨ψ|U |ψ⟩,
as the expectation value of the Pauli Z operator of the
ancilla. This measurement allows us to reuse the state
(I±U) |ψ⟩ /

√
2 after the measurement, which is the prop-

erty exploited in algorithms like iterative phase estima-
tion [1, 2].

Such indirect approaches can achieve a precision of
ϵ in O(1/ϵ) time. However, the implementation of the
controlled-U gate can be a hard task especially for so-
called noisy intermediate scale quantum (NISQ) [3] de-
vices. In fact, direct measurements can be satisfiable
when only the expectation value of an observable is re-
quired. A famous example is the estimation of the energy
expectation values in the variational quantum eigensolver
(VQE) [4], which is one of the most promising applica-
tions of NISQ devices. The time required to achieve a
precision of ϵ is O(1/ϵ2) in this approach, which is much
longer than that of the indirect approach [5, 6].

Another example, which replaces the indirect approach
with the direct one, is the destructive swap test [7]. The
destructive swap test is a direct version of the swap test
[8] which measures the overlap | ⟨ψ|ϕ⟩ |2 between two
quantum states |ψ⟩ and |ϕ⟩. Initially proposed in [7],
this method has been rediscovered by machine learning
approach [9], and it is now utilized in the application of
NISQ devices [10, 11, 12]. Ref. [13] has proposed to use
the destructive swap test to measure | ⟨ψ|U |ψ⟩ |2 for an
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Figure 1: Simplest Hadamard test. In the figure, b ∈
{0, 1} and U , H, S are an arbitrary quantum gate,
the Hadamard gate, and e−iπZ/4, respectively. When
b = 0, ⟨Z⟩ = Re ⟨ψin|U |ψin⟩ and when b = 1, ⟨Z⟩ =
Im ⟨ψin|U |ψin⟩.

arbitrary U by substituting |ϕ⟩ with U |ψ⟩, and the pro-
tocol was extended to measure the quantity | ⟨ψ|P |ϕ⟩ |2,
where P is a qubit-permutation operator, which can be
employed to estimate nonlinear functionals of a quantum
state ρ such as Tr(ρn) [14], with a low-depth circuit.
Furthermore, methods for gradient estimation em-

ployed in variational quantum algorithms (VQA) also
illustrate the correspondence between those two ap-
proaches for certain cases. VQAs, such as the VQE,
employ a parameterized quantum circuit U(θ) and clas-
sical optimizer, which minimizes a cost function L(θ) by
iteratively tuning the circuit parameter θ. The cost is
usually computed from the expectation values of observ-
ables, therefore, their gradient can be a key ingredient for
the optimization. We can estimate the gradient in two
ways. Indirect and direct schemes have been proposed in
Ref. [15] and Refs. [16, 17], respectively. The indirect
method uses two different quantum circuits to estimate
one element of the gradient.

These examples motivate us to further develop the
methodology for replacing the indirect measurement with
the direct measurement. In this work, we describe the
general protocol for such replacements. The protocols
for the Hadamard test involving a single controlled gate
are given in Results 1 and 2. Result 1 is a generalization
of the method used in VQE, and Result 2 is a general-
ization of the destructive swap test which can be applied
to general local unitary gates. Finally, in Result 3, we
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describe a method to replace the Hadamard test involv-
ing multiple controlled gates. It is a generalization of
the method to estimate the gradient of observables with
direct measurements, that is, we employ multiple quan-
tum circuits to estimate the output of the Hadamard
test. The proposed method can significantly reduce the
depth of a quantum circuit and the accumulation of noise
in the measured quantity. Based on the above results,
we propose new methods derivatives including the met-
ric tensor gjk = ∂⟨ψ(θ)|

∂θj

∂|ψ(θ)⟩
∂θj

of the variational quan-

tum state |ψ(θ)⟩. Specifically, the metric tensor is a key
quantity in variational quantum simulations [18, 19]. Fi-
nally, we present a new protocol to measure the multi-
point correlator, such as the out-of-time-order correlators
(OTOC), which is an important quantity in a quantum
many-body system as a possible measure of the quantum
chaos [20, 21, 22, 23].

2 Results

2.1 Hadamard test with one controlled gate

A simple case of possible replacements is where the
gate U can be decomposed into the sum of the Pauli
products P = {I,X, Y, Z}⊗n consisting of the polyno-
mial number of terms. In this case, we can measure
⟨ψ|U |ψ⟩ without the Hadamard test by evaluating each
of the Pauli terms separately.

Result 1: If the gate U can be decomposed into the
sum of the Pauli products with the polynomial number of
terms with respect to the number of qubits, the output of
Fig. 1, ⟨ψ|U |ψ⟩, can be estimated by direct measurement
by evaluating each Pauli term.

A prototypical example of the above result is the re-
placement of the phase estimation with direct measure-
ments in the VQE. The tradeoff of the protocol above is
the time required to achieve the precision of ϵ. It scales as
O(1/ϵ2) in the direct approach and O(1/ϵ) in the indirect
approach, i.e., the phase estimation.

The next result is a method for another case where
the quantum gate U is sufficiently local. It is the gen-
eralization of the destructive swap test [7]. We say U is
k-local if U can be decomposed into a tensor product of
unitary matrices as U =

⊗
q Uq and each Uq acts on at

most k-qubit.
Result 2: Let k be an integer such that k =

O(poly(log n)), where n is the number of qubits. For
any k-local quantum gate U , it is possible to estimate
⟨ψ|U |ψ⟩ up to the precision ϵ in time O(k22k/ϵ2) without
the use of the Hadamard test, with classical preprocessing
of time O(poly(log n)).
Rough reasoning for this result is the following. If we

let k = O(log n), U can be diagonalized on classical com-
puter in time O(poly(log n)). The classical computation
can also find a quantum circuit that transforms eigen-
vector of U to the computational basis, and a k-qubit
circuit in general needs O(k22k) elementary gates to be
constructed [24]. We can apply the circuit to a state |ψ⟩
and measure the resultant state in the computational ba-
sis to evaluate.

2.2 Hadamard test with multiple controlled
gates

The protocol given below is for the Hadamard test with
two controlled gates (Fig. 2 (a)). It is straightforward
to generalize the method to the case of more than two
controlled gates. In the case of Fig. 2 (a), the measured
quantity is ⟨ψ|W †UWe−iθ1G/2|ψ⟩. If we assume G2 = I,

⟨ψ|W †UWe−iθ1G/2|ψ⟩

= cos
θ1
2
⟨ψ|W †UW |ψ⟩ − i sin

θ1
2
⟨ψ|W †UWG|ψ⟩ . (1)

The first term on the right hand side of the above for-
mula is merely the expectation value of U with respect
to the state W |ψ⟩, therefore, if U satisfies one of the
conditions mentioned in Results 1 and 2, we can evalu-
ate it efficiently. Even if U does not satisfy either of the
conditions, the protocol using the destructive swap test
to measure | ⟨ψ|U |ψ⟩ |2 [13] can be utilized to estimate it
using a quantum computer with 2n qubit. For the second
term, we present a method involving a projective mea-
surement of G, which we denote by MG. To evaluate
⟨ψ|W †UWG|ψ⟩, we use the following four quantities,

⟨U⟩± = ⟨ψ|e∓iπG/4W †UWe±iπG/4|ψ⟩ , (2)

⟨U⟩MG=±1 =
1

4p(MG = ±1)
⟨ψ|(I ±G)W †UW (I ±G)|ψ⟩ ,

(3)

where p(MG = ±1) is the probability of getting the result
MG = ±1 by performing MG on |ψ⟩; p(MG = ±1) =
∥ 1
2 (I ± G) |ψ⟩ ∥2. Figure 2 (b) and (c) show the quan-

tum circuits to evaluate these quantities. With these,
⟨ψ|W †UWG|ψ⟩ can be reconstructed by,

⟨ψ|W †UWG|ψ⟩
= p(MG = +1)⟨U⟩MG=+1 − p(MG = −1)⟨U⟩MG=−1

+
i

2
(⟨U⟩− − ⟨U⟩+). (4)

Note that when U is Hermitian, the first two terms cor-
respond to the real part, and the rest correspond to the
imaginary part of ⟨ψ|W †UWG|ψ⟩. Therefore, we obtain
the following.

Result 3: Let W and U be unitary matrices, and G
be a Hermitian matrix. Suppose U satisfies one of the
condition specified in Results 1 or 2, and assume G2 = I.
It is possible to estimate the output of the circuit in Fig.
2 (a), ⟨ψ|W †UWe−iθ1G/2|ψ⟩, by using the four quantum
circuits in Fig. 2 (b) and (c), and by combining their
output with Eq. (4). Especially, if the eigenvalues ±1
of G have equal degeneracy, the protocol works without
an ancilla qubit. Even if U does not satisfy either of the
conditions specified in Results 1 and 2, the protocol works
with the method proposed in Ref. [13] that measures the
expectation value of a unitary.

Note that depending on experimental settings, we may
still need an ancilla qubit to perform the nondestructive
measurement. However, the technique can reduce the
noise as the number of gates is fewer.
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Figure 2: (a) Hadamard test with two controlled gates.
In the figure, W is an arbitrary quantum gate. (b), (c)
Quantum circuits to estimate the output of (a) with di-
rect measurement. MG is the projective measurement of
G

3 Application

3.1 Metric tensor measurement

For the first application, we describe the direct mea-
surement of metric tensor of a parameterized quantum
state. In VQAs such as the VQE [4], we employ a param-
eterized quantum circuit U(θ) and an input state |ψin⟩
on an n-qubit quantum computer, and optimize the cir-
cuit parameter θ with respect to an expectation value
⟨A(θ)⟩ = ⟨ψin|U †(θ)AU(θ)|ψin⟩ of an observable A. Let
us consider the case where the parameterized quantum
circuit is constructed as U(θ) = UL(θL) · · ·U2(θ2)U1(θ1)
and each unitary Uj(θj) is generated by a Pauli prod-
uct Pj ∈ {I,X, Y, Z}⊗n; Uj(θj) = exp (−iθjPj/2). We
denote Uk(θk) · · ·Uj(θ1) by Uk:j . In VQAs, we consider
A which can be decomposed into a sum of Pauli prod-
ucts, and therefore, without loss of generality, we assume
A ∈ {I,X, Y, Z}⊗n.

The metric tensor gjk = ∂⟨ψ(θ)|
∂θj

∂|ψ(θ)⟩
∂θj

of a variational

quantum state |ψ(θ)⟩ = U(θ) |ψin⟩ can be measured in
the same manner. This quantity is the key to execute
variational quantum simulations. Specifically, the imag-
inary and the real part of gjk are employed for the sim-
ulation of real [18] and imaginary time [19] evolutions,
respectively. A quantum circuit for the measurement of
gjk from Refs. [18, 19] is shown as Fig. 3 (a). The ex-
plicit expression for gjk, when k > j, can be written as:

gjk = 1
4 ⟨ψin|U †

j:1PjU
†
k:j+1PkUk:1|ψin⟩ . Figure 3 (a) shows

the quantum circuit for the indirect measurement of gjk.
Again, from Result 3, this circuit can be replaced with
the ones in Fig. 3 (b) and (c). The explicit expression is:

Re(gjk) =
1

4

(
p(MPj = +1)⟨Pk⟩MPj=+1

−p(MPj = −1)⟨Pk⟩MPj=−1

)
, (5)

Im(gjk) = −⟨Pk⟩+ − ⟨Pk⟩−
8

. (6)

Figure 3 (a) differs from Fig. 2 (a) with two additional X
gates on the ancilla. The consequence of this is a change
of sign in the imaginary part (compare Eq. (6) and (4)).

Finally, we propose a method to estimate the OTOC
on quantum computers. The OTOC F (t) at time t is de-

�:1 �

� �

|�in⟩

0 anc � ,�

�:+1 �

� � ��
(a)

(b)

(c)

�:1 ℳ��|�in⟩ �:+1 � ���=±1

�:1 �±���/4|�in⟩ �:+1 � ±

Figure 3: Quantum circuit for the estimation of the real
and imaginary part of the metric tensor gjk. (a) Indirect
method from Refs. [18, 19]. b ∈ {0, 1}. When b =
0, ⟨Zanc⟩jk,0 = 4Re(gjk) and when b = 1, ⟨Zanc⟩jk,1 =
4Im(gjk). (b) Direct method to estimate the real part
of gjk. (see Eq. (5).) (c) Direct method to estimate the
imaginary part of gjk. (see Eq. (6).)

� �

|�⟩

0 anc �anc

ܤ ܣܣ �ሺ�ሻ �†ሺ�ሻ

��

Figure 4: Indirect approach to measure the OTOC of
operators A and B from Ref. [26]. In the figure, U(t) =
e−iHt.

fined with two non-commuting operators A and B and a
system Hamiltonian H as F (t) = ⟨B†(t)A†B(t)A⟩, where
B(t) = eiHtBe−iHt. This is an important quantity in
quantum many-body physics which measures how chaotic
a given quantum system is [20, 21, 22, 23, 25]. In Ref. [26]
a circuit to evaluate F (t) was proposed, which is shown in
Fig. 4. If we assume A2 = I, the circuits in Fig. 2 (b) and
(c) and Eq. (4) with a change of the sign of the imaginary
part, which is the consequence of the X gates performed
on the ancilla qubit, can be applied. More concretely, to
evaluate F (t), we replace W in Eq. (4) with U†(t)BU(t),
U and G with A. This method can easily be extended to
the measurement of higher order correlators.

4 Conclusion

We provided general protocols to replace indirect mea-
surements, especially, the Hadamard test, with the di-
rect measurement. The proposed methods to replace the
Hadamard test provides a mean to evaluate the analytical
gradient, metric tensor, Hessian, and even higher order
derivatives with direct measurements for parameter tun-
ing in variational quantum algorithms. They can also
be applied for the estimation of OTOC. The presented
protocols can significantly reduce the depth of a quan-
tum circuit, and consequently, are important subroutines
for quantum algorithms, especially for those of NISQ de-
vices.

The technical version of this work is available on
arXiv:1901.00015.
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Quantum compiling with diffusive sets of gates
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Abstract. Given a set of quantum gates and a target unitary operation, the most elementary task of
quantum compiling is the identification of a sequence of the gates that approximates the target unitary
to a determined precision ε. The Solovay-Kitaev theorem provides an elegant solution which is based on
the construction of successively tighter ‘nets’ around the unity comprised by successively longer sequences
of gates. The procedure for constructing the nets, according to this theorem, requires accessibility to
the inverse of the gates as well. In this work, using the theory of random walks we propose a method for
constructing nets around unity without this requirement. The algorithmic procedure is applicable to sets of
gates which are diffusive enough, in the sense that sequences of moderate length cover the space of unitary
matrices in a uniform way. We prove that the number of gates sufficient for reaching a precision ε scales
as O

(
log(1/ε)log 3/ log 2

)
while the pre-compilation time is increased as compared to the Solovay-Kitaev

algorithm by a polynomial factor 3/2.

Keywords: Quantum gates, Compiling, Quantum Control

Approximation up to a given accuracy of an arbitrary
unitary transformation by a series of standard transfor-
mations (gates) is an important ingredient of program-
ming of quantum computers, which was formulated and
solved [1, 2] in the case where the set of M predeter-
mined standard transformations contains both direct op-
erations and their inverses. The so called Solovay-Kitaev
(SK) theorem provides the proof of existence together
with the method for constructing the solution. Based on
the elements in the proof of the SK theorem, the Dawson-
Nielsen (DNSK) algorithm [3] provides the exact steps for
identifying a series of length L, which scales with the re-
quired accuracy ε as O

(
log(1/ε)3.97

)
, and with running

time as O
(
log(1/ε)2.71

)
.

Here we address the question [3] whether is possible to
generalize the results of SK theorem onto the case where
the set of the predetermined operations does not contain
the inverses. In view of the fast development of quan-
tum technologies, this problem has theoretical but mostly
practical interest since experimentalists often do not have
access to inverse operations– they are restricted to semi-
group rather than group operations. In [4] progress on
answering this question has been reported and our answer
[5] is also positive and conditional on a specific property
of the given set. We require that sequences of gates of
moderate length (composed by 15− 20 gates) cover the
space of unitary matrices in a uniform way, see Fig.1.
More specifically, we propose an algorithmic procedure
that is based on diffusion process and justified by the
theory of random walks. This method achieves an im-
proved scaling of the length L with the required accuracy
ε, O

(
log(1/ε)log 3/ log 2

)
.

The improvement in the scaling of length is justi-
fied by an observed polynomial counter-increase in pre-
compilation time by a polynomial factor 3/2, as this com-

∗mandkat@gmail.com
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Figure 1: Geometric representation in the space of uni-
tary matrices of all sequences of length 17 generated
by two different computationally universal sets of single
qubit gates. (a) A diffusive set, and (b) a non-diffusive
one.

pares to DNSK algorithm. This confirms the expected in-
terplay between the relations characterizing algorithmic
procedures solving similar problems. When the inverses
are included in the set, the notion of diffusive sets con-
verges to the notion of ‘ efficiently computational sets’ in-
troduced in [6] and our results partially fulfill the predic-
tions of that work concerning the considerable improve-
ment of the scaling of length with accuracy.

In the Fig. 2 we present quantum compiling results
obtained with the proposed algorithm versus the ‘fast’ [7]
DNSK and we confirm our theoretical predictions. More
precisely, we approximate the phase rotation gates,

R2d =

(
1 0

0 eiπ/2
d

)
, with d = 1, . . . 7 (1)

using the introduced algorithm and then the fast DNSK
keeping the parameters of produced nets very similar in
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both cases. For both methods we have used the same
pair of diffusive gates, but naturally for the latter we
have included the inverses. On each ‘column’ the seven
points describe the approximation of the seven phase ro-
tations Eq.(1). There is no correlation between the pre-
cision achieved and the order d of the phase gates and
for this reason we have not marked with d the points on
the plot. For each method we present three numerical
results (three columns) that correspond to three differ-
ent lengths of the initial sampling net r = 16, 17, 18,
giving different lengths L to the final sequence that
approximate the gate (horizontal axis on Fig. 2). To
quantify the accuracy ε we use as measure of distance:

dF

(
Û1, Û2

)
=

√
2−|Tr(Û1Û

−1

2 )|
2 . More technical details

on this example can be found in the Appendix of [5]
while the related programs can be downloaded from the
site www.qubit.kz.

à
à

à

à

àà

à

à

à

à

à
à

à à

àà

à

à

à

à

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

60 70 80 90 100
L1´10-4

2´10-4

5´10-4

0.001

0.002

0.005

0.010
¶

New Algorithm Fast DNSK

Figure 2: Accuracy of approximation ε of phase rota-
tion gates R2d for d = 1, · · · , 7 by sequences of two
diffusive gates, plotted versus length of the sequence.
Blue squares: results obtained with the introduced al-
gorithm. Red circular dots: results of the Fast DNSK.
Different ‘columns’ correspond to different initial lengths
r of the sequences in the sampling net. From left to right:
r = 16, 17, 18, 16, 17, 18.
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3School of Computer and Communication Sciences,
cole Polytechnique Fdrale de Lausanne, CH-1015 Lausanne, Switzerland

4School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
(Dated: 17 July 2019)

Quantum networks allow for completely novel forms of quantum correlations. In particular,
quantum nonlocality can be demonstrated without having input settings, only by considering the
joint statistics of fixed local measurement outputs. However, previous examples of this phenomenon
all come from the usual form of quantum nonlocality, via the violation of a standard Bell inequality.
Here we present novel examples of “quantum nonlocality without inputs”, which we believe represent
a new form of quantum nonlocality, genuine to networks. Our examples, for the triangle network,
involve both entangled states and joint entangled measurements. We generalize it to any odd-cycle
network.

Introduction.— Bell’s theorem is arguably among the
most important results in the foundations of quantum
theory [1]. It also had a major influence on the develop-
ment of quantum information science [2], and led recently
to the so-called device-independent paradigm [3–6].

An interesting direction is to understand quantum non-
locality in scenarios involving more than two observers.
The standard approach to this problem considers many
distant observers sharing an entangled state distributed
by a common source, and leads to interesting new effects
[7]. This represents the simplest generalization of quan-
tum nonlocality to the multipartite case, and most of the
concepts and tools developed for bipartite nonlocality can
generally be directly extended here.

Recently, a completely different approach to multipar-
tite nonlocality was proposed [8, 9], focusing on quan-
tum networks. Here, distant observers share entangle-
ment distributed by several sources which are assumed

FIG. 1. The triangle network features three observers (green
circles), connected by three independent bipartite sources (red
ovals). Here the sources distribute local variables (i.e. shared
randomness).

to be independent from each other. By performing joint
entangled measurements (such as the well-known Bell
state measurement used in quantum teleportation [10]),
observers may correlate distant quantum systems and
establish strong correlations across the entire network.
Typically, each source connects here only a strict sub-
set of the observers. It turns out that this situation is
fundamentally different from standard multipartite non-
locality, and allows for radically novel phenomena. As
regards correlations, it is now possible to witness quan-
tum nonlocality in experiments where all the observers
perform a fixed measurement, i.e. they receive no input
[9, 16–19]. This effect of quantum nonlocality without in-
puts is remarkable, and radically departs from previous
forms of quantum nonlocality.

So far, however, all known examples of quantum nonlo-
cality without inputs can be traced back to standard Bell
inequality violation. This naturally leads to the question
of whether completely novel forms of quantum nonlocal-
ity, genuine to the network configuration, could arise.
Here we address this question, by presenting an instance
of quantum nonlocality in the triangle network, which we
argue is fundamentally different from previously known
forms of quantum nonlocality. In particular, our con-
struction crucially relies on the combination of shared
entangled states and joint entangled measurements per-
formed by the observers. We present several generaliza-
tions of our main result.

Scenario and main result.— We consider the so-called
triangle quantum network sketched in Fig. 1. It features
three observers (Alice, Bob and Charlie). Every pair of
observers is connected by a (bipartite) source, providing
a shared physical system (represented e.g. by a classical
variable or by a quantum state). Importantly, the three
sources are assumed to be independent of each other.
Hence, the three observers share no common (i.e. tripar-
tite) piece of information. Based on the received physical
resources, each observer provides an output (a, b and c,
respectively). Note that the observers receive no input in
this setting, contrary to standard Bell nonlocality tests.
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The statistics of the experiment are thus given by the
joint probability distribution P (a, b, c).

Characterizing the set of distributions P (a, b, c) that
can be obtained from physical resources (in particular
classical or quantum) is a highly non-trivial problem.
The main difficulty stems from the assumption that the
sources are independent. This makes the set of pos-
sible distributions P (a, b, c) non-convex, and standard
methods used in Bell nonlocality are thus completely un-
adapted to this problem. Strong bounds on the limits of
classical correlations are thus still missing, which in turn
renders the discussion of quantum nonlocality in the tri-
angle network challenging.

Here we follow a different approach in order to present
instances of quantum nonlocality in the triangle network.
Specifically, we first construct explicitly a family of quan-
tum distributions PQ(a, b, c), using both entangled quan-
tum states (distributed by each of the three sources),
and entangled joint measurements performed by each ob-
server. Then we show that these quantum distributions
cannot be reproduced by any “trilocal” model, i.e. a lo-
cal model “a la Bell” where all three sources are assumed
to be independent from each other. Formally, we prove
that

PQ(a, b, c) 6= (1)∫
dα

∫
dβ

∫
dγPA(a|β, γ)PB(b|γ, α)PC(c|α, β)

where α ∈ X, β ∈ Y and γ ∈ Z represent the
three local variables distributed by each source and
PA(a|β, γ), PB(b|γ, α), PC(c|α, β) represent arbitrary de-
terministic response functions for Alice, Bob and Charlie.
Our proof does not rely on the violation of some Bell-type
inequality, but is based on a logical contradiction. More
precisely, we first identify a certain number of necessary
properties that any trilocal model should have in order
to reproduce PQ(a, b, c), and then show that these prop-
erties cannot all be satisfied at the same time.

Let us now construct explicitly our quantum distribu-
tions PQ(a, b, c). Each source produces the same pure
maximally entangled state of two qubits,

|ψγ〉AγBγ = |ψα〉BαCα = |ψβ〉CβAβ =
1√
2

(|00〉+ |11〉) .

Note that each party receives two independent qubit sub-
systems; for instance Alice receives subsystems Aβ and
Aγ . Next, each party performs a projective quantum
measurement in the same basis. In the following, we use
the basis (a set depending on one real parameter u) given
by

|↑〉 = |01〉 |χ0〉 = u |00〉+ v |11〉
|↓〉 = |10〉 |χ1〉 = v |00〉 − u |11〉 (2)

with u2 + v2 = 1 and 0 < v < u < 1. For Alice, we label
it {|φa〉AβAγ} for φa ∈ {↑, ↓, χ0, χ1} and adopt similar

notations for Bob and Charlie. Remark that only two

out of the four states in that basis are entangled. The
statistics of the experiment are given by

PQ(a, b, c) = | 〈φa| 〈φb| 〈φc| |ψγ〉 |ψα〉 |ψβ〉 |2,

where we did not specify the Hilbert spaces supporting
the states. Note that when evaluating PQ(a, b, c), one
should be attentive to which Hilbert space support each
state and measurements.

We now state the main result of this letter:

Theorem 1. The quantum distribution PQ(a, b, c) can-
not be reproduced by any classical trilocal model (in the
sense of Eq. (1)) when u2max < u2 < 1, where u2max =
−3+(9+6

√
2)2/3

2(9+6
√
3)1/3

≈ 0.785

All details of the proof are given in Appendix A of [29].
A natural question is whether the distribution PQ is trilo-
cal when u2 ≤ u2max. In Appendix D of [29], we show that
this is the case, by constructing an explicit trilocal model
for u2 = u2max (up to machine precision). We conjecture
that PQ remains trilocal up to u2 < u2max. Note that
this can be proven for the case u2 = 1/2. Here the trilo-
cal model is obtained from Step 1, with χ replaced by a
uniformly random choice between χ0 and χ1.

Before entering a more general discussion about the
implications of Theorem 1 and some natural open ques-
tions, we now briefly present several generalizations of
the result.
Generalisations.— A first extension considers the same

scenario as in Theorem 1, with the difference that all
sources now produce the same general entangled two-
qubit pure states λ0 |00〉 + λ1 |11〉 where λ20 + λ21 = 1.
A second generalization considers the triangle network
where all three sources now produce a maximally entan-
gled two-qutrit state, i.e. |φ3〉 = (|00〉+ |11〉+ |22〉)/

√
3.

A third generalization is a generalization of Theorem 1
for any N−cycle network, with N being odd.

All are detailed in [29].
Discussion.— We presented novel examples of quan-

tum nonlocality without inputs, mainly for the trian-
gle network. We believe that these examples represent
a form of quantum nonlocality that is genuine to the
network configuration, in the sense that it is not a con-
sequence of standard forms of Bell nonlocality. These
examples fundamentally differ from the one presented by
Fritz in [9], relying on the violation of a standard bipar-
tite Bell inequality. Let us first briefly review it.

Fritz’s example can be viewed as a standard Bell test,
embedded in the triangle network. Consider that Alice
and Bob share a two-qubit Bell state, with the goal of vi-
olating the CHSH Bell inequality. Testing the CHSH in-
equality requires of course local inputs for both Alice and
Bob. Although the triangle network features no explicit
inputs, here effective inputs are provided by the two ad-
ditional sources: the source connecting Alice and Charlie
(resp. Bob and Charlie) provides a shared uniformly ran-
dom bit, which is used as Alice’s (resp. Bob’s) input for
the CHSH test. All parties output the “input bits” he
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receives. The correspondence between these outputs en-
sures that Alice’s (resp. Bob’s) output only depends on
the source she (resp. he) shares with Charlie. Finally, Al-
ice and Bob both additionally output the output of their
local measurement performed on the shared Bell state.
If this quantum distribution could be reproduced by a
trilocal model, it would follow that local correlations can
violate the CHSH inequality, which is impossible.

Let us comment on some significant differences be-
tween Fritz’s construction and our example of Theorem
1. First, our construction has a high level of symmetry
(all sources distribute the same entangled state and all
measurements are the same) with only four outputs per
party. In particular, it involves an entangled state for
each source, whereas the example of Fritz requires en-
tanglement for only one source (it can be symmetrized,
but at the cost of adding new outputs). Moreover, our
construction appears to rely on the use of joint measure-
ments with entangled eigenstates, while Fritz’s model
uses only separable measurements. Hence Fritz’s con-
struction could be obtained from PR-boxes [24]. As the
equivalent of joint measurements does not exist for PR-
boxes [25, 26], we believe that our example cannot be
obtained from PR-boxes.

Note that all the above arguments are only based on
qualitative and intuitive arguments. We have no formal
proof that in order to obtain the distribution PQ(a, b, c)
one actually requires all states to be entangled and/or
joint entangled measurements. In fact, even formalizing
the problem is difficult, any progress in this direction
would be interesting. An idea would be to use the no-

tion of “self-testing” [22], for instance by proving that
all shared quantum states must be two-qubit Bell states
and/or that all local measurements must feature specific
entangled eigenstates [27, 28].

Another important aspect of our construction that
must be discussed is noise tolerance. As such, Theorem
1 clearly applies only to the exact quantum distribution
PQ(a, b, c), i.e. in the noiseless case. The trilocal set be-
ing topologically closed, it is clear that PQ(a, b, c) must
have a certain (possibly very weak) robustness to noise:
when adding a sufficiently small amount of local noise
to PQ(a, b, c), one should still obtain a quantum distri-
bution that is incompatible with any trilocal model. A
promising method would be to consider the qutrit exam-
ple, the proof of which involves the Finner inequality that
allows in principle for the presence of noise. However we
did not succeed in obtaining reasonable noise tolerance
of our result so far. Other methods could also help, such
as the “inflation” technique [14] 1. This could provide a
nonlinear Bell inequality violated by our example.

The possibility of generating randomness from quan-
tum nonlocality without inputs is a further interesting
question. In particular, it seems very likely that our
quantum distribution PQ(a, b, c) contains some level of
intrinsic randomness. It would be interesting to see
how this randomness could be quantified in a device-
independent manner (still assuming independence of the
sources).
Acknowledgements.—We thank Alex Pozas and Elie

Wolfe for discussions. We acknowledge financial sup-
port from the Swiss national science foundation (Starting
grant DIAQ, NCCR-QSIT).

[1] J. S. Bell, Physics 1, 195–200 (1964).
[2] A. Ekert, Phys. Rev. Lett. (1991).
[3] J. Barrett, L. Hardy, A. Kent, Phys. Rev. Lett. (2005).
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Abstract. Understanding how quantum resources can be quantified and distributed over many parties
has profound applications in quantum communication. As one of the most intriguing features of quantum
mechanics, Einstein-Podolsky-Rosen (EPR) steering is a useful resource for secure quantum networks. By
reconstructing the covariance matrix of a continuous variable (CV) Gaussian state, a quantifier of EPR
steering under Gaussian measurements is established. With this ability, we precisely validate four types of
monogamy relations recently proposed for Gaussian steering in two experiment systems, one is a CV four-
mode square Gaussian cluster state [1], and the other one is a multimode Gaussian state via a quantum
frequency comb [2]. We observe a very rich structure for the steering distribution, which paves the way for
exploiting EPR steering as a valuable resource for multiparty quantum information tasks.

Keywords: EPR steering, multipartite Gaussian system, monogamy relations

Introduction- Schrödinger [3] put forward the term
‘steering’ to describe the “spooky action-at-a-distance”
phenomenon pointed out by Einstein, Podolsky, and
Rosen (EPR) in their famous paradox [4, 5]. Wiseman,
Jones, and Doherty [6] rigorously defined the concept
of steering in terms of violations of local hidden state
model, and revealed that steering is an intermediate type
of quantum correalation between entanglement and Bell
nonlocality, where local measurements on one subsystem
can apparently adjust (steer) the state of another distant
subsystem [7]. Such correlation is intrinsically asymmet-
ric with respect to the two subsystems [8, 9], and al-
lows verification of shared entanglement even if the mea-
surement devices of one subsystem are untrusted. Due
to this intriguing feature, steering has been identified
as a physical resource for one-sided device-independent
(1sDI) quantum cryptography, secure quantum telepor-
tation and subchannel discrimination.

Recently, experimental observation of multiparty EPR
steering has been reported in optical networks [10] and
photonic qubits [11, 12]. These experiments offer insights
into understanding whether and how this special type of
quantum correlation can be distributed over many differ-
ent systems, a problem which has been recently stud-
ied theoretically by deriving so-called monogamy rela-
tions [13, 14, 15, 16, 17]. However, beyond [10], no

∗xiangy.phy@pku.edu.cn
†qiongyihe@pku.edu.cn

systematic experimental exploration of monogamy con-
straints for EPR steering has been reported to date.

Here, we experimentally investigate properties of mul-
tipartite steering within two experiment systems, one is a
CV four-mode square Gaussian cluster state [1], and the
other one is a multimode state via a quantum frequency
comb [2] (see Fig. 1). By reconstructing the covariance
matrix of the Gaussian state, we measure the quantifier of
EPR steering under Gaussian measurements introduced
in [9], then precisely validate four types of monogamy re-
lations recently proposed for Gaussian steering (see Ta-
ble 1). Our study helps quantifying how steering can
be distributed among different parties and linking the
amount of steering to the security of channels in a com-
munication network.

Type Ref. Inequality Specifications

I [13] GA→C > 0 ⇒ GB→C = 0 nA = nB = nC = 1

II [14, 15] GA→C > 0 ⇒ GB→C = 0 nA, nB ≥ 1; nC = 1

IIIa [16] GC→(AB) − GC→A − GC→B ≥ 0 nA = nB = nC = 1

IIIb [16] G(AB)→C − GA→C − GB→C ≥ 0 nA = nB = nC = 1

IVa [17] GC→(AB) − GC→A − GC→B ≥ 0 nA, nB , nC ≥ 1

IVb [17] G(AB)→C − GA→C − GB→C ≥ 0 nA, nB ≥ 1; nC = 1

Table 1: Classification of monogamy relations for the bi-
partite quantifier Gj→k of EPR steerability of party k
by party junder Gaussian measurements, in a tripartite
(nA + nB + nC)-mode system ABC. Note: I v II and
III v IV, where “v” indicates being generalized by; the
relations in types II and IVb can be violated for nC > 1.
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Figure 1: (a) Experimental set-up of a four-mode square cluster state, one mode is distributed over a lossy quantum
channel. (b) Experimental set-up of the multimode quantum resource via synchronously pumping an optical parametric
oscillator (SPOPO) and pulse shaping on the local oscillator (LO) with controllable spectral resolution. The spectrum
of the LO is divided into 4, 8 and 16 spectral bands within homodyne detection, respectively.

Method- The properties of a (nA + mB)-mode Gaus-
sian state ρAB of a bipartite system can be determined

by its covariance matrix σAB =

(
A C
C> B

)
, with el-

ements σij = 〈ξ̂iξ̂j + ξ̂j ξ̂i〉/2 − 〈ξ̂i〉〈ξ̂j〉, where ξ̂ ≡
(x̂A1 , p̂

A
1 , ..., x̂

A
n , p̂

A
n , x̂

B
1 , p̂

B
1 , ..., x̂

B
m, p̂

B
m) is the vector of the

amplitude and phase quadratures of optical modes. The
submatrices A and B are corresponding to the reduced
states of Alice’s and Bob’s subsystems, respectively. The
steerability of Bob by Alice (A → B) can be quantified
by [9]

GA→B(σAB) = max

{
0, −

∑
j:ν̄

AB\A
j <1

ln(ν̄
AB\A
j )

}
, (1)

where ν̄
AB\A
j (j = 1, ...,mB) are the symplectic eigenval-

ues of σ̄AB\A = B − CTA−1C, derived from the Schur
complement of A in the covariance matrix σAB . The
quantity GA→B is a monotone under Gaussian local op-
erations and classical communication [17] and vanishes iff
the state described by σAB is nonsteerable by Gaussian
measurements [9].

Results- For the generated CV four-mode square Gaus-
sian cluster state, we find that the two- and three-
mode steering properties are determined by the geometric
structure of the cluster state. Figure 2 shows a selection
of results for the steerability between any two modes [i.e.,
(1 + 1)-mode partitions] of the cluster state under Gaus-
sian measurements. Interestingly, a given mode of the
state can be steered by its diagonal mode which is not
directly coupled, but can not be steered even by collab-
oration of its two nearest neighbors, although they are
coupled by direct interaction. This observation can be
understood as a consequence of the monogamy relation
(type-I) derived from the two-observable (x̂ and p̂) EPR
criterion [13]: two distinct modes cannot steer a third
mode simultaneously by Gaussian measurements. Then,
using the results of (1+2)-, (1+3)-and (2+2)-mode steer-
ability, we also present the experimental examination of
the type-II, type-III and type-IV monogamy relations.
Additional results are shown in Ref.[1].

Figure 2: Gaussian EPR steering between two modes of
the cluster state. (a) There is no EPR steering between
neighboring modes Â′ and D̂ under Gaussian measure-
ments, while diagonal modes Ĉ and D̂ can steer each
other with equal power. (b) One-way EPR steering be-
tween modes Â′ and B̂ under Gaussian measurements.
(c) Monogamy of steering quantifier for (1+2)-mode par-
titions. (d) Monogamy of steering quantifier for (1 + 3)-
and (2+2)-mode partitions. The dots and squares repre-
sent the experimental data measured at different trans-
mission efficiencies. Error bars represent ± one standard
deviation and are obtained based on the statistics of the
measured noise variances.

For the generated multimode state via a quantum fre-
quency comb, we investigate the properties of multipar-
tite EPR steering among the four spectral bands ABCD
when the whole spectrum is divided into 4, 8 or 16 pixels.
We find that although the spectral components are fixed,
the steerability raises sharply with the increase of mea-
surement resolutions, especially when the steering party
or the steered party comprises more than one mode, as
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Figure 3: In the multimode state generated by a quantum
frequency comb, EPR steering among four spectral bands
ABCD are measured experimentally with 4 (blue trian-
gles), 8 (orange squares), 16 (green dots) spectral pixels,
respectively. The partitions are arranged from small to
large according to the steerability of 4-mode state. Points
presented in the same line means the spectral components
of their steering party and steered party are same.

shown in Fig. 3. This phenomenon can be understood
as a consequence of an unique property of our genera-
tion system that more individual squeezed eigenmodes
can be extracted from the downconversion process by
using higher spectral resolutions of pulse shaping with-
out resorting to modification of the photonics architec-
ture. Then, our experimental results demonstrate that
type-I, type-III and type-IV remain valid for all pos-
sible nontrivial mode partitions regardless of the spec-
tral resolutions. But type-II monogamy relation can be
lifted when the steered party is made of more than one
mode, which has been theoretically predicted before [15].
Here, we present an experimental observation that both
C → (AB) and D → (AB) simultaneously steerable by
Gaussian measurements, with their Gaussian steerability
GC→(AB) = 0.2836 and GD→(AB) = 0.2791 even if the
spectrum is divided into only 4 pixels. When the de-
tection spectral resolutions increase, the violation will be
stronger with different partitions of spectral band modes.
Conclusion- Our work thus provides a concrete in-

depth understanding of EPR steering and its monogamy
in paradigmatic multipartite states such as cluster state
and multimode state via a quantum frequency comb, and
advances our fundamental knowledge of monogamy rela-
tions for Gaussian steerability. In turn, this can be useful
to gauge the usefulness of these states for quantum com-
munication technologies.
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Abstract. Quantum network with a current telecom photonic infrastructure is deficient in quantum
storages that keep arbitrary quantum state in sufficient time duration for a long-distance quantum com-
munication with quantum repeater algorithms. Atomic quantum storages have achieved subsecond storage
time corresponding to 1000 km transmission time for a telecom photon through a quantum repeater al-
gorithm. However, the telecom photon is not directly accessible to typical atomic storages. Solid state
quantum frequency conversions fill this wavelength gap and add more abilities, for example, a frequency
multiplexing. Here we report on the experimental demonstration of a polarization-insensitive solid-state
quantum frequency conversion to a telecom photon from a short-wavelength photon entangled with an
atomic ensemble. Atom-photon entanglement has been generated with a Rb atomic ensemble and the pho-
ton has been translated to telecom range while retaining the entanglement by our nonlinear-crystal-based
frequency converter in a Sagnac interferometer.

Keywords: Quantum interference, Nonlinear optics

1 Introduction

Quantum frequency conversion [1] (QFC) based on
nonlinear optical processes enables us to change the color
of photons without destroying the quantum properties.
This allows us to transfer quantum properties of a phys-
ical system to another one which have different acces-
sible frequencies through a single photon [2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12, 13]. Besides that, we can use QFC
for other purposes such as erasing distinguishability of
photons [14], manipulating spectral and temporal modes
of photons [15, 16, 17, 18, 19, 20, 21, 22, 23], and per-
forming frequency-domain quantum information process-
ing [24, 25, 26] by tailoring of the pump light. Most of
those abilities have been demonstrated with solid-state
QFC devices because of its applicability to a wide fre-
quency range, which is similar to the mirrors and beam-
splitters (BSs) for the spatial manipulation of the pho-
tons.

The extension of the solid-state QFC for the quan-
tum storages have also been actively studied [27, 28, 29].
For a long-distance quantum communication, a long life-
time quantum storage that entangled with a telecom pho-
ton is necessary. The cold Rb atomic ensemble is one of
the promising quantum storage that has a long lifetime
and a high efficiency atom-photon entanglement genera-

∗kobayashi-t@qi.mp.es.osaka-u.ac.jp

tion [30, 31, 3, 32, 33, 34, 35]. Recently, solid-state QFC
of a single photon from the cold Rb atomic ensemble
has been demonstrated [28, 29]. But the quantum state
preservation, which is an ability that cannot be mim-
icked by a classical memory, has never been shown yet.
In this work[36], we report a polarization-insensitive QFC
(PIQFC), which converts the frequency (wavelength) of a
photon while preserving the input polarization state. Our
solid-state PIQFC device consists of a waveguided peri-
odically poled lithium niobate (PPLN) crystal installed
in a Sagnac interferometer. By using the QFC device,
we converted a 780-nm polarized photon entangled with
a cold Rb atomic ensemble to a telecom wavelength of
1522 nm. Entanglement between the Rb atoms and the
converted telecom photon has been clearly observed.

2 Experimental setup

To prepare a 780-nm signal photon entangled with the
Rb atoms, we construct an experimental setup as shown
in Fig. 1a. We prepare the Rb atomic ensemble by a
magneto-optical trap (MOT) in 20 ms. After the trap-
ping lasers and the magnetic field for the MOT are turned
off, we perform the QFC experiment 990 times within
1 ms. A horizontally (H-) polarized 200-ns initialization
pulse initializes the atoms into ground level ga (F = 1).
Then a vertically (V-) polarized 70-ns write pulse blue-
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Figure 1: QFC as a frequency-domain linear optics with the two polarization modes. a, Our experimental
setup for entanglement between Rb atoms and visible/telecom photons without/with QFC. When mirror M is flipped
up, AS photon is detected by Das without QFC. When mirror M is flipped down, AS photon is input to polarization-
insensitive QFC (PIQFC) in Fig. 1b and then the converted photon is detected by Dast. b, The experimental setup of
PIQFC. Type-0 quasi-phase-matched PPLN crystal as a nonlinear optical medium which acts on only the V-polarized
photons is installed in the Sagnac type interferometer. c, The reconstructed density matrix with QFC.

detuned by ∆ ∼10 MHz from the resonant frequency
between ga and an excited level (F ′ = 2) is injected to
the atoms, causing the Raman transition with emission
of anti-Stokes (AS) photons.

The momentum conservation guarantees that the wave
vector katom of the collective spin excitation of the atoms
satisfies katom = kW − kAS, where kW/AS is the wave
vector of the write/AS light. In our experiment, we select
the H-polarized AS photons emitted in two directions as
shown in Fig. 1a, and use a HWP and a PBS (PBSas) to
convert path information of AS photons into polarization
information. After the operation, we obtain

(|H〉AS|k+〉atom + |V 〉AS|k−〉atom)/
√

2, (1)

where |k±〉 denotes collective spin excitation of the atoms
when the AS light in the upper(+)/lower(−) path in
Fig. 1a, respectively.

In order to evaluate the quantum correlation between
the atoms and the photons, we inject an H-polarized 100-
ns read light at the resonant frequency between a ground
revel gb (F = 2) and the excited level into the atoms.

The read light provides the transition of the Rb atoms
to ga and generation of the Stokes (S) photons. In our
experiment, we collect only the V-polarized component
of the S photons. The direction of the emitted S pho-
tons is decided by the wave vector of the atomic excita-
tion. Because such a read operation does not access the
AS photon, the operation never increase or newly create
the entanglement between the atoms and the AS photon.
Thus observation of an entangled state of the which-path
state of the S photon and the polarizing AS photon is the
evidence of the entanglement between the atoms and the
AS photon before the read operation.

In the experiment, we inject the read pulse from the
direction opposite to the write pulse. The wave vector
kR of the read pulse satisfies kR ∼ −kW, leading to the
relation kS ∼ −kAS from the momentum conservation.
This means the S photons are emitted in a direction at
∼ ∓3◦ relative to the direction of the read pulse when
the AS photons are emitted in a direction at ∼ ±3◦ rel-
ative to that of the write pulse. By using a HWP and a
PBS (PBSs) shown in Fig. 1a, the path information of the
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V-polarized S photons is transformed into the polariza-
tion. Finally, we can observe the entanglement between
the atoms and the AS photons through the polarization
entangled photon pair of the AS and the S photons.

After passing through a polarization analyzer com-
posed of a QWP, a HWP, and a PBS for the quantum
state tomography [45], S photon passes through a mono-
lithic cavity-coated lens as a frequency filter and is cou-
pled to a single-mode optical fiber. Then S photon is
detected by a silicon avalanche photon detector (APD)
denoted by Ds.

When we do not perform QFC, AS photon is detected
by another APD (Das) after passing through a polariza-
tion analyzer, a cavity-coated lens and a single-mode op-
tical fiber. When we perform QFC, mirror M in Fig. 1a
is flipped down in order to send the AS photon to the
PIQFC. In the PIQFC setup, we install a type-0 quasi-
phase-matched PPLN waveguide in the Sagnac interfer-
ometer as the nonlinear optical medium for QFC. The
PPLN converts a V-polarized input 780-nm photon to
a V-polarized 1522-nm converted photon with the use
of the V-polarized pump light at 1600 nm. As shown
in Fig. 1b, the input photon with any polarization is
converted into telecom photon. The conversion efficien-
cies of QFC for clockwise and anti-clockwise directions
are adjusted by the amplitude of the pump light to be
the same. The telecom photon from the QFC passes
through a polarization analyser followed by an etalon,
and a pair of fiber Bragg gratings. Finally, the telecom
photon is detected by a superconducting single photon
detector (SSPD) denoted by Dast [47].

3 Experimental result

Without QFC, we performed the quantum state to-
mography between the S photon and the AS photon,
and reconstructed density operator ρS,AS. we estimated
entanglement of formation [49] (EoF) E and the pu-
rity defined by P = tr(ρ2S,AS) as E = 0.37 ± 0.11 and
P = 0.61± 0.06, respectively. We also estimated a max-
imized fidelity to a maximally entangled state Uθ|φ+〉
defined by F = maxθ〈φ+|U†θρS,ASUθ|φ+〉, whose value
was F = 0.78 ± 0.05 for θ = θ0 = −65◦. Here |φ+〉 =
(|H〉AS|H〉S+ |V 〉AS|V 〉S)/

√
2 and Uθ = exp(−iθZ/2)⊗I

with Z = |H〉〈H| − |V 〉〈V | and I = |H〉〈H| + |V 〉〈V |.
These results show the entanglement between AS photon
and the Rb atoms.

With QFC, we performed the quantum state tomog-
raphy between S photon and the wavelength-converted
AS photon. The estimated EoF and purity of recon-
structed density operator ρS,ASt were E = 0.25±0.13 and
P = 0.55± 0.07, respectively. The maximized fidelity to
Uθ|φ+〉 about θ was F = 0.69±0.07 for θ = θ1 = 93◦. The

matrix representation of density operator U†θ1ρS,AStUθ1 is
shown in Fig. 1c. The EoF E is clearly greater than 0,
which shows that the state of the Rb atoms and the tele-
com photon has entanglement. From the result, we suc-
ceeded the creation of the entanglement between the Rb
atoms and the telecom photon by using the polarization-
insensitive QFC.

4 Conclusion

In conclusion, we have shown the entanglement be-
tween the wave vector of the collective spin excitation
of the Rb atoms and the polarizing telecom photon by
using the polarization insensitive QFC composed of the
PPLN waveguide installed in a Sagnac interferometer.
Combining state-of-the-art quantum memory technolo-
gies [35, 50, 51] with our experimental result will be
useful for fiber-based quantum communication over long
distance. Furthermore, the demonstrated polarization in-
sensitive QFC is applicable to various conversion systems
for matter-based quantum storages. The devices will pro-
vide various kinds of tasks developed in the linear optical
quantum information processing.
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Toward “quantum supremacy” with single photons

Chaoyang Lu

Abstract. Quantum computers can in principle solve certain problems faster than classical computers.
Despite substantial progress in the past decades, building quantum machines that can actually outperform
classical computers for some specific tasks―a milestone termed as “ quantum supremacy ”―remained
challenging. Boson sampling has been considered as an intermediate step for linear optical quantum com-
puting, and a strong candidate to demonstrate the quantum computational supremacy. The experimental
challenge for realizing a large-scale boson sampling mainly lies in the lack of a perfect single-photon sources.
In this talk, I will report two routes towards building boson sampling machines with many photons. In
the first path, we developed parametric down-conversion two-photon source with simultaneously a collec-
tion efficiency of 97% and an indistinguishability of 96% between independent photons [PRL 121, 250505
(2018)]. With this, we demonstrate genuine entanglement of 12 photons, scattershot boson sampling, and
Gaussian boson sampling. We also made efforts to generate efficient and indistinguishable entangled pho-
tons from quantum dots [PRL 122, 113602 (2019)]. In the second path, using a quantum dot-micropillar,
we produced single photons with high purity (> 99%), near-unity indistinguishability for >1000 photons,
and high extraction efficiency―all combined in a single device compatibly and simultaneously [PRL 116,
020401 (2016)]. The highest-quality single photons allowed us to perform quantum interference with sun-
light with 80% raw visibility, which proved the quantum nature of thermal light [PRL online 2019]. We
developed bichromatic laser excitation [Nature Physics online 2019] and elliptical microcavites [Nature
Photonics online 2019] to overcome the polarization filtering to create truly optimal single photon sources.
We build few photon boson sampling machines which runs 5-7 orders of magnitudes faster than all the
previous experiments [Nature Photonics 11, 365 (2017)]. Plan is to achieve boson sampling with 20-30
photons in the near term. More relevant papers can be found at http://staff.ustc.edu.cn/ cylu.
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Verification of independent quantum devices

Joe Fitzsimmons

Abstract. Quantum computers are on the brink of surpassing the capabilities of even the most powerful
classical computers. This naturally raises the question of how one can trust the results of a quantum
computer when they cannot be compared to classical simulation. In this talk, I will discuss an approach
to cross-checking the results of independent quantum processors based on the one-way model of quantum
computation, which allows circuits of varying complexity to be directly compared. This approach enables
consistency checks of quantum computations within a single device, as well as between independent devices.
I will report results obtained by implementing the protocol on five state-of-the-art quantum processors,
based on four distinct physical architectures: nuclear magnetic resonance, superconducting circuits, trapped
ions, and photonics, with up to 6 qubits and more than 200 distinct circuits.
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Quantum causal influence

Xiaoliang Qi

Abstract. We introduce a framework to study the emergence of time and causal structure in quantum
many-body systems. In doing so, we consider quantum states which encode spacetime dynamics, and
develop information theoretic tools to extract the causal relationships between putative spacetime subsys-
tems. Our analysis reveals a quantum generalization of the thermodynamic arrow of time and begins to
explore the roles of entanglement, scrambling and quantum error correction in the emergence of spacetime.
For instance, exotic causal relationships can arise due to dynamically induced quantum error correction
in spacetime: there can exist a spatial region in the past which does not causally influence any small
spatial regions in the future, but yet it causally influences the union of several small spatial regions in the
future. We provide examples of quantum causal influence in Hamiltonian evolution, quantum error correc-
tion codes, quantum teleportation, holographic tensor networks, the final state projection model of black
holes, and many other systems. We find that the quantum causal influence provides a unifying perspective
on spacetime correlations in these seemingly distinct settings. In addition, we prove a variety of general
structural results and discuss the relation of quantum causal influence to spacetime quantum entropies.
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Quantum Communications Network Based on Polarization
Entanglement at Telecom Wavelength
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Abstract. Here we implement a novel network architecture which enables scalable quantum commu-
nication networks at telecommunication wavelengths. Our simple scheme uses wavelength multiplexed
polarization entangled photon pairs. In our experiment we have demonstrated the network with 4 clients
and used 12 wavelength channels to share 6 bipartite entangled states between each pair of clients in a
mesh-like network topology using only one fiber per client.

Keywords: quantum communications, entangled photons, network, quantum key distribution

We present a proof-of-principle experiment consist-
ing of four users in a novel network architecture
which enables scalable quantum communication based
on polarization-entangled photon pairs at telecommuni-
cations wavelength. Our scheme uses frequency multi-
plexing [3, 2, 5] to share 6 two-photon entangled states
between each pair of clients in a mesh-like network topol-
ogy using only one fiber per client.
As clients need minimal resources – one polarization

detection module and single-mode fiber each, the phys-
ical topology of the network scales linearly if a user is
added, while the logical topology scales quadratically
with n(n� 1) network connections between n users. The
quantum correlations and physical topology are illus-
trated in figure 1.
The source employs type 0 spontaneous parametric

down-conversion centered at 1550 nm, pumped by a
continuous-wave laser. The resulting 60 nm-wide spec-
trum is split symmetrically into 6 pairs of wavelength-
correlated channels similar to Aktas et al. [1]. Due to
energy conservation in the down-conversion process, the
partner photons are found at equal frequency distance
from the center of the spectrum. Each client receives 3
channels which are polarization-entangled with the chan-
nels sent to each of the other clients. Every client mea-
sures all three channels in a single polarization analyzer
in either the HV or DA basis and records the results us-
ing a time tagging unit. Photon pairs were identified by
their relative arrival times.
Since only 4 detectors were available, every user only

had one detector with a very slow basis choice, imple-
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Figure 1: Scheme of our network architecture: Di↵erent
layers represent di↵erent levels of abstraction. Physical
layer: contains all tangible components. Each of the 4
clients receives a combination of 3 channels via a soli-
tary single mode fiber. Thus, the source distributes 6
bi-partite entangled photon states to the four clients Al-
ice, Bob, Chloe and Dave. Quantum Correlation layer:
shows the 6 entangled states (each corresponding to a
di↵erent secure key) that link the 4 clients. Communica-
tions Layer: Entanglement-based two-party QKD proto-
cols like E91 can be used to generate secure keys between
all pairs of clients.
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Figure 2: Measured fidelities with and without subtrac-
tion of accidental coincidences. Each point is measured
using two WDM channels which connect the respective
users. The X-axis represents the di↵erence in wavelength
between the respective channels of the respective two
partner photons.

mented with a motorized half-wave plate. This way, no
secret keys could be generated, but we successfully imple-
mented a 4 client network and measured the polarization
correlation visibility to assess whether it would be suit-
able for a quantum communication network. Figure 2,
shows the results of the Bell state fidelity measurements.
We observed uncorrected polarization correlation fideli-
ties larger than 85% in both bases and for all pairs of
clients. Due to the timing uncertainty of the detectors,
we are limited to a rather large coincidence windows of
1 ns. This way, detector clicks are falsely identified as
pairs and deteriorate the measured fidelity. The left hand
side of the graph shows the fidelity corrected for this er-
ror while the uncorrected values are shown to the right.
Based on these visibilities and count rates, we estimated
secure key rates between 2 and 15 bits/s in case the setup
would have employed 2 detectors per node and a random
basis choice. The network continues to o↵er all the secu-
rity benefits of entanglement based QKD and does not
require trusted nodes. In contrast to networks based on
active switching, the only limit on the communication
speed in our passive scheme is given by the brightness of
the source and the “quality” of the detector (e�ciency,
timing jitter and dead time). The finite duty cycle and
switching rate of a possible active component do not limit
our network.
An alternative method to implement a fully connected

quantum network with a similar topology would be to use
a 1:N beam-splitter and probabilistically distribute en-
tangled photon pairs between all users. The main bene-
fit of our wavelength multiplexed implementation reveals
itself when each user opts to de-multiplex the di↵erent
wavelength channels onto m polarization analysis mod-
ules with detectors (where 1 < m < N). In this case,
due to the deterministic frequency correlations, every
pair of frequency channels can be considered an indepen-
dent communication link and a m-fold increase in the to-
tal key generation rate is achieved while maintaining the

same signal-to-noise ratio of a two-party communication.
Conversely, probabilistic distribution using a 1:N beam-
splitter would always reduce the signal-to-noise ratio as
users are added.
We have successfully realized a proof of principle

demonstration of a quantum communication network.
The use of telecommunication wavelengths makes it com-
patible with existing infrastructure. We observed no de-
tectable cross-talk between adjacent channels. The net-
work architecture can be readily adapted to any other
network topology. Furthermore, distributed computation
tasks or problems like the millionaire’s problem could be
implemented on this network. More information about
this experiment can be found in [4].
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Black-box quantum state preparation without arithmetic
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Abstract. Black-box quantum state preparation is an important subroutine in many quantum algo-
rithms. The standard approach requires the quantum computer to do arithmetic, which is a key contributor
to the complexity. Here we present a new algorithm that avoids arithmetic. We thereby reduce the num-
ber of gates by a factor of 286-374 over the best prior work for realistic precision; the improvement factor
increases with the precision. As quantum state preparation is a crucial subroutine in many approaches to
simulating physics on a quantum computer, our new method brings useful quantum simulation closer to
reality.

Keywords: state preparation, Hamiltonian simulation, quantum walks

1 Context

Grover devised [1] the first black-box quantum state
preparation procedure as an extension of his more famous
search algorithm [2]. Whereas Grover search performs
amplitude amplification on a simple procedure, one ap-
plication of a given oracle (the ‘black-box’) with a binary
output, Grover state preparation prescribes a more com-
plicated procedure per round of amplitude amplification.
In addition to applying the oracle, Grover’s procedure
requires the quantum computer to calculate an inverse
trigonometric function during each round of amplitude
amplification. Such a calculation is expensive in prac-
tice.

The complexity of repeated inverse trigonometric cal-
culations implies a high cost for quantum algorithms that
use black-box state preparation as a subroutine. Some
example applications include the discrete-time quan-
tum walk approach to Hamiltonian simulation [3, 4, 5]
and the linear combination of unitaries (LCU) tech-
nique [6, 7, 8, 9, 10]. In this paper, we present a modi-
fication to Grover’s original state preparation procedure
that avoids the need to calculate an inverse trigonometric
function, or indeed the need to perform any arithmetic
operations at all. Our work has been published [11] and
a free version is available online [arXiv:1807.03206].

2 Main Result

The task of black-box quantum state preparation.

The scenario for black-box state preparation is as follows.
We are given access to a quantum oracle amp that returns
target coefficients as follows: if ~α := (α0, α1, . . . , αd−1) is
a real vector with 0 ≤ αℓ < 1 for each ℓ = 0, . . . , d − 1,
then

amp |ℓ〉 |z〉 := |ℓ〉 |z ⊕ α
(n)
ℓ 〉 , (1)

where z is an n-bit integer encoded into an n-qubit reg-

ister, ⊕ represents a bitwise XOR, and α
(n)
ℓ = ⌊2nαℓ⌋.

The task is to prepare an approximation to the ‘target’

∗yuval.sanders@mq.edu.au
†dmwberry@gmail.com

state

|target〉 :=
1

‖~α‖2

d−1∑

ℓ=0

αℓ |ℓ〉 . (2)

Grover’s approach. Grover’s approach to state
preparation uses a subroutine defined as

rot |ξ〉 |0〉 := |ξ〉 (sin θ |0〉+ cos θ |1〉) , (3)

where ξ is one of the values α
(n)
ℓ , the second register

is a qubit and θ is a high-precision approximation to
arcsin (ξ/2n). To implement this procedure, the quan-
tum computer would calculate θ, store the value in an
ancillary register, and use that register as the control for
a sequence of rotation operations on the qubit. Grover
then prescribes roughly

√
d/‖~α‖2 rounds of amplitude

amplification on the following procedure:

|0〉⊗O(log d)
out

|0〉⊗n
data

|0〉
flag

unif
d−→
1
√
d

d−1∑

ℓ=0

|ℓ〉
out

|0〉⊗n
data

|0〉
flag

amp
−→

1
√
d

d−1∑

ℓ=0

|ℓ〉
out

∣∣∣α(n)
ℓ

〉

data
|0〉

flag

rot
−→

1
√
d

d−1∑

ℓ=0

|ℓ〉
out

∣∣∣α(n)
ℓ

〉

data
(sin θℓ |0〉+ cos θℓ |1〉)flag .

(4)

Here we use the symbol unifd to refer to a procedure that
transforms O(log d) qubits into a uniform superposition
of values from 0 to d − 1, θℓ is an approximation to the

arcsine of α
(n)
ℓ /2n, and we use the register labels out,

data, and flag to denote the intent for each quantum
register. We are to perform amplitude amplification to
boost the amplitude on |0〉

flag
at the expense of |1〉

flag
,

after which we use amp one more time to erase the data
register (whose purpose was merely to record the out-
put of amp). At this point, we can discard the data

register and measure the flag qubit to obtain (approx-
imately) |target〉

out
with high probability. Note that in
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some applications we need not measure the flag qubit
and instead control subsequent operations on this qubit.

Our approach. We modify Grover’s approach by re-
placing rot with a new procedure

comp |a〉 |b〉 |0〉 :=

{
|a〉 |b〉 |0〉 if a < b,

|a〉 |b〉 |1〉 if a ≥ b.
(5)

The idea is as follows. Grover uses rot in order to ‘trans-
duce’ the value of the data register into an amplitude
for the flag register. This amplitude transduction step
can in principle be done some other way. Our approach
to amplitude transduction is to compare one value to an
equal superposition of values. Thus

1
√
2n

2n−1∑

z=0

comp

∣∣∣α(n)
ℓ

〉
|z〉 |0〉 =

1
√
2n

α
(n)

ℓ
−1∑

z=0

∣∣∣α(n)
ℓ

〉
|z〉 |0〉

︸ ︷︷ ︸
α

(n)

ℓ
terms

+
1

√
2n

2n−1∑

z=α
(n)

ℓ

∣∣∣α(n)
ℓ

〉
|z〉 |1〉

︸ ︷︷ ︸
2n−α

(n)

ℓ
terms

.

(6)

The key observation is that the amplitude of |0〉 for the
last qubit is related to the value encoded in the second
register. We then apply unif−1

2n to the second register and
perform amplitude amplification to boost the amplitude
of |0〉⊗(n+1) on the final n+1 qubits above. This achieves
the required amplitude transduction.

Speedup. Our speedup is based on the number of op-
erations to be performed in addition to the oracle amp

per round of amplitude amplification. Whereas rot re-
quires the quantum computer to perform many arith-
metic operations in order to calculate an arcsine, we can
perform comp using 2n − 1 Toffoli gates using a variant
of the ripple-carry adder of [12] (see Sec. 4.3). Alter-
natively, we can use a technique of [13] to reduce this
cost to n Toffoli gates and n measurements. These costs
are technically identical to that of a single addition cir-
cuit, but we do not actually perform the addition and so
can technically get away with our paper’s title. By con-
trast, calculation of an arcsine requires many coherent
multiplications, which is a far greater cost than addition.
A recent paper [14] offers explicit Toffoli counts for an
arcsine for a few given precision targets: from Table II,
precision 10−5 requires 4872 Toffoli gates, 10−7 requires
7784, and 10−9 requires 11264. We can contrast these
numbers to the number of Toffoli gates needed to com-
pare two n-bit numbers for n = 17, 23, 30 respectively
(so that 2−n ≈ 10−5, 10−7, 10−9, respectively). It is from
here that we get our headline numbers for our speedup.

3 Variants

Our method can easily be extended to complex am-
plitudes. These complex amplitudes could be presented

in either polar form or Cartesian form, meaning that we
have two amplitude oracles rather than one. For the po-
lar form, we would have one oracle for the magnitude of
the amplitude and another oracle for the argument; for
the Cartesian form, one oracle for the real part and an-
other oracle for the imaginary. In each case, arithmetic
can also be avoided for amplitude transduction.

Remarkably, we also have a way to prepare an approx-
imation to the state 1√

‖~α‖1

∑
ℓ

√
αℓ |ℓ〉 without requiring

the quantum computer to perform arithmetic. This ver-
sion of the state preparation task arises when construct-
ing quantum walk operators. The idea here is to recog-
nise that the comparison trick above yields an amplitude

proportional to
√
α
(n)
ℓ , rather than α

(n)
ℓ as required. In

the main approach we apply unif2n and amplify the state

|0〉⊗(n+1) to correct this issue, but we could instead skip
unif2n and amplify |+〉

⊗n
|0〉. We still need to erase the

middle register following amplitude amplification, but we
have an elegant trick to do this. We can use this idea to
prepare the state with square-root amplitudes when the
amplitudes are complex and given in polar form, but if
we have Cartesian form then our approach requires some
arithmetic (though not much). Our published paper has
the details.

4 Implications

We expect our practical complexity reduction to have
broad impact throughout quantum algorithms research.
In particular, our approach can replace Grover’s in all
use cases, including the implementation of quantum walk
operators and in the LCU technique. These improve-
ments are likely to lead to reductions in gate complexity
for many potential applications for quantum computer.
Our technique can also be applied in other circumstances
where amplitude transduction is needed.

The complexity reduction we achieve is significant
enough for a proof-of-principle experiment to be plau-
sible. Although amplitude amplificaiton would probably
lead to a circuit with too high a depth for today’s proto-
types, we could skip amplitude amplification and keep n
small for a demonstration.
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h?2 ǳb+`�K#HBM;Ǵ Q7 [m�MimK BM7Q`K�iBQM Bb � 7mM@

/�K2Mi�H T?2MQK2MQM- /22THv +QMM2+i2/ iQ K�Mv BK@
TQ`i�Mi `2b2�`+? iQTB+b BM T?vbB+b- bm+? �b #H�+F ?QH2b
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KQ/2H r2 bim/v +QMbBbib Q7 � ;`�T? rBi? � d@/BK2MbBQM�H
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�`#Bi`�`v ;`�T?b rBi? bm{+B2MiHv HQr /2;`22- i?2
PhP* iBK2 Bb mTT2` #QmM/2/ #v � +QMbi�Mi KmHiB@
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D(x, y) Bb i?2 /Bbi�M+2 #2ir22M x �M/ yX �b � +QMb2@
[m2M+2 i?2 T2`72+i #BM�`v i`22 ?�b τ (x,y)OTOC = O(lnV )-
r?2`2 x �M/ y �`2 i?2 7�`i?2bi T�B` Q7 p2`iB+2bX

kX q2 T`Qp2 � +QMp2`b2 iQ i?2 �#Qp2 `2bmHi b?QrBM;
i?�i 7Q` HQr@/2;`22 ;`�T?b- i?2 PhP* iBK2 Bb �HbQ
HQr2` #QmM/2/ #v � +QMbi�Mi KmHiBTH2 Q7 i?2 ;`�T?
/B�K2i2`X AM/22/ r2 b?Qr � HQr2` #QmM/ 7Q` ;`�T?b
rBi? �Mv /2;`22 #mi Qm` #QmM/b #2+QK2 r2�F2` �b
i?2 ;`�T? /2;`22 BM+`2�b2bX

jX q2 �HbQ ;Bp2 � ?2m`BbiB+ �`;mK2Mi i?�i i?Bb HQr@
/2;`22 `2[mB`2K2Mi Bb M2+2bb�`v 7Q` i?2 �#Qp2 irQ
`2bmHib #v 2t?B#BiBM; irQ 7�KBHB2b Q7 ;`�T?b r?2`2
d2 ≪ zX AM QM2 7�KBHv- i?2 PhP* iBK2 �TT2�`b iQ
;`Qr 2tTQM2MiB�HHv KQ`2 `�TB/Hv i?�M i?2 /B�K2i2`-
�M/ BM �MQi?2` i?2 PhP* iBK2 +�M ;`Qr �`#Bi`�`BHv
KQ`2 bHQrHv i?�M i?2 /B�K2i2`X h?2b2 �`2 /2b+`B#2/
BM �TT2M/Bt * BM K�BM i2tiX

9X "v +QMi`�bi rBi? i?2 PhP* iBK2- r2 +�M mb2 2t@
BbiBM; #QmM/b QM 2Mi�M;H2K2Mi ;`Qri? iQ 2t?B#Bi
;`�T?b r?2`2 i?2 iBK2 iQ 2Mi�M;H2 irQ ?�Hp2b Q7
i?2 bvbi2K Bb 7�` H�`;2` i?�M i?2 PhP* iBK2 Ub22
h?2Q`2K jVX h?2 ;`�T?b rBi? i?2b2 T`QT2`iB2b BM@
+Hm/2 2X;X #BM�`v i`22b- r?B+? r2 2tTHB+BiHv �M�@
Hvx2 BM i?Bb T�T2`- �M/ /Bb+`2iBx�iBQMb Q7 ?vT2`#QHB+
bT�+2 �`QmM/ #H�+F ?QH2b- Q`B;BM�HHv T`QTQb2/ #v
(R)- r?B+? �`2 2tT2+i2/ iQ 2t?B#Bi bBKBH�` #2?�pBQ`b
U�b �`;m2/ #2HQrVX AM Qi?2` rQ`/b- r2 ?�p2 2bi�#@
HBb?2/ �M �bvKTiQiB+ b2T�`�iBQM #2ir22M i?2 iBK2
b+�H2b Q7 PhP* �M/ 2Mi�M;H2K2Mi b�im`�iBQMX

h?2Q`2K j 6Q` � ;2M2`�H ;`�T? G rBi? p2`iB+2b
T�`iBiBQM2/ BMiQ b2ib A �M/ B- i?2 2tT2+i2/ 2Mi�M@
;H2K2Mi b�im`�iBQM iBK2 Bb Ω(min{|A|,|B|}

C(A,B) )- r?2`2
C(A,B) Bb i?2 MmK#2` Q7 2/;2b rBi? QM2 2M/TQBMi
BM A �M/ QM2 BM BX

j AKTHB+�iBQMb
RX a+`�K#HBM; BM MQM@1m+HB/2�M ;2QK2i`B2bX 1tBbiBM;

rQ`F ?�b bim/B2/ PhP* �M/ b+`�K#HBM; KQbiHv QM
1m+HB/2�M H�iiB+2b (R8- Re- kR)X h?2 ;2M2`�H �bbmKT@
iBQM Bb i?�i �7i2` iBK2 t- � HQ+�HBx2/ T2`im`#�iBQM
rBHH �z2+i 2p2`vi?BM; rBi?BM bQK2 #�HH Q7 `�/Bmb
v#mii2`~vtX >Qr2p2`- i?Bb ?�b MQi #22M T`Qp2/ �M/
T`2pBQmb rQ`F ;�p2 ?2m`BbiB+ �`;mK2Mib 7Q` Bi i?�i
BM+Hm/2/ mM+QMi`QHH2/ �TT`QtBK�iBQMbX q2 +QM@
bB/2` i?2 `�M/QK +B`+mBi KQ/2Hb /2}M2/ QM ;2M@
2`�H ;`�T?bX q2 }M/ i?�i B7 i?2 HQ+�H /BK2MbBQM
Bb H�`;2 `2H�iBp2 iQ i?2 ;`�T? /2;`22 i?2M BM/22/
i?2`2 Bb � HBM2�` #mii2`~v p2HQ+BivX JQ`2 T`2+Bb2Hv
r2 }M/ mTT2` �M/ HQr2` #QmM/b vBMM2`, vQmi2` bm+?
i?�i �i iBK2 t � T2`im`#�iBQM �i � bBM;H2 bBi2 rBHH
�z2+i � `2;BQM i?�i +QMi�BMb � #�HH Q7 `�/Bmb vBMM2`t
�M/ Bb +QMi�BM2/ BM � #�HH Q7 `�/Bmb vQmi2`tX AM i?2
`2;BK2 r?2`2 d Bb bK�HH `2H�iBp2 iQ i?2 ;`�T? /2@
;`22 i?2M Qm` T`QQ7b #`2�F /QrMX q2 �HbQ }M/
�TT�`2Mi +QmMi2`@2t�KTH2b r?B+? bm;;2bi i?�i HBM@
2�` #mii2`~v p2HQ+Biv MQ HQM;2` ?QH/b BM ?B;?@/2;`22
;`�T?bX aQK2 Q7 i?2b2 2t�KTH2b �`2 MQi `B;Q`QmbHv
�M�Hvx2/ #mi r2 T`2b2Mi � ?2m`BbiB+ �`;mK2Mi bm;@
;2biBM; i?�i i?2 b+`�K#HBM; iBK2 7Q` bQK2 7�KBHB2b
Q7 ;`�T?b b?QmH/ ;`Qr KQ`2 `�TB/Hv Q` KQ`2 bHQrHv
i?�M i?2 /B�K2i2` Q7 i?2 ;`�T?bX

kX "H�+F ?QH2 BM7Q`K�iBQM b+`�K#HBM;X Pm` `2bmHib
+�M #2 `2;�`/2/ �b � KQ`2 `B;Q`Qmb �`;mK2Mi i?�i
~2b?2b Qmi i?2 B/2� Q7 � `2+2Mi T�T2` #v QM2 Q7 i?2
�mi?Q`b (R)- r?B+? +QM+2`Mb r?2i?2` Bi Bb TQbbB#H2
7Q` i?2 7�bi b+`�K#HBM; +QMD2+im`2 Q7 #H�+F ?QH2b (j)
iQ ?QH/ B7 QM2 �bbmK2b i?�i i?2 +�mb�HBiv bi`m+im`2
Q7 ;2M2`�H `2H�iBpBiv ?QH/b �`QmM/ � #H�+F ?QH2- �M/
B7 i?2 K2/BmK #v r?B+? i?2 BM7Q`K�iBQM Bb b+`�K@
#H2/ Bb >�rFBM; `�/B�iBQMX AM (R)- i?2 bT�+2 �`QmM/
i?2 #H�+F ?QH2 Bb /BpB/2/ BMiQ +2HHb- 2�+? Q7 r?B+?
+QMi�BMb � +QMbi�Mi MmK#2` Q7 #Bib Q7 >�rFBM; `�@
/B�iBQMX Ai i?2M ;Bp2b �`;mK2Mib 7Q` r?v i?2 >�rF@
BM; `�/B�iBQM Bb MQi �/2[m�i2 7Q` 7�bi b+`�K#HBM; B7
i?2 2Mi�M;H2K2Mi /2}MBiBQM Q7 b+`�K#HBM; Bb mb2/X
h?2 +2HH bi`m+im`2 �`QmM/ i?2 #H�+F ?QH2 HQQFb HBF2 �
T�i+? Q7 � +2HHmH�iBQM Q7 ?vT2`#QHB+ ;2QK2i`v- r?2`2
i?2 +2HHb QM i?2 2p2Mi ?Q`BxQM �`2 i?2 #QmM/�`v Q7
i?Bb T�i+?X �++Q`/BM; iQ Qm` `2bmHib i?2 b+`�K#HBM;
iBK2b+�H2b /2}M2/ mbBM; 2Mi�M;H2K2Mi �M/ PhP*
�`2 /Bz2`2Mi QM i?Bb ;2QK2i`vX �b r2 b?�HH b22- �M
2p2M bi`QM;2` b2T�`�iBQM Bb 7QmM/ 7Q` i?2 Km+? bBK@
TH2` i`22 ;`�T?- r?2`2 i?2 H2�p2b HB2 QM i?2 2p2Mi
?Q`BxQMX
�b 7Q` i?2 >�v/2M@S`2bFBHH /2+Q/BM; i�bF UiQ `2@
+Qp2` [m�MimK BM7Q`K�iBQM 7�HHBM; BMiQ i?2 #H�+F
?QH2 7`QK >�rFBM; `�/B�iBQMV (k)- uQb?B/� �M/

78



EBi�2p `2+2MiHv T`QTQb2/ �M 2tTHB+Bi T`QiQ+QH (N)
r?Qb2 T2`7Q`K�M+2 Bb `Qm;?Hv `2H�i2/ iQ i?2 U+QK@
Kmi�iQ` 7Q`K Q7V PhP* #v

F ≥ Θ

(
1

d2A(1− C(t))

)
,

r?2`2 F Bb i?2 /2+Q/BM; }/2HBiv- �M/ dA Bb i?2
>BH#2`i bT�+2 /BK2MbBQM Q7 BMTmi K2bb�;2X "v bBK@
TH2 +�H+mH�iBQMb QM2 +�M b22 i?�i Qm` `2bmHib BK@
THv � TQbbB#H2 iBK2 rBM/Qr BM r?B+? i?2 /2+Q/BM;
+QmH/ #2 �+?B2p2/ rBi? ?B;? }/2HBiv rBi?Qmi bm#@
bi�MiB�H 2Mi�M;H2K2Mi r?2M i?2 BM7�HHBM; [m�MimK
bi�i2 ?�b bK�HH UO(1)V bBx2 #mi i?2 #H�+F ?QH2 Bb bm7@
}+B2MiHv H�`;2 UMQi2 i?�i Bi KB;?i biBHH K�F2 KQ`2
b2Mb2 iQ +QMbB/2` KmHiBTH2 BM7�HHBM; [m#Bibě7Q` 2t@
�KTH2- �//BM; QM2 #Bi iQ i?2 #H�+F ?QH2 +�M QMHv
#2 /QM2 rBi? � T?QiQM r?Qb2 r�p2H2M;i? 2[m�Hb
i?2 bBx2 Q7 i?2 #H�+F ?QH2- r?B+? K2�Mb i?�i Bi Bb
�H`2�/v /2HQ+�HBx2/V

jX AM2[mBp�H2M+2 Q7 +QMp2`;2M+2 iQ k@/2bB;Mb BM /Bz2`@
2Mi K2�bm`2bX h?2 bT22/ Q7 +QMp2`;2M+2 Q7 � `�M@
/QK +B`+mBi iQ � k@/2bB;M U/Bbi`B#miBQMb i?�i �T@
T`QtBK�i2Hv �;`22 rBi? i?2 >��` K2�bm`2 mT iQ
i?2 }`bi irQ KQK2Mib- r?B+? ?�p2 7QmM/ K�Mv BK@
TQ`i�Mi �TTHB+�iBQMb �b �M 2{+B2Mi �TT`QtBK�iBQM
iQ >��` `�M/QKM2bb- BM [m�MimK BM7Q`K�iBQM (kk)V
?�b #22M i?2 bm#D2+i Q7 � p�bi �KQmMi Q7 `2b2�`+?X
AM T�`iB+mH�`- (kj- ky- k9- k8- ke) b?Qr i?�i i?2
bT22/ Q7 +QMp2`;2M+2 /2T2M/b QM i?2 ;2QK2i`v Q7
BMi2`�+iBQMb- �M/ bm;;2bi i?�i Bi b?QmH/ #2 T`QTQ`@
iBQM�H iQ i?2 /B�K2i2` Q7 i?2 ;`�T? Q7 BMi2`�+iBQMbX
LQi2 i?�i k@/2bB;Mb �`2 p2`v TQr2`7mH K2�bm`2b Q7
+QMp2`;2M+2- BM i?2 b2Mb2 i?�i � /Bbi`B#miBQM #2@
BM; +HQb2 iQ � k@/2bB;M BKTHB2b i?�i i?2 /Bbi`B#miBQM
?�b KBt2/ rBi? `2bT2+i iQ MQi QMHv PhP* #mi �HbQ
pQM L2mK�MM �M/ _ûMvB@k 2Mi�M;H2K2Mi 2Mi`QTv
(RR- kd)- �M/ Qi?2` BKTQ`i�Mi bB;M�im`2b Q7 BM7Q`K�@
iBQM b+`�K#HBM; bm+? �b /2+QmTHBM; (k3)X S�bi rQ`F
?�b ;2M2`�HHv �BK2/ iQ +QMbi`m+i 2t�+i Q` �TT`Qt@
BK�i2 k@/2bB;Mb mbBM; 2Bi?2` `�M/QK Q` bi`m+im`2/
+B`+mBib- �M/ �b � `2bmHi ?�b 7Q+mb2/ QM T`QpBM; i?�i
i?2 k@/2bB;M +QM/BiBQMb �`2 K2i `�i?2` i?�M HQQF@
BM; 7Q` +�b2b r?2`2 i?2v �`2 MQi K2iX Pm` rQ`F
;Bp2b b2p2`�H 2t�KTH2b Ub22 a2+iBQM o BM K�BM i2tiV
r?2`2 � `�M/QK +B`+mBi �TT`QtBK�i2b i?2 PhP*
#mi MQi 2Mi�M;H2K2Mi T`QT2`iB2b Q7 � k@/2bB;M- �M/
i?2`27Q`2 BKTHB2b i?�i � bi`QM; �TT`QtBK�iBQM Q7 k@
/2bB;Mb UBM i2`Kb Q7 2X;X i?2 7`�K2 QT2`�iQ` (Rk)V
K�v MQi #2 �+?B2p2/ BM iBK2 T`QTQ`iBQM�H iQ /B�K@
2i2`X

_272`2M+2b
(R) S2i2` qX a?Q`X a+`�K#HBM; iBK2 �M/ +�mb�H bi`m+im`2

Q7 i?2 T?QiQM bT?2`2 Q7 � a+?r�`xb+?BH/ #H�+F ?QH2-
kyR3X

(k) S�i`B+F >�v/2M �M/ CQ?M S`2bFBHHX "H�+F ?QH2b �b
KB``Q`b, [m�MimK BM7Q`K�iBQM BM `�M/QK bm#bvb@

i2KbX CQm`M�H Q7 >B;? 1M2`;v S?vbB+b- kyydUyNV,Rky-
kyydX

(j) u�bm?B`Q a2FBMQ �M/ G2QM�`/ ambbFBM/X 6�bi b+`�K@
#H2`bX CQm`M�H Q7 >B;? 1M2`;v S?vbB+b- kyy3URyV,ye8-
kyy3X

(9) Cm�M J�H/�+2M�- ai2T?2M > a?2MF2`- �M/ .Qm;H�b
ai�M7Q`/X � #QmM/ QM +?�QbX CQm`M�H Q7 >B;? 1M2`;v
S?vbB+b- kyReU3V,Rye- kyReX

(8) ai2T?2M > a?2MF2` �M/ .Qm;H�b ai�M7Q`/X "H�+F
?QH2b �M/ i?2 #mii2`~v 2z2+iX CQm`M�H Q7 >B;? 1M@
2`;v S?vbB+b- kyR9UjV,ed- kyR9X

(e) _�?mH L�M/FBb?Q`2 �M/ .�pB/ � >mb2X J�Mv@#Q/v
HQ+�HBx�iBQM �M/ i?2`K�HBx�iBQM BM [m�MimK bi�iBbiB@
+�H K2+?�MB+bX �MMmX _2pX *QM/2MbX J�ii2` S?vbX-
eURV,R8Ĝj3- kyR8X

(d) �`BD22i S�H �M/ .�pB/ � >mb2X J�Mv@#Q/v HQ@
+�HBx�iBQM T?�b2 i`�MbBiBQMX S?vbB+�H `2pB2r #-
3kURdV,Rd99RR- kyRyX

(3) �A G�`FBM �M/ um L Pp+?BMMBFQpX Zm�bB+H�bbB+�H
K2i?Q/ BM i?2 i?2Q`v Q7 bmT2`+QM/m+iBpBivX aQp S?vb
C1hS- k3UeV,RkyyĜRky8- RNeNX

(N) "2MB uQb?B/� �M/ �H2t2B EBi�2pX 1{+B2Mi /2+Q/@
BM; 7Q` i?2 >�v/2M@S`2bFBHH T`QiQ+QHX �`sBp T`2T`BMi
�`sBp,RdRyXyjjej- kyRdX

(Ry) LBK� G�b?F�`B- .Qm;H�b ai�M7Q`/- J�ii?2r >�bi@
BM;b- hQ#B�b Pb#Q`M2- �M/ S�i`B+F >�v/2MX hQr�`/b
i?2 7�bi b+`�K#HBM; +QMD2+im`2X CQm`M�H Q7 >B;? 1M@
2`;v S?vbB+b- kyRjU9V,kk- kyRjX

(RR) S�p�M >Qbm`- sB�Q@GB�M; ZB- .�MB2H � _Q#2`ib- �M/
"2MB uQb?B/�X *?�Qb BM [m�MimK +?�MM2HbX CQm`M�H
Q7 >B;? 1M2`;v S?vbB+b- kyReUkV,9- kyReX

(Rk) wB@q2M GBm- a2i? GHQv/- 1HiQM w?m- �M/ >m�M;DmM
w?mX 1Mi�M;H2K2Mi- [m�MimK `�M/QKM2bb- �M/
+QKTH2tBiv #2vQM/ b+`�K#HBM;X CQm`M�H Q7 >B;? 1M@
2`;v S?vbB+b- kyR3UdV,9R- kyR3X

(Rj) am#B` a�+?/2p �M/ CBMrm u2X :�TH2bb bTBM@~mB/
;`QmM/ bi�i2 BM � `�M/QK [m�MimK ?2Bb2M#2`; K�;@
M2iX S?vbX _2pX G2iiX- dy,jjjNĜjj9k- J�v RNNjX

(R9) �H2t2B EBi�2pX ?iiT,ffQMHBM2XFBiTXm+b#X2/mf
QMHBM2f2Mi�M;H2/R8fFBi�2pf-?iiT,ffQMHBM2X
FBiTXm+b#X2/mfQMHBM2f2Mi�M;H2/R8fFBi�2pkf-
kyR8X

(R8) �/�K L�?mK- a�;�` oBD�v- �M/ C2QM;r�M >��?X
PT2`�iQ` bT`2�/BM; BM `�M/QK mMBi�`v +B`+mBibX
S?vbB+�H _2pB2r s- 3UkV,ykRyR9- kyR3X

(Re) �/�K L�?mK- CQM�i?�M _m?K�M- a�;�` oBD�v- �M/
C2QM;r�M >��?X Zm�MimK 2Mi�M;H2K2Mi ;`Qri? mM@
/2` `�M/QK mMBi�`v /vM�KB+bX S?vbB+�H _2pB2r s-
dUjV,yjRyRe- kyRdX

79



(Rd) o2/BF� E?2K�MB- �b?pBM oBb?r�M�i?- �M/ .�pB/ �X
>mb2X PT2`�iQ` bT`2�/BM; �M/ i?2 2K2`;2M+2 Q7
/BbbBT�iBp2 ?v/`Q/vM�KB+b mM/2` mMBi�`v 2pQHmiBQM
rBi? +QMb2`p�iBQM H�rbX S?vbX _2pX s- 3,yjRy8d- a2T
kyR3X

(R3) J�ii?2r " >�biBM;b �M/ hQ?`m EQK�X aT2+i`�H ;�T
�M/ 2tTQM2MiB�H /2+�v Q7 +Q``2H�iBQMbX *QKKmMB+�@
iBQMb BM K�i?2K�iB+�H T?vbB+b- ke8UjV,d3RĜ3y9- kyyeX

(RN) "`mMQ L�+?i2`;�2H2 �M/ _Q#2`i aBKbX GB2#@
`Q#BMbQM #QmM/b �M/ i?2 2tTQM2MiB�H +Hmbi2`BM; i?2@
Q`2KX *QKKmMB+�iBQMb BM K�i?2K�iB+�H T?vbB+b-
ke8URV,RRNĜRjy- kyyeX

(ky) �`�K >�``Qr �M/ a�22/ J2?`�#�MX �TT`QtBK�i2
mMBi�`v t@/2bB;Mb #v b?Q`i `�M/QK [m�MimK +B`+mBib
mbBM; M2�`2bi@M2B;?#Q` �M/ HQM;@`�M;2 ;�i2b- kyR3X

(kR) *?2`vM2 CQM�v- .�pB/ � >mb2- �M/ �/�K L�?mKX
*Q�`b2@;`�BM2/ /vM�KB+b Q7 QT2`�iQ` �M/ bi�i2 2M@
i�M;H2K2MiX �`sBp T`2T`BMi �`sBp,R3yjXyyy3N- kyR3X

(kk) _B+?�`/ � GQrX Sb2m/Q@`�M/QKM2bb �M/ H2�`M@
BM; BM [m�MimK +QKTmi�iBQMX �`sBp T`2T`BMi
�`sBp,RyyeX8kkd- kyRyX

(kj) �`�K q >�``Qr �M/ _B+?�`/ � GQrX _�M/QK
[m�MimK +B`+mBib �`2 �TT`QtBK�i2 k@/2bB;MbX *QK@
KmMB+�iBQMb BM J�i?2K�iB+�H S?vbB+b- kNRURV,k8dĜ
jyk- kyyNX

(k9) 62`M�M/Q :aG "`�M/�Q- �`�K q >�``Qr- �M/
JB+?�ƈ >Q`Q/2+FBX GQ+�H `�M/QK [m�MimK +B`@
+mBib �`2 �TT`QtBK�i2 TQHvMQKB�H@/2bB;MbX *QKKm@
MB+�iBQMb BM J�i?2K�iB+�H S?vbB+b- j9eUkV,jNdĜ9j9-
kyReX

(k8) qBMiQM "`QrM �M/ PK�` 6�rxBX a+`�K#HBM;
bT22/ Q7 `�M/QK [m�MimK +B`+mBibX �`sBp T`2T`BMi
�`sBp,RkRyXee99- kyRkX

(ke) qBMiQM "`QrM �M/ PK�` 6�rxBX .2+QmTHBM; rBi?
`�M/QK [m�MimK +B`+mBibX *QKKmMB+�iBQMb BM
K�i?2K�iB+�H T?vbB+b- j9yUjV,3edĜNyy- kyR8X

(kd) wB@q2M GBm- a2i? GHQv/- 1HiQM u2+?�Q w?m- �M/
>m�M;DmM w?mX :2M2`�HBx2/ 2Mi�M;H2K2Mi 2Mi`QTB2b
Q7 [m�MimK /2bB;MbX S?vbX _2pX G2iiX- Rky,Rjy8yk-
J�` kyR3X

(k3) PH2; ax2?`- 6`û/û`B+ .mTmBb- J�`+Q hQK�KB+?2H-
�M/ _2M�iQ _2MM2`X .2+QmTHBM; rBi? mMBi�`v �T@
T`QtBK�i2 irQ@/2bB;MbX L2r CQm`M�H Q7 S?vbB+b-
R8U8V,y8jykk- kyRjX
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Abstract. Signaled by non-analyticities in the time evolution of physical observables, dynamic quantum
phase transitions (DQPTs) emerge in quench dynamics of topological systems and possess an interesting
geometric origin captured by dynamic topological order parameters (DTOPs). In this work, we report the
experimental study of DQPTs using discrete-time quantum walks of single photons. We simulate quench
dynamics between distinct Floquet topological phases using quantum-walk dynamics, and experimentally
characterize DQPTs and the underlying DTOPs through interference-based measurements. The versatile
photonic quantum-walk platform further allows us to experimentally investigate DQPTs for mixed states
and in parity-time-symmetric non-unitary dynamics for the first time. Our experiment directly confirms
the relation between DQPTs and DTOPs in quench dynamics of topological systems, and opens up the
avenue of simulating emergent topological phenomena using discrete-time quantum-walk dynamics.

Keywords: dynamic quantum phase transitions, quantum quench, quantum walk, dynamic topological
order parameters

1 Introduction

Proposed as temporal analogues to continuous
phase transitions, dynamic quantum phase transitions
(DQPTs) are associated with non-analyticities in the
time evolution of physical observables. For continuous
phase transitions in equilibrium systems, the free en-
ergy becomes non-analytic at critical points, associated
with complex-partition-function zeros known as Fisher
or Lee-Yang zeros. Analogously, DQPT occurs as a
consequence of the emergence of dynamic Fisher zeros,
where the Loschmidt amplitude G(t) = 〈ψ(0)|ψ(t)〉, the
analogue of the partition function, vanishes at critical
times. This leads to non-analyticities in the rate func-
tion g(t) = −1/N ln |G(t)|2, which serves as the dynamic
free energy. Here |ψ(t)〉 is the time-evolved state, and N
is the overall degrees of freedom of the system. Whereas
it is still unclear to what extent key concepts of con-
tinuous phase transitions can be extended to describe
DQPTs, an intriguing discovery is the geometric origin of
DQPTs, captured by dynamic topological order param-
eters (DTOPs), which suggests the intimate connection
between DQPTs and emergent topological phenomena in
dynamic processes.

A relevant dynamic process here is the quench of topo-
logical systems, where the ground state |ψi〉 of the ini-
tial Hamiltonian H i evolves under the final Hamiltonian
H f. Specifically, for quench dynamics of one-dimensional
topological systems, topological DQPTs necessarily exist
when ground states of H i and H f belong with distinct

∗wyiz@ustc.edu.cn
†gnep.eux@gmail.com

topological phases. These topological DQPTs provide
a crucial link between static topological phases and dy-
namic topological phenomena.

In this work, we report the experimental simulation of
topological DQPTs using discrete-time quantum walks
(QWs) of single photons in one dimension. We map
single-photon QWs to many-body quench dynamics be-
tween Floquet topological phases of fermions, where
topological DQPTs naturally emerge. Specifically, we
probe inner products of the initial and time-evolved
states of the single-photon dynamics via inference-based
measurements, from which we construct quantities such
as the rate function and DTOPs for the many-body dy-
namics. An advantage of photonic QW dynamics lies
in the relative ease of introducing decoherence and loss,
which further allows us to experimentally investigate
DQPTs for mixed states and in non-unitary dynamics
for the first time.

2 Simulating quench between topological
phases:

We study DQPTs in quench dynamics using discrete-
time QWs on a one-dimensional homogeneous lattice
L (L ∈ Z), where we use polarization states of single
photons {|H〉 , |V 〉} to represent coin states and spatial
modes to encode walker states. The QW dynamics is
governed by the Floquet operator [1, 2]

Ũ = γC(θ1/2)SC(θ2/2)MC(θ2/2)SC(θ1/2), (1)

where M = 1w ⊗
(
|+〉 〈+|+

√
1− l |−〉 〈−|

)
is the non-

unitary elements with {|±〉 = (|H〉 ± |V 〉)/
√

2} at each
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Figure 1: (a) Experimental setup for the simulation of DQPTs using QWs. Pairs of single photons are generated
via type-I spontaneous parametric down conversion (SPDC) using a non-linear β-Barium-Borate (BBO) crystal. One
photon serves as a trigger and the other signal photon is prepared in an mixed polarization state using polarizing
beam splitters (PBSs), wave plates (WPs) and a non-polarizing beam splitter (NPBS). Coin rotations and conditional
translations are realized by two half-wave plates (HWPs) and a beam displacer (BD), respectively. For non-unitary
QWs, a sandwich-type HWP-PPBS-HWP setup is inserted to introduce the partial measurement, where PPBS is an
abbreviation for partially polarizing beam splitters. Avalanche photodiodes (APDs) detect the signal and heralding
photons. (b) Phase diagram for QWs governed by Floquet operators U and Ũ , labeled by the winding number ν as a
function of coin parameters (θ1, θ2).

(t
)

m ν

(a) (b)

0 2 4 6 8
t

1,3νtheor
1,3νexpt
2,4νtheor
2,4νexpt

(t
)

0

2

-2

0.0

0.5

1.0

1.5
expt

theor

g

g
g

0 2 4 6 8
t

1

0

2

1

3

Figure 2: Rate function (upper layer) and νm(t) (lower
layer) as functions of time steps with a pure initial state
(a) and a mixed state with p = 0.7 (b). Error bars are
derived from simulations where we consider all the sys-
tematic inaccuracies of the experiment.

time step, and γ = (1 − l)−1/4. Here, the coin operator
C(θ) rotates the single-photon polarization by θ about
the y-axis. The shift operator S moves the walker in
|H〉 (|V 〉) to the left (right) by one lattice site. In our
experiment, we performed the unitary dynamic QW of U
with l = 0 and also the non-unitary dynamic QW of Ũ
with l = 0.36.
U have non-trivial topological properties, as the cor-

responding effective Hamiltonian Heff can have topo-
logically non-trivial Floquet bands characterized by fi-
nite winding numbers. Here Heff is defined through
U = e−iHeff . As illustrated in Fig. 1(b), winding numbers
associated with these Floquet bands are tunable through
the coin parameters (θ1, θ2).

Crucially, the non-unitary Ũ also possess PT symme-
try, therefore its quasienergy spectra can be entirely real
in the PT -symmetry-unbroken regime, in contrast to the
regime with spontaneously broken PT symmetry. The
boundary between regimes with unbroken and broken
PT symmetry for is plotted in Fig. 1(b) as red dashed
lines, with PT -symmetry-broken regimes surrounding
topological phase boundaries.

We initialize the walker photon at x = 0 (x is the
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Figure 3: (a) Rate function and (b) νm(t). The QW
is governed by the final Floquet operator with the same
winding number as that of the initial state.

site index), with its coin state given by the density ma-
trix ρ0 = p |ψi

−〉 〈ψi
−| + (1 − p) |ψi

+〉 〈ψi
+|, where |ψi

±〉 =

(|H〉 ∓ i |V 〉)/
√

2. The initial state is therefore a pure
state when p = {0, 1}, and a mixed state otherwise. Im-
portantly, |x = 0〉 ⊗ |ψi

±〉 are eigenstates of U i with the
coin parameters (θi

1 = π/4, θi
2 = −π/2). We then imple-

ment QWs governed by U f with coin parameters (θf
1, θ

f
2).

As the time evolution in each k-sector is governed
by U f

k, the Fourier component of U f, we construct the
Loschmidt amplitude G(k, t) from its Fourier component
P̄ (p, x, t) according to

G(k, t) := Tr
[
ρ0

(
U f
k

)t]
=
∑
x

e−ikxP̄ (p, x, t), (2)

where P̄ (p, x, t) = p〈ψi
−|ψ−(x, t)〉+ (1− p)〈ψi

+|ψ+(x, t)〉,
and |ψ±(x, t)〉 =

∑
k e

ikx
(
U f
k

)t |ψi
±〉. Experimentally,

P̄ (p, x, t) is measured by performing interference-based
measurements at the t-th step.

We then construct the rate function according
to g(t) = −

∑
k∈1BZ ln |G(k, t)|2, where the overall

Loschmidt amplitude of the dynamicsG(t) takes the form
G(t) =

∏
k∈1BZG(k, t). Hence by construction, g(t) is

the rate function of a quench between many-body Flo-
quet topological phases of fermions, where the initial
state is a direct product of single-particle density matri-
ces ρ0 at different quasi-momenta in the first Brillouine
zone (1BZ).

From the measured G(k, t), we further calculate
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Figure 4: (a) Rate function and ν̃m(t) with a loss parameter l = 0.36. (b) Rate function of the QW governed by the
final non-unitary Floquet operator in parity-time (PT ) symmetry broken region.

DTOPs characterizing DQPTs, which are defined as

νm(t) =
1

2π

∫ km+1

km

∂φGk (t)

∂k
dk, (3)

where the Pancharatnam geometric phase φGk (t) =

φk(t) − φdyn
k (t). Here φk(t) is defined through G(k, t) =

|G(k, t)|eiφk(t), and φdyn
k (t) is the dynamic phase. km

(m = 1, 2, ...) are fixed points of the dynamics, where the
corresponding density matrices do not evolve in time and
φGk (t) vanishes at all times. νm(t) therefore characterizes
the S1 → S1 mapping from the momentum submanifold

between km and km+1 to eiφ
G
k (t).

Actually, DTOP can only change value at a topologi-
cal DQPT with G(kc, tc) = 0, where the geometric phase
becomes ill-defined. Here, kc lies between adjacent fixed
points and tc = (2n−1)t0 (n ∈ N), with the critical time
scale t0 = π/(2Ef

kc
) and ±Ef

k is the quasienergy of U f
k.

While topological DQPTs only occur for quenches be-
tween distinct topological phases, abrupt jumps in νm(t)
can also serve as signals for the dynamic characterization
of equilibrium topological phases.

3 Results

We first study DQPTs for pure states in unitary dy-
namics. We initialize photons in the coin state |ψi

−〉 at
x = 0. The photons are then subject to unitary time evo-
lutions governed by the Floquet operator U f with (θf

1 =
−π/2, θf

2 = 3π/8), which simulates a quench between
Floquet topological phases with νi = 0 and νf = −2.
Here, the fixed points k1,2,3,4 = {−π,−π/2, 0, π/2}, and
kc = {±π/4,±3π/4}. Note U f

k has a discrete symmetry
U f
k = U f

k+π in addition to the time-reversal symmetry.

Under these symmetries, Ef
kc

are degenerate and there
is only one critical time scale t0 = 4. In Fig. 2(a), we
show the rate function, which becomes non-analytic at
the first critical time tc = t0. Whereas it is difficult
to directly identify non-analyticities of g(t) in discrete-
time dynamics, the measured g(t) peaks at critical times
and DQPTs are unambiguously revealed by jumps in the
quantized DTOP across tc. Due to the symmetry of U f

k,
we have ν1,3(t) = −ν2,4(t), where ν4(t) is integrated in
the range (π/2, π).

In the second case study, we initialize photons at x = 0
and in a mixed coin state characterized by ρ0 with p =
0.7. The QW is governed by U f with (θf

1 = −π/2, θf
2 =

3π/8). As shown in Fig. 2(b), while the occurrence of
DQPTs are still signaled by non-analyticities in the rate

functions, DTOPs are typically not quantized. This is
because φGk (t) do not vanish at km at all times, such that

eiφ
G
k no longer forms a closed S1 manifold between km

and km+1. Consequently, νm(t) is no longer the winding
number characterizing such a map.

For comparison, we choose U f with (θf
1 = −π/16, θf

2 =
−3π/16) and study the case where the quench dynamics
is between phases with νi = 0 and νf = 0. As shown
in Fig. 3, the rate function is smooth in time and νm(t)
remains zero, indicating the absence of DQPTs. Here
km = {0,±π/2, π}.

Similar to the unitary case, we initialize photons in the
state |x = 0〉 ⊗ |ψ̃i

−〉, with the corresponding Ũ i in the
PT -symmetry-unbroken regime with νi = 0 and |x =
0〉 ⊗ |ψ̃i

−〉 the ground state of Ũ i. The walker is evolved

under the final non-unitary Floquet operator Ũ f with
(θf

1 = −π/3, θf
2 = π/5), which is in the PT -symmetry-

unbroken regime with νf = −2. The Loschmidt ampli-
tude, the rate function g̃(t), and the DTOP ν̃m(t) for
non-unitary dynamics can be constructed similarly to the
unitary case. As illustrated in Fig. 4(a), non-analyticities
in the rate function have two distinct time scales, which
correspond to two different DTOPs, both quantized and
demonstrating abrupt jumps at odd multiples of the cor-
responding critical time scale.

The emergence of two critical time scales is due to the
breaking of time-reversal symmetry of the non-unitary
dynamics. In this case, whereas fixed points still ex-
ist when U i and U f are in the PT -symmetry-unbroken
regime and have different winding numbers, they are no
longer located at high-symmetry points.

Finally, we study the case when the final non-unitary
Floquet operator is in the PT -symmetry-broken regime.
The resulting rate function is shown in Fig. 4(b), where
no DQPTs can be identified. As fixed points are also
absent in the dynamics, DTOPs cannot be defined in
this case.
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We present a classical approximation algorithm for
the MAX-2-Local Hamiltonian Problem. This problem
generalizes MAX-2-CSPs, so is NP-hard. It is an op-
timization version of the QMA-complete Local Hamil-
tonian problem in quantum computing, with the addi-
tional assumption that the local terms are complex posi-
tive semidefinite. We work in the product state space,
and extend Goemans and Williamson’s framework for
approximating MAX-2-CSPs. The analysis for round-
ing does not naturally extend because we round to a set
of normalized vectors, not boolean numbers, and we use
Grothendieck inequalities for different special cases. For
general MAX-2-Local Hamiltonions, we achieve an ap-
proximation ratio of 0.564 relative to the best product
state. In general, the best product state might be worse
than the best entangled state by a factor of two, so our
overall approximation ratio is 0.282. This is the first ex-
ample of an approximation algorithm beating the random
quantum assignment ratio of 0.25 by a constant factor.

1 Introduction

Designing approximation algorithms is one of the main
tools to deal with computationally hard problems. The
maximum constraint satisfaction problems have been es-
pecially well-studied with regards to approximation algo-
rithms (see [MM17] for a survey.) The boolean MAX-2-
CSPs consider a problem where we have n boolean vari-
ables x1, x2, . . . , xn ∈ {0, 1}, a set of edges E between
xi’s, and functions fij : {0, 1}2 → {0, 1} on xi, xj for
(i, j) ∈ E. The question is to compute the quantity
OPTCSP = maxx1,...,xn

∑
(i,j)∈E f(xi, xj). This prob-

lem is NP-hard. It is possible, however, to find an as-
signment such that

∑
(i,j)∈E f(xi, xj) ≥ αOPTCSP for

some α ∈ [0, 1]. The number α is called the approxi-
mation ratio, and the best approximation ratio we have
for the MAX-2-CSP is 0.874 [LLZ02]. A special case of
MAX-2-CSP is where the Hamming weight of fij , which
is r =

∑
(xi,xj)∈{0,1}2 fij(xi, xj), is constant across all

(i, j) ∈ E. Then the best approximation ratios depend
on the value r. When r = 3, as in MAX-2-SAT, the best
ratio is 0.94 [LLZ02]. When r = 2, as in MAX-2-LIN or
MAX-CUT, the best ratio is 0.878 [GW95]. When r = 1,
as in MAX-2-AND or the MAX-DI-CUT, the best ratio
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is 0.874 [LLZ02].
In this paper we consider the quantum generalization

MAX-2-local Hamiltonians (MAX-2-LH) on qubits, de-
fined in [GK11] (more generally for k-local and qudits).
In this problem a set of 2-local Hamiltonians {Hpq : 1 ≤
p, q,≤ n} is given, where each term is a 2-local positive
semidefinite matrix of norm at most 1. Each term Hpq

is non-trivial on the qubits p, q and trivial on the rest of
the qubits. More formally, Hpq = H ′

pq ⊗ I[n]\{p,q}, where
H ′
pq is a Hamiltonian on the qubits p, q and I[n]\{p,q} is

the identity matrix on the rest of the qubits. The goal of
MAX-2-LH is to approximate the maximum eigenvalue
of H =

∑
pqHpq, that is, OPT := max|φ〉〈φ|H|φ〉.

The MAX-2-CSP can be encoded into the problem
of finding the maximum eigenvalue: given a 2-CSP in-
stance

∑
i,j∈E fi,j(xi, xj), consider the 2-local Hamilto-

nian
∑
i,j∈E Pij , where Pij is a projector that supports

|xixj〉 on the qubits i, j if and only if fij(xi, xj) = 1. The
computational basis state that realizes the maximum of
the MAX-2-CSP has the same eigenvalue on the Hamilto-
nian, and there is no better quantum assignment because
the computational basis diagonalizes Pij . Therefore, we
can say MAX-2-LH is a quantum generalization of MAX-
2-CSP. In fact, computing OPT up to inverse polynomial
error is QMA-hard [KKR06].

For classical computations it is easier to work
with product states because they have polynomial
size representations. Therefore we will be fo-
cused on approximating the quantity OPTprod =
max|φ1〉,...,|φn〉〈φ1| . . . 〈φn|H|φ1〉 . . . |φn〉, which is the
highest energy achievable by a product state. The
gap between OPT and OPTprod is how much better
entangled states do, and [GK11] bounded the gap by
OPTprod/OPT ≥ 1/2. OPTprod can be realized by a
product state, so verification of OPTprod is in NP.

We give the first approximation algorithm for MAX-
2-LH with general interaction graphs. Our algorithm
outputs a product state that achieves the energy 0.564
of the highest energy achievable by a product state
(0.564 ·OPTprod), and 0.282 of the highest energy achiev-
able by an arbitrary entangled state (0.282·OPT).

We analyze the cases when each local terms are pro-
jectors. As in the classical case, we divide the cases with
the rank of the projectors. When the rank r = 3, we
get the energy 0.878 · OPTprod. Since we know that
OPTprod/OPT ≥ 1/2, we achieve 0.439 · OPT. When
the rank r = 1, we get a varying ratio depending on how
entangled the projectors are. We get the approximation84



ratio 0.40 when the projector is a product of 1 qubit pro-
jectors, and in the case with general rank 1 projector
local terms, we get the ratio 0.282. Since every 2-local
Hamiltonians with PSD local terms can be expressed as a
weighted summation of rank 1 projectors, we can extend
the analysis to MAX-2-LH yielding the ratio 0.282.

In related work, Bansal, Bravyi, and Terhal [BBT07]
proved that a PTAS (an algorithm that runs in poly-
nomial time in problem size and 1/ε where ε is arbitrary
small approximation ratio) exists for Quantum Ising Spin
Glass with planar graph with bounded degree. The only
results on general interaction graphs are by Gharibian,
Parekh, and Ryan-Anderson [GPRA17] and by Bravyi,
Gosset, König, and Temme [BGKT19]. [GPRA17] con-
siders a family of physically motivated Hamiltonians,
namely H =

∑
(p,q)∈E wpqHpq for wpq ≥ 0, where Hpq =

I −αXp⊗Xq −βYp⊗Yq − γZp⊗Zq, for α, β, γ ∈ {0, 1}.
They get approximation ratios 2/(1 + α + β + γ) when
α + β + γ ≥ 2, and 0.878 otherwise. Furthermore, they
show that their ratios are tight in the product state
space. [BGKT19] considers traceless 2-local Hamiltoni-
ans. They give an algorithm that outputs a seperable
state with expected energy OPT /O(log n), where OPT is
the maximum eigenvalue of input Hamiltonian. A limita-
tion of previous works is that they do not give equivalent
results to that of classical MAX-2-CSP approximation al-
gorithms, which yield constant approximation ratios on
MAX-2-CSP instances.

In terms of techniques, we follow the framework that
was first introduced by Goemans and Williamson. We
first formulate the problem as an equivalent optimiza-
tion problem in the real numbers. Then we relax the
optimization problem to an SDP. The optimal value of
the SDP will be at least the value of the original prob-
lem, because the solution space is bigger. Then we ran-
domly round the solution in the bigger space down to
original solution space. Analyzing the randomized round-
ing is considerably more complicated than in the clas-
sical cases, because we need to round the solutions to
continuous multi-dimensional space, whereas the solu-
tion space is the boolean space in the classical cases.
Fortunately, the rounding was analyzed in a more gen-
eral setting in terms of Grothendieck inequality with a
PSD matrix [BdOFV10]. It is natural to consider using
SDP for the problem, because every but few approxima-
tion algorithms for classical MAX-2-CSP use SDP so-
lutions to round [GW95, Zwi00, MM01, LLZ02]. Also
[GPRA17] uses SDP to approximate the MAX-2-LH
problems. The SDP formulations of [GPRA17, BGKT19]
and ours are different. An advantage of the formulation
in [GPRA17, BGKT19] is that the optimal value of the
program is OPT itself, whereas the optimal value of our
program is OPTprod. An advantage of our formulation
is that it is simple to round and analyze, which makes
it possible to use for general MAX-2-LHs with positive
semidefinite local terms. We limit our analysis to posi-
tive semidefinite (PSD) local terms for 3 reasons: first,
it is analogous to the classical CSP case, because fij is
always non-negative in classical case. Second, without

loss of generality, every MAX-2-LH can be turned into
MAX-2-LH with PSD local terms by adding a multiple
of identity matrix. Third, if local terms are not PSD, it
is possible that the highest eigenvalue is negative. Then
approximation ratio is no longer well-defined.
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Extended abstract: Nonuniform photonic losses and classical simulation of linear
optics

Daniel J. Brod and Micha l Oszmaniec

Multi-photon experiments in large linear-optical networks are an attractive platform for demon-
strating quantum computational supremacy via the paradigm of Boson Sampling. Unfortunately,
large linear-optical networks typically su↵er from photonic losses which can undermine the com-
putational hardness of the process. Here we present a comprehensive study of the impact of non-
uniform, i.e. path-dependent, losses on the computational complexity of linear-optical processes.
Our main result is that, if we assume each beam-splitter in a network induces some loss probability,
non-uniform network designs cannot circumvent e�cient classical simulation of the corresponding
optical processes. This solves an open problem from previous work that assumed losses occurred
uniformly.

I. INTRODUCTION

The paradigm of quantum computational advantage,
or “quantum supremacy”, has been seen in the last few
years as a promising route towards demonstrating that
quantum computers are more powerful than their classi-
cal counterparts [1]. Although systems within this model
are not expected to be universal for quantum compu-
tation, and indeed neither to perform explicitly useful
tasks, they allow us to test quantum mechanics in the
limit of high computational complexity. The pursuit of
a near-term demonstration of quantum advantage is also
aligned with the overarching goals of the field of quantum
computing, as it pushes the development of technologies
that will undoubtedly be necessary for scalable universal
quantum computers and allows us to better understand
the e↵ects of real-world imperfections in intermediate-
size quantum systems.
One particular candidate for demonstrating quantum

advantage is nonadaptive linear optics, or BosonSam-
pling [2]. Besides being an elegant physically-motivated
computational model and, arguably, the first proposal of
quantum supremacy as we understand it today, Boson-
Sampling also benefits from the technology and expertise
that has been independently developed in the quantum
optics community in the last few decades. However, as
elegant as the theoretical model is, there are many tech-
nological and theoretical challenges in realizing it in prac-
tice. Several sources of experimental imperfections a↵ect
linear-optical systems, and it is essential to understand
which can be mitigated and which might degrade the
computational power of the model.
Relation to previous works— Much work has been

done to investigate the boundary between classical sim-
ulability and quantum advantage in linear optics under
di↵erent models of noise and experimental imperfections.
Losses in particular have received the most attention. In
[3] it was shown that n-photon BosonSampling retains its
computational power as long as only a constant number
of photons are lost (or if the loss probability per-photon
scales inversely with the number of photons). Recently,
several papers analyzed lossy BosonSampling from the
other extreme, showing it becomes classically simulable

when less than
p
n photons are left [4, 5] for arbitrary

interferometers, or even when a suitably high constant
fraction of the photons is lost for typical Haar-random
interferometers [6]. The complexity of BosonSampling
has also been investigated under the e↵ect of fabrication
noise in the linear-optical components [7, 8], losses com-
bined with dark counts [9], and general Gaussian noise
in the experimental data [10].
In [5] we investigated the issue of linear-optical losses

from the point of view of classical simulation. Our main
result stated that, when less than

p
n out of n photons

are left, it is possible to approximate a lossy BosonSam-
pling state by a state of distinguishable photons, which
is known to be classically simulable. Furthermore, the
error of the approximation (measured in total variation
distance) decreases for larger experiment sizes. Interest-
ingly, this approximation is done at the level of the input
state to a linear-optical network, and so holds for arbi-
trary linear-optical experiments (it could, in principle, be
much smaller for typical or specific interferometers).
This result assumes that losses happen at the input to

the network. This is a very common assumption in the
linear optics literature because mode-independent losses
commute with linear-optics and so can, in fact, be taken
to happen at the input. However this is not always realis-
tic, as it is possible to build highly unbalanced networks
where losses are very mode-dependent [11]. Motivated by
this, in [5] we also formalized this standard assumption
and showed under which conditions losses can in fact be
“commuted” to the input of a network. Specifically we
showed it is always possible to commute s layers of losses
to the input of a network, where s is the smallest num-
ber of beam splitters in any path connecting an input and
an output mode. This strengthened the previous results
where this assumption is made informally [3, 4, 9, 12].

II. INFORMAL DESCRIPTION OF OBTAINED

RESULTS

In this work we extend our previous results contained
in [5] in di↵erent directions, with new results that might
also be of independent interest to the more general quan-
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tum optics community, as follows.
Result 1: Extracting nonuniform losses from

the network. We improve the procedure of [5] that al-
lows us to commute losses to the input of a network. For
simplicity, we make the following assumption regarding
losses in linear optics. We assume that all losses happen
within the network and are located at the beam splitters,
and that every beam splitter carries the same amount of
loss. Although losses due to imperfect sources and detec-
tors are experimentally important, they are in principle
constant, whereas losses due to linear-optical elements
dictate how overall transmissivity of the network scales
as the experiments become more complex (in particular,
as the depth of the networks increase). Furthermore, the
geometry of a network is the main source of nonunifor-
mity of losses which we wish to study. Experimentally,
beam splitter losses are also relevant e.g. in integrated
photonic devices, since waveguide bends required to build
the directional couplers that implement beam splitters
can cause photons to leave in unguided modes [13]. We
thus represent a lossy linear-optical as in Fig. 1(a).
The main figure of merit for the result of [5] is the

length of input-output paths inside a network, measured
in the number of beam splitters a photon has to traverse
along that path. The previous result stated that, if the
shortest input-output path inside a network has length
s, we can rewrite the network in such a way that it has
s layers of mode-independent losses at the input. How-
ever this is not particularly useful to describe an unbal-
anced network such as that of Reck et al [11], depicted in
Fig. 1(a), as in that case we can only pull out one layer
of uniform losses.
Our new result improves on this by showing how to

extract nonuniform loss layers. More specifically, let
si be the shortest path between input i and any
output within some network. We show how to
write an equivalent network that is preceded by
a round of losses where input i su↵ers the e↵ect of
si consecutive loss elements. The formal statement
of this result can be found in Theorem 1 of the appended
technical notes. Our proof is e�cient and constructive,
and works for general networks. The final result is illus-
trated in Fig. 1(b). This gives a more e�cient description
of the network where asymmetry is taken into account,
and which we use to prove result 4 described later.
Result 2: Classical simulation of BosonSam-

pling with highly concentrated input states. It
is well known that BosonSampling is e�ciently classi-
cally simulable if all n photons are initialized in a single
mode, i.e., we have input state |n, 0, 0, . . . , 0i. This fol-
lows from the fact that the permanent of a matrix of
n repeated columns can be computed trivially in linear
time, or alternatively from the fact that if all photons are
initialized in the same mode they behave as distinguish-
able particles. In our work we prove a stronger version of
this statement by giving an e�cient classical simulation
for BosonSampling when input photons are su�ciently
concentrated on a few modes.

We combine techniques from [14, 15] to con-
struct an e�cient classical simulation of (non-
lossy) BosonSampling for two types of input. The
first (type A) is when we have n photons concen-
trated in a constant number of input modes. The
second (type B) is when all but log n photons are
concentrated on a single input mode, while an
additional log n modes contain one photon each.
We provide an algorithm for strong simulation (i.e. com-
puting probabilities) by showing that an expansion for
the permanent function described in [14] can be com-
puted e�ciently in these two regimes (the authors of [14]
pointed out this fact for inputs of type A, but not type
B). We then use this simulation to adapt a result of [15]
for weak classical simulation (i.e. producing samples from
the correct distribution) of BosonSampling with collision
inputs, showing that it is also e�cient for inputs of types
A and B. Our adaptation of the result of [15] is also based
on a physical description of the state (via first quantiza-
tion) rather than combinatorial considerations, and we
believe it could make the original result more transpar-
ent for researchers with a stronger physics background.
The precise formulation of this result can be found in
Theorem 2 of the appended technical notes.

Besides giving us a new understanding of the regimes
where e�cient classical simulability of BosonSampling
is possible, and ruling out attempts at demonstrating a
quantum advantage with highly concentrated bosonic in-
put states, this result also serves as a nontrivial stepping
stone towards result 3 described below.

Result 3: Classical simulation of lossy Boson-
Sampling with lossless modes. We improve the clas-
sical simulation algorithm of [5] by allowing the lossy
BosonSampling instance to be coupled to some lossless
modes. Concretely, suppose that n photons pass
through a lossy channel in such a way that less
than

p
n survive, and are then combined with up

to log n photons input in modes that have perfect
transmission. We show that the simulation of [5]
works for this setting as well. The formulation of
this result can be found in Theorem 3 of the appended
technical notes.

We now sketch the proof of the above result. The
classical simulation strategy from [5] was based on ap-
proximating a lossy bosonic state ⇢ by the best particle-
separable state, i.e., the closest state where particles ef-
fectively behave as distinguishable. In [5] we obtained the
closest particle-separable state � to our target state and
computed the trace distance between them. We showed
that this trace distance decreases with n if losses are large
enough such that less than

p
n photons survive on aver-

age. It is well known that the trace distance between two
input states is an upper bound on the total variation dis-
tance between output distributions of any linear-optical
experiment performed with those states. Therefore, we
can simulate the target BosonSampling distribution by
simulating the action of the same interferometer on �
with an error that decreases with the size of the exper-
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(a) (b)

FIG. 1. Example of the algorithm in result 1. Blue rectangles correspond to beam splitters and associated phase shifters,
orange rectangles are loss elements. We assume all loss elements are equal, and use the fact that two equal loss elements in the
arms of a beam splitter commute with it. We apply our result 1 to the triangular decomposition of Reck et al [11] of (a) as
an example. It is possible to commute to each input in the network di↵erent amounts of losses according to the shortest path
between that input and any output, leading to the equivalent network represented in (b).

iment. We show this by using result 2 described previ-
ously. More specifically, our previous classical simulation
was e�cient because the state � we obtained could be
generated by the action of a linear-optical channel on a
state where all n photons start in the same mode, which
is known to be classically simulable. If we now append to
� another log n photons one in each mode, this is equiv-
alent to a simulation of our original target lossy state
⇢ with an additional log n photons input in modes that
have perfect transmission. However, this procedure gen-
erates a state of type B described in result 2 above, and
so an e�cient classical simulation is still possible.
Result 4: Nonuniform losses do not avoid classi-

cal simulation. By combining results 1–3 we obtain our
main result. Informally it states that the classical
simulation algorithms of [4, 5] cannot be circum-
vented by the design of unbalanced networks such
as that of Reck et al [11] (see Theorem 4 in the tech-
nical notes for the formal statement). This was left as
an open question in [5]. The idea was that, in an unbal-
anced network, there might be some input modes where
losses are very mild, and the high chance of survival of
these photons might break the assumptions behind the
simulation algorithms. Here we show, focusing for con-
creteness on the particular construction of Reck et al [11],
that classical simulation remains possible in those cases
as well, likely closing one avenue for scaling up Boson-
Sampling experiments. This is also relevant for current
experiments, since networks with this geometry are com-
mon in integrated-photonic implementations [13, 16].
Our claim follows from the previous three results by

the following argument. The triangular decomposition
of Reck et al [11] (cf. Fig. 1(b)) has the property that

the shortest path from mode i to any output has length
i (if we label modes starting from the lowest one). Now
separate the inputs in two sets: the bottom c log n ones,
and the top m�c log n ones, for some c to be determined
later. Suppose the input state we wish to simulate occu-
pies the bottom n modes in an attempt to avoid losses
as much as possible. To simplify the argument, suppose
now that the bottom c log n modes are lossless (or in-
clude their loss channel as part of the network rather of
the input state). By result 1 we can extract more than
c log n loss elements for all modes above mode c log n+1.
However, as discussed in [5], given a per-beamsplitter loss
parameter ⌘, there is always some c such that, if an n-
photon state su↵ers c log n rounds of losses, we expect
less than

p
n photons to survive on average. Therefore,

the input to the network is amenable to approximation
by a convex combination of states of type B, as described
in result 3, and so e�cient classical simulation is possible.

Conclusion— Results 1-4 above are relevant for the
BosonSampling community due to the new theoretical
ideas they introduce, but also to guide experimental ef-
forts moving forward, in particular with regards to linear-
optical network design. However, they can also be of
independent interest to the quantum optics community
in general. Result 1 in particular shows to which extent
one can extract nonuniform losses from a linear-optical
network. This is a major improvement over the similar
result in [5]. While that result formalized a commonly-
used assumption in the quantum optics community, our
new result allows more realistic assumptions to be made
that include nonuniform losses (which no longer commute
with linear optics).
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A Classical Algorithm for Quantum SU(2) Schur Sampling
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Abstract. Many quantum algorithms can be represented in a form of a classical circuit positioned
between quantum Fourier transformations. In our work, we study the case where quantum Fourier trans-
formations are replaced by the quantum Schur Transform – a global transformation which maps the com-
putational basis to a basis defined by angular momenta. It underpins Permutational Quantum Computing
(PQC), which is a computational model believed to have supra-classical power. We show that the output
distributions of PQC circuits can be approximately classically sampled in polynomial time if they are
sufficiently close to being sparse, thus isolating a regime in which these Quantum SU(2) Schur Circuits
could lead to algorithms with exponential computational advantage. Our work is primarily motivated by
a conjecture that underpinned the hardness of Permutational Quantum Computing, a restricted quantum
computational model that has the above circuit structure in one of its computationally interesting regimes.
The conjecture stated that approximating transition amplitudes of Permutational Quantum Computing
model to inverse polynomial precision on a classical computer is computationally hard. We disprove the
extended version of this conjecture – even in the case when the hardness of approximation originated from
a difficulty of finding the large elements in the output probability distributions.

Keywords: Quantum computing, sampling, classical simulation

The full paper version of this submission is at [1].

1 Introduction

Charaterizing the power of quantum computers is one
of the two major challenges in quantum computation,
with the other being their scalable implementation. A
seminal approach to the former problem is the study of
conditions which make quantum algorithms amenable to
methods of efficient classical simulation. A number of im-
portant quantum algorithms can be cast in a form of clas-
sical circuit positioned between a pair of circuits which
implement quantum Fourier transformation. These are,
for example, algorithms for the Hidden Subgroup Prob-
lem which in particular include the Shor’s factoring al-
gorithm [2, 3]. While the latter provides strong evidence
that quantum computers outperform the classical ones,
Schwarz and van den Nest [4] showed that the respective
quantum circuit could be efficiently classically simulated
if its output distribution was sufficiently close to being
sparse.

In our current work, we aim to characterize a differ-
ent class of circuits that instead of the quantum Fourier
transform contain the quantum Schur transform (QST)
as depicted on Fig. 1. QST is a map from the compu-
tational basis to a basis defined by angular momentum
[5, 6, 7] and it underpins a variety of quantum infor-
mation processing tasks, including spectrum estimation
[8, 9], hypothesis testing [10, 11, 12, 13], quantum com-
puting using decoherence-free subspaces [14], communi-
cation without a shared reference frame [15, 16], and
quantum color coding [17]. A quantum circuit that ef-
ficiently implements this transform was first described
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†ss870@cam.ac.uk
‡kptemme@gmail.com
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Figure 1: Schematic diagrams of the quantum circuit
used in Shor’s factoring algorithm (Left) and the cir-
cuits we consider here (Right). QST denotes the SU(2)
Quantum Schur Transformation. The classical circuits
between the transforms can represent, for example a
polynomially-long sequence of Toffoli gates.

in [5, 6, 7] and recently improved by Kirby and Strauch
[18, 19]. The extent to which circuits using QST could be
used to devise new quantum algorithms is, to our knowl-
edge, largely unexplored - possibly with the exception of
[20] and [21].

QST is a centerpiece in the analysis of Permutational
Quantum Computing (PQC) [22] – a restricted quantum
computational model based on recoupling of angular mo-
menta [21, 23]. It has been conjectured that PQC has
supra-classical computational power. One of the conjec-
tures supporting this belief stated that an approximation
of its transition amplitudes in the regime where they en-
code matrix elements of the symmetric group irreps in the
Young’s orthogonal form [24, 21] is hard to compute clas-
sically if we require inverse polynomial precision (in the
number of input qubits). While in our previous work we
presented an efficient classical algorithm for approximat-
ing such transition amplitudes [22], an intriguing ques-
tion remained: Is it also possible to identify all PQC
transition amplitudes that can be approximated using
classical methods with the inverse polynomial precision?
Since the expected output probability of an n-qubit quan-
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tum circuit C with an input state |y〉 is given by:

Ex
(
|〈x|C|y〉|2

)
=

1

2n

∑
x

|〈x|C|y〉|2 =
1

2n
,

approximating these values with an inverse polynomial
precision cannot distinguish the majority of 〈x|C|y〉 am-
plitudes from zeroes.

Could we exploit the difficulty that arises from finding
large matrix elements encoded in the output of the algo-
rithm and thus demonstrate the (exponential) quantum
computational advantage?

We show that this is not the case by describing a clas-
sical method that finds all large output probabilities in
polynomial time.

2 Preliminaries and main results

Consider n qubits indexed by [n] := {1, 2 . . . n}. The
spin of the k-th qubit is defined by a triple of operators:

~Sk =
1

2
(Xk, Yk, Zk) ,

where Xk, Yk, Zk denote the Pauli X,Y, Z operators on
the k-th qubit. The total spin operator on a qubit subset
A ⊆ [n] is given by:

S2
A :=

∑
k∈A

~Sk ·
∑
k′∈A

~Sk′ .

We write S2 := S2
[n]. The operators S2

A and S2
B commute

if and only if the sets A and B are disjoint or one is
contained in the other. Let:

ZA :=
1

2

∑
k∈A

Zk,

denote the azimuthal spin operator on a qubit subset A.
We again use Z[n] := Z. The operators ZA and S2

A com-
mute for any A ⊆ [n] and share an eigenspace labeled by
quantum numbers jA and mA. The quantum number jA
is the total spin of qubits in A and mA is the azimuthal
spin. Both spin numbers are subject to constraints: the
azimuthal spin mA only takes values in integer steps be-
tween −jA and jA, while the total spin numbers are ei-
ther integer or half-integer and combine according to the
angular momentum addition rules [27, 28]:

jA∪B ∈ {|jA − jB |, |jA − jB |+ 1, . . . , jA + jB} . (1)

Sets of commuting spin operators can be used to define
complete orthonormal bases [21]. A particular basis is
given by coupling a qubit at a time; that is by the joint
eigenstates of:

S2
[2], S

2
[3], . . . S

2, Z.

We call it the sequentially coupled basis. The basis states
are labeled by eigenstates j[2], j[3] . . . , j[n−1], J and M of
the spin operators. By Eq. 1, these are subject to:

j[1] =
1

2
, j[k+1] =

∣∣∣∣j[k] ± 1

2

∣∣∣∣ , (2)

which can be expressed diagrammatically by a branching
diagram (see Fig. 4 in [1]). Up to the quantum number
M , the sequential basis states correspond to paths in this
diagram that start at j[1] = 1

2 .
Let Ak be the set of all such paths on k qubits. For

the sequentially coupled basis, the SU(2) Schur-Weyl du-
ality gives rise to the SU(2) Quantum Schur Transform
as described in [6, 7, 18, 5, 19, 30]. It is a sequence of
the Clebsch-Gordan transformations, that couple j and
j′ eigenspaces into a |J,M, j, j′〉 state by:

|J,M, j, j′〉 =
∑
m,m′

CJ,Mj,m; j′,m′ |j,m〉 |j′,m′〉 ,

where the summation over m runs from −j to j in integer
steps (and similarly for m′) and the CJ,Mj,m; j′,m′ are the
Clebsch-Gordan coefficients. The transform between the
computational and the sequentially coupled basis is given
by a cascade of the Clebsch-Gordan transforms [5, 18].
We label the sequentially coupled basis states on n qubits
by |J ,M〉, where J is a path in An.

Permutational Quantum Computing in the sequen-
tially coupled basis uses the permutation gate between
two sequentially coupled basis states. Its transition am-
plitudes are:

〈J ,M |Uπ|J ′,M ′〉 ,

where the permutation gate Uπ is defined by its action
on a computational basis state |x1 . . . xn〉 as:

Uπ |x1x2x3 . . . xn〉 = |xπ(1)xπ(2)xπ(3) . . . xπ(n)〉 .

Both Z and S2 operators commute with Uπ and
consequently, M = M ′ and J = J ′. The matrix
〈J ,M |Uπ|J ′,M ′〉 block-diagonalizes to J,M blocks; each
of which corresponds the an irreducible representation
of the symmetric group in the Young’s orthogonal form.
The transition amplitudes are then the matrix elements
of these matrices [21]. Approximating them to polyno-
mial precision was conjectured hard classically in [21, 24]
but an efficient classical algorithm was found by two of
the co-authors [22].

The methods we present here work for a broader family
of quantum circuits we call the SU(2) Quantum Schur
Sampling circuits. These have transition amplitudes:

〈J ,M |W |J ′,M ′〉 ,

where W is defined by its action on a computational basis
state |x〉 , x ∈ {0, 1}n:

W |x〉 = |w(x)〉 ,

with w : {0, 1}n → {0, 1}n being a classical function
given by a sequence of Toffoli gates – we consider only
such W where this sequence is poly(n) long. To formally
state our results, we introduce the measurement output
distributions which arise after we measure the qubits af-
ter a computational run. Given a path j ∈ Ak for k ≤ n,
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|φ〉 = W |J ,M〉, define the output marginal p(j):

p (j) :=
∑
J⊇j

∑
M

p (J ,M)

= 〈φ|
∑

J⊇j;M
|J ,M〉 〈J ,M |φ〉 := 〈φ|Π (j) |φ〉 ,

where the summation
∑

J⊇j sums all paths J ∈ An that
contain j ∈ Ak. The summation

∑
M runs from −J to

J in integer steps. We use
∑

J⊇j;M as a shorthand for∑
J⊇j

∑
M . The projector has the form:

Π (j) :=
∑

J⊇j;M
|J ,M〉 〈J ,M | .

2.1 Main results

In our work, we derive a classical algorithm that finds
large elements in the output distribution of quantum
Schur circuits with the following performance:

Theorem 1 Let p(J) : An → [0, 1] be a probability dis-
tribution on paths. There is a classical algorithm that

outputs a set L ⊆ An in poly
(
n, 1θ , log 1

γ

)
time, such

that for some θ > 0:

∀J ∈ L : p(J) ≥ θ

2
,

∀J ∈ An : p(J) > θ =⇒ J ∈ L,
(3)

with probability at least 1− γ.

One may view this theorem as an adaptation of the
Kushilevitz-Mansour algorithm [25] to a new setting
where instead of decision trees, we work with branching
diagrams. The proof is given in Section III of [1].

The theorem below shows that there exists an efficient
classical sampler when the requisite distribution is close
to sparse. It will be convenient to explicitly represent the
probability distribution as follows: p(J) =

∑
M p(J ,M).

Definition 2 (ε-approximate t-sparsity) A probabil-
ity distribution p(J ,M) is t-sparse if it has at most t
non-zero elements p(J ,M). A probability distribution
p̃(J ,M) is ε-approximately t-sparse if there exists a t-
sparse distribution p(J ,M) such that:

‖p− p̃‖1 ≤ ε.

Theorem 3 Assume that p(J ,M) is ε-approximate t-
sparse. Then one can sample from p(J ,M) classically
in poly(n, 1ε , t) time to 6ε error in the total variational
distance.

The proof is given in Section IV of [1].
Our results additionally imply that sampling from the

quantum Schur circuits can only lead to exponential com-
putational advantage if the individual elements of the
output distribution cannot be resolved by polynomial ap-
proximation with the quantum device by taking polyno-
mially many samples. A way to circumvent this restric-
tion, similarly to the case of circuits that use the quan-

tum Fourier transform, could be to use a technique uti-
lized in the Shor’s algorithm that reconstructs group gen-
erators by sampling log |G| group elements for a super-
polynomially large |G|. There is no meaningful counter-
part to this approach for the QST as of now.

3 Discussion

Circuits using the QST underpin a diverse range of
protocols in quantum information processing, from state
discrimination to computational models such as Permu-
tational Quantum Computing. While studying the com-
putational power of the transform, we singled out a class
of circuits with QST blocks that extend a computation-
ally interesting regime of Permutational Quantum Com-
puting. The key result that enabled this analysis was
the efficient approximation of quantum Schur sampling
circuits studied in [22] as means to characterize its com-
putational power. Building on the work of Schwarz and
Van den Nest [32, 4], we showed that large elements of the
output distributions can be efficiently found, which pre-
cludes the possibility that the circuits could encode quan-
tities that would be hard to classically approximate by
taking polynomial number of samples. We subsequently
proved that these circuits can be classically efficiently
approximately sampled from if their output distribution
becomes sufficiently close to a sparse one.

Our algorithm may be viewed as a random walk on the
angular momentum branching diagram associated with
the computation. One distinctive feature of the algo-
rithm is then that it is not limited to the angular mo-
mentum and can be extended to other branching dia-
grams. It will remain efficient as long as the counterparts
of the Clebsch-Gordan coefficients remain efficiently com-
putable to high precision and the out-degree of any vertex
of the branching diagram will be bounded by a constant
(see also the discussion in [22]). One of the interesting
cases where our techniques could apply with little adapta-
tion is the case of q-deformations of the SU(2) branching
diagrams, applied in the study of topological phases of
matter [34, 35].

Circuits using similar structure but using an SU(d)
Schur-Weyl transformation for d > 2 were recently ap-
plied in study of Boson Sampling with partially distin-
guishable bosons in the first quantization [36]. The pos-
sibility of leveraging the simulation techniques proposed
here in this context remains open.
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Unifying theory of quantum state estimation
using past and future information
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Abstract. We propose a unifying theory for estimating unknown quantum states using observed data,
both before (past) and after (future) the estimation time. Considering a partially observed quantum system,
in which there exist both observed and unobserved records from continuous monitoring of the system, we
give a common formulation for seven types of state estimators. The state estimators are calculated based
on the expected cost minimization, either in the state space or the unknown record space. Our theory also
establishes the connection among three existing formalisms that use past-future information, and suggest
new estimators that can be applied in practical scenarios.

Keywords: Quantum state estimation, cost function, quantum measurement, quantum trajectory

1 Introduction

There is much to learn from the state estimation theory
for classical systems, where various techniques are used
for estimating a probability distribution for unknown pa-
rameters, given data from observation. Since, in practical
systems, observation is mostly incomplete or corrupted
by noises, techniques for estimation need to be tailored
to specific scenarios, such that it utilizes the information
gained from the observed data, to minimize some defined
cost functions for the state. In the quantum information
community, however, “quantum state estimation” is still
mostly thought of as identical to quantum state tomog-
raphy. Therefore, as the field of quantum dynamics has
been rapidly advancing, we should now be developing the
estimation theory for states of individual quantum sys-
tems, in a systematic way as in the classical case.

In this work, we consider the problem of state estima-
tion for quantum dynamical systems, where observation
is performed quasi-continuously in time [1, 2, 3]. Thus,
the information used in estimating the state at time τ
can be maximized by including observed data, both be-
fore (past) and after (future) that time. This past-future
information conditioning is the core of classical Bayesian
state smoothing [4]. For quantum systems, the past-
future idea, first explored by Watanabe [5], was formu-
lated as the Two-State Vector formalism by Aharonov et
al. [6]. Since then, there have been numerous propos-
als related to using past-future information (or observa-
tion) to improve quantum estimation: for system param-
eters [7, 8]; for quantum measurement results [9]; and
for the quantum state itself [10]. The past-future infor-
mation was also implicitly applied in deriving the most-
likely path for quantum diffusive dynamics, between two
quantum states in Refs. [11, 12]. The formalisms in
Refs. [8, 10, 11] give rise to different quantum states con-
ditioned on the past-future observation; therefore, one
of the most interesting questions is whether they can be

∗a.chantasri@griffith.edu.au
†i.guevaraprieto@griffith.edu.au
‡kiarn.laverick@griffithuni.edu.au
§h.wiseman@griffith.edu.au

unified under a general theory of state estimation with
distinct cost functions.

We here propose a unifying theory, where the existing
formalisms can be defined with suitable expected cost
functions, conditioning on past-future information. Con-
sider a quantum system undergoing an incomplete con-
tinuous observation, with observed (O) and unobserved
(U) records from diffusive-type measurements. If both
records are specified (complete observation), then one
can compute a trajectory of the true quantum state [3]
ρT(τ) = ρ←Ð

O,
←Ð
U

for any time τ , using the records up to

that time. The back arrow over a record (R) is defined

as
←Ð
R = {Rt ∶ t ∈ [t0, τ)} (a past record from the ini-

tial time t0 to time τ). The goal is to derive quantum
state paths that minimize various expected cost func-
tions, conditioned only on the observed records, but both
before and after the estimation time, i.e., conditioned on←→
O = {Ot ∶ t ∈ [t0, τ)∪ [τ, T )}, where T is a final time. We
note that in the process of making the connection among
the existing formalisms, we also introduce new estima-
tors. These estimators may be useful in specific systems
or experimental setups.

2 Existing formalisms

2.1 Two-State Vector and related formalisms

The Two-State Vector formalism (TSVF) [6] has led
to the formulation of a weak value [13]. Let us use
Aw = Are

w + iAim
w as a detector’s linear response, in phase

space, of a weak von Neumann measurement of an ob-
servable Â. The weak value formulated in Ref. [13],

φ⟨Aw⟩ψ = ⟨φ∣Â∣ψ⟩/⟨φ∣ψ⟩, represents an average of detec-
tor’s responses, conditioning on pre-selected ∣ψ⟩ and post-
selected ∣φ⟩ states. The formula was later generalized to
mixed states and arbitrary measurements [14, 8, 15, 9],
where the conditional average of detector readouts, rep-
resented by the real part of the weak value, is given by,

Ê⟨Are
w ⟩ρ =

Tr [(Êρ + ρÊ)Â]
Tr [(Êρ + ρÊ)]

. (1)
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Here, for the generalized version, assuming that the weak
measurement of Â occurs at time τ , the state ρ is a quan-
tum state computed from observed (known) measure-
ment results up to time τ , and Ê is a POVM representing
observed measurement results after τ . For the partially
observed quantum system considered in this work, we
then have the two matrices: ρ = ρ←Ð

O
and Ê = ÊÐ→

O
carry-

ing the past-future information.
From Eq. (1) and the analysis in [8, 9, 16], we can also

define a Weak-Value state (WVS) in a symmetrized form,
%WVS ∝ ÊÐ→

O
ρ←Ð
O
+ ρ←Ð

O
ÊÐ→
O

, such that the weak value is an

expectation value of the observable Â, i.e.,

ÊÐ→
O

⟨Are
w ⟩ρ←Ð

O
= Tr [%WVSÂ] . (2)

However, we note that %WVS is, in general, not positive-
semi definite, and therefore cannot represent a proper
quantum state.

For an arbitrary-strength measurement of Â at time τ ,
its unknown result can also be estimated using the past-
future observation, using both ρ←Ð

O
and ÊÐ→

O
as shown in

Ref. [9].

2.2 Quantum State Smoothing

In the observed-unobserved records scenario, the quan-
tum state smoothing proposed by Guevara and Wise-
man (GW) [17] can be used to optimally estimate the
system’s state using observed records, both before and
after the estimation time. However, it was not shown
in the original work that their smoothed state, defined
as a conditional average over all possible true states,

ρS = ∑←ÐU ℘(←ÐU ∣←→O)ρ←Ð
O,
←Ð
U

, is simply an estimator that min-

imizes the expected Trace Square Deviation from true
states, i.e.,
(A) ⟨TrSDfρ←Ð

O,
←Ð
U
⟩:

ρ∗(τ) = arg min
ρτ

⟨Tr [(ρτ − ρ←ÐO,←ÐU )
2
]⟩
←→
O
, (3)

where we have defined ⟨⋯⟩←→
O
≡ ∑←Ð

U
℘(←ÐU ∣←→O)⋯ as an ex-

pectated value weighted with a conditional probability

distribution ℘(←ÐU ∣←→O) of the unobserved record.

2.3 Quantum Most-Likely path

Originally introduced as a tool to investigate statistics
of quantum trajectories for diffusive continuous quantum
measurement, the most likely path proposed by Chan-
tasri, Dressel and Jordan (CDJ) [11, 12] is a variational
solution of a stochastic path integral. The path integral
is constructed from joint probability density functions of
measurement records; thus, the variational solution gives
a quantum state path arising from the most likely (by a

natural measure) complete record
←→
R = {Rt ∶ t ∈ [t0, T )}.

We here generalize the approach to the partially observed

system. The backaction from the observed record
←→
O is

now included in the deterministic dynamics, and the joint

probability density functions of the unobserved record
←→
U

are modified to reflect the conditioning of the observed
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Figure 1: Diagrams showing different optimal estima-
tors, connecting the existing formalisms: Quantum state
smoothing, the CDJ most-likely path formalism, and the
Two-State vector formalism. Blue and pink boxes repre-
sent cost functions defined on the quantum state space
and unobserved record space, respectively. The Roman
letters (A), (B), ... are related to formulas in the text.
Since the observed record is fixed in the minimization of
expected cost function, we omitted the O-dependence in
the definition of any true states.

record. As a result, the most likely path can be con-
sidered as a state estimator that minimizes the expected
negative Equality with the whole Unobserved record,

(B) ⟨nEw
←→
U ⟩:

ρ∗(τ) = ρ←Ð
O,
←Ð
U
∗ , where

←Ð
U
∗

∶ ←→U
∗

=arg min
←→u

⟨−δ (←→u −←→U )⟩←→
O
. (4)

The delta function of a string of numbers, which in this
case is a complete record for t ∈ [t0, T ), is defined as a
product of delta functions, e.g., δ({u1, u2} − {U1, U2}) =
δ(u1 −U1)δ(u2 −U2), as an example of records with two
time steps.

3 Connection via cost functions and new
estimators

The existing formalisms presented above can be re-
garded as giving solutions that minimize expected cost
functions, though in different variable spaces, of differ-
ent forms. For examples, the GW smoothed state (A)
minimizes the expected cost defined in the density ma-
trix space, and the CDJ path (B) minimizes the cost in
the record space (the latter is for diffusive records only).
Moreover, the former cost is defined locally in time, and
the latter non-locally in time.
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Following the diagram in Fig. 1, we can start by intro-
ducing cost functions that connect the estimators (A)
and (B). The first natural cost from (A) remains in the
state space, but uses instead the Fidelity as a measure
of the distance between any two states. That is, we de-
fine an estimator that minimizes the expected negative
Fidelity with true states, i.e.,
(C) ⟨nFwρ←Ð

O,
←Ð
U
⟩:

ρ∗(τ) = arg min
ρτ

⟨−F (ρτ , ρ←ÐO,←ÐU )⟩←→
O
. (5)

If the Jozsa [18] Fidelity is used, which gives F [ρT, ρC] ≡
Tr [ρTρC] for ρ←Ð

O,
←Ð
U

pure, the estimator is the lustrated

smoothed state, defined in Ref. [19], which is itself also
pure.

Classically, an equivalent cost function of the Fidelity
cost in the state space is a delta function, which leads to
an estimator that minimizes the expected negative Equal-
ity with true states,
(D) ⟨nEwρ←Ð

O,
←Ð
U
⟩:

ρ∗(τ) = arg min
ρτ

⟨−δ (ρτ − ρ←ÐO,←ÐU )⟩←→
O
. (6)

We note that, in the quantum case, however, the most
likely (by the Haar measure) state at any time τ , is not
the same as the lustrated state in general.

Let us then move towards the measurement record
space. As mentioned earlier, a pure quantum state ρ←Ð

O,
←Ð
U

at time τ can be constructed given both observed
←Ð
O and

unobserved
←Ð
U records. Therefore, we can define an opti-

mal state estimate by first finding an optimal estimator
for the unobserved record. Similar to (D), an intuitive

option is a quantum state computed from a
←Ð
U estimator

that minimizes the expected negative Equality with past
Unobserved records,

(E) ⟨nEw
←Ð
U ⟩:

ρ∗(τ) = ρ←Ð
O,
←Ð
U
∗ , where

←Ð
U
∗

= arg min
←Ðu

⟨−δ (←Ðu −←ÐU )⟩←Ð
O,
Ð→
O
. (7)

We note that this cost function is naturally generalized

from the past record
←Ð
U to the string of the whole record←→

U , which then leads to the most likely path (B) in
Eq. (4).

Now that a clear connection between (A) has been es-
tablished, we now begin to extrapolate the cost function
idea to the TSVF and the weak value. Since the weak
value is mathematically the average of unknown records
conditioned on the past and future information [14], the
most direct connection is via cost functions of the un-
known records locally in time (see Fig. 1). We can then
define a quantum state that is computed from a string
of joined record estimators that locally minimize the ex-
pected negative Equality with Unobserved record,

(F) ⟨nEwUt⟩:

ρ∗(τ) = ρ←Ð
O,
←Ð
U
∗ , where

←Ð
U
∗

∶ U∗t =arg max
ut

⟨−δ (ut −Ut)⟩←→O , (8)

where the estimated unobserved record is optimized lo-
cally in time.

Similarly, the cost function in the record space, locally
in time, can be defined with a mean square deviation
function. This cost then leads to an unknown record es-
timator presented in the “past quantum state” formalism
[9]. However, in their original work, a semi-positive defi-
nite quantum state was not defined. We then propose a
state path calculated from a string of record estimators
that minimize the expected Square Deviation from Un-
observed records locally in time,
(G) ⟨SDfUt⟩:

ρ∗(τ) =ρ←Ð
O,
←Ð
U
∗ , where

←Ð
U
∗

∶ U∗t =arg max
ut

⟨(ut −Ut)2⟩←→
O
. (9)

We note that, since we are considering the diffusive mea-
surement of a quantum system, the distribution of the
unobserved record is Gaussian and the estimators in (F)
and (G) then coincide. Moreover, if we assume that a
measurement giving the unobserved record at time τ is
an infinitely weak measurement of a Hermitian observ-
able Û , then the record estimator in Eq. (9) becomes a
weak value Eq. (1),

arg min
uτ

⟨(uτ −Uweak
τ )2⟩←→

O
= ÊÐ→

O

⟨Uweak
τ ⟩ρ←Ð

O
, (10)

where Uweak
τ is a weak measurement result at time τ .

The right hand side is Tr [(ÊÐ→
O
ρ←Ð
O
+ ρ←Ð

O
ÊÐ→
O
)Û].

For completeness, we can also define the Weak-Value
state (WVS), %WVS, as an estimator corresponding to
the weak value in Eq. (1). Considering the weak von
Neumann measurement of an observable Âj at time τ ,
the weak value of this observable is an estimator that
minimizes the expected Square Deviation from the weak
measurement results, (Aj)rew . To define a state, we first
define a complex matrix estimator %∗ such that,
(H) Weak-Value state:

%∗(τ) =arg min
%τ

⟨(Tr [%τ Âj] − (Aj)rew )2⟩←→
O
, (11)

=arg max
%τ

⟨−δ (Tr [%τ Âj] − (Aj)rew )⟩←→
O
, (12)

where %τ is a dummy complex matrix, and both lines
Eqs. (11)-(12) are equivalent because of the Gaussian
properties of the weak measurement records. The so-
lution %∗ for each observable Âj is not unique; however,

there is a solution for all observables Âj ’s (defined for a
quantum system), and this solution coincides with the
WVS %WVS = %∗

∀Âj
. As noted earlier, the WVS is not

constrained in a valid quantum state space, which is in
the similar sense that the weak value can have its value
outside the eigenvalue range of its observable.
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Remote Time Manipulation
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Abstract. Harnessing the flow of proper time of arbitrary external systems over which we exert little
or no control has been a recurring theme in both science and science-fiction. Here we present heralded,
non-relativistic scattering experiments which, freeze out, speed up or even reverse the free dynamics of
an ensemble of identical quantum systems. This “time warping” effect is universal: it is independent of
the particular interaction between the scattering particles and the target systems, or the (possibly non-
Hermitian) Hamiltonian governing the evolution of the latter. The protocols require careful preparation
of the probes which are scattered, and success is heralded by projective measurements of these probes at
the conclusion of the experiment. We fully characterize the possible time translations which we can effect
on n target systems through a scattering protocol of fixed duration; the core result is that time can be
freely distributed between the systems, and reversed at a small cost. For high n, our protocols allow one
to quickly send a single system to its far future or past.

Introduction
Since the advent of the special theory of relativity,

our modern understanding of time has been “that which
clocks measure” [1]. With this in mind, the relativis-
tic effect by which two clocks go out of sync if one of
them is translated through space is regarded as a “time
dilation”. What makes relativistic time dilation extraor-
dinary is the fact that, in order to make one of the clocks
tick more slowly, we do not need any control of its inner
workings: it suffices to push it. The ability to manipu-
late the proper time of a physical system in such a high
level way, a phenomenon know as time warp, has inspired
numerous works of science fiction (e.g., [2]).

There have been several proposals to achieve command
of the proper time of arbitrary external systems, all of
them based on special or general relativity. Most of
them rely on the existence of natural “time machines”
[3, 4]. More realistic schemes, like the time translator
of Aharonov et al. [5], while theoretically feasible, would
operate under an astronomically small probability of suc-
cess.

To address this issue, we propose here a class of non-
relativistic scattering experiments. In these experiments,
a number of particles are produced, let to propagate
freely and subsequently measured after some time T ′.
Depending on the outcome of this measurement, the ex-
periment is regarded as either a “success” or a “failure”.
When the scattering region holds n identical quantum
systems of a dimension d and the experiment succeeds,
then each system i will leap to the quantum state it would
have had if it had been evolving unperturbed for time
Ti 6= T ′, where Ti can be negative. The experiment
does not rely on any knowledge on the Hamiltonian of
the target systems or their interaction with the scattered
particles. Since they effect a high-level manipulation of
the proper time of each system in the scattering region,
such prepare-and-measure protocols can be regarded as
a non-relativistic form of time warp.

∗benjamindive@gmail.com

We find that, in this scenario, evolution time behaves
as a resource: it cannot be created, but it can be trans-
ferred for free between identical systems. Hence, with
a scattering experiment of duration T ′ we can transfer
all the evolution time accumulated by the n systems to
a single system, “fast-forwarding” the latter nT ′ time
units to its future. Time can also be inverted, at a ratio
of 1

d−1 . Combining the two approaches, we can invert
such an aggregated time, thus projecting that same sys-
tem nT ′

d−1 time units to its past. By taking higher values
of n, we can make these time warping effects increasingly
dramatic.

In the special case of n = 1 our results resonate with
those of [6]. In this regard, our present work shows that
a single system can be rewinded to its past much faster
than the protocols introduced in [6] allowed. The ability
to speed up the evolution of a system by using multiple
identical copies of it is, to the best of our knowledge, a
wholly novel approach. Note that there exist other meth-
ods to invert an unknown unitary [7, 8, 9, 10], but they
demand the ability to effect controlled quantum opera-
tions on the target system. We, however, only indirect
control over the systems in the way detailed below.

Scenario
We consider a scenario where the experimental setup

consists in two parts: a controlled lab, where we can pre-
pare any quantum state and conduct any quantum op-
eration; and a scattering region. The latter contains n
identical physical target systems of Hilbert space dimen-
sion d at separate locations, see Fig.I. We assume that
they remain in the same place during the course of the
experiment. The initial (internal) quantum state of the
n systems is unknown; for simplicity, we will take it pure
and denote it by |ψ1,...,n〉.

If left unperturbed, each of these systems will in-
dependently evolve according to a (unknown) time-
independent Hamiltonian H0. That is, after time
T the state of the n systems will evolve to
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LAB LAB
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S1

Scattering 
region

Figure I: The setup. The red circles represent the sys-
tems and their interaction radius, which are well sepa-
rated to ensure the probes only interact with one at a
time. The left section is the ‘preparation’ part of the the
lab, where the probes in various quantum internal and
external states can be created. After scattering with one
of the systems, these probes are then measured (in the
right section) in order to herald a successful run of the
experiment.

e−i
∑n
k=1H

(k)
0 T |ψ1,...,n〉. To incorporate decay processes

in this framework, we allow H0 to be non-Hermitian.
In order to influence systems k = 1, ..., n, we can pre-

pare a particle in the controlled lab and let it propagate
within the scattering region. While in the scattering re-
gion, these particles or probes interact with each system k
via the Hamiltonian HI(~r−~qk), where ~r (~qk) denotes the
probe’s (system k’s) position. The joint state of systems
1, ..., n and P thus evolves as

i
∂

∂t
|ψ1,...,n,P 〉 = HP +

n∑
k=1

H
(k)
0 +H

(k,P )
I |ψ1,...,n,P 〉 ,

(1)

where HP denotes the free Hamiltonian of the probe. For
technical reasons, HI is assumed a bounded operator;
otherwise HI , H0 and HP are arbitrary and unknown.

We will allow multiple probes at a time within the
scattering region. Although this could give rise to com-
plex many-body interaction, we impose the additional
condition, called the targeting assumption, that it is pos-
sible to prepare a probe in such a way that it interacts
with a single uncontrolled system (its target) and noth-
ing else. Such a probe will either return to the lab within
a given time ∆t and through a given channel or else be
absorbed by the environment or lost in free space. More-
over, if several probes with different targets are prepared
simultaneously, then the evolution of each probe and its
target will be independent and identical among the differ-
ent pairs of probe-uncontrolled system. Meanwhile, those
uncontrolled systems without a targeting probe will keep
evolving through H0.

While they are in the lab, we have the ability to create
probes in any state (such as entangling multiple probes
together or with a quantum memory), and to perform ar-
bitrary measurements on them. Note that the targeting

assumption can be justified in many experimental setups
where the uncontrolled systems are sufficiently separated
in space. Throughout the text, we will further assume
that ∆t can be taken arbitrarily small.

The scattering protocol ends at time t = T ′, when we
conduct a dichotomic heralding measurement over the
quantum registers present in the lab. If the outcome is
“success”, we expect the state of systems 1, ..., n to be

|ψ′1,...,n〉 = U(T1, ..., Tn) |ψ1...,n〉 , (2)

with U(T1, ..., Tn) =
⊗n

k=1 e
−iH0Tk .

We will be mainly interested in whether such a time-
warping experiment is possible, disregarding its actual
probability of success: we just demand that the latter is
non-zero for generic H0, HI , HP . Note, e.g., that if the
probes do not interact with the uncontrolled systems at
all, then Eq.(2) can only hold if T1 = T2 = ... = Tn = T ′.

Results
We have proved that, within the broad constraints de-

scribed above, a scattering experiment of duration T ′

leading to Eq.(2) can only be possible if∑
i:Ti>0

Ti +
∑
i:Ti<0

|Ti|(d− 1) ≤ nT ′. (3)

Furthermore, we have shown that any set of Ti that sat-
isfy this relation with time T ′ can be reached in a phys-
ical time of T ′ + ε for arbitrarily small ε, and provide
an explicit protocol to realize it. The proof for these
statements is available in the authors’ paper [11] and its
appendices.

The meaning behind Eq.(3) is best demonstrated by
considering a few different cases. For n = 1, this implies
that T1 ∈ [− T ′

d−1 , T
′]. It means that, in principle, we

could invert the evolution of the uncontrolled system in
the scattering region. This is similar to what was done
in [6], however, they required an experiment of duration
T ′ = O(d2)|T1|, as opposed to T ′ = (d − 1)|T1|. The
latter bound is consistent with the work of [10], where
the authors prove that, in order to invert a unitary prob-
abilistically (in a controlled system), at least d − 1 uses
thereof are needed.

For n = 1, Eq.(3) also implies that one cannot fast-
forward the uncontrolled system. That is, in order to ef-
fect the transformation |ψ1〉 → U(T1) |ψ1〉, with T1 > 0,
then one needs to invest, at least, time T1. That this is
impossible for unknown Hamiltonians was already estab-
lished in [12, 13, 14]; we show that this is also true even
for arbitrarily small probabilities of success.

Fast-forwarding is compatible with Eq.(3) only when
there is more than one uncontrolled system within the
scattering region, such as with configuration T1 =
nT ′, T2 = ... = Tn = 0. This opens the door to pro-
jecting a single uncontrolled system to its far future at
the cost of freezing the evolution of the rest during the
scattering process. A second plausible configuration is
T1 = − nT ′

d−1 , T2 = ... = Tn = 0. For n � d, this config-
uration would propagate system 1 to its far past while
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keeping the rest of the systems unchanged. Indeed, pro-
vided that enough systems are available and we are con-
tent with a small probability of success, there is not limit
as to how much the evolution of a system can be sped
up.

With this, we interpret Eq.(3) as being equivalent to
the following postulates about evolution time:

1. It cannot be created,

2. It can be destroyed,

3. It can be transferred between two identical systems
at no cost,

4. It can be inverted at a cost (d− 1).

Examples
We now give some simple examples to demonstrate

protocols which realize the maximal time reversal or time
concentration permitted by Eq.(3). To do this it is useful
to introduce some notation. The free evolution of a sin-
gle system for time δT is denoted by V = exp−iH0δT . If
the system is however interacting with a probe originally
in the state |a〉, and eventually post-selected to the state
|b〉, for time δT then the evolution of the probe is given
by |ψ(δT )〉 = Wb,a |ψ(0)〉 where

Wb,a = 〈b|W |a〉 = 〈b| T e−i
∫ δT
0

H0+HI(t)dt |a〉 . (4)

By sending (or not sending) probes in various states the
systems can be made to evolve under a product of V ’s
and Wb,a’s. Going beyond that, by entangling the probes
before sending them out the a sum of such sequences can
also be realized. Constructing a protocol to manipulate
time remotely therefore comes down to constructing poly-
nomials of V ’s and Wb,a’s with the desired properties.

Consider the case where we place a single qubit in the
scattering area, n = 1, d = 2, where we wish to send
the system backwards. That is, we want it to evolve
according to V −m. This can be done using the following
relation

V −m ∝ [Wa,a, V ]V m[Wa,a, V ] (5)

which holds for any 2 × 2 matrices Wa,a, V . This can
be proved by an explicit parameterization of the matri-
ces, but more generally can be shown using the theory of
matrix polynomials as is done in our paper [11]. If the
protocol is a success then the system behaves as if it had
evolved backwards for mδT , while the lab time taken to
do this is (m + 4)δT . By taking m large the constant
factor can be neglected and we can reach the bounding
case of Eq.(3).

To implement this protocol with linear optics, one can
use photons as probes and their polarization as the in-
ternal degree of freedom.The protocol and a schematic of
the experimental set up is detailed step-by-step in Fig.II.

Assuming that the unitaries describing the evolution of
the system and its interaction with the photon are chosen
randomly according to the Haar measure, the average
probability of success of this scheme, which happens to
be independent of m, is 4.24% ± 0.06%. This figure can

LAB LAB

cΔt

cΔt
P2P1

S

Scattering region

+

Figure II: Schematic of the resetting protocol with
photonic probe. We prepare a photon in a superpo-
sition of positions, 1√

2
(|p1〉 − |p2〉), and in the polariza-

tion state |H〉 where |p1〉 is a sufficiently delayed ver-
sion of |p2〉 The photon’s path degree of freedom is post-
selected to the state 1√

2
(|p1〉 + |p2〉), and its polariza-

tion to |H〉, then the state of the system will evolve as
|ψ1〉 → 1

2 [WH,H , V ] |ψ1〉. Next, we let the system evolve
by itself for time T ′ = m∆t; hence evolving the new state
to 1

2V
m[W1, V ] |ψ1〉. Third, we repeat the first operation

with a new photon. If the outcome of the measurements
are the same, then the final state of the system will be
1
4 [WH,H , V ]V m[WH,H , V ] |ψS〉 ∝ V −m |ψS〉

be substantially improved to 12.6% ± 0.1% by allowing
higher-rank measurements, such that the final evolution
is [WV,H , V ]V m[WV,H , V ] + [WH,H , V ]V m[WH,H , V ].

As well as reversing time, we considered the experimen-
tal feasibility of implementing a fast-forwarding protocol
using two qubit systems, n = 2, d = 2. A primitive tool
necessary to do this is to a swap operator, S, between
the two qubit systems. This requires a minimum of 5
qubit probes in a highly entangled initial state. Combin-
ing two such swaps and some periods of free evolution, it
is possible to realise an operator proportional to

V 2m ⊗ I ∝ (V m ⊗ I)S(I⊗ V m)S. (6)

This can be done in physical time (m+k)δT for a fixed k.
By taking m large, this results in one system not evolving
at all, while the other evolves twice as fast, thereby also
reaching the limit imposed by Eq.(3)

In summary, we have characterized how one can prob-
abilistically warp the evolution time of an ensemble of
uncontrolled systems of known dimensionality by means
of scattering experiments. We have seen that, in such sce-
narios, evolution time behaves like a material resource,
in the sense that it can be transferred and wasted, but
not created. It can also be inverted, at a cost, via an
irreversible process. Although at the end of the paper we
provided simple instances of scattering protocols with a
reasonably high (average) probability of success, our gen-
eral constructions most likely represent very improbable
processes, although we do not know of any bounds on the
maximum possible likelihood of success.

Seeing evolution time as a resource with known rules
governing how it can be manipulated presents a fun-
damentally new viewpoint on one of most fundamental
physical concepts - time.
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Abstract. When transforming pairs of independent operations, the fundamental rules of quantum the-
ory allow for transformations that may act on the input operations in an indefinite causal order. The
formalism of process matrices predicts statistics that ensure this phenomenon in a device-independent sce-
nario, nevertheless, all physical implementations proposed so far are fully device-dependent. We introduce
a semi-device-independent framework for certifying noncausal properties of process matrices in a interme-
diate regime and use it to analyse the quantum switch. We show that, although it can only lead to causal
statistics in a device-independent scenario, it can exhibit noncausal properties in semi-device-independent
scenarios.

Keywords: Semi-device-independent, causal order, higher-order operations, process matrix formalism

A common quantum information task consists in certi-
fying that some uncharacterised source is preparing a sys-
tem with some features. By making the assumption that
the measurement devices are completely characterised,
that is, that they are known exactly, it is possible to
infer properties of the system. In this device-dependent
scenario, fidelity of a quantum state with respect to a tar-
get state can be estimated, entanglement witnesses can
be evaluated, and even complete characterisation of the
source via state tomography is possible.

Remarkably, it is possible to certify properties of sys-
tems even without fully characterizing the measurement
devices. In such a device-independent scenario it is only
assumed that the measurements are done by separated
parties and compose under a tensor product, which is jus-
tified by implementing them with a space-like separation.
Under these circumstances, Bell scenarios can be used to
certify properties like entanglement of quantum states,
incompatibility of quantum measurements, or to perform
device-independent state estimation via self-testing.

Since the assumptions are weaker, demonstrations of
device-independent certification are usually experimen-
tally challenging. For instance, although experimen-
tal device-independent certification of entanglement has
been reported, its experimental difficulty has so far pre-
vented its use in practical applications such as device-
independent quantum key distribution and randomness
certification.

An interesting middle ground is the semi-device-
independent scenario, where assumptions are made about
some parties but not others. Semi-device-independent
schemes have been developed and extensively studied for
the certification of entanglement and measurement in-

∗jessica.bavaresco@oeaw.ac.at
†mateus.araujo@uni-koeln.de
‡caslav.brukner@univie.ac.at
§quintino@eve.phys.s.u-tokyo.ac.jp

compatibility, known as EPR-steering, and applied to
quantum key distribution protocols where some but not
all parties can be trusted.

A close analogy can be developed with regard to the
certification of indefinite causal order, as encoded in a
process matrix [1]. A process matrix is a higher-order
operation [2, 3, 4] – i.e. a transformation of quantum
operations – that acts on independent sets of operations.
Fundamental laws of quantum theory predict the exis-
tence of process matrices that act on these operations in a
such a way that a well-defined causal order cannot be es-
tablished among them. Process matrices with indefinite
causal order were proven to be a powerful resource, out-
performing causally ordered ones in tasks such as quan-
tum channel discrimination, communication complexity,
quantum computation, and inverting unknown unitary
operations.

To certify that a process matrix in fact does not act in
a causally ordered way, there are two standard methods
available in the literature. The first is to evaluate a causal
witness [5, 6]. Analogous to the evaluation of an entangle-
ment witness, this method relies on detailed knowledge
of the quantum operations being implemented, and, as
such, it allows for a device-dependent certification. All
experimental certifications of indefinite causal order to
date either measure a causal witness [7, 8] or rely on sim-
ilar device-dependent assumptions. The second method
is the violation of a causal inequality, phenomenon which
is also predicted by quantum mechanics [1, 9]. Analo-
gous to the violation of a Bell inequality, this method
does not rely on detailed knowledge of the quantum op-
erations implemented by the parties, but rather only that
they compose under a tensor product. As such, it allows
for a device-independent certification. Although it would
be highly desirable to perform such device-independent
certification of indefinite causal order, no physical imple-
mentation of process matrices that would violate a causal
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inequality is currently known.
In this work, we introduce a semi-device-independent

framework for certifying noncausal properties of process
matrices that allows for an experimental certification of
indefinite causal order that relies on fewer assumptions
than previous ones.

Let us consider the following task: we are given a be-
haviour – a set of probabilty distributions – that describes
the statistics of a quantum experiment. We analyse this
behaviour in the process matrix formalism, that is, we
assume that there exists a process matrix W and sets
of local instruments {Aa|x} and {Bb|y} that give rise to
this behaviour according to the rules of quantum theory.
Without any information about W – i.e., without direct
assumptions about the process matrix – the goal is to
verify whether it is causally nonseparable. Additionally,
information about the instruments which were performed
may or may not be given.

Causal nonseparability is the property that captures
the notion of indefinite causal order in process matrices:
a causally nonseparable process matrix is one that cannot
be described as a classical mixture of process matrices
that can only give rise to causally ordered behaviours
[1]. In turn, the notion of causal order for behaviours
is defined by the marginals independence of the other
parties’ choices of input [1].

The assumptions about the instruments can be split in
three: device-dependent, -independent, and semi-device-
independent. A device-dependent certification scenario
is one in which the operations of all parties are fully
characterised, i.e., the whole matrix description of the
elements of all applied instruments is known. A device-
independent certification scenario is the opposite, no
knowledge or assumption is made regarding the opera-
tions performed by any parties, not even the dimension
of the linear spaces used to describe them. Finally, a
semi-device-independent certification scenario is one in
which at least one party is device-dependent, which is of-
ten called trusted, and at least one is device-independent,
often called untrusted.

Definition 1 (Device-dependent certification)
Given a process behaviour {pQ(ab|xy)}, that arises from
known instruments {Aa|x} and {Bb|y} and an unknown
bipartite process matrix, one certifies that this process
matrix is causally nonseparable in a device-dependent
way if

pQ(ab|Aa|x , Bb|y) 6= Tr
[
(Aa|x ⊗Bb|y)W sep

]
, (1)

for all a, b, x, y, and for all causally separable process ma-
trices W sep.

Definition 2 (Device-independent certification)
Given a process behaviour {pQ(ab|xy)}, that arises from
unknown instruments and an unknown bipartite process
matrix, one certifies that this process matrix is causally
nonseparable in a device-independent way if

pQ(ab|xy) 6= Tr
[
(Aa|x ⊗Bb|y)W sep

]
(2)

for all a, b, x, y, and for all causally separable process
matrices W sep and all general instruments {Aa|x} and
{Bb|y}.

Definition 3 (Semi-device-independent certification)
Given a process behaviour {pQ(ab|xy)}, that arises from
unknown instruments on Alice’s side, known instruments
{Bb|y} on Bob’s side, and an unknown bipartite process
matrix, one certifies that this process matrix is causally
nonseparable in a semi-device-independent way if

pQ(ab|x ,Bb|y) 6= Tr
[
(Aa|x ⊗Bb|y)W sep

]
(3)

for all a, b, x, y, and for all causally separable process ma-
trices W sep and all general instruments {Aa|x}.

We remark an analogy with the entanglement certifi-
cation problem in which behaviours are assumed to arise
from quantum measurements performed on a quantum
state. In the entanglement certification case, device-
dependent scenarios are related to entanglement wit-
nesses [10], device-independent scenarios to Bell non-
locality [11], and the semi-device-independent ones to
EPR-steering [12].

The three definitions above set the basis of our frame-
work. In this framework, we prove that, although all
causally nonseparable process matrices can be certified in
a device-dependent way, not all of them can be certified
in semi-device-independent or fully device-independent
scenarios. We characterize the sets of processes matrices
that can be certified in each scenario and provide explicit
examples.

In all three scenarios, we formulate our certification
problems in terms of semidefinite programming (SDP),
implying that they can be efficiently solved.

We then extend our framework to a tripartite case in
which the third party is always in the future of the other
two, and provide an extensive machinery that may be
generalized to other multipartite scenarios. We apply
our methods to study the noncausal correlations of the
notorious quantum switch [13, 14].

On its first appearance, the quantum switch was de-
fined as a higher-order transformation that maps quan-
tum channels into quantum channels and it can be de-
fined as the following. Let UA and UB be two unitary
operators that act on the same space of a target state
|ψ〉t. Let |c〉c := α|0〉 + β|1〉, |α|2 + |β|2 = 1, be a ‘con-
trol’ state that is able to coherently control the order in
which the operations UA and UB are applied. The quan-
tum switch acts as following:

switch(UA, UB) = |0〉〈0|c⊗UA UB +|1〉〈1|c⊗UB UA. (4)

When applied to the state |c〉c ⊗ |ψ〉t, we have

switch(UA, UB)|c〉 ⊗ |ψ〉 = α |0〉 ⊗ UA UB |ψ〉
+ β |1〉 ⊗ UB UA |ψ〉.

(5)

Physically, the equation above can be understood as
the control qubit determining which unitary is going to
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be applied first on the target state |ψ〉. If the control
qubit is in the state |0〉 (α = 1, β = 0), the unitary
UB is performed before the unitary UA. If the control
qubit is in the state |1〉 (α = 0, β = 1), the unitary UB

is performed before the unitary UA. In general, if the
control qubit is in the state |c〉 = α|0〉+ β|1〉, α 6= 0, β 6=
0, the output state will be in a coherent superposition of
two different causal orders.

We analyze the quantum switch in the process matrix
formalism, similarly to Ref. [5]. We describe the quantum
switch by a family of tripartite process matrices that is
shared among three parties, Alice, Bob, and Charlie, for
which Charlie is always in the future of Alice and Bob,
and the causal order between Alice and Bob may or may
not be well defined. An interesting property of the quan-
tum switch is that it is a tripartite causally nonseparable
process matrix, however, when the third party, Charlie,
is traced out, it becomes a bipartite causally separable
process matrix.

Since it is causally nonseparable, the quantum switch
can be certified in a device-dependent scenario. How-
ever, remarkably, the quantum switch cannot produce
noncausal correlations in a device-independent scenario
[5].

In order to determine whether the quantum switch
can be certified to be causally nonseparable in a semi-
device-independent scenario, much like in the bipartite
case, we make different assumptions about the knowl-
edge of the operations performed by each party. We
call untrusted (U) a party that is treated in a device-
independent way and trusted (T) a party that is treated
in a device-dependent way, and we use the conven-
tion Alice Bob Charlie for denoting the parties. For
example, a scenario TTU means Alice = T (device-
dependent), Bob = T (device-dependent), and Char-
lie = U (device-independent). The four inequivalent
semi-device-independent tripartite scenarios are, hence,
TTU, TUU, UTT, and UUT.

Firstly, we prove that in the UUT scenario, that is, a
scenario in which only Charlie is trusted, the quantum
switch cannot be certified to be causally nonseparable,
just like in the fully device-independent way.

Secondly, we prove that the quantum switch can indeed
be certified in the remaining semi-device-independent
scenarios, TTU, TUU, and UTT, proving that it can
demonstrate stronger noncausal properties than it was
previously known.

We then calculate bounds for the robustness of the
quantum switch’s noncausal properties with respect to
white noise in each scenario to show that they can, in
principle, be certified in practical situations.

With this motivation in mind, we analise the recently
reported experiments [15, 7, 8, 16] that claim to imple-
ment the quantum switch using optical interferometers to
check whether, with their implemented setups, one could
certify the causal nonseparability of the quantum switch
in a semi-device-independent way. Up to now, all exper-
imental results rely on, among other assumptions, com-
plete knowledge of the instruments to certify of causal

nonseparability, i.e., they are fully device-dependent.
Using our machinery to analyse the experiments of

Refs. [7] and [8], we concluded that the instruments
used in these experiments could allow us to make a
stronger claim than what was reported. More precisely,
the instruments used to certify that the quantum switch
is causally nonseparable on refs. [7] and [8] can lead to
a semi-device-independent certification of the noncausal
properties of the quantum switch in the TTU scenario,
that is, even if the measurements of Charlie were not
trusted.

The technical details and further results of this work
can be found in the preprint article arXiv:1903.10526
[quant-ph] at https://arxiv.org/abs/1903.10526.
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Abstract. A surprising recent result showed that, if two depolarising channels are applied in a superpo-
sition of different orders in a “quantum switch”, then information can nevertheless be transmitted through
the channels [1]. We show that a similar effect can be obtained by simply coherently controlling between
sending a system through one of two identical depolarising channels, a situation with no indefinite causal
order. When quantum channels are controlled coherently in this way, however, we find that information
about their implementation is accessible in the output of the joint control-target system, allowing two
different implementations of the same channel to be differentiated.

Keywords: quantum channels, coherent control, quantum communication, quantum switch

The ability to create superpositions of quantum states
opens up many advantages for communication and infor-
mation processing that are inaccessible to classical mix-
tures of states, exemplified by their use in controlled logic
gates (e.g., cnot) in quantum computing [2]. Recently, it
has been shown that a coherent quantum control system
can be used to even put the causal ordering of quantum
channels into superposition, thus rendering it “indefinite”,
in the so-called “quantum switch” [3]. Surprisingly, when
certain zero-capacity channels are placed in a quantum
switch the resulting switched channels still allow infor-
mation to be transmitted, something impossible if their
causal ordering is fixed or controlled classically [1].

Motivated by the quantum switch, we revisit here
the notion of coherent control of arbitrary quantum
channels—something that has in the generally been con-
sidered problematic or, at best, subtle [4–7]—by exploit-
ing a control system to determine which channel is used
to transmit a state rather than the order in which two
communication channels are used. We show here that
it allows the counter-intuitive communication advantage
of the switch mentioned above to be reproduced in the
absence of any “causal indefiniteness”: when each chan-
nel is maximally noisy, information can nonetheless be
transmitted through the coherently multiplexed commu-
nication channels.

When controlled coherently in this way we find that—
in contrast to the quantum switch [1, 3]—the action of
the “global” multiplexed channel depends not only the de-
scriptions of the individual channels as completely pos-
itive trace-preserving (CPTP) maps but also on more
fine-grained information about their realisations. This
includes, but goes beyond, relative phase information,
highlighting the subtleties involved in describing “con-
trolled channels”: indeed as we will see, without extra
information on the specific channel implementation the
problem is in fact ill-defined.

The preprint paper associated to this abstract is avail-
able on the arXiv [8].

∗alastair.abbott@unige.ch

1 Communication through the “depolar-
ising quantum switch”

The quantum switch is a process comprising a coherent
control qubit, a d-dimensional target system, and a pair
of “black box” operations that, taken individually, imple-
ment some CPTP maps—so-called “quantum channels”—
C0 and C1 on their input systems [3]. If the control qubit
is in the state |0〉c, then first C0 then C1 is applied to the
target system, while if it is in the state |1〉c then the op-
erations are in the opposite order. Initialising the control
in the state |+〉c = 1√

2
(|0〉c + |1〉c) therefore applies the

operations in a superposition of the two orders. Since,
in this case, one cannot say that either operation is defi-
nitely applied before another, the quantum switch is said
to exhibit indefinite causal order [3, 9].

In [1], it was observed that, if the CPTP maps Ci are
taken to be fully depolarising channels Ni (which map
any initial target state ρtin to the maximally mixed state
1
t

d ), then the switch (with the initial state of the con-
trol qubit fixed to |+〉c) implements a global channel
S[N0,N1] mapping ρtin to the joint control-target state

ρctout =
1
c

2
⊗ 1

t

d
+

1

2

[
|0〉〈1|c + |1〉〈0|c

]
⊗ 1

d2
ρtin , (1)

which is not 1
t

d but instead retains some dependence on
ρtin. Thus, information can propagate through the “de-
polarising quantum switch” despite this being impossible
for the channels N0, N1, N1 ◦N0, and N0 ◦N1 individu-
ally.

2 Communication through coherently-
controlled depolarising channels

In a standard interferometric implementation of the
quantum switch, the target system is routed to the
switched operations, which here correspond to communi-
cation channels, via some beamsplitters [10–16]. In this
contribution, we consider instead the state of the joint
control-target system after traversing only half of such
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Figure 1: The inset shows a typical photonic implemen-
tation of the quantum switch [3, 17], in which the control
qubit is encoded in the polarisation of a photon which is
routed by polarising beamsplitters (PBS), and the target
system is encoded in some internal degree of freedom of
the photon (as e.g. in Refs. [13, 14]). Here we consider
only the “first half” of the quantum switch process (main
figure). This implements a coherent control between the
two boxes implementing C0 and C1.

a quantum switch; that is, after the target system has
passed, in a superposition, through the communication
channels only a single time. This situation, a possible
implementation of which is shown in Fig. 1, amounts to
coherently controlling between applying the operations
implementing C0 or C1 to the target system. By prepar-
ing the control qubit in the state |+〉c, a “superposition”
of the two operations is thus applied.

Let us consider, as in [1], the situation where the two
operations implement fully depolarising channels (Ci =
Ni) and, as done there, consider first the concrete case
of a qubit target system (d = 2) where these channels
are realised by randomising over a set of d2 orthogonal
unitary operators {Ui}d

2−1
i=0 . For each channel, one then

indeed has N0/1(ρtin) = 1
d2

∑
i Uiρ

t
in U

†
i = 1

t

d .
For each random choice of unitary operators (Ui, Uj),

the control-target system therefore undergoes the unitary
evolution |0〉〈0|c⊗Ui+|1〉〈1|c⊗Uj . If the control is initially
in the state |+〉c and the target system is in some state
|ψin〉t, the joint system thus evolves to the state

|Φij〉ct =
1√
2

(
|0〉c ⊗ Ui |ψin〉t + |1〉c ⊗ Uj |ψin〉t

)
. (2)

Averaging over all choices of (Ui, Uj) one finds that the
output state is

ρctout =
1

d4

∑
i,j

|Φij〉〈Φij |ct

=
1
c

2
⊗ 1

t

d
+

1

2

[
|0〉〈1|c + |1〉〈0|c

]
⊗ TρtinT † (3)

where T := 1
d2

∑
i Ui and ρtin := |ψin〉〈ψin|t. By linearity,

Eq. (3) also holds for arbitrary ρtin, and the setup thus
gives rise to the global channelM mapping ρtin → ρctout.

It is immediately clear that ρctout depends in general
on ρtin, and thus some information can be transmitted
through the setup. If, on the other hand, one classically

controls which channel is applied to the input, no in-
formation can be transmitted. Thus, the global channel
M arising from coherently controlling between N0 and
N1 provides a communication advantage over classical
control, mirroring that found using the quantum switch
in [1]. In the example above, however, there is no indef-
inite causal order and yet the effect remains, contradict-
ing any possible intuition that it should be attributed to
causal indefiniteness.

Moreover, we present a lower bound on the amount of
classical information that can be transmitted by a single
use of the global channelM [8]. We find that significantly
more information can be transmitted by this setup than
with the full depolarising quantum switch [1] (e.g., for a
qubit target, 1

2 log2
5
4 ≈ 0.16 bits versus − 3

8 −
5
8 log2

5
8 ≈

0.05 bits with the depolarising quantum switch).

3 Implementation dependence
The approach employed above of randomising over uni-

tary channels is not, however, the only way to implement
a fully depolarising channel. In general, a quantum chan-
nel C is defined as a CPTP map, and can be described
in terms of a (non-unique) set of Kraus operators {Ki}i
satisfying

∑
iK
†
iKi = 1 [18]. However, if the channels

C0 and C1 are not unitary (or described as a randomisa-
tion over unitary channels) it is a priori unclear how to
determine the global channel mapping ρtin → ρctout from
the Kraus operators of C0 and C1.

One possible approach to doing so is to “purify” the
channels via (independent) Stinespring dilations [19].
Any channel C with Kraus operators {Ki}i can indeed
be extended to a unitary operation by introducing an en-
vironment in an initial state |ε〉e and considering the op-
eration that acts on the system under consideration and
the environment as |ψin〉t ⊗ |ε〉e →

∑
iKi |ψin〉t ⊗ |i〉e :=

|Φout〉te. After tracing out the environment, one recovers
Tre |Φout〉〈Φout|te = C(|ψin〉〈ψin|t).

In the setup of Fig. 1 where the channels C0 and C1
have Kraus operators {Ki}i and {Lj}j , respectively, one
may therefore purify the channels by introducing two, ini-
tially uncorrelated, environments with initial states |ε0〉e0
and |ε1〉e1 . Under these controlled, purified channels, the
combined control-target-environments state evolves uni-
tarily as

|+〉c ⊗ |ψin〉t ⊗ |ε0〉e0 ⊗ |ε1〉e1

→ 1√
2
|0〉c ⊗

∑
i

Ki |ψin〉t ⊗ |i〉e0 ⊗ |ε1〉e1

+
1√
2
|1〉c ⊗

∑
j

Lj |ψin〉t ⊗ |ε0〉e0 ⊗ |j〉e1 . (4)

After tracing out the environments, the resulting joint
control-target state ρctout is found to be

ρctout =
1

2

[
|0〉〈0|c ⊗ C0(ρtin) + |1〉〈1|c ⊗ C1(ρtin)

]
+

1

2

[
|0〉〈1|c ⊗ T0ρtinT

†
1 + |1〉〈0|c ⊗ T1ρtinT

†
0

]
(5)

with T0 :=
∑

i〈ε0|i〉Ki and T1 :=
∑

j〈ε1|j〉Lj .
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Figure 2: A corrected version of Fig. 1 in which the de-
scription of the two operations inside the interferometer,
implementing the channels C0 and C1 on their respective
subspaces, have been supplemented by the transforma-
tion matrices T0 and T1 needed to fully specify ρctout.

The output state (3) is recovered by taking Ki = 1
dUi,

Lj = 1
dUj , and the initial states of the environment to be

|ε0〉e0 =
∑d2−1

i=0
1
d |i〉

e0 , |ε1〉e1 =
∑d2−1

j=0
1
d |j〉

e1 . However,
it is clear that a different choice of orthogonal unitary op-
erations or, indeed, any other set of Kraus operators for
depolarising channels would generally lead to a different
output state in Eq. (5).

The crucial observation here is thus that ρctout depends
on the implementation of the channels C0 and C1 [20, 21].
The interferometric circuit in Fig. 1 is therefore not fully
defined by the channels C0 and C1, or the Kraus opera-
tors chosen to represent them. This may appear surpris-
ing given that, in the usual paradigm, quantum channels
are understood to be fully characterised by their (non-
unique) Kraus representation [2, 18, 22]. However, one
should note that such a description of a channel is un-
changed under addition of any global phase. On the other
hand, any such “global” phase applied by one of the chan-
nels in Fig. 1 is only applied to the corresponding arm
of the interferometer and therefore, in the overall con-
trolled circuit, becomes a “relative” phase with physical
significance. In the case where the channels C0 and C1 are
unitary, the fact that Fig. 1 is only defined up to such a
phase on the unitaries is well known [23, 24].

What we see here, however, is that the output of the
interferometric circuit depends not only on any relative
phases between (the Kraus operators of) the two chan-
nels, but also on a more detailed description of the imple-
mentation of the channels. More precisely, one requires
some additional information encoded in the matrices T0,
T1 introduced in Eq. (5) in order to fully specify the
global channel M[C0, T0, C1, T1] : ρtin → ρctout induced by
the circuit; see Fig. 2. We call these the “transformation
matrices” of the channel implementations. In the de-
scription above in terms of a Stinespring dilation, these
depend not only on the set of Kraus operators used to
decompose the channel, but also on how these are com-
bined (with coefficients that depend on the environment
states) to define T0 :=

∑
i〈ε0|i〉Ki and T1 :=

∑
j〈ε1|j〉Lj .

We characterise completely the transformation matri-
ces T obtainable from some realisation of any given chan-
nel C, by deriving a general constraint expressed in terms
of the Choi representations [25] of C and T [8]. For a d-
dimensional fully depolarising channel, for instance, this
constraint simplifies to Tr[T †T ] ≤ 1

d . Under this con-

straint, applied to both T0 and T1, Eq. (5) characterises
all possible output states that one can obtain from the
setup of Fig. 2, for any implementation of the channels
C0, C1 = N .

4 Distinguishing different implementa-
tions of coherently-controlled channels

The dependence of the output of the circuit of Fig. 2
on the implementation of the channels means that it is
also possible to differentiate between two distinct imple-
mentations of the same quantum channel with different
transformation matrices.

Consider the case where the channel C0 has a sin-
gle, fixed implementation with a transformation matrix
T0, while the channel C1 can have two different possi-
ble implementations, with T1 6= T ′1. The global channels
MT1

:= M[C0, T0, C1, T1] and MT ′
1

:= M[C0, T0, C1, T ′1]
thus differ in general. If T1 and T ′1 are equally prob-
able, then the maximal probability of successfully dis-
tinguishing the two channels—and thereby the two im-
plementations of C1—is 1

2 (1 + D(MT1
,MT ′

1
)), where

D(MT1
,MT ′

1
) := 1

2‖MT1
−MT ′

1
‖� is the diamond-norm

distance between the two global channels [26]. We show
that [8]

D(MT1 ,MT ′
1
) ≤ 1

2

∥∥T1 − T ′1∥∥2 (6)

(where ‖·‖2 is the spectral norm), and that this upper
bound can be reached with C0 = I, T0 = 1, in which case
it is obtained by taking the input state ρtin = |ψin〉〈ψin|
maximising 〈ψin| (T1−T ′1)†(T1−T ′1) |ψin〉. One then dis-
criminates the channels by performing optimal state dis-
crimination between the corresponding output states ρctout
and ρct ′out of the two global channels.

For two different implementations of a depolarising
channel C1 = N with the transformation matrices T (′)

1 =
± 1√

d
|0〉〈0| one has 1

2

∥∥T1 − T ′1∥∥2 = 1√
d
, so that these two

implementations of the depolarising channel can be dis-
tinguished with probability 1

2 (1 + 1√
d
). This turns out to

be the optimal discrimination probability for any pair of
implementations of N [8].

5 Conclusions
Our results show that coherent control of quan-

tum channels is a powerful resource for communication
through noisy channels [27], allowing classical informa-
tion to be transmitted through completely depolarising
channels and even quantum information through com-
pletely dephasing channels [8, 28, 29]. Our analysis illu-
minated the fact that the output of the circuit in Fig. 2
depends on the implementation of whatever channels are
used, and the description of the channels as a CPTP
maps must be supplemented by the “transformation ma-
trices” T we introduced to fully describe their action.
This “implementation dependence” stands in contrast to
the usual paradigm of quantum channels as CPTP maps,
opening the door for novel uses of coherent control as a
tool for analysing channels.
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Abstract. We analyze a task in which classical and quantum messages are communicated via
a noisy quantum channel, assisted with shared entanglement. We derive a one-shot capacity
region in terms of the smooth conditional entropies. The direct and converse bounds for various
communication tasks are obtained as corollaries, both for one-shot and asymptotic scenario.
The proof is based on the randomized partial decoupling theorem, which is a generalization of
the decoupling theorem and may be of independent interest. Thereby we provide a unified
decoupling approach to the one-shot quantum channel coding, by fully incorporating classical
communication, quantum communication and entanglement.

Keywords: one-shot information theory, decoupling, quantum channel coding, smooth entropy

1 Background

The major goals of quantum communication the-
ory is to investigate the ultimate capacity of a
noisy quantum channel for transmitting classical
and quantum information, and to analyze the max-
imum amount of pure entanglement or secrecy that
can be extracted from a mixed quantum states [1].
In an asymptotic scenario of infinitely many copies
and vanishingly small error, Ref. [2] provided a uni-
fied approach for the two goals. This result was
subsequently developed into quantum state merg-
ing [3] and the fully quantum Slepian-Wolf (FQSW)
protocol [4]. Quite remarkably, various coding the-
orems including quantum capacity theorems are ob-
tained by reduction from FQSW [4]. These results
provided a unified picture for various quantum com-
munication tasks, referred to as the protocol family
[4, 5].
The concept of decoupling plays a crucial role in

the above analyses of quantum protocols. Decou-
pling refers to the fact that we may destroy correla-
tion between two quantum systems by applying an
operation on one of the two subsystems. The de-
coupling approach simplifies many problems of our
interest, particularly when combined with the fact
that any purification of a mixed quantum state is
convertible to another reversibly [6]. This enables
us to prove the existence of a decoder for quantum
communication without explicitly constructing it.

∗e.wakakuwa@gmail.com

The decoupling approach to quantum protocols
has been generalized to the one-shot scenario. Ref.
[7] proved one of the most general formulations of
decoupling, which is referred to as the decoupling
theorem. The decoupling theorem provides neces-
sary and sufficient conditions for an operation to
decouple a quantum state with high precision, in
terms of smooth min- and max- entropies of the op-
eration and the state. In the same way as in the
asymptotic scenario, various coding theorems can
be obtained by reduction from the decoupling theo-
rem in the one-shot scenario [8]. Furthermore, due
to the fully quantum asymptotic equipartition prop-
erty [9], the results also lead to reconstruction of the
existing results in an asymptotic scenario.
There is, however, a limitation in the decoupling

approach, in that it does not incorporate classi-
cal communication tasks. Although Ref. [10] ad-
dressed classical communication by a decoupling-
like approach based on the dequantizing theorem,
it does not fully incorporate a general scenario, in
which classical and quantum messages are simulta-
neously transmitted, possibly with the assistance of
shared entanglement. For addressing this scenario
by the existing decoupling methods, it is necessary
to apply the decoupling theorem and the dequantiz-
ing theorem separately for the two sources (see also
Refs. [11] for a different approach based on the con-
vex splitting). In this sense, the unified approach to
quantum communication based on decoupling has
not been fully completed.
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2 Our Contribution

In this paper, we propose a unified decoupling
approach that can incorporate classical communica-
tion, quantum communication and entanglement si-
multaneously. I.e., we consider a task in which clas-
sical and quantum messages are transmitted via a
noisy quantum channel with the assistance of shared
entanglement. This task was analyzed in [12] for
an asymptotic scenario, whereas we consider the
one-shot scenario based on the decoupling approach.
The main result is that we derive the one-shot ca-
pacity region for this task. The bounds are simply
represented in terms of the amount of shared en-
tanglement, the lengths of classical and quantum
messages to be transmitted, and the smooth con-
ditional entropy of the channel. The direct and
converse bounds for various communication tasks
are obtained as corollaries, both for one-shot and
asymptotic scenario. Thereby we complete the de-
coupling approach for quantum channel coding.
The proof is based on the randomized partial de-

coupling theorem [13], which is a generalization of
the decoupling theorem and may be of independent
interest. Here, we consider a scenario in which a bi-
partite quantum state on system AR is subject to a
unitary operation on A, followed by the action of a
quantum channel (CP map). The subsystem is de-
composed into a direct-sum form, and the unitary
is chosen at random from the set of unitaries that
are block-diagonal under the decomposition. Along
the similar line as [7], we analyze how close the final
state is, on average over the unitaries, to the aver-
aged final state. We derive upper and lower bounds
on the average distance between the final state and
the averaged one. The bounds are represented sim-
ply in terms of smooth conditional entropies of the
initial state and the channel. The existing results on
one-shot decoupling [7] and dequantization [10] are
obtained from this result as corollaries (see Section
III D in [13] for the details).

3 One-Shot Capacity Region

We consider a scenario in which Alice trans-
mits classical and quantum messages simultaneously
through a noisy quantum channel assisted with
shared entantlement. We assume that, initially, Bob
has no side information about the messages. We de-
note by c and q the numbers of classical and quan-
tum bits that are to be transmitted. Let Sc, Rc

and Sr, Rr be quantum systems of dimension 2c and
2q, respectively. The source is modeled by a state
Φ′SR
c,q = 1

2c
∑2c

j=1 |j⟩⟨j|Sc ⊗ |j⟩⟨j|Rc ⊗ |Φ2q⟩⟨Φ2q |SrRr ,

where Φ2q is the maximally entangled state with the
Schmidt rank 2q. The available resources are a noisy
quantum channel NC→D and a pure entangled state
ΦFAFB
2e shared in advance. The dimension of A is not

necessarily the same as the dimension of the input
space C of the channel.
The first main result of this submission is that

we derive the one-shot capacity region for this sce-
nario. The direct and converse parts are separately
represented by the following two theorems:

Theorem 1 (direct part) Consider a source state
defined by Φ′SR

c,q = 1
2c

∑2c

j=1 |j⟩⟨j|Sc ⊗ |j⟩⟨j|Rc ⊗
|Φ2q⟩⟨Φ2q |SrRr and a resource state ΦFAFB

2e . Let
NC→D be a quantum channel, and let Ar be a
quantum system such that dimAr ≥ 2q+e. For
any J ≥ 2c, there exists an encoding CPTP map
ESFA→C and a decoding CPTP map DDFB→S such
that
∥∥∥D ◦N ◦ E(Φ′SR

c,q ⊗ ΦFAFB
2e )− Φ′SR

c,q

∥∥∥
1
≤ 2

√
2 · 4

√
δ,

if there exists a normalized state in the form of
ρAC = 1

J

∑J
j=1 |j⟩⟨j|Ac ⊗ |ρj⟩⟨ρj |ArCC′

that satisfies
the following inequalities:

c+ q + e ≤ −Hδ/4
max(AcAr|CC ′)ρ + log (J − 1) + g(δ),

q + e ≤ −Hδ/4
max(Ar|CC ′Ac)ρ + g(δ),

c+ q − e ≤ −Hδ/4
max(AcAr|D)N (ρ) + log (J − 1) + g(δ),

q − e ≤ −Hδ/4
max(Ar|DAc)N (ρ) + g(δ),

where g(δ) := log(4δ2).

Theorem 2 (converse part) Consider the same
setting as in Theorem 1, and suppose that there ex-
ists an encoding CPTP map ESFA→C , and a de-
coding CPTP map DDFB→S such that ∥D ◦ N ◦
E(Φ′SR

c,q ⊗ ΦFAFB
2e ) − Φ′SR

c,q ∥1 ≤ δ. Then, for any

J ≥ 2c, there exists a state in the form of ρACC′
=

1
J

∑J
j=1 |j⟩⟨j|Ac ⊗ |ρj⟩⟨ρj |ArCC′

, such that for any
ι ∈ (0, 1] and ϵ > 0, it holds that

c+ q + e ≤ −Hϵ+2λ
max (AcAr|CC ′)ρ + log J − log ι+ f(ϵ),

q + e ≤ −Hϵ+2λ′
max (Ar|CC ′Ac)ρ − log ι+ f(ϵ),

c+ q − e ≤ −Hλ
max(AcAr|D)N (ρ) + log J − log ι,

q − e ≤ −Hλ′
max(Ar|DAc)N (ρ) − log ι,

where f(ϵ) := − log (1−
√
1− ϵ2). The smoothing

parameters λ and λ′ are functions of δ and ι that
vanishes in the limit of δ, ι→ 0.
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4 Randomized Partial Decoupling

As a tool for proving Theorem 1 and 2, we intro-
duce a task that we call randomized partial decou-
pling, which is a generalization of decoupling and
may be of independent interest. For the details and
proofs, please see the paper by the same authors
[13].
Randomized partial decoupling is a task in which

a bipartite quantum state ΨAR is transformed by a
unitary operation on A and then is subject to the ac-
tion of a quantum channel (linear CP map) T A→E .
We assume that the Hilbert space HA is isomorphic
to a tensor product Hilbert space HAc ⊗ HAr , i.e.,
A ∼= AcAr, where HAc is a J-dimensional Hilbert
space with a fixed orthonormal basis {|j⟩}Jj=1.
We consider a random unitary U on system A in

the form of U :=
∑J

j=1 |j⟩⟨j|Ac ⊗ UAr
j , where Uj ∼

Hj for each j, and Hj is the Haar measure on the
unitary group on HAr . We also introduce a unitary
Gσ :=

∑J
j=1 |σ(j)⟩⟨j|Ac ⊗ IAr for a permutation σ

on [1, · · · , J ] that is chosen according to the uniform
distribution. Our concern is how close the final state
T A→E◦GA

σ ◦UA(ΨAR) is, on average, to the averaged
final state T A→E ◦ GA

σ (Ψ
AR
av ), for typical choices of

the permutation σ where ΨAR
av := EU∼H× [UA(ΨAR)].

For the simplicity of analysis, we assume that ΨAR

is classically coherent [10] in AR.
The following theorem is the direct part of the

randomized partial decoupling theorem, and pro-
vides an upper bound on the average distance be-
tween T A→E ◦GA

σ ◦UA(ΨAR) and T A→E ◦GA
σ (Ψ

AR
av ).

Theorem 3 (Theorem 3 in [13]) Let U and Gσ be
random unitaries defined as above, and fix arbitrary
ϵ, µ ≥ 0. Consider a subnormalized state ΨAR that
is classically coherent in AR. Let T A→E be a linear
CP map with the complementary channel T A→C . It
holds that

Eσ,U
[∥∥T A→E ◦ GA

σ ◦ UA(ΨAR)− T A→E ◦ GA
σ (Ψ

AR
av )

∥∥
1

]

≤ (J − 1)−1/2 · 2−
1
2HI + 2−

1
2HII + 4(ϵ+ µ+ ϵµ),

where ΨAR
av := EU∼H× [UA(ΨAR)] and the exponents

HI and HII are given by

HI = Hϵ
min(A|R)Ψ −Hµ

max(A|C)C(τ),

HII = Hϵ
min(A|R)C(Ψ) −Hµ

max(Ar|CAc)C(τ). (1)

Here, C is the completely dephasing operation on Ac

with respect to the basis {|j⟩}Jj=1, and τ is the Choi-

Jamiolkowski state of T A→C .

The converse bound for randomized partial de-
coupling is stated by the following theorem.

Theorem 4 (Theorem 4 in [13]) Let |Ψ⟩ABR be a
purification of a normalized state ΨAR ∈ S=(HAR),
which is classically coherent in AR. Let T A→E be
a CP map with the complementary channel T A→C ,
such that Tr[T A→E(ΨAR)] = 1. Suppose that, for
δ > 0, there exists a normalized state in the form of

ΩER :=
J∑

j=1

pjς
E
j ⊗ ΨRr

j ⊗ |j⟩⟨j|Rc , (2)

such that ∥T A→E(ΨAR) − ΩER∥1 ≤ δ. Then, for
any υ ∈ [0, 1/2) and ι ∈ (0, 1], it holds that

Hλ
min(A|R)Ψ −Hυ

min(BR|C)T ◦C(Ψ) + log J ≥ log ι,

Hλ′
min(A|R)C(Ψ) −Hυ

min(BRr|CRc)T ◦C(Ψ)

≥ log ι+ log (1− 2υ),

where C is the completely dephasing channel on Ac.
The smoothing parameters λ and λ′ are functions of
ι, υ and δ that vanishes in the limit of ι, υ, δ → 0.
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Abstract. We study the capacity of quantum private information retrieval (QPIR) with multiple servers.
In the QPIR problem with multiple servers, a user retrieves a classical file by downloading quantum systems
from multiple servers each of which containing the whole classical file set, without revealing the identity of
the retrieved file to any individual server. The QPIR capacity is defined as the maximum rate of the file
size over the whole dimension of the downloaded quantum systems. When the preexisting entanglement
among servers are assumed, we prove that the QPIR capacity with multiple servers is 1 regardless of the
number of servers and files. We propose a rate-one protocol which can be implemented by using only two
servers. This capacity-achieving protocol outperforms its classical counterpart in the sense of the capacity,
server secrecy, and upload cost. The strong converse bound is derived concisely without using any secrecy
condition. We also prove that the capacity of symmetric multi-round QPIR with coded databases is 1.

A full version of this paper is accessible at: https://arxiv.org/pdf/1903.10209.pdf.

Keywords: private information retrieval, quantum private information retrieval, oblivious transfer

1 Introduction
Introduced in the seminal paper by Chor et al. [1],

private information retrieval (PIR) finds efficient meth-
ods to download a file from non-communicating servers
each of which containing the whole classical file set, with-
out revealing the identity of the downloaded file to each
server. This problem is trivially solved by requesting all
files to the servers, but this method is inefficient. Finding
an efficient method is the goal of this problem and it has
been extensively studied in many papers [2–5]. Moreover,
the papers [6–10] studied quantum PIR (QPIR) problem
where the user downloads quantum systems, instead of
classical bits, in order to retrieve a classical file from the
servers.

In classical PIR studies, the paper [11] started the
discussion of capacities for PIR problems with multiple
servers. The PIR capacity is defined by the maximum
rate of the file size over the download size. The upload
cost, i.e., the total size of the queries, is neglected since
it does not scale with the file size, which is allowed to go
infinity. For the PIR with n non-communicating servers
each containing the whole set of f files, the paper [11]
showed that the capacity is (1−1/n)/(1− (1/n)f). More-
over, the paper [12] proposed a capacity-achieving pro-
tocol whose upload cost and file size are minimum in a
general class of PIR protocols. Furthermore, after [11],
several PIR capacities have been studied under differ-
ent problem settings. Symmetric PIR is the PIR with
server secrecy that the user obtains no more information
than the target file, and the capacity of symmetric PIR
is 1− n−1 [13]. Another extension is the PIR with coded
databases [16–18], where the set of files is coded and dis-
tributed to the servers, whereas the PIR in [11] assumes
that the file set is replicated to all servers. The capacity
∗m17021a@math.nagoya-u.ac.jp
†masahito@math.nagoya-u.ac.jp

Table 1: Capacities of classical and quantum PIRs

Classical PIR
Capacity

Quantum PIR
Capacity

PIR
1− n−1

1− n−f
[11] 1 §

Symmetric PIR 1− n−1 [13] † 1 §

PIR with coded
databases

1− k/n

1− (k/n)
f
[16] ‡ 1 §

Multi-round
PIR

1− n−1

1− n−f
[19] 1

∗ n, f: the numbers of servers and files, respectively.
† Shared randomness among servers is necessary.
‡ Files are coded by (n, k) maximum distance separable code.
§ Capacities are derived by strong converse.

of PIR with files coded by (n, k) maximum distance sepa-
rable code is (1−k/n)/(1−(k/n)

f
) [16]. Multi-round PIR

has also been studied in [19] and the capacity was proved
to be the same as the PIR capacity derived in [11].

On the other hand, the QPIR problem is rarely treated
with multiple servers and there is no study on the capac-
ity of the QPIR problem. Though the paper [7] treated
the QPIR problem with multiple servers, the paper [7]
evaluated the communication complexity which is the
sum of upload and download costs required to retrieve
one bit file, instead of the capacity.

In the paper, as quantum extensions of the classical
PIR capacities [11,13,16,19], we show that the capacities
of QPIR, symmetric QPIR, QPIR with coded databases,
and multi-round QPIR are 1 even when there are mul-
tiple servers. First, we derive the QPIR capacity when
a user retrieves a file secretly from n non-communicating
servers containing the whole set of f files by download-
ing quantum states under the assumption that an entan-
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gled state is shared previously among all servers. We
define the security of the QPIR protocol with three pa-
rameters: the retrieval error probability, the user secrecy
that the identity of the querying file is unknown to any
individual server, and the server secrecy that the user
obtains no more information than the target file. As a
main result, we show that the QPIR capacity is 1 re-
gardless of whether it is of exact/asymptotic security
and with/without the restriction that the upload cost is
negligible to the download cost. We propose a rate-one
QPIR protocol with perfect security and finite upload
cost. Even for any QPIR protocol with no secrecy, no
upload constraint, and any error probability less than 1,
we propose the converse bound is 1. Since our protocol is
a special case of the QPIR with coded databases and our
converse bound is also directly applicable to the QPIR
with coded databases, our result also proves that the
QPIR capacity with coded databases is 1. Moreover, we
show that the capacity of symmetric multi-round QPIR
with coded databases is 1 by proving a weak converse
bound such that the multi-round QPIR rate is upper
bounded by 1 when the error probability is asymptoti-
cally zero.

It should be noted that our QPIR protocol can be
considered as a distributed version of oblivious trans-
fer (OT) [20, 21]. OT is defined as the symmetric PIR
with one server and therefore, symmetric PIR with mul-
tiple servers can be considered as a distributed version of
OT. OT is an important cryptographic protocol because
the free uses of OT protocol constructs an arbitrary se-
cure multiparty computation [22,23]. Unfortunately, the
symmetric classical PIR cannot be constructed without
secret shared randomness among servers [24]. On the
other hand, the paper [7] showed that the two-way quan-
tum communication between the servers and the user
enables the symmetric PIR without secret shared ran-
domness. Our result extends the result [7] so that even
for the case of classical upload, quantum download, and
previously shared entanglement among the servers, the
symmetric PIR can be constructed without secret shared
randomness. Note that if quantum upload is allowed to
our model, the assumption of shared entanglement is not
necessary because the user can upload an entangled state
to all servers.

2 QPIR Protocol and Main Theorem
In this section, we formally define the QPIR protocol

and its capacity, and presents a main theorem of the pa-
per.

2.1 Formal definition of QPIR protocol
The QPIR with multiple servers (hereinafter QPIR)

is described as follows. Consider a user and non-
communicating n servers serv1, . . . , servn each of which
containing the whole set of uniformly and independently
distributed f files W1, . . . ,Wf ∈ {0, . . . ,m − 1} for inte-
gers n, f,m ≥ 2. Each server servt possesses a quantum
system Ãt and the n servers share an entangled state
ρprev ∈ S(

⊗n
i=1 Ãi) in the beginning. The user chooses

User

Query Index: K ∈ {1, . . . , f}

serv1

W1

W2
...
Wf

serv2

W1

W2
...
Wf

· · ·

servn
W1

W2
...
Wf

Shared Entanglement ρprev

WK ∈ {1, . . . ,m}
Q1

Q2 Qn

A1 A2
An

ρW,Q

Ã1 Ã2 Ãn

Figure 1: Quantum private information retrieval proto-
col with multiple servers. The composite system of the
servers is initialized to an entangled state ρperv.

the query index K in order to retrieve the K-th file WK ,
where the distribution of K is uniform and independent
of the file Wi for any i ∈ {1, . . . , f}.

In order to retrieve the K-th file WK , the user chooses
a random variable Ruser in a set Ruser and encodes the
queries for retrieving WK by user encoder Encuser:

Encuser(K,Ruser) = (Q1, . . . , Qn) ∈ Q1 × · · · × Qn,

where Qt is the set of query symbols to the t-th server
for any t ∈ {1, . . . , n}. The n queries Q1, . . . , Qn are
sent to the servers serv1, . . . , servn, respectively. After
receiving the t-th query Qt, each server servt applies a
trace-preserving completely positive (TP-CP) linear map
Λt from Ãt to At depending on Qt,W1, . . . ,Wf and sends
the quantum system At to the user. With server encoder
Encservt

, the map Λt is written as

Λt = Encservt
(Qt,W1, . . . ,Wf),

and the received state of the user is written as

ρW,Q := Λ1 ⊗ · · · ⊗ Λn(ρprev) ∈ S

(
n⊗
i=1

Ai

)
, (1)

where W := (W1, . . . ,Wf) and Q := (Q1, . . . , Qn). Next,
the user retrieves the file WK by a decoder which is de-
fined depending on K,Q as a Positive Operator-Valued
Measure (POVM) Dec(K,Q) := {YM}mM=0. The proto-
col outputs the measurement outcome M ∈ {1, . . . ,m}
and if M = m, it is considered as retrieval failure.

2.1.1 Protocol
When the numbers n and f of servers and files are fixed,

a QPIR protocol of file size m is formulated by the 4-
tuple Ψ

(m)
QPIR := (ρprev,Encuser,Encserv,Dec) of the pre-

viously shared entangled state ρprev among servers, the
user encoder Encuser, the collection of the server encoders
Encserv := (Encserv1

, . . . ,Encservn), and the decoder Dec.
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2.1.2 Security
A QPIR protocol has two kinds of security parameters,

the error probability and secrecy parameters. The error
probability of the protocol Ψ

(m)
QPIR is written as

Perr(Ψ
(m)
QPIR) := Pr

W,K,Q
[M 6= WK ].

The secrecy parameters are defined as follows. For any
t ∈ {1, . . . , n}, let user(Ψ

(m)
QPIR) and servt(Ψ

(m)
QPIR) be the

information of the user and the server servt at the end of
the protocol, respectively. We define the server secrecy
parameter and the user secrecy parameter by

Sserv(Ψ
(m)
QPIR) := I(WKc ; user(Ψ

(m)
QPIR)|K), (2)

Suser(Ψ
(m)
QPIR) := max

t∈{1,...,n}
I(K; servt(Ψ

(m)
QPIR)), (3)

where I(·; ·|·) denotes the conditional mutual informa-
tion and WKc := (W1, . . . ,WK−1,WK+1, . . . ,Wf). If
Sserv(Ψ

(m)
QPIR) = 0, the files other than WK are indepen-

dent of the user information. Similarly, if Suser(Ψ
(m)
QPIR) =

0, the query index K is independent of any individual
server information.

2.1.3 Costs, rate, and capacity
Given the QPIR protocol Ψ

(m)
QPIR, the upload cost,

download cost, and rate are defined by

U(Ψ
(m)
QPIR) :=

n∏
i=1

|Qi|, D(Ψ
(m)
QPIR) :=

n∏
i=1

dimAi,

R(Ψ
(m)
QPIR) :=

logm

logD(Ψ
(m)
QPIR)

.

The QPIR capacity is defined with constraints
on the security parameters and upload cost. The
asymptotic security-constrained capacity and the
exact security-constrained capacity are defined
with error constraint α ∈ [0, 1), server secrecy
constraint β ∈ [0,∞], user secrecy constraint
γ ∈ [0,∞], and upload constraint θ ∈ [0,∞] by

Cα,β,γ,θasymp := sup
{m`}∞`=1,

{Ψ(m`)

QPIR}
∞
`=1

{
lim inf
`→∞

R(Ψ
(m`)
QPIR)

∣∣∣∣ lim sup
`→∞

Perr(Ψ
(m`)
QPIR) ≤ α, lim sup

`→∞
Sserv(Ψ

(m`)
QPIR) ≤ β,

lim sup
`→∞

Suser(Ψ
(m`)
QPIR) ≤ γ, lim sup

`→∞

logU(Ψ
(m`)
QPIR)

logD(Ψ
(m`)
QPIR)

≤ θ
}
,

Cα,β,γ,θexact := sup
{m`}∞`=1,

{Ψ(m`)

QPIR}
∞
`=1

{
lim inf
`→∞

R(Ψ
(m`)
QPIR)

∣∣∣∣ Perr(Ψ
(m`)
QPIR) ≤ α, Sserv(Ψ

(m`)
QPIR) ≤ β,

Suser(Ψ
(m`)
QPIR) ≤ γ, lim sup

`→∞

logU(Ψ
(m`)
QPIR)

logD(Ψ
(m`)
QPIR)

≤ θ
}
,

where the supremum is taken for sequences {m`}∞`=1

such that lim`→∞m` = ∞ and sequences {Ψ(m`)
QPIR}∞`=1

of QPIR protocols. It is trivial from the definition that
for any α ∈ [0, 1), θ ∈ [0,∞], β ∈ [0,∞], and γ ∈ [0,∞],

C0,0,0,0
exact ≤ C

α,β,γ,θ
exact ≤ Cα,β,γ,θasymp ≤ Cα,∞,∞,∞asymp . (4)

2.2 Main Result
The main theorem of this paper is given as follows.

Theorem 2.1 For any α ∈ [0, 1) and β, γ, θ ∈ [0,∞],
the capacity of the quantum private information retrieval
with f files and n ≥ 2 servers sharing preexisting entan-
glement is

Cα,β,γ,θexact = Cα,β,γ,θasymp = 1.

Proof. From [30, Sections 3 and 4], we proved C0,0,0,0
exact ≥

1 and Cα,∞,∞,∞asymp ≤ 1 for any α ∈ [0, 1), respectively.
Then, the inequality (4) implies Theorem 2.1. �

Note that the capacity does not depend on the number
of files f and the number of servers n. This contrasts to
the classical PIR capacity [11] which is strictly increasing
for f and n. Moreover, the capacity does not depend on
the security constraints, i.e., there is no trade-off between

the capacity and the security constraints. Furthermore,
the theorem implies that the symmetric QPIR capacity
is 1.

Moreover, the following theorem presents the capacity
for symmetric multi-round QPIR with coded databases.

Theorem 2.2 For any positive integer r, the symmetric
r-round QPIR capacity with coded databases when there
are f files and n ≥ 2 servers sharing preexisting entangle-
ment is 1.
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Abstract. We initiate the systematic study of resource theories of quantum channels, i.e. of the dynamics
that quantum systems undergo by completely positive maps, in abstracto: Resources are in principle all
maps from one quantum system to another, but some maps are deemed free. The free maps are supposed
to satisfy certain axioms, among them closure under tensor products, under composition and freeness of
the identity map (the latter two say that the free maps form a monoid). The free maps act on the resources
simply by tensor product and composition. This generalizes the much-studied resource theories of quantum
states, and abolishes the distinction between resources (states) and the free maps, which act on the former,
leaving only maps, divided into resource-full and resource-free ones.

We discuss the axiomatic framework of quantifying channel resources, and show two general methods of
constructing resource monotones of channels. Furthermore, we show that under mild regularity conditions,
each resource theory of quantum channels has a distinguished monotone, the robustness (and its smoothed
version), generalizing the analogous concept in resource theories of states. We give an operational interpre-
tation of the log-robustness as the amount of heat dissipation (randomness) required for resource erasure
by random reversible free maps, valid in broad classes of resource theories of quantum channels. Finally,
we remark on several key issues concerning the asymptotic theory.

Keywords: Quantum channels, resource theory

The paradigm of resource theories has been applied
successfully to capture the essence of what is valuable,
and how to measure its value, in scenarios where cer-
tain objects and transformations are considered relatively
“easy” compared to others. In resource theories this is
idealized by considering some objects and transforma-
tions free, meaning they may be invoked unlimitedly in
any situation. Specifically, resource theories of quantum
states, i.e. where the objects are states of quantum sys-
tems undergoing (free) quantum channels, have proved
to be extremely successful in characterizing various quan-
tum and other features of quantum states (see [1] for a
recent survey), such as entanglement, coherence, ther-
mal non-equilibrium, asymmetry (related to conserved
quantities by Noether’s theorem), magic states, etc. The
structure of resource theories can be characterized in
much more abstract ways, for instance, in terms of cate-
gory theory [2, 3], or for more general GPT objects.

In this work, rather than going all the way to these ab-
stract structures, we will explore a more modest, but for
quantum mechanics highly important, extension, namely
from quantum states to quantum channels represented by
completely positive maps as the objects of the resource
theory. There are a number of strong motivations for
doing so, including but not restricted to the following
few. On the one hand, quantum channels or processes
can represent dynamical resources which, as opposed to
static state resources, play natural roles i many physical
scenarios. For example, certain quantum channels can
be used to efficiently transmit quantum information, and
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certain thermodynamic processes can be implemented to
do work. Therefore, the resource theory approach for
quantum channels is of great practical interest. On the
other hand, due to the more complicated mathematical
structure of quantum channels, the associated resource
theory framework can be highly nontrivial and interest-
ing from a mathematical point of view. In particular, as
will be discussed in more depth later, several key aspects
of the resource theory approach such as resource compo-
sition and transformation become more subtle than the
traditional state theory. Furthermore, the application of
resource theory approach to quantum channels augments
and advances the study of this core area of quantum in-
formation, and of course the understanding of this ex-
tended resource theory scheme could greatly benefit from
the profound literature of e.g. quantum channel coding
and capacities. Our programme is not entirely new, in
fact it has been done, at least in part, for certain con-
crete quantum resource theories: for instance for a good
part of quantum Shannon theory [4, 5], bipartite entan-
glement [6], athermality [7, 8, 9], and recently for the
resource theory of coherence [10, 11] and magic [12, 13].
However, a general framework of channel resource the-
ories is still elusive. This work aims at initiating the
systematic study of resource theories of quantum chan-
nels by discussing key aspects of the general framework,
as summarized in the following. The full paper also con-
tains detailed discussions of several illustrative examples
to solidify the general scheme.

We first define the axioms and elements of channel re-
source theories in a rigorous manner. Resources are in
principle all maps from one quantum system to another,
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but some maps are deemed free. The free maps are sup-
posed to satisfy certain axioms, among them closure un-
der tensor products, under composition and freeness of
the identity map (the latter two say that the free maps
form a monoid). The free maps act on the resources
simply by tensor product and composition. This gen-
eralizes the much-studied resource theories of quantum
states, and abolishes their distinction between resources
(states), on which free maps act, leaving only maps, di-
vided into resource-full and resource-free ones. The re-
source transformation is defined by channel simulation
with free pre- and post-processings. However, we would
like to highlight that the mathematical structure and dy-
namical feature of quantum channels lead to some sub-
tleties and fundamental differences with the state/static
resource theories, in particular concerning the conversion
and composition of resources. We discuss these funda-
mental features of channel theories in more depth in the
full paper.

We show two general methods how to lift resource
monotones from states to operations, namely i) the
generating-power type measures given by g(N ) =
max{ω(N ⊗ id(ρ))− ω(ρ)}, where ω is a resource mono-
tone of states and the maximization can run over free
states or all states; ii) the distance-type measures given
by d(N ) = minM∈F D(N ,M) where D is some distance
defined on channels (e.g. diamond norm) and F is set of
free channels. We show that these general measures sat-
isfy the lifted monotonicity conditions under the axioms
of our framework, and are therefore sensible resource
measures of channels in general.

In particular, we show that under mild regularity con-
ditions, each resource theory of quantum channels has
a distinguished class of monotones, the robustness and
log-robustness (and their smoothed versions), generaliz-
ing the analogous concept in resource theories of states:
R(N ) = min{s ≥ 0 : 1

1+sN + s
1+sN

′ ∈ F} and
LR(N ) = log(1 + R(N )). In doing so we generalize the
notion of max-relative entropy to cp maps:

Dmax(N‖M) := log min{λ : N ≤ λM}, (1)

where the inequality sign refers to the complete-positivity
order between superoperators, meaning that the dif-
ference between r.h.s. and l.h.s. is completely pos-
itive. Smoothing is defined by optimizing over ε-ball
of diamond norm. It can be verified that LRε(N ) =
minM∈F D

ε
max(N‖M). We give a universal opera-

tional interpretation of the resource log-robustness as the
amount of heat dissipation required for the task of one-
shot resource erasure by random reversible free maps,
valid in broad classes of resource theories of quantum
channels.

Theorem 1. For a channel N : A −→ B in a re-
source theory with free states F satisfying a few axioms
of free resources (see full paper), define an ε-resource-
destruction process to be any free channel F ∈ F(A′ −→
B′) together with an ensemble of pairs of free reversible
channels (i.e. unitary conjugations) {pi,UAA

′

i ,VBB′

i }ki=1,

such that

1

2

∥∥∥∥∥
k∑
i=1

piVi ◦ (N ⊗F) ◦ Ui −M

∥∥∥∥∥
�

≤ ε,

for some free channel M ∈ (AA′ −→ BB′). Let
COSTε(N ) be the minimum log k such that an ε-resource-
destruction process exists. Then for any 0 < η < ε < 1,

LRµδ(N )+log

(
1− 1

µ

)
≤ COSTε(N ) ≤ LRε−η(N )+2 log

1

η
−1,

(2)
where δ =

√
ε(2− ε) and µ > 1. If the sets of free chan-

nels F are convex, then the lower bound can be improved
to COSTε(N ) ≥ LRδ(N ).

Technically, the proof of achievability is based on an
abstract version of the “convex-split lemma” [14], ex-
tended from its original domain of quantum states to
ordered vector spaces with base norms; this includes in
particular the set of cptp maps with the diamond norm.
The optimality bound for quantum channels is based on
the Uhlmann’s theorem for the completely bounded fi-
delity.

Lastly, we would like to remark on the asymptotic the-
ory where one is given an infinite number of i.i.d. in-
stances of channel resources. This leads to several open
problems of importance and interest to channel resource
theory and information theory in general. In particular,
we describe the problem of the asymptotic limit of the
smooth resource log-robustness of channels (which car-
ries operational meaning in terms of resource erasure and
channel simulation cost of coherence [11] in the one-shot
regime), with discussions of partial progress and exam-
ples. A key step is the asymptotic equipartition prop-
erty (AEP) of the aforementioned channel’s max-relative
entropy, whose final form is unclear at the moment be-
sides some straightforward lower bounds. Moreover, this
problem is key to the study of asymptotic reversibility
(meaning that cost equals yield) of channel resource the-
ories. For example, for the resource theory of coherence
for channels under maximal free operations MIO [11],
the simulation cost is given by the asymptotic smooth
log-robustness. It is unclear whether it equals the gener-
ating capacity (which is given by a complete coherence
generating power) [10], which indicates reversibility. Ei-
ther case seems very interesting: it could be that the re-
versibility holds, which seems highly nontrivial to show
and may lead to important advances in the understand-
ing of channel theories; or that the reversibility fails (even
when the set of free channels is maximal, which guaran-
tees reversibility for state theories), which would be a
peculiar feature of the channel theory.
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Abstract. We aim to devise feasible, efficient verification schemes for bosonic channels. To this end,
we construct an average-fidelity witness that yields a tight lower bound for average fidelity plus a gen-
eral framework for verifying optimal quantum channels. For both multi-mode unitary Gaussian channels
and single-mode amplification channels, we present experimentally feasible average-fidelity witnesses and
reliable verification schemes, for which sample complexity scales polynomially with respect to all channel
specification parameters. Our verification scheme provides an approach to benchmark the performance of
bosonic channels on a set of Gaussian-distributed coherent states by employing only two-mode squeezed
vacuum states and local homodyne detections. Our results demonstrate how to perform feasible tests of
quantum components designed for continuous-variable quantum information processing.

Keywords: verification, bosonic channels, average-fidelity witness, Gaussian quantum information

1 Introduction

Progress in optical quantum computing [19, 2, 27] de-
mands efficient schemes to verify performance of optical
quantum processes, which would serve as components
and devices for the quantum system. Characterization
by quantum process tomography [7, 23, 9, 1, 21, 15, 25]
could serve as a means for gathering sufficient assessment
data to be used for verification, but, unfortunately, quan-
tum process tomography is inefficient. Partial character-
ization methods, such as direct fidelity estimation [11, 8]
and randomized benchmark [17, 18, 30, 24], although re-
quiring less sampling overhead, are not readily adapted
to bosonic channels, due to non-compactness of phase
space and that Gaussian unitary operations do not form
an exact unitary 2-design [35], respectively. Our aim is
to devise efficient and experimentally feasible verification
schemes for bosonic channels.

Quantum-state verification is widely studied [3, 13,
29, 12, 22, 22, 34, 28]. Reliable and efficient verifica-
tion schemes [3] for bosonic Gaussian pure states have
been adapted to benchmarking continuous-variable (CV)
quantum gates [10]. Although experimentally appealing,
this adaption of recent verification schemes [3, 14] only
estimates average fidelity over a finite-dimensional sub-
space chosen by selecting a finite set of coherent states.
This subspace selection cannot assess quantum-channel
performance over the entire infinite-dimensional Hilbert
space H .

On the other hand, an alternative quantum-process
benchmark approach benchmarks the average fidelity of
bosonic quantum processes over all coherent states by
preparing a two-mode squeezed vacuum state and mea-
suring a single observable [4]. However, this scheme [4]
is challenged by experimental limitations: online squeez-
ing [33, 20], and quantum memories [16, 26]. Here we
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combine the favourable features of the state verification
approach [3] and the unified quantum-benchmark ap-
proach [4] to develop our verification schemes for bosonic
channels.

We formulate quantum-channel verification as an ad-
versarial game between a technology-limited verifier and
an untrusted, powerful prover who has significant but
bounded quantum technology. Our average-fidelity wit-
ness issues a certificate that contains a tight lower bound
of the average fidelity of the quantum channel. We
develop a general framework for verification of optimal
quantum channels, and, as examples of this framework,
we present reliable and experimentally feasible verifi-
cation schemes for both multi-mode Gaussian unitary
channels and single-mode amplification channels. Both
schemes can be implemented by preparing two-mode
squeezed vacuum states and applying local homodyne
detections, and the sample complexities for both two
schemes scale polynomially with all channel-specification
parameters. Thus, our results provide experimentally
feasible tests of quantum components in bosonic quan-
tum systems.

2 Definitions and framework

This section presents the general framework of verifi-
cation of an optimal quantum channel, and the mathe-
matical definitions of completeness and soundness as well
as average-fidelity witness.

A verifier provides a prover with the classical descrip-
tion of the input ensemble {(px, ρx);x ∈ X} as well as
the output-target-state set {|φx〉 〈φx| ;x ∈ X}, and the
prover sends independent and identical copies of quantum
channels, Ep, to the verifier. The verifier needs to decide
whether to accept Ep as an optimal quantum channel in
terms of average fidelity

F̄Ep =
∑
x∈X

px 〈φx| Ep(ρx) |φx〉 , (1)
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or reject it. A reliable quantum-channel verification pro-
tocol is defined as follows.

Definition 1 An optimal-quantum-channel verification,
with respect to threshold average fidelity 0 < F̄t <
supE F̄E and maximal failure probability δ, satisfies

1. completeness: if F̄Ep = supE F̄E , then the verifier
accepts with probability no less than 1− δ;

2. soundness: if F̄Ep ≤ F̄t, then the verifier rejects
with probability no less than 1− δ.

Rather than sampling different inputs ρx, our verifi-
cation protocol requires only one input state |Ψ〉AR and
measurement of one observable WA′R, by adding a ref-
erence system R, where A and A′ denote channel input
and channel output, respectively. The observable WA′R

is an average-fidelity witness, which yields a tight lower
bound of the average fidelity.

Definition 2 An observable WA′R is an average-fidelity
witness for F̄E on the state E ⊗ I (|Ψ〉 〈Ψ|AR) if

ω(E) := tr [WA′RE ⊗ I (|Ψ〉 〈Ψ|AR)] (2)

satisfies

1. ω(E) = F̄E ⇐⇒ F̄E = sup
C
F̄C ; (3)

2. ∀E , ω(E) ≤ F̄E . (4)

Our general quantum-channel verification scheme is:
1. prepare an entangled state |Ψ〉AR, and send system A
of |Ψ〉AR through Ep; 2. apply local measurements on A’
and R of Ep⊗I(|Ψ〉 〈Ψ|AR), respectively, to estimate the
mean value ω(Ep); 3. repeat the above procedure, and
obtain an estimate ω(Ep)∗; 4. if ω(Ep)∗ ≥ F̄t + ε, where ε
is an estimation error bound, accept Ep; otherwise, reject
it.

3 Verification of bosonic channels

In this section, we present two verification proto-
cols, one for multi-mode Gaussian unitary channels, the
other for single-mode Gaussian amplification channels.
Both protocols require only the preparation of two-mode
squeezed vacuum states and the application of local ho-
modyne detections. The sample complexities scale poly-
nomially with respect to all channel-specification param-
eters. In both protocols, we devise experimentally feasi-
ble average-fidelity witnesses, the mean values of which,
can be sampled by local homodyne detections.

3.1 Verification of multi-mode Gaussian unitary
channels

Here we investigate a verification protocol for m-mode
Gaussian unitary channel

US,d(ρ) = US,dρU
†
S,d, (5)

where S ∈ Sp(2m,R) and d ∈ R2m determine an affine
mapping on phase space yielded by US,d, in terms of
average fidelity

F̄ (E ,US,d) :=∫
d2mα

πm
λme−λ|α|

2

〈α|U†S,dE(|α〉 〈α|)US,d |α〉 , (6)

where |α〉 := |α1〉 ⊗ |α2〉 ⊗ · · · ⊗ |αm〉, α :=
(α1, α2, . . . , αm) ∈ C⊗m is a tensor product of m coher-
ent states, and λ > 0. The verification scheme is shown
in Fig. 1.

|κ〉TMSV

|κ〉TMSV

...
...

...

E ...

Figure 1: Our verification scheme for a multi-mode Gaus-
sian unitary channel. Each |κ〉TMSV denotes a two-
mode squeezed vacuum state with squeezing parame-
ter κ = arctanh 1√

λ+1
. One mode of each |κ〉TMSV goes

through a multi-mode unknown bosonic quantum chan-
nel, denoted by E and represented by a square. Ho-
modyne detections, represented by semicircles, are ap-
plied at each output mode of E and the other mode of
each |κ〉TMSV.

Now we devise an average-fidelity witness for the aver-
age fidelity in Eq. (6).

Theorem 3 The observable

WUS,d
:= 1− λ

λ+ 1
US,d⊗1

(
m∑
i=1

Sκn̂i ⊗ 1S†κ

)
U†S,d⊗1,

(7)
where

Sκ := exp
κ

2

(
âA′ âR + â†A′ â

†
R

)
, (8)

is an average-fidelity witness for F̄ (E ,US,d) on E ⊗
I
(
|κ〉 〈κ|⊗mTMSV

)
.

To show Theorem 3, we need Lemmas 4 and 5.

Lemma 4 To satisfy∫
d2α

π
λe−λ|α|

2

〈gα| E(|α〉 〈α|) |gα〉 =

tr [OA′RE ⊗ I(|κ〉 〈κ|TMSV)] , (9)

where g > 0, when g ≤
√
λ+ 1,

OA′R = Sθ(Gθ ⊗ 1)S†θ , (10)

where

Gθ =
∞∑
n=0

tanh2n θ |n〉 〈n| , θ = arctanh
g√
λ+ 1

; (11)
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when g >
√
λ+ 1,

OA′R = tanh2 θ′Sθ′(1⊗Gθ′)S†θ′ , θ
′ = arctanh

√
λ+ 1

g
.

(12)

To devise an experimentally feasible verification
scheme, we find lower bounds of the observables in
Lemma 4 using the lemma below.

Lemma 5 For any θ > 0, m ∈ N+,

G⊗mθ ≥ 1−
∑m
i=1 n̂i

cosh2 θ
. (13)

Combining Lemma 5 with Lemma 4, we obtain the ob-
servable in Eq. (7).

The expectation value of the average-fidelity witness

ωUS,d
(Ep) := tr

[
WUS,d

Ep ⊗ I
(
|κ〉 〈κ|⊗mTMSV

)]
(14)

is a linear combination of the mean values and the covari-
ances of quadrature operators (see Eq. (85) in ref. ([31])).
To sample the mean values and the covariances of quadra-
ture operators, the verifier only needs local homodyne
detections. All the measurements can be accomplished
by m+ 5 measurement settings. To assure a reliable cer-
tificate, the protocol requires

O

(
m5 ‖S‖4∞ (‖d‖2 σ2

1 +mσ2
2)

ε2 ln(1/(1− δ))

)
(15)

copies of Ep, where σ1 and σ2 are the upper bounds of
variance of the measurement-outcome distribution of any
single-mode quadrature operator and any products of two
quadrature operators, respectively.

3.2 Verification of single-mode amplification
channels

We investigate a verification protocol for Gaussian am-
plification channels in terms of average fidelity

F̄g(E) =

∫
d2α

π
λe−λ|α|

2

〈gα| E(|α〉 〈α|) |gα〉 , (16)

where g > λ+1 is the amplification gain. The maximum
average fidelity in Eq. (16) can be achieved by a Gaussian
amplification channel using two-mode squeezing [6]. We
devise an average-fidelity witness in the following theo-
rem.

Theorem 6 The observable

λ+ 1

g2

(
1− g2 − λ− 1

g2
Sθ′1⊗ n̂S†θ′

)
(17)

is an average-fidelity witness for F̄g(E) on E ⊗
I (|κ〉 〈κ|TMSV).

Theorem 6 can also be obtained from Lemmas 4 and 5.
The expectation value of the average-fidelity witness

ωamp(Ep) := tr [WampEp ⊗ I (|κ〉 〈κ|TMSV)] (18)

is a linear combination of quadrature covariances (see
Eq. (97) in ref. ([31])). The mean value of the average-
fidelity witness can be estimated by sampling the covari-
ances of the quadrature operators using homodyne de-
tections. The measurement scheme is similar to the one
for verification of multi-mode Gaussian unitary channels.
This verification protocol requires

O

(
g6σ2

2

ε2 ln(1/(1− δ))

)
(19)

copies of Ep to obtain a reliable certificate.

4 Discussion and conclusion

We have presented a general verification framework for
an optimal quantum channel by unifying the favourable
features of quantum-state verification [3] and quantum-
process benchmarking [4]. To develop our quantum-
channel-verification framework, standard fidelity witness
for quantum states has been generalized to an aver-
age fidelity witness for quantum channels per Defini-
tion 2. Rather than sampling a set of input states, our
quantum-channel verification protocols require only one
certain entangled input state and local measurements of
an average-fidelity witness. Our verification protocols
satisfy both completeness and soundness conditions per
Definition 1, hence are reliable quantum-channel verifi-
cation schemes.

We have presented the applications of our framework
for the verification of two types of CPTP maps: multi-
mode Gaussian unitary channels and single-mode ampli-
fication channels. We devise average-fidelity witnesses
for these two types of quantum channels in Theorems 3
and Theorem 6, respectively, by truncating a thermal-
state density operator in Lemma 5. The sample com-
plexities scale polynomially with respect to number of
modes m, maximum squeezing ‖S‖∞, phase-space dis-
placement ‖d‖, and amplification gain g. Our measure-
ment procedure comprises only local homodyne detec-
tions and is much simpler than the related work [4], as
neither online two-mode squeezing nor quantum memo-
ries are required.

Different from quantum process tomography, our veri-
fication protocol’s benchmark is average fidelity over an
infinite set of gaussian-distributed coherent states. Our
experimental setting uses only two-mode squeezed vac-
uum states and homodyne detections, which are feasi-
ble using current technology. Owing to extensive us-
age of Gaussian unitary operations, like squeezing, in
continuous-variable quantum information processing and
the remarkable utilization of amplification channels in
quantum communication [5, 32], our verification proto-
cols are important for testing components in continuous-
variable quantum computing and quantum communica-
tion.

5 Acknowledgments

We thank Si-Hui Tan, Nana Liu and Yunlong Xiao for
their valuable discussions and acknowledge funding from
NSERC.

123



For the technical version of this work, please refer to
arXiv:1904.10682.

References

[1] J. B. Altepeter, D. Branning, E. Jeffrey, T. Wei,
P. G. Kwiat, R. T. Thew, J. L. O’Brien, M. A.
Nielsen, and A. G. White. Ancilla-assisted
quantum process tomography. Phys. Rev. Lett.,
90(19):193601, 2003.

[2] U. L. Andersen, J. S. Neergaard-Nielsen,
P. Van Loock, and A. Furusawa. Hybrid discrete-
and continuous-variable quantum information. Nat.
Phys., 11(9):713, 2015.

[3] L. Aolita, C. Gogolin, M. Kliesch, and J. Eisert. Re-
liable quantum certification of photonic state prepa-
rations. Nat. Commun., 6:8498, 2015.

[4] G. Bai and G. Chiribella. Test one to test many:
a unified approach to quantum benchmarks. Phys.
Rev. Lett., 120(15):150502, 2018.

[5] R. Blandino, A. Leverrier, M. Barbieri, J. Etesse,
P. Grangier, and R. Tualle-Brouri. Improving
the maximum transmission distance of continuous-
variable quantum key distribution using a noiseless
amplifier. Phys. Rev. A, 86:012327, Jul 2012.

[6] G. Chiribella and J. Xie. Optimal design and quan-
tum benchmarks for coherent state amplifiers. Phys.
Rev. Lett., 110(21):213602, 2013.

[7] I. L. Chuang and M. A. Nielsen. Prescription for ex-
perimental determination of the dynamics of a quan-
tum black box. J. Mod. Opt., 44(11-12):2455–2467,
1997.

[8] M. P. da Silva, O. Landon-Cardinal, and D. Poulin.
Practical characterization of quantum devices with-
out tomography. Phys. Rev. Lett., 107(21):210404,
2011.

[9] G. D’Ariano and P. L. Presti. Quantum tomography
for measuring experimentally the matrix elements of
an arbitrary quantum operation. Phys. Rev. Lett.,
86(19):4195, 2001.

[10] R. Farias and L. Aolita. Average channel-
fidelity witnesses for benchmarking continuous-
variable gates. arXiv:1812.01968, 2018.

[11] S. T. Flammia and Y.-K. Liu. Direct fidelity estima-
tion from few pauli measurements. Phys. Rev. Lett.,
106(23):230501, 2011.

[12] M. Gluza, M. Kliesch, J. Eisert, and L. Aolita. Fi-
delity witnesses for fermionic quantum simulations.
Phys. Rev. Lett., 120(19):190501, 2018.

[13] D. Hangleiter, M. Kliesch, M. Schwarz, and J. Eis-
ert. Direct certification of a class of quantum simu-
lations. Quant. Sci. Tech., 2(1):015004, 2017.

[14] N. Liu, T. F. Demarie, S.-H. Tan, L. Aolita,
and J. F. Fitzsimons. Client-friendly continuous-
variable blind and verifiable quantum computing.
arXiv:1806.09137, 2018.

[15] M. Lobino, D. Korystov, C. Kupchak, E. Figueroa,
B. C. Sanders, and A. Lvovsky. Complete char-
acterization of quantum-optical processes. Science,
322(5901):563–566, 2008.

[16] A. I. Lvovsky, B. C. Sanders, and W. Tittel. Optical
quantum memory. Nat. photonics, 3(12):706, 2009.

[17] E. Magesan, J. M. Gambetta, and J. Emerson. Scal-
able and robust randomized benchmarking of quan-
tum processes. Phys. Rev. Lett., 106(18):180504,
2011.

[18] E. Magesan, J. M. Gambetta, and J. Emerson. Char-
acterizing quantum gates via randomized bench-
marking. Phys. Rev. A, 85(4):042311, 2012.

[19] G. Masada, K. Miyata, A. Politi, T. Hashimoto,
J. L. O’Brien, and A. Furusawa. Continuous-variable
entanglement on a chip. Nat. Photonics, 9(5):316,
2015.

[20] Y. Miwa, J.-i. Yoshikawa, N. Iwata, M. Endo,
P. Marek, R. Filip, P. van Loock, and A. Furu-
sawa. Exploring a new regime for processing optical
qubits: squeezing and unsqueezing single photons.
Phys. Rev. Lett., 113(1):013601, 2014.

[21] J. L. O’Brien, G. Pryde, A. Gilchrist, D. James,
N. K. Langford, T. Ralph, and A. White. Quantum
process tomography of a controlled-not gate. Phys.
Rev. Lett., 93(8):080502, 2004.

[22] S. Pallister, N. Linden, and A. Montanaro. Optimal
verification of entangled states with local measure-
ments. Phys. Rev. Lett., 120(17):170502, 2018.

[23] J. Poyatos, J. I. Cirac, and P. Zoller. Complete char-
acterization of a quantum process: the two-bit quan-
tum gate. Phys. Rev. Lett., 78(2):390, 1997.

[24] T. Proctor, K. Rudinger, K. Young, M. Sarovar, and
R. Blume-Kohout. What randomized benchmarking
actually measures. Phys. Rev. Lett., 119(13):130502,
2017.

[25] S. Rahimi-Keshari, A. Scherer, A. Mann, A. T.
Rezakhani, A. Lvovsky, and B. C. Sanders. Quan-
tum process tomography with coherent states. New
J. Phys., 13(1):013006, 2011.

[26] E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater,
D. Oblak, F. Bussieres, M. George, R. Ricken,
W. Sohler, and W. Tittel. Broadband waveguide
quantum memory for entangled photons. Nature,
469(7331):512, 2011.

124

https://arxiv.org/pdf/1904.10682.pdf


[27] S. Takeda and A. Furusawa. Universal quantum
computing with measurement-induced continuous-
variable gate sequence in a loop-based architecture.
Phys. Rev. Lett., 119(12):120504, 2017.

[28] Y. Takeuchi, A. Mantri, T. Morimae, A. Mizutani,
and J. F. Fitzsimons. Resource-efficient verification
of quantum computing using serfling’s bound. Npj
Quantum Inf., 5(1):27, 2019.

[29] Y. Takeuchi and T. Morimae. Verification of many-
qubit states. Phys. Rev. X, 8(2):021060, 2018.

[30] J. J. Wallman and S. T. Flammia. Random-
ized benchmarking with confidence. New J. Phys.,
16(10):103032, 2014.

[31] Y.-D. Wu and B. C. Sanders. Efficient verifica-
tion of bosonic quantum channels via benchmarking.
arXiv:1904.10682, 2019.

[32] G.-Y. Xiang, T. Ralph, A. Lund, N. Walk, and
G. J. Pryde. Heralded noiseless linear amplification
and distillation of entanglement. Nature Photonics,
4(5):316, 2010.

[33] J.-i. Yoshikawa, T. Hayashi, T. Akiyama, N. Takei,
A. Huck, U. L. Andersen, and A. Furusawa.
Demonstration of deterministic and high fidelity
squeezing of quantum information. Phys. Rev. A,
76(6):060301, 2007.

[34] H. Zhu and M. Hayashi. Efficient verification of hy-
pergraph states. arXiv:1806.05565, 2018.

[35] Q. Zhuang, T. Schuster, B. Yoshida, and N. Y. Yao.
Scrambling and complexity in phase space. Phys.
Rev. A, 99:062334, 2019.

125



Resource theory of asymmetric distinguishability
Xin Wang1 Mark M. Wilde2

1 Joint Center for Quantum Information and Computer Science, University of Maryland, Maryland 20742, USA
2 Hearne Institute for Theoretical Physics, Department of Physics and Astronomy, Center for Computation and Technology,

Louisiana State University, Louisiana 70803, USA

Abstract. This paper systematically develops the resource theory of asymmetric distinguishability, as initiated
roughly a decade ago [K. Matsumoto, arXiv:1006.0302 (2010)]. The key constituents of this resource theory are
quantum boxes, consisting of a pair of quantum states, which can be manipulated for free by means of an arbitrary
quantum channel. We introduce bits of asymmetric distinguishability as the basic currency in this resource theory,
and we prove that it is a reversible resource theory in the asymptotic limit, with the quantum relative entropy being
the fundamental rate of resource interconversion. The distillable distinguishability is the optimal rate at which a
quantum box consisting of independent and identically distributed (i.i.d.) states can be converted to bits of asymmet-
ric distinguishability, and the distinguishability cost is the optimal rate for the reverse transformation. Both of these
quantities are equal to the quantum relative entropy. The exact one-shot distillable distinguishability is equal to the
Petz–Rényi relative entropy of order zero, and the exact one-shot distinguishability cost is equal to the max-relative
entropy. Generalizing these results, the approximate one-shot distillable distinguishability is equal to the hypothesis
testing relative entropy, and the approximate one-shot distinguishability cost is equal to the smooth max-relative
entropy. As a notable application of the former results, we prove that the optimal rate of asymptotic conversion
from a pair of i.i.d. quantum states to another pair of i.i.d. quantum states is fully characterized by the ratio of their
quantum relative entropies.

1 Introduction
Distinguishability plays a central role in all sciences. That

is, the ability to distinguish one possibility from another is
what allows us to discover new scientific laws and make pre-
dictions of future possibilities. In the process of scientific dis-
covery, we form a hypothesis based on conjecture, which is to
be tested against a conventional or null hypothesis by repeated
trials or experiments. With sufficient statistical evidence, one
can determine which hypothesis should be rejected in favor
of the other. If the null hypothesis is accepted, one can form
alternative hypotheses to test against the null hypothesis in fu-
ture experiments.

What is essential in this approach is the ability to perform
repeated trials. Repetition allows for increasing the distin-
guishability between the two hypotheses. A natural question
in this context is to determine how many trials are required to
reach a given conclusion. If the two different hypotheses are
relatively distinguishable, then fewer trials are required to de-
cide between the possibilities. In this sense, distinguishability
can be understood as a resource, because it limits the amount
of effort that we need to invest in order to make decisions.

One of the fundamental settings in which distinguishabil-
ity can be studied in a mathematically rigorous manner is
statistical hypothesis testing. The basic setup is that one
draws a sample x from one of two probability distributions
p ⌘ {p(x)}x2X or q ⌘ {q(x)}x2X , with common alphabet
X , with the goal being to decide from which distribution the
sample x has been drawn. Let p be the null hypothesis and q
the alternative. A Type I error occurs if one decides q when
the distribution being sampled from is in fact p, and a Type II
error occurs if one decides p when the distribution being sam-
pled from is in fact q. The goal of asymmetric hypothesis test-
ing is to minimize the probability of a Type II error, subject to

The detailed version is attached.

an upper bound constraint on the probability of committing a
Type I error.

In the scientific spirit of repeated experiments, we can mod-
ify the above scenario to allow for independent and identically
distributed (i.i.d.) samples from either the distribution p or
q. One of the fundamental results of asymptotic hypothesis
testing is that, with a sufficiently large number of samples, it
becomes possible to meet any upper bound constraint on the
Type I error probability while having the Type II error proba-
bility decaying exponentially fast with the number of samples,
with the optimal error exponent being given by the relative en-
tropy [1, 2]:

D(pkq) =
X

x2X
p(x) log2[p(x)/q(x)]. (1)

That is, there exists a sequence of schemes that can achieve
this error exponent for the Type II error probability while mak-
ing the Type I error probability arbitrary small in the limit of
a large number of samples. Meanwhile, the strong converse
property holds: any sequence of schemes that has a fixed con-
straint on the Type I error probability is such that its Type II
error probability cannot decay any faster than the exponent
D(pkq). This gives a fundamental operational meaning to the
relative entropy and represents one core link between hypoth-
esis testing and information theory [3], the latter being the
fundamental mathematical theory of communication [4].

Another perspective on the above process of decision mak-
ing in hypothesis testing, the resource-theoretic perspective
[5, 6] not commonly adopted in the literature on the topic, is
that it is a process by which we distill distinguishability from
the original distributions into a more standard form. That is,
we can think of the distributions p and q being presented as a
black box {p, q}. Given a sample x 2 X , we can perform a
common transformation T : X ! {0, 1} that outputs a single
bit, “0” to decide p and “1” to decide q. The common transfor-
mation T can even be stochastic. In this way, one transforms
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the initial box to a final box as

{p, q} T�! {pf , qf}, (2)

where pf ⌘ {pf (y)}y2{0,1} and qf ⌘ {qf (y)}y2{0,1} are
binary distributions. Then the probability of a Type I error is
pf (1), and the probability of a Type II error is qf (0). Since
the goal is to extract or distill as much distinguishability as
possible, we would like for qf (0) to be as small as possible
given a constraint " 2 [0, 1] on pf (1) (i.e., pf (1)  ").

Once we have adopted this resource-theoretic approach to
distinguishability, it is natural to consider two other questions,
the first of which is the question of the reverse process [5, 6].
That is, we would like to start from initial binary distributions
pi ⌘ {pi(y)}y2{0,1} and qi ⌘ {qi(y)}y2{0,1} having as little
distinguishability as possible, and act on their samples with a
common transformation R : {0, 1} ! X in order to produce
the distributions p ⌘ {p(x)}x2X and q ⌘ {q(x)}x2X , while
allowing for a slight error when reproducing p. That is, we
would like to perform the dilution transformation

{pi, qi} R�! {p̃, q}, (3)

where p̃ ⌘ {p̃(x)}x2X is a distribution satisfying d(p, p̃)  ",
for some suitable metric d of statistical distinguishability. In
this way, we characterize the distinguishability of p and q in
terms of the least distinguishable distributions pi and qi that
can be diluted to prepare or simulate p and q, respectively.
This dilution question is motivated by related questions in the
theory of quantum entanglement [7].

The second, more general question is regarding the exis-
tence of a common transformation T : X ! Z that con-
verts initial distributions p and q into final distributions r ⌘
{r(z)}z2Z and t ⌘ {t(z)}z2Z :

{p, q} T�! {r̃, t}, (4)

where r̃ ⌘ {r̃(z)}z2Z is a distribution satisfying d(r, r̃)  ".
One can then ask about the rate or efficiency at which it is
possible to convert a pair of i.i.d. distributions to another pair
of i.i.d. distributions.

This resource-theoretic approach to distinguishability of-
fers a unique and powerful perspective on statistical hypoth-
esis testing and distinguishability, similar to the perspective
brought about by the seminal work on the resource theory of
quantum entanglement [7], which has in turn inspired a flurry
of activity on resource theories in quantum information and
beyond [8]. Although the reverse process in (3) may seem
nonsensical at first glance (why would one want to dilute fresh
water to salt water? [9]), it plays a fundamental role in char-
acterizing distinguishability as a resource, as well as for ad-
dressing the general question posed in (4). It is also natural
from a thermodynamic or physical perspective to consider re-
versibility and cyclicity of processes. Another application for
the reverse process is in understanding the minimal resources
required for simulation in various quantum resource theories
[8].

2 Main results
The main goal of this work is to develop systematically

the resource-theoretic perspective on distinguishability, which

was initiated in [5, 6]. More precisely, the theory developed
here is a resource theory of asymmetric distinguishability,
given that approximation is allowed for the first distribution
in all of the distillation, dilution, and general transformation
tasks mentioned above. The theory that we develop applies
in the more general setting of quantum distinguishability, as
it did in [5, 6], in particular when the distributions p and q
are replaced by quantum states ⇢ and �, respectively, and the
common transformations allowed on a quantum box {⇢,�}
are quantum channels.

Resource theory of asymmetric distinguishability— We
begin by establishing the basics of the resource theory of
asymmetric distinguishability. The basic object to manipu-
late in the resource theory of asymmetric distinguishability is
the following “box”:

{⇢,�} , (5)

where ⇢ and � are quantum states acting on the same Hilbert
space. The interpretation of the box {⇢,�} is that it corre-
sponds to two different experiments or scenarios. In the first,
the state ⇢ is prepared, and in the second, the state � is pre-
pared. The box is handed to another party, who is not aware of
which experiment is being conducted. One basic manipulation
in this resource theory is to transform this box into another box
by means of any quantum physical operation N , as allowed
by quantum mechanics. Such physical operations are math-
ematically described by completely positive, trace-preserving
(CPTP) maps and are known as quantum channels. By acting
on the box {⇢,�} with the common quantum channel N , one
obtains the transformed box {N (⇢),N (�)}. Observe that it is
not necessary to know which experiment is being conducted in
order to perform this transformation; one can easily perform
it regardless of whether ⇢ or � was prepared. For this reason,
all quantum channels are allowed for free in this resource the-
ory, so that the transformation {⇢,�} N�! {N (⇢),N (�)} is
allowed for free.

We then introduce the fundamental unit or currency of this
resource theory, dubbed “bits of asymmetric distinguishabil-
ity. To be specific, we introduce the following basic unit of
currency or fiducial box

{|0ih0|,⇡} , (6)

where ⇡ := 1
2 (|0ih0|+ |1ih1|) is the maximally mixed qubit

state. This represents one bit of asymmetric distinguisha-
bility, while the box {|0ih0|⌦m,⇡⌦m} represents m bits of
asymmetric distinguishability, which is a more powerful re-
source. Then the distinguishability distillation and dilution
tasks amount to distilling bits of asymmetric distinguishabil-
ity from a box {⇢,�} and diluting bits of asymmetric distin-
guishability to a box {⇢,�}, respectively.

Exact one-shot distinguishability distillation and dilu-
tion—In the resource theory of asymmetric distinguishability,
the goal of exact distinguishability distillation is to process
a general box {⇢,�} with an arbitrary quantum channel in
order to distill as many bits of asymmetric distinguisha-
bility as possible. Mathematically, we can phrase this task
as the following optimization problem: D0

d
({⇢,�}) :=

log2 supP2CPTP {M : P(⇢) = |0ih0|, P(�) = ⇡M}, where
the choice of Dd in D0

d
({⇢,�}) stands for distillable distin-

guishability, the “0” in D0
d
({⇢,�}) indicates that we do not
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allow any error, CPTP denotes the set of CPTP maps (quan-
tum channels), and ⇡M := 1

M
|0ih0| +

�
1� 1

M

�
|1ih1|. On

the other hand, The goal of exact distinguishability dilution
is the opposite: process as few bits of asymmetric distin-
guishability as possible, using free operations, in order to
generate the box {⇢,�}. Mathematically, we can phrase this
task as the following optimization problem: D0

c
({⇢,�}) :=

log2 infP2CPTP {M : P(|0ih0|) = ⇢, P(⇡M ) = �}.
We formally define the exact one-shot distinguishability

distillation and dilution tasks, and we prove that the optimal
number of bits of asymmetric distinguishability that can be
distilled from a box {⇢,�} is equal to the Petz–Rényi relative
entropy of order zero [10, 11] ,

D0
d
({⇢,�}) = D0(⇢k�), (7)

while the optimal number of bits of asymmetric distinguisha-
bility that can be diluted to a box {⇢,�} is equal to the max-
relative entropy [11] ,

D0
c
({⇢,�}) = Dmax(⇢k�), (8)

giving both of these quantities fundamental operational inter-
pretations in the resource theory of asymmetric distinguisha-
bility. The operational interpretation of the Petz–Rényi rela-
tive entropy of order zero in the resource theory of asymmetric
distinguishability suggests that it should indeed be known as
the “min-relative entropy,” as it was originally dubbed in [11].

Approximate one-shot distinguishability distillation and
dilution—The goal of "-approximate distinguishability distil-
lation is to distill as many "-approximate bits of asymmetric
distinguishability from a given box {⇢,�}. Mathematically, it
corresponds to the following optimization " 2 [0, 1]:

D"

d
({⇢,�}) :=
log2 sup

P2CPTP
{M : P(⇢) ⇡" |0ih0|, P(�) = ⇡M}. (9)

Moreover, we can also generalize the distinguishability dilu-
tion task to the approximate case. In this case, we define the
"-approximate distinguishability cost of the box {⇢,�} to be
the least number of ideal bits of asymmetric distinguishability
that are needed to generate the box {⇢",�}, where ⇢" ⇡" ⇢.
This notion of approximate distinguishability cost is fully op-
erational and the precise definition of the "-approximate dis-
tinguishability cost of the box {⇢,�} is as follows:

D"

c
({⇢,�}) :=
log2 inf

P2CPTP
{M : P(|0ih0|) ⇡" ⇢, P(⇡M ) = �}. (10)

We prove that the optimal number of bits of asymmetric
distinguishability that can be distilled from a box {⇢,�} is
equal to the hypothesis testing relative entropy [12, 13]

D"

d
({⇢,�}) = D"

H
(⇢k�), (11)

where D"

H
(⇢k�) is the hypothesis testing relative entropy [12,

13]. Thus, the equality in (11) assigns to the hypothesis testing
relative entropy an operational meaning as the "-approximate
distillable distinguishability of the box {⇢,�}. This opera-
tional interpretation is directly linked to the role of D"

H
(⇢k�)

in quantum hypothesis testing [14, 15, 16, 17, 13, 18].

On the other hand, we show that the optimal number of bits
of asymmetric distinguishability that can be diluted to a box
{⇢,�} is equal to the smooth max-relative entropy [11]

D"

c
({⇢,�}) = D"

max(⇢k�), (12)

where D"

max(⇢k�) is the smooth max-relative entropy [11],
defined as D"

max(⇢k�) := infe⇢: 12ke⇢�⇢k1"
Dmax(e⇢k�). Thus,

the equality in (12) assigns to the smooth max-relative entropy
a fundamental operational meaning as the "-approximate dis-
tinguishability cost of the box {⇢,�}.

We further prove that the optimization problems corre-
sponding to one-shot distinguishability distillation and dilu-
tion, as well as the optimization corresponding to the quan-
tum generalization of the transformation problem considered
in (4), are characterized by semi-definite programs.

Asymptotic distillable distinguishability and distin-
guishability cost—We further reconsider the i.i.d. case of a
box {⇢⌦n,�⌦n} in the context of approximate distillation and
dilution. Notably, we prove that the resource theory is re-
versible in this setting, with the optimal rate of distillation or
dilution equal to the quantum relative entropy.

Recall that the quantum relative entropy D(⇢k�) is defined
as [19] D(⇢k�) := Tr[⇢ (log2 ⇢� log2 �)], if supp(⇢) ✓
supp(�) and D(⇢k�) = 1 otherwise. By defining the
asymptotic distillable distinguishability and asymptotic dis-
tinguishability cost of the box {⇢,�} as follows:

Dd({⇢,�}) := lim
"!0

lim
n!1

1

n
D"

d
({⇢⌦n,�⌦n}), (13)

Dc({⇢,�}) := lim
"!0

lim
n!1

1

n
D"

c
({⇢⌦n,�⌦n}), (14)

respectively, we conclude from the quantum Stein’s lemma
[14, 15] and the asymptotic equipartition property for the
smooth max-relative entropy [20] that

Dd({⇢,�}) = Dc({⇢,�}) = D(⇢k�), (15)

thus demonstrating the fundamental operational interpreta-
tion of the quantum relative entropy in the resource theory of
asymmetric distinguishability. As a consequence of the funda-
mental equality in (15), we conclude that the resource theory
of asymmetric distinguishability is reversible in the asymp-
totic setting.

The implication of this result is that the rate or efficiency
at which a pair of i.i.d. quantum states can be converted to
another pair of i.i.d. quantum states is fully characterized by
the ratio of their quantum relative entropies. Specifically, an
(n,m, ") box transformation protocol for the boxes {⇢,�} and
{⌧,!} consists of a channel N (n) such that N (n)(⇢⌦n) ⇡"

⌧⌦m and N (n)(�⌦n) = !⌦m. A rate R is achievable if for
all " 2 (0, 1], � > 0, and sufficiently large n, there exists an
(n, n[R��], ") box transformation protocol. The optimal box
transformation rate R({⇢,�} ! {⌧,!}) is then equal to the
supremum of all achievable rates.

We further prove that the following fundamental equality
for the resource theory of asymmetric distinguishability:

R({⇢,�} ! {⌧,!}) = D(⇢k�)
D(⌧k!) , (16)

indicating that the quantum relative entropy plays a central
role as the optimal conversion rate between boxes. We note
that the equality in (16) was established independently in [21].
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[14] Fumio Hiai and Dénes Petz. The proper formula for rela-
tive entropy and its asymptotics in quantum probability.
Communications in Mathematical Physics, 143(1):99–
114, December 1991.

[15] Tomohiro Ogawa and Hiroshi Nagaoka. Strong converse
and Stein’s lemma in quantum hypothesis testing. IEEE
Transactions on Information Theory, 46(7):2428–2433,
November 2000. arXiv:quant-ph/9906090.

[16] Masahito Hayashi. Hypothesis testing approach to quan-
tum information theory. In COE Symposium on Quan-
tum Information Theory, pages 15–16, Kyoto, Japan,
2003.

[17] Masahito Hayashi. Hypothesis testing approach to quan-
tum information theory. In 1st Asia-Pacific Conference
on Quantum Information Science, National Cheng Kung
University, Tainan, Taiwan, 2004.

[18] Masahito Hayashi. Role of hypothesis testing in
quantum information theory. In Asian Conference
on Quantum Information Science (AQIS 17), National
University of Singapore, Singapore, September 2017.
arXiv:1709.07701.

[19] Hisaharu Umegaki. Conditional expectations in an oper-
ator algebra IV (entropy and information). Kodai Math-
ematical Seminar Reports, 14(2):59–85, 1962.

[20] Marco Tomamichel, Roger Colbeck, and Renato Ren-
ner. A fully quantum asymptotic equipartition prop-
erty. IEEE Transactions on Information Theory,
55(12):5840–5847, December 2009. arXiv:0811.1221.

[21] Francesco Buscemi, David Sutter, and Marco
Tomamichel. Manuscript in preparation. May
2019.

129

https://sites.google.com/site/nww2011/home/talks-slides/matsumoto.pdf
https://sites.google.com/site/nww2011/home/talks-slides/matsumoto.pdf
https://sites.google.com/site/nww2011/home/talks-slides/matsumoto.pdf


Two-stage Estimation for Quantum Detector Tomography

Yuanlong Wang1 ∗ Shota Yokoyama2,4 † Daoyi Dong2 ‡ Ian R. Petersen3 §

Elanor H. Huntington3,4 ¶ Hidehiro Yonezawa2,4 ∥

1Centre for Quantum Dynamics, Griffith University, Brisbane QLD 4111, Australia
2 School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2600, Australia

3 Research School of Engineering, Australian National University, Canberra, ACT 2601, Australia
4Centre for Quantum Computation and Communication Technology, Australian Research Council, Canberra, ACT

2600, Australia

Abstract. Quantum detector tomography is a fundamental technique for calibrating quantum devices and
performing quantum engineering tasks. In this abstract, a novel quantum detector tomography method
is proposed. First, a series of different probe states are used to generate measurement data. Then,
using constrained linear regression estimation, a stage-1 estimation of the detector is obtained. Finally,
the positive semidefinite requirement is added to guarantee a physical stage-2 estimation. This Two-stage
Estimation (TSE) method has computational complexity O(nd2M), where n is the number of d-dimensional
detector matrices and M is the number of different probe states each with some copies. We establish an
upper bound for the tomography error. We perform simulation and a quantum optical experiment to
testify the effectiveness of the TSE method.

Keywords: Quantum system, quantum detector tomography, two-stage estimation, computational com-
plexity

1 Introduction

Measurement, on a quantum entity or using a quan-
tum object, is the connection between the classical (non-
quantum) world and the quantum domain, and plays a
fundamental role in investigating and controlling a quan-
tum system [1]-[3]. For example, quantum computation
can be performed through a series of appropriate mea-
surements in certain schemes [4]. In quantum communi-
cation, measurement is a vital part of quantum key distri-
bution [5]. In quantum metrology, adaptive measurement
can achieve the Heisenberg limit in phase estimation [6].
Since quantum measurement can be viewed as a class

of quantum resource, its investigation and characteriza-
tion is fundamentally important. Quantum detector to-
mography is a technique to characterize quantum mea-
surement devices [7]-[8], and paves the way for other es-
timation tasks like quantum state tomography [9]-[13],
Hamiltonian identification [14]-[17] and quantum process
tomography [18]-[20].
The investigation of protocols for quantum detector to-

mography dates back to [21], where the Maximum Like-
lihood Estimation (MLE) method is employed to recon-
struct an unknown POVM detector. As one of the most
widely recognized methods [9, 22], MLE can preserve the
positivity and completeness of the detector, but it is d-
ifficult to characterize the error and computational com-
plexity. In [23, 24], phase-insensitive (non-diagonal) de-
tector tomography was modelled as a convex quadratic
optimization problem and an efficient numerical solution
was obtained, and then was developed in [25] and [26] to
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†s.yokoyama@adfa.edu.au
‡daoyidong@gmail.com
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recursively solve it.
In this abstract, we propose a novel quantum detector

tomography protocol, which is applicable to both phase-
insensitive and general phase-sensitive detectors. We first
input a series of different states (probe states) to the de-
tector, and then collect all the measurement data. The
forthcoming algorithm mainly consists of two stages: in
the first stage, we find a constrained least square esti-
mate, which corresponds to a Hermitian estimate satisfy-
ing the completeness constraint. However, this estimate
can be non-physical; i.e., the estimated detectors may
have negative eigenvalues. Hence, in the second stage we
further design a series of matrix transformations preserv-
ing the Hermitian and completeness constraint to find a
physical approximation based on the result in the first
stage, and thus obtain the final physical estimate. Our
Two-stage Estimation (TSE) method has computation-
al complexity O(nd2M), where n and d are the number
and dimension of the detector matrices, respectively, and
we have M different probe states with N copies in to-

tal. We further prove an error upper bound O(d
5n2

N ) on
the condition that the probe states are optimal (if not
optimal, the specific form of the bound is also given in
[27]). This theoretical characterization of the speed and
teh error is not common in other detector tomography
methods. We perform numerical simulation to validate
the theoretical analysis and compare our algorithm with
MLE method. Finally, we slightly modify our method to
cater to a practical experiment situation, and we perfor-
m quantum optical experiments using two-mode coherent
states to testify the effectiveness of our method.
For the full version of this work, please refer to [27].
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2 Problem formulation

Suppose the true values of a set for a detector are
{Pi}ni=1 such that

∑n
i=1 Pi = I (completeness require-

ment) with each Pi being d-dimensional Hermitian and
positive semidefinite. We design M different quantum
states ρj (probe states, each with N/M copies) and
record the measurement results p̂ij as the estimate of
pij = Tr(Piρj). We then aim to solve the following opti-
mization problem:

Problem 1 Given experimental data {p̂ij}. Solve

min{P̂i}
∑n

i=1

∑M
j=1[p̂ij−Tr(P̂iρj)]

2 such that
∑n

i=1 P̂i =

I and P̂i ≥ 0 for 1 ≤ i ≤ n.

3 General procedure

We now generalize the procedure of our TSE algorithm
and analyze its computational complexity. We do not
consider the time spent on experiments, since it depends
on the experimental realization.
Step 1. Stage-1 Approximation. Choose cer-

tain matrix basis (e.g., Pauli matrices) to parameterize
{Pi}ni=1 as a real vector. Also parameterize each ρj as a
known real vector. Measurement thus establish a linear
mapping between measurement data and the unknown
detector vector. The completeness requirement is thus a
linear constraint on the unknown vector, and using con-
strained linear regression one can obtain a Constrained
Least Square (CLS) solution, which is then transformed
as the stage-1 approximation (CLS estimation) {Êi}ni=1.

At this stage, each Êi is Hermitian and they sum to i-
dentity, but they may not all be positive semidefinite.
Step 2. Difference Decomposition. For each Êi,

analytically solve min ||Ĝi|| (Frobenius norm) s.t. Êi =
F̂i− Ĝi, Ĝi ≥ 0 and F̂i ≥ 0. In fact, in the diagonal basis
the optimal −Ĝi is composed of the negative eigenvalues
of Êi, and F̂i the positive eigenvalues.
Step 3. Stage-2 Approximation. From I =∑
i Êi =

∑
i F̂i −

∑
i Ĝi, we have I +

∑
i Ĝi =

∑
i F̂i.

Since each Ĝi is positive semidefinite, we can decompose
I +

∑
i Ĝi = ĈÛ Û†Ĉ† where Û is any unitary. By mini-

mizing ||ĈÛ − I||, we choose Û =
√

Ĉ†ĈĈ−1. We finally
have

∑
i Û

†Ĉ−1F̂iĈ
−†Û = I. The final estimate of the

detector is thus P̂i = Û†Ĉ−1F̂iĈ
−†Û , which both are

positive semidefinite and sum to identity.
Each of the above steps has closed-form analytical for-

mula, hence the total computational complexity can be
analyzed as O(nd2M). We further theoretically charac-
terize the error as:

Theorem 1 When the probe states are optimal, the final
mean squared error (MSE) of our algorithm E(

∑
i ||P̂i −

Pi||2) scales as O(d
5n2

N ).

The “optimal” here means the probe states have enough
diversity. For its specific meanings and the non-optimal
version of Theorem 1, please refer to the full version [27].
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Figure 1: Comparison between our TSE algorithm with
MLE for different qubit number Nq (d = 2Nq ).
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Figure 2: Comparison between our algorithm with MLE
for different n number of matrices.

4 Optimization of the Coherent Probe S-
tates

The exact solutions of optimal photon-number states
are already presented in the full version of Theorem 1
[27]. However, in practice coherent states are more com-
monly used. Then how to optimize them, w.r.t. the final
estimation error? Since the detector to be estimated is
usually unknown in practice, the optimization among all
the possible probe states should be independent of the
specific detector. An advantage of our TSE method is
that an explicit error upper bound is presented (see [27]),
which does not involve the specific form of the detector.
In the full version we investigated the optimization of the
coherent probe states (about their types and amplitudes).

5 Numerical Results

We compare our TSE method with the Maximum Like-
lihood Estimation (MLE) method [9] via two simulation
examples. Note that the detector tomography method vi-
a MLE is in essence a numerical searching algorithm and
lacks a theoretical characterization of the computational
complexity. For each detector, we first run our algorithm,
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Figure 3: Experimental setup [28].

and then adjust the MLE method such that the averaged
estimation error of MLE is within [95%, 105%] of the er-
ror of our algorithm. In Fig. 1, we see that for Nq ≥ 4
qubits our algorithm can be faster than MLE by over 4
orders of magnitude. Fig. 2 is the case when n increases,
and we see the simulation performance of TSE matches
the computational complexity analysis w.r.t. T = O(n)
very well for n ≥ 28.

6 Experimental Results

Experimental setup and modified protocol: We
briefly explain the entire experimental setup (as in Fig.
3(a)), which determines the structure of the detector to
be estimated. More details about this setup can be found
in [28].
In Fig. 3, the purple dashed box corresponds to the

emulated quantum detector which works as two-mode
inputs - one binary output detector. Two independent
quantum modes are encoded within orthogonal polariza-
tion modes in one optical beam at the detector input.
The two-mode quantum detector consists of two super-
conducting nanowire detectors (SNSPDs), a polarization
beam splitter (PBS), a quarter wave plate (QWP), and
a logical OR gate. The polarization of the input beam
is first rotated by a QWP0 with the azimuth angle of
45◦ (Fig. 3(b)), or 30◦ (Fig. 3(c)), respectively. Then
the beam is split into two spatially separated beams via
PBS0, and they are injected into two SNSPDs through
optical fibers. The photon counting signals from the t-
wo SNSPDs are sent to a logical OR gate, and the final
detector output is obtained as on/off signal correspond-
ing to POVMs of P1 and P0 (P0 + P1 = I). Fig. 3(b)
and (c) are different specific settings to generate different
emulated detectors.
This experimental setup leads to a special class of de-
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Figure 4: Experimental and simulation results.

tectors. Specifically, we require them to be block diagonal
(e.g., see [28]):

Pi = L
(i)
1 ⊕ L

(i)
2 ⊕ ...⊕ L(i)

m , (1)

where m is the number of different blocks and L
(i)
j ≥ 0 is

dj × dj dimensional, with
∑m

j=1 dj = d. Hence, we need
to modify our original TSE method to reconstruct {Pi}.
The block-diagonal requirement can be transformed as

a second linear constraint, apart from the completeness
requirement. Hence, constrained least square still works.
Due to experiment imperfection, we add Tikhonov reg-
ularization [29] to the constrained linear regression es-
timation in Step 1 of TSE to reduce the estimation er-
ror. Then since the diagonal blocks of the detector are
in essence decoupled with each other, we perform Step

2 and Step 3 on each block L
(i)
j separately, to pull the

stage-1 estimation to positive semidefiniteness.

Experimental result: We prepare 19 different two-
mode coherent states

|α, βeiδ⟩ = exp[−1

2
(α2 + β2)]

∞∑
j,k

αjβkeikδ√
j!k!

|j, k⟩

to perform the tomography experiment. The detector is
6×6 dimensional, and the result is as in Fig. 4, where we
use the modified version TSE to reconstruct the detec-
tor from experimental data and also the simulated data
as a comparison. We can see the experiment matches
simulation result very well.

7 Conclusion

In this abstract, we have proposed a novel Two-
stage Estimation (TSE) quantum detector tomography
method. We analysed the computational complexity for
our algorithm and established an upper bound for the
estimation error. We discussed the optimization of the
coherent probe states, and presented simulation results
to illustrate the performance of our algorithm. Quan-
tum optical experiments were performed and the results
validated the effectiveness of our method.
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[18] J. Fiurášek and Z. Hradil, “Maximum-likelihood es-
timation of quantum processes,” Phys. Rev. A, vol.
63, no. 2, p. 020101, 2001.

[19] M. F. Sacchi, “Maximum-likelihood reconstruction
of completely positive maps,” Phys. Rev. A, vol. 63,
no. 5, p. 054104, 2001.

[20] Z. Ji, G. Wang, R. Duan, Y. Feng, and M. Ying,
“Parameter estimation of quantum channels,” IEEE
Trans. Inf. Theory, vol. 54, no. 11, pp. 5172-5185,
2008.
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From quantum coherence to nonclassicality and metrological power
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Abstract. We consider the resource theory of nonclassicality for quantum light. Under this resource
theory, we discuss two nonclassicality measures, one with a fundamental interpretation and another with an
operational interpretation. The first of these measures is the amount of quantum coherence or superposition
between the coherent states, thus relating nonclassicality in radiation fields to the superposition principle.
The second measure is called the metrological power, which quantifies how sensitive a quantum state is to
displacement operations. These examples demonstrate how the resource theory of nonclassicality can help
to refine our understanding of nonclassicality in quantum systems of light and in what ways they may be
useful.

Keywords: Coherence, Nonclassicality, Quantum Optics, Quantum Metrology

1 Introduction

One important aspect of the field of quantum infor-
mation concerns the study of nonclassical quantum re-
sources. Examples of quantum resources include notions
of nonclassicality such as entanglement[1] and quantum
coherence [2]. A quantum resource theory is a set of ax-
ioms and definitions which identifies a quantum resource
of particular interest, and specifies certain ground rules
that should reasonably be obeyed in order to qualify as
resource measure.

Here, we consider the resource theory of nonclassical-
ity based on the set of coherent states of light[3, 4](not
to be confused with the notion of coherence for finite di-
mensional systems). The set of coherent states is denoted
by {|α〉} and is a minimum uncertainty state which most
closely resembles classical light. Every quantum state of
light ρ permits a diagonal representation with respect to
the set of coherent states of the form

ρ̂ =

∫
d2αP (α) |α〉 〈α|.

The coefficient P (α) is called the Glauber-Sudarshan
P -distribution [3]. The P -distribution always sums to 1
but may display negativities for some quantum states.
A state is classical when it is expressible as a classical
mixture of coherent states, i.e. when P corresponds to
some classical probability distribution. Otherwise, we say
that P displays negativities and the state is nonclassical.

We first discuss how a resource theory of nonclassical
light may be formulated based on quantum linear opti-
cal operations. In such a resource theory, the nonclas-
sicality in quantum systems of light are quantified via
linear optical monotones — quantities that do not in-
crease under linear optical operations. We then discuss
2 examples of such monotones: (i) the amount of coher-
ent superposition among the set of coherent states, and
(ii) the metrological power. The former has a fundamen-
tal interpretation in terms of the superposition principle,

∗bbtankc@gmail.com

while the latter has operational significance in quantum
metrology.

2 Preliminaries

In this section, we will introduce some basic con-
cepts surrounding the resource theory of nonclassicality
in light, which was introduced in Ref. [4].

The essential idea is to quantify nonclassicality us-
ing linear optical monotones. Linear optical monotones
are quantities that always decreases under linear opti-
cal maps, which are defined as any quantum operation
expressible as some combination of displacement oper-
ations, beam splitters and phase shifters together with
possible interations with a classical ancilla. A formal
characterization is given below:

Define a general N -mode bosonic cre-
ation operator of the form â†µ =

∑N
n=1 µnâ

†
n

with complex values µn, and define µ =
(Re[µ1], Im[µ1],Re[µ2], Im[µ2], · · · ,Re[µN ], Im[µN ])T

to be a real 2N -dimensional unit vector satisfying
||µ||2 :=

∑N
n=1 |µn|2 = 1. A multi-mode linear optical

unitary operation is any ÛL which transforms â†µ
into â†µ′ +

⊕N
n=1 αn1n, while satisfying the condition

||µ||2 = ||µ′||2. Here, αn is a complex number and 1n is
the identity operator on the n-th mode.

Using the above definition of a linear optical unitary,
a linear optical map is defined as:

ΦL(ρ̂A) = TrE(ÛLρ̂A ⊗ σ̂EÛ†L),

where σ̂E is a classical state.
In the resource theory of nonclassicality, we say that

N is a nonclassicality measure if (i) N (ρ) > 0 implies ρ
is nonclassical, (ii) N (ρ) ≥ N [ΦL(ρ)], i.e. N is a linear
optical monotone, and (iii) N is a convex function of
state.

3 Coherence and nonclassicality

Here, we will discuss the connection between coherence
in finite dimensional systems[5, 6] and nonclassicality in
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quantum light. The presentation here will focus on pure
states, which is sufficient for the discussion at hand. A
more detailed discussion of the construction for mixed
states may be found in Ref. [4].

The key complications that prevent nonclassicality in
quantum light from being directly interpreted as coher-
ences are: (i) coherence measures C typically apply only
to finite dimensional systems, and (ii) coherence mea-
sures are defined with respect to a complete set of or-
thogonal set of basis vectors {|i〉} while nonclassicality
defined with respect to the set of coherent states {|α〉},
which is overcomplete and not orthogonal.

These difficulties may be overcome via an orthogonal-
ization procedure that is performed on the input state.
This procedure essentially draws from the set of coher-
ent states {|α〉} to set up an orthogonal basis. After the
orthogonalization procedure, one may then apply any co-
herence measure of choice on the resulting state.

We now describe the orthogonalization procedure with
respect to the coherent states in greater detail. We define
|ψi〉 through the recursion relation

|ψi〉 = |ψi−1〉 − |αi−1〉 〈αi−1|ψi−1〉,

where the coherent state |αi〉 satisfies 〈αi|ψi〉 =
maxα′〈α′|ψi〉 and the initial state |ψ1〉 = |ψ〉 is some
given pure quantum state of interest.

Given some finite series of vectors {|αi〉} where i =
1, . . . , N , we define the CNOT type unitary which per-
forms the map Ûαi |αi〉 |0〉 = |αi〉 |βi〉 where {|βi〉} is an
orthonormal set of vectors. From this, we construct a
unitary map of the form Û = ÛαN . . . Ûα1

which results
in the state Û |ψ〉 |0〉 =

∑
i c
′
i |α′i〉 |β′i〉. Notice that the

final state is written with respect to the now orthogonal
set {|α′i〉 |β′i〉}. The states |αi〉, are drawn from the set of
coherent states {|α〉}, so the coefficients c′i characterizes
the coherence amongst the coherent states present in |ψ〉.
Û |ψ〉 |0〉 may be called the orthogonalized state.

One may now apply any preferred coherence measure
C to the orthogonalized state. The resulting quantity
C(Û |ψ〉 |0〉) is referred to as the α-coherence [4]. It is
possible to show that the α-coherence is a linear optical
monotone, and therefore a nonclassicality measure under
the resource theory of nonclassicality.

In Figure 1, we use the relative entropy of coherence as
our coherence measure C[6], and compare the α-coherence
for cat states, Fock states, and vacuum squeezed states.
All these states are well known nonclassical optical states.
We see that as the amount of squeezing increases for the
squeezed state, the α-coherence increases. As the num-
ber of photons in the Fock state increases, so too does
the α-coherence. For the cat states, we see that the
α-coherence tends towards a steady value for increasing
α. Similar features appear in some other nonclassicality
indicators[7]. This supports the idea that α-coherence is
a valid quantifier of nonclassicality in quantum optical
systems.

α

(a) (b)

0.0

ξ

(c)

Figure 1: A comparison of α-coherence for some quan-
tum optical states. (a) Even(solid line) and odd(dotted
line) cat states |α〉 ± |−α〉, (b) Fock states |n〉, and (c)
squeezed vacuum states S(ξ) |0〉 are compared.

4 Metrological power as a nonclassicality
measure

While the α-coherence is a reasonable quantifier of non-
classicality and provides a bridge between coherence and
nonclassical light, it lacks a strong operational interpre-
tation in terms of a useful task. In this section we will
introduce the metrological power, and describe how it
may be used to construct nonclassicality monotones with
stronger operational interpretations.

The task we will be considering will be parameter es-
timation. For such tasks, the ultimate sensitivity of a
quantum state to small changes in the parameter is quan-
tified by the Quantum Fisher Information (QFI). With
respect to some Hermitian operator L̂ which generates
the unitary time evolution, the QFI is given by the fol-
lowing expression:

IF (ρ̂, L̂) = 2
∑
i,j

(λi − λj)2

λi + λj
|〈i|L̂ |j〉 |2,

where the eigenvalues and eigenstates of ρ̂ are given by
λi and |i〉, respectively.

We will consider the parameter estimation of θ for the
unitary dynamic generated by the collective quadrature

observable X̂µ =
N∑
n=1

(
µ∗nân + µnâ

†
n

)
/
√

2. Under this

unitary dynamic, an initial quantum state ρ̂0 evolves ac-
cording to

ρ̂θ,µ = e−iθX̂µ ρ̂0e
iθX̂µ .

In this case, the Fisher information can be simplified
and expressed in matrix form:

IF (ρ̂, X̂µ) = µTFµ,

where X̂(2n−1) = (ân + â†n)/
√

2 and X̂(2n) = (ân −
â†n)/(

√
2i) are the local canonical quadrature operators

for the nth mode. F is called the QFI matrix, which is
a real symmetric 2N × 2N matrix with elements

Fkl = 2
∑
i,j

(λi − λj)2

λi + λj
〈i|X̂(k) |j〉 〈j|X̂(l) |i〉 .

If we were to estimate the parameter θ by performing
measurements on the state ρ̂θ,µ, a tight bound for the
variance of the estimator (∆θ)2

µ is given by

(∆θ)2
µ ≥

1

IF (ρ̂0, X̂µ)
=

1

µTFµ
, (1)
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which is called the quantum Cramér Rao bound [8]. For
the purpose of parameter estimation, the goal is to maxi-
mize the Fisher information IF (ρ̂0, X̂µ), which essentially
quantifies the sensitivity of the state to a displacement
operation in the direction µ in phase space.

We now introduce the concept of metrological power.
Let us consider first some pure state |ψ〉. For every pure
state, we can consider the average Fisher information
over all possible quadrature directions:

Pmean(|ψ〉) :=
1

2

∫
S

d2Nµ

Vol(S)
IF (|ψ〉 , X̂µ), (2)

where d2Nµ = d2µ1d
2µ2 · · · d2µN and Vol(S) =∫

S d
2Nµ = 2πN/(N − 1)!. For pure states, the Fisher in-

formation is especially simple. It is just 4 times the vari-
ance of the observable X̂µ, i.e. IF (|ψ〉 , X̂µ) = 4(∆X̂µ)2.

Due to the uncertainty principle, when the input state
|ψ〉 is a coherent state, or a product of coherent states
(i.e. a multimode coherent state), then we are assured
that in any quadrature direction, IF (|ψ〉 , X̂µ) does not
exceed 2, which in turn implies that after we taking the
average Pmean(|ψ〉) will never exceed 1 if |ψ〉 is classical,
as coherent states are the only classical pure states. This
motivates us to consider

C(|ψ〉) := Pmean(|ψ〉)− 1 (3)

as a non-classality measure over pure states. To extend it
to mixed states, we take the common procedure of taking
the convex roof of C:

Q(ρ̂) := min
{pi,|ψi〉}

∑
i

piC(|ψi〉), (4)

where {pi, |ψi〉} is a pure state decomposition of ρ̂ sat-
isfying ρ̂ =

∑
i pi |ψi〉 〈ψi| with pi ≥ 0 and |ψi〉. It can

then be shown that Q(ρ̂) is also a linear optical monotone
and thus also belongs to the resource theory of nonclas-
sicality in Ref. [4]. The quantity Q is called the mean
metrological power. More details can be found in Ref. [9].

However, even though the quantity Q qualifies as a
nonclassicality measure, it is still non-ideal as it is diffi-
cult to compute for mixed states due to the convex roof
construction, and also because parameter estimation is
more concerned with the maximum Fisher information
rather than the average. Ultimately, this limits the use-
fulness of the measure Q.

In order to circumvent this, one may consider a slightly
weaker nonclassicality measure.

Let us consider the optimal Fisher information over all
possible quadrature directions µ instead. This results in
the closed form formula

Popt(ρ̂) :=
1

2
max
µ∈S

IF (ρ̂, X̂µ) =
λmax(F )

2
, (5)

where S = {µ|
∑N
n=1 |µn|2 = 1} and λmax(F ) is the max-

imum eigenvalue of F . Note that in this case, the quan-
tity has a simple closed form expression for a general
mixed state as well as pure states, which is already a
significant improvement in practicality compared to the

0 1 2 3 4
0

2

4

6

8

0 2 4 6
0

5

10

15

20

25 )b()a(

Figure 2: (a) Nonclassicality measure Q for a variety of
nonclassical pure states. (b) Metrological power M for
decohered cat states ρ̂Γ (solid lines) and squeezed thermal
states Ŝ(ξ)τ̂ Ŝ(ξ) (dashed lines).

mean metrological power Q. For our nonclassicality mea-
sure, we define the quantity

M(ρ̂) := Popt(ρ̂⊗ |0〉 〈0|)− 1

= max {Popt(ρ̂)− 1, 0} ,
(6)

where we have appended the vacuum state in the ex-
pression to ensure nonnegativity. It can then be verified
that M satisfies the require monotonicity condition and
is thus also a nonclassicality measure under the resource
theory. We call M the optimal metrological power. On
top of having a simple closed form expression for a general
mixed state, it also has a direct operational interpretation
as the maximum sensitivity of a state to a displacement
operation. In fact, this operational significance can be
greatly strengthened. It is known that when M(ρ̂) > 0,
there always exists some linear optical optical unitary
that allows it to beat a classical state in single parameter
phase estimation tasks. The caveat is that while Q is
able to detect all quantum states, and M can only de-
tect most nonclassical states. This is discussed further in
Ref. [9].

In Figure 2 we compare Q and M for various input
states, including important states such as NOON states,
Cat states and Squeezed states. In particular, as M is
computable even for mixed states, we are able to compare
the measures for the decohered cat states where ρ̂Γ =
NΓ
−1 [|α〉 〈α|+ |−α〉 〈−α|+ Γ(|α〉 〈−α|+ |−α〉 〈α|)], as

well as the squeezed thermal states Ŝ(ξ)τ̂ Ŝ(ξ) where τ̂
is a thermal state and ξ = 1.

5 CONCLUSION

We introduced the resource theory of nonclassicality,
which is based on linear optical maps and linear optical
monotones. We then show how the amount the coherent
superposition among the coherent states may be quanti-
fied and demonstrate that it is a nonclassicality measure
under this resource theory. This provides a fundamental
interpretation for the measure in terms of the superposi-
tion principle. We then construct another measure with a
useful operational interpretation called the metrological
power. The metrological power, which quantifies the sen-
sitivity of a quantum state to displacement operations,
may be used to construct nonclassicality measures with
stronger operational interpretations. The ideas here are
helpful for understanding the nature of nonclassicality in
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light fields and why they are useful for many quantum
processes.
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Abstract. To detect the presence of a stealth target, one may probe it with a single photon and analyze
the reflected signals. The e�ciency of such a conventional detection scheme can potentially be enhanced
by the method of quantum illumination, where entanglement is exploited to break the classical limits.
The question is, what is the optimal quantum state that allows us to achieve the detection limit with a
minimal error? Here we address this question in a discrete model, and derived a complete and general set
of analytic solutions for the whole parameter space. According to the minimal error for one-shot detection,
the parameter space can be classified into three distinct regions, in the form of “phase diagrams” for
both conventional and quantum illumination. Interestingly, whenever the reflectivity of the target is less
than some critical values, all received signals become useless, which is true even if entangled resources
are employed. However, there does exist a region where quantum illumination can provide advantages
over conventional illumination; there, the optimal signal state is an entangled state with an entanglement
spectrum inversely proportional to the spectrum of the environmental noise state and is, surprisingly,
independent of the occurrence probability and the reflectivity of the object. These results not only impose
physical limits in its application, but also analytically solved a class of channel discrimination problems.

Keywords: Quantum Illumination, Channel Discrimination, Analytic Solution.

Introduction— One of the most important tasks in
quantum information science is to understand how phys-
ical procedures related to information processing can be
improved by exploiting quantum resources such as en-
tanglement. Apart from the well-established applications
such as quantum computation, simulation, teleportation,
metrology, etc., the area of quantum illumination [1, 2] is
emerging as a promising and novel quantum method for
increasing the sensitivity or resolution of target detection
in a way that can go beyond the classical limits. The pri-
mary goal of quantum illumination is to detect the pres-
ence or absence of a target, with potentially a low reflec-
tivity and in a highly-noisy background, by sending out
an entangled signal and performing joint measurements.
More specifically, the setup of quantum illumination con-
sists of three parts: (i) a source emits a signal entangled
with an idler system kept by an receiver; (ii) if a target
exists, the receiver obtains the reflected part of the signal
in addition to the background noise; otherwise, only the
background noise can be received; (iii) the receiver per-
form a joint POVM measurement on the whole quantum
system and infer from it the presence of the target.
An intriguing feature of quantum illumination is that

it is highly robust against loss and decoherence; one can
still gain quantum advantages, even if the signal is ap-
plied to entanglement-breaking channels [3]. As an im-
portant application, one can apply quantum illumination
to secure quantum communication [4], where the sender
encode a 0-or-1 message by controlling the presence or ab-

⇤yung@sustech.edu.cn
†mengf@mail.sustech.edu.cn
‡zhaomingjingde@126.com

sence of an object and the receiver determine its presence
by illuminating entangled photons; in this way, an eaves-
dropper who does not have access to another half of the
entangled signal could virtually know nothing about the
message communicated [4]. An experimental implemen-
tation [5] of the protocol above suggested that quantum
illumination can provide a reduction up to five orders of
magnitude in the bit-rate error against an eavesdropper
attack.
Despite the progress achieved so far, quantum illumi-

nation lacks a foundational understanding on the ulti-
mate limit of the quantum advantage. The existed liter-
atures have not optimized the input signal for a better
performance. Instead, the input signals are fixed and
the problem is solved as an state discrimination prob-
lem. However, quantum illumination should be treated
as a problem of channel discrimination [6]; the existence
and absence of the object determines two di↵erent chan-
nels, whose inputs should be optimized such that their
outputs can be discriminated better.
Quantum channel discrimination is generally a very

hard computational problem where only a few analytic
solutions have been discovered. In fact, quantum chan-
nel discrimination is generally a very hard computational
problem [7]; it is complete for the quantum complexity
class QIP (problems solvable by a quantum interactive
proof system), which has been shown [8] to be equivalent
to the complexity class PSPACE (problems solvable by
classical computer with polynomial memory).
Here we show that, the problem of one-shot quantum

illumination, for any given parameter regime and for sig-
nals with any finite dimension, can be solved completely
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with a compact analytic solution. More specifically, our
main results include a derivation of an analytic expres-
sion for the minimized error probability for target detec-
tion in quantum illumination, where the minimization is
over all possible POVM measurements and for all pos-
sible finite-dimensional (entangled) probe states. Fur-
thermore, the optimal state we obtained depends only
on the spectral information of the environment signal; in
other words, the minimized error probability can always
be achieved without even knowing the reflectivity and
occurrence probability of the target.
On the other hand, researchers are trying to under-

stand the resources that attribute to the advantages of
quantum illumination, especially to explain its robust-
ness. Quantum discord, a measure of non-classical cor-
relation [9], was suggested [10, 11] to be the mecha-
nism behind its robust advantage. However, these re-
sults are only applicable to quantum illumination with
white noise. With our analytic solution for arbitrary
noise spectrum, their results can be examined. Unfor-
tunately, quantum discord cannot fully explain the per-
formance gap between quantum and conventional illu-
mination, when the noise is not completely mixed; one
can show that there exist situations where the quantum
discord of encoding defined in [10] is not equal to the
quantum advantage. This imposes an interesting open
problem of identifying the genuine mechanism behind the
quantum advantage, and perhaps a new resource other
than entanglement and discord can be found.
Model of one-shot quantum illumination— Our

major contribution is the optimization of the input sig-
nal state and derivation of the ultimate performance of
one-shot quantum illumination. As a first result stressing
signal state optimization, we start with the one-shot sce-
nario and restrict our analysis in single photon subspace
for simplicity, similar as the framework Lloyd’s used in
the first paper of quantum illumination [1]. Recasting
this optimization problem to channels for multiple pho-
tons such as those used in Tan et al [2], can lead to an
essential performance improvement.
Within the single photon subspace, it is reasonable to

assume that only finitely many modes can be resolved
by the detector. Using the frequency basis for this single
photon, we can assume that only d modes can be di↵er-
entiated by the detector. Therefore, the states of a single
photon can be described by a Hilbert space spanned by
basis {|✓ii}di=1, where ✓i’s are the frequencies that can
be recognized by the detector. Di↵erent from the chan-
nel used by Lloyd [1], here the vacuum state is omitted.
This is because the detector can wait until the first pho-
ton reaches in each run. Once one photon is detected,
the detector refreshes itself for the next round detection,
which makes sure that one and only one photon is de-
tected each time.
For conventional illumination, a single photon probe

state ⇢ is sent to detect the presence of a distant ob-
ject. If the object is absent, only environmental noise
can be detected. Existing literature simply approximate
the thermal noise by white noise, where the noise inten-
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Figure 1: Conventional and quantum illumination. (a)
In conventional illumination, a signal is sent to probe a
target without the use of entanglement. (b) In quantum
illumination, the signal is entangled, and a join POVM
measurement is performed at the end to reduce the de-
tection error. (c) The phase diagram for conventional
illumination and (d) same diagram for quantum illumi-
nation.

sity for any mode is the same. However, in general, the
noise has nontrivial spectrum, with di↵erent intensity �i

for di↵erent modes ✓i, which can be modeled by a den-
sity matrix ⇢E =

Pd
i=1 �i |✓ii h✓i|. For convenience of

analysis, we assume the noise spectrum �1 > �2... > �d

is decreasingly ordered. As shown later, this noise spec-
trum can be used to design optimal probing states and
improve the detection performance. (i) if the target is
absent, the probe signal ⇢ is completely lost; we can only
receive the noisy state from the environment, which can
be modeled by the following quantum channel,

E0(⇢) = ⇢E . (1)

(ii) if the target is present, with probability ⌘ the probe
photon is reflected, where ⌘ is its reflectivity. With prob-
ability 1�⌘ the probe photon is absorbed, and only back-
ground noise can reach the detector. This process can be
modeled by the following quantum channel:

E1(⇢) = ⌘⇢ + (1� ⌘)⇢E . (2)

Then the detector measures the returned photon, telling
us which state it is, and therefore the presence or ab-
sence of the object. To find the ultimate one-shot per-
formance, one has to optimize the signal as well as the
measurements, which makes it a channel discrimination
problem [12].
For quantum illumination, besides the probe signal A,

the agent also keeps an ancillary system B, which is en-
tangled with the former. When the probe signal is sent,
depending on the absence or presence of the target, it
will undergo the evolution described by either E0 and
E1, whereas the ancillary system B is kept unchanged.
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Therefore, the composite system of the signal and ancilla
is updated by the following quantum channel when the
target is absent,

(E0 ⌦ I)(⇢AB) = ⇢E ⌦ ⇢B , (3)

where ⇢B is the reduced density state of the joint state
⇢AB , and when it is present,

(E1 ⌦ I)(⇢AB) = ⌘⇢AB + (1� ⌘)⇢E ⌦ ⇢B . (4)

Similar to conventional illumination, one has to optimize
all possible signal-ancilla states and the joint measure-
ments to find its ultimate performance.
Conclusions— In this work, we presented complete

solutions to the problem of one-shot minimum-error dis-
crimination for both conventional and quantum illumi-
nations. We solved the optimization problem, and find
out that the optimal probing state for the conventional
illumination is |✓di, which is the photon precisely in the
mode with minimal noise intensity �i. For quantum illu-
mination, the optimal signal-ancilla state is an entangled
state whose entanglement spectrum is inversely proposi-
tional to the noise intensity. Interestingly, the optimal
probing states for both quantum and conventional illu-
mination are independent of the reflectivity and the a
prior probability of the target, but only depend on the
properties of the noise.
The performance in terms of minimal error when prob-

ing with optimal signal, is divided into three regions, as
shown in Fig.1. Region I are the same for both conven-
tional and quantum illumination; the minimal error is a
constant and does not depend on the reflectivity of the
target, with the optimal strategy being simple guess. Re-
gion II is similar and the reflected signal is useless, but
quantum illumination shrinks the boundary of region II.
For region III, quantum illumination can yield a lower
minimal error than conventional illumination.
Our results improves the performance of quantum illu-

mination. Recasting our idea of signal state optimization
to multiple photon domain [2] with arbitrary noise model
could yield an essential performance improvement. Our
result also provides a more general testbed for identifying
the underlying mechanisms that lead to the robustness
of quantum advantages.
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Figure 2: Behavior of conventional illumination in a
completely-mixed environment ⇢E = I/d. (a) Color plot
of the minimal-error P c

err as a function of the occurence
probability p0 and reflectivity ⌘ for two-dimensional sig-
nals d = 2. (b) the same plot for d = 10. Explicit
dependence of P c

err as a function of ⌘ are shown in (c)-
(f).
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Parity-time-symmetric quantum walks
Peng Xue

Abstract. The study of non-Hermitian systems with parity-time (PT) symmetry is a rapidly developing
frontier in recent years. Experimentally, PT-symmetric systems have been realized in classical optics
by balancing gain and loss, which holds great promise for novel optical devices and networks. Here we
report the first experimental realization of passive PT-symmetric quantum dynamics for single photons by
temporally alternating photon losses in the quantum walk (QW) interferometers. The ability to impose
PT symmetry allows us to realize and investigate Floquet topological phases driven by PT-symmetric
QWs. We observe topological edge states between regions with different bulk topological properties and
confirm the robustness of these edge states with respect to PT-symmetry-preserving perturbations and
PT-symmetry-breaking static disorder. Our results pave the way for realizing quantum mechanical PT-
synthetic devices and augur exciting possibilities for exploring topological properties of non-Hermitian
systems using discrete-time QWs.
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The Future of Computing in Silicon
Michelle Simmons

Abstract. Down-scaling has been the leading paradigm of the semiconductor industry since the invention
of the first transistor in 1947. However miniaturization will soon reach the ultimate limit, set by the
discreteness of matter, leading to intensified research in alternative approaches for creating logic devices.
This talk will discuss the development of a radical new technology for creating atomic-scale devices which
is opening a new frontier of research in electronics globally. We will introduce single atom transistors where
we can measure both the charge and spin of individual dopants with unique capabilities in controlling the
quantum world. To this end, we will discuss how we are now demonstrating atom by atom the best way
to build a quantum computer a new type of computer that exploits the laws of physics at very small
dimensions in order to provide an exponential speed up in computational processing power.
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All sets of incompatible measurements give an advantage in quantum state
discrimination

Paul Skrzypczyk1 ∗ Ivan Šupić2 † Daniel Cavalcanti3 ‡
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3ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona),
Spain

Abstract. Some quantum measurements can not be performed simultaneously, i.e. they are incompatible. Here we
show that every set of incompatible measurements provides an advantage over compatible ones in a suitably chosen
quantum state discrimination task. This is proven by showing that the Robustness of Incompatibility, a quantifier of
how much noise a set of measurements tolerates before becoming compatible, has an operational interpretation as the
advantage in an optimally chosen discrimination task. We also show that if we take a resource-theory perspective of
measurement incompatibility, then the guessing probability in discrimination tasks of this type forms a complete set
of monotones that completely characterize the partial order in the resource theory. Finally, we make use of previously
known relations between measurement incompatibility and Einstein-Podolsky-Rosen steering to also relate the later
with quantum state discrimination.

In quantum mechanics, observables described by non-
commuting operators satisfy an uncertainty relation, which
implies that we can not acquire precise information about
them simultaneously [1]. Commutation is well defined for
sharp (von Neumanm) measurements. However, a more re-
fined notion of measurement incompatibility is needed for
general measurements described by positive-operator-value-
measures (POVMs) [2]. This is captured by the idea of joint
measurability [17]. Suppose a set of measurements {Mx}x
labeled by x = 1, . . . ,m, each described by measurement
operators Ma|x (Ma|x ≥ 0,

∑
aMa|x = 1 ∀ a, x), where

a = 1, . . . , o labels each of the measurement outcomes. This
set is said to be jointly measurable (or compatible) if there
exists a ‘parent’ measurement G with measurement operators
Gλ, and conditional probability distributions p(a|x, λ), such
that

Ma|x =
∑
λ

p(a|x, λ)Gλ ∀ a, x. (1)

Otherwise the set is said to be incompatible. This defini-
tion can be interpreted as follows: if (1) holds, all measure-
ments Mx can be performed jointly, by the implementation of
the single measurement G and a probabilistic classical post-
processing defined by the weights p(a|x, λ).

Here we give an operational interpretation of measurement
incompatibility in terms of quantum state discrimination: we
show that a set of measurements is incompatible if and only
if they provide an advantage over compatible ones in a quan-
tum state discrimination (QSD) task with multiple ensembles
of states. Moreover, we also show that the advantage of an
optimally chosen QSD task is quantified exactly by the ro-
bustness of incompatibility of the set, a previously proposed
quantifier of measurement incompatibility [10]. This result
fits within a number of results recently obtained which have
linked robustness-based quantifiers with advantages in suit-
ably chosen discrimination games [19, 18, 21, 20, 16]
∗paul.skrzypczyk@bristol.ac.uk
†ivan.supic@unige.ch
‡daniel.cavalcanti@icfo.eu

We consider the following two-party QSD task [8]: Bob can
prepare different ensembles {Ey}y (y = 1, . . . , n) of quantum
states Ey = {ρb|y, q(b|y)}b, for b = 1, . . . , p. At each round of
the protocol, Bob chooses one of the ensembles y with proba-
bility q(y) and sends Alice his choice y, and the state prepared
ρb|y , which occurs with probability q(b|y). Upon receiving y
and ρb|y , Alice’s goal is to identify which state she was sent,
i.e. to correctly identify b.

We will consider playing this game in two different scenar-
ios. In the first scenario, Alice has access to a fixed set of
incompatible measurements {Mx}x in order to play. We con-
sider the most general probabilistic strategies assuming that
the only way Alice can interact with the system is through her
fixed measuring device. In particular, we allow any strategy
consisting of the following 1: After receiving the state and the
value of y, Alice makes use of a random variable µ to per-
form the measurement Mx, with probability p(x|y, µ). After
receiving outcome a she makes a guess of the value of b, ac-
cording to p(g|a, y, µ). Optimizing over all strategies, we can
quantify how well Alice does in this game by evaluating the
average probability of correctly identifying b, i.e.

Pg({Ey}, {Mx}) =

= max
S

∑
byaxgµ

q(b, y)p(µ)p(x|y, µ) tr[ρb|yMa|x]p(g|a, y, µ)δg,b

(2)

where the maximization is over strategies S =
{p(µ), p(x|y, µ), p(g|a, y, µ)}, and we have written
q(b, y) = q(y)q(b|y).

We will contrast this to a scenario where in any given run
of the game Alice can only perform a single measurement (al-

1Note that a more general class of strategies would allow for a pre-
processing of the state also, i.e. the application of an arbitrary quantum instru-
ment (collection of completely positive maps that sum to a trace-preserving
channel). Here we do not give Alice such capabilities, but demand that the
only Alice interact directly with the quantum system sent to her is through the
measuring device corresponding to the incompatible measurements
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though we will allow once again the possibility of using ran-
domness to mix over different fixed measurements in different
runs of the game). In particular, we consider measurements
Gν = {Ga|ν}a, and allow for the most general strategy using
any such measurements. Crucially now, since Alice can only
perform a single measurement, the side-information of y can
only be used to implement a classical post-processing of this
measurement. The net effect is equivalent to Alice only be-
ing able to perform a set of compatible measurements, those
achieved by the ‘parent’ measurements Gν . In this case the
success probability is given by

PC
g ({Ey}) = max

T

∑
byaνg

q(b, y)p(ν) tr[ρb|yGa|ν ]p(g|a, y, ν)δg,b

(3)
where the maximization is over all strategies T =
{p(ν),Gν , p(g|a, y, ν)}.

We are primarily interested in the advantage that is offered
by a set of incompatible measurements {Mx}x in any such
QSD game. In particular, we are interested in the biggest rel-
ative increase in guessing probability that can be obtained by
the set of measurements {Mx}x compared to having access to
only single measurements, among all possible ensembles, i.e.

max
{Ey}

Pg({Ey}, {Mx})
PC
g ({Ey})

(4)

As our main result we show that this quantity is completely
characterised by the Robustness of Incompatibility (RoI) of
the measurements IR({Mx}) as

1 + IR({Mx}) = max
{Ey}

Pg({Ey}, {Mx})
PC
g ({Ey})

. (5)

The Robustness of Incompability IR({Mx}) is defined as the
minimal amount of ‘noise’ that needs to be added to the set of
measurements {Mx}x before they become compatible [10].
Here, by ‘noise’, we mean that we mix the set of measure-
ments with another, arbitrary, set of measurements {Nx}x, (of
the same size, and with the same number of outcomes), in or-
der to make the mixture compatible. Formally,

IR({Mx}) = min r (6)

s.t.
Ma|x + rNa|x

1 + r
=

∑
λ

p(a|x, λ)Gλ

Na|x ≥ 0,
∑
a

Na|x = 1,

p(a|x, λ) ≥ 0,
∑
a

p(a|x, λ) = 1,

Gλ ≥ 0,
∑
λ

Gλ = 1

where the minimisation is over r, {Nx}x (where Nx =
{Na|x}a), G = {Gλ}λ and {p(a|x, λ)}a,x,λ, and all con-
straints are understood to hold for all values of a, x, or λ,
as appropriate.

The RoI has a number of desirable properties. It is (i) faith-
ful (IR({Mx}) = 0 if and only if the set of measurements
{Mx}x is incompatible); (ii) convex and (iii) non-increasing
under post-processing of the measurements. Due to (5), the

properties (i) – (iii) are also satisfied by the advantage (4).
In particular, due to (i), a set of measurements {Mx}x pro-
vides an advantage over compatible measurements if and only
if IR({Mx}) > 0.

Another interesting consequence of (5) is that it gives an
efficient way of computing the advantage (4). This is because
the RoI can be shown to be expressed explicitly as the follow-
ing semi-definite program (SDP):

1 + IR({Mx}) = min
s,{G̃a}

s

s.t.
∑
a

Da(a|x)G̃a ≥Ma|x
∑
a

G̃a = s1, G̃a ≥ 0

where a = a1a2 · · · an is a string, which can be throught of as
a list of ‘results’, one for each measurement,Da(a|x) = δa,ax
are deterministic probability distributions, whereby a = ax
with certainty, and G̃ = {G̃a}a is a super-normalised parent
POVM. The derivation of this SDP formulation can be found
in the appendix.

To summarise, the above shows that the RoI, which was
introduced as a purely geometrical quantifier of incompatibil-
ity, in fact has an operational interpretation as the advantage
that a set of measurements provides in an optimally chosen
QSD game. Moreover, since the RoI is faithful, every set of
incompatible measurements gives an advantage in at least one
QSD task, and thus this task captures the utility of incom-
patible measurements. Finally, considering a resource theory
of measurement incompatibility, one can show that the very
same game is intimately related to the simulability of one set
of measurements by another, providing (an infinite number of)
criteria – often referred to as monotons – that collectively con-
stitute necessary and sufficient conditions that must be met for
one set of measurements to simulate another. This is similar
to a number of other resource theories, where guessing prob-
abilities in all discrimination games of a given type have also
been shown to constitute complete criteria for transformations
amount objects in the theory [15, 14, 16].
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Every entangled state provides an advantage in classical communication
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Abstract. We investigate whether for any entangled state there exists a quantum channel the classical
capacity of which can be increased by providing the state as an additional resource. We show, for any
entangled state, the existence of a quantum memory channel whose feedback-assisted classical capacity can
be increased by using the state as a resource. Using a different channel construction, we also provide a
sufficient entropic condition for an advantage in classical communication and thus provide an example of
a state that is not distillable by means of one-way LOCC, but can provide an advantage in the classical
communication.

Keywords: Classical Communication over Quantum Channel, Entanglement Assistance, Bound Entan-
glement

This submission is based on [1]. Since the early days of
quantum information theory it is known that maximally
entangled states can increase the rate of classical com-
munication via a noiseless quantum channel using a fun-
damental protocol known as superdense coding [2]. One
direction of research is to go beyond noiseless channels
and study the classical communication capacity of gen-
eral quantum channels, while still requiring pure entan-
glement assistance. In this setting, a capacity theorem
has been derived [3]. Another direction is to consider
noiseless channels assisted by noisy entanglement. It has
been shown [4] that the advantage which a mixed state
ρAB can provide is determined by the maximal coher-
ent information available from ρAB by local operations
on Alice’s side. As the coherent information plays an
important role in determining the advantage which en-
tanglement can provide in dense coding, we believe it
will be instructive to review another operational mean-
ing of this quantity. It has been shown [5] that the coher-
ent information I(A〉B)ρ provides a lower bound on the
asymptotic rate at which ρAB can be distilled to max-
imal entanglement. Hence any state that is not one-
way distillable will not be of any use in classical com-
munication via a noiseless channel [4]. An example of a
one-way undistillable state is the two-qubit Werner state
q
3Psym + (1− q)Panti, with q ≥ 1/4. Going further, there
exists a huge class of states which cannot be distilled,
even if two-way communication is available. Such states
are known as bound entangled [6, 7]. The resource char-
acter of bound entangled states for various information
theoretic tasks is still an active field of research.

In the present paper we combine the two research di-
rections mentioned above. We investigate the scenario
in which both the quantum channel and the assisting
entanglement are noisy [8]. Apart from being the most

∗s.m.g.bauml@tudelft.nl
†andreas.winter@uab.cat
‡dyang@cjlu.edu.cn

realistic scenario experimentally, this doubly noisy sce-
nario also poses an interesting open question concerning
the resource character of states that are not one-way dis-
tillable, in particular bound entangled states. Namely,
we are interested if, for any entangled state, there exists
some quantum channel such that the state can provide
an advantage in classical communication via the quan-
tum channel. For states with positive coherent infor-
mation this question has already been answered above;
such states can yield an advantage in classical communi-
cation via the noiseless channel. However, for entangled
states with vanishing or negative coherent information, in
particular states which are only two-way distillable and
bound entangled states, it is not known whether such
channels exist. So, what we are looking for is a kind of
activation effect, where the noise in the quantum chan-
nel is of such kind that classical communication can be
improved by a given state which is noisy in a way that
makes it useless for the noiseless channel, and probably
most other channels. Let us also note that shared ran-
domness as well separable states, which can be simulated
by shared randomness cannot provide an advantage in
classical communication [9].

In a first approach, we consider channels with finite
memory, and communication schemes that allow for feed-
back after each channel use. We show that for each en-
tangled state ρ, there exists a memory channel T d such
that its ρ-assisted feedback capacity, restricted to prod-
uct encodings, is strictly larger than the unassisted feed-
back product capacity. Here we also assume that Alice
does not store the feedback for future channel uses. The
memory channel is of the form T d : A⊗ I → I ⊗B, with

T d(σA ⊗ |i〉〈i|I) =

{
|i〉〈i|I ⊗mi(σ)B even rounds
1
2 idI ⊗ ndi (σ)B odd rounds.

(1)

The bit value i of I is initially in random value, which
neither Alice nor Bob now. During each channel use, i
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determines which of a pair of two channels m0,1 (in odd
rounds) or nd0,1 (in even rounds) is used. Thus the two
channels become correlated. After each even round, I is
randomized again. As channels nd0,1, which are used in
even rounds, we choose qc-channels that are defined by

ndi (σ) =
d∑
k=1

|k〉〈v(i)k |σ|v
(i)
k 〉〈k|, (2)

where d ∈ N and Bi = {|v(i)k 〉} are mutually unbiased
bases (MUBs). If a message is encoded in basis Bi, chan-
nel ndi can achieve a rate of log d. If, on the other hand,
the encoding is in basis Bi⊕1, the message will be com-
pletely depolarized by ndi . If presented with a random
mixture of nd0,1, Alice will a priori not know which of the
MUBs to encode her message in. If feedback is allowed,
however, the structure of (1) allows Alice and Bob to per-
form the following protocol: In every odd round, Alice
sends some state that helps Bob to distinguish between
channels m0,1. The result (j) is then sent back to Alice,
who, in the following even round, applies a unitary oper-
ation modifying the encoding. Intuitively, the achievable
rate of communication of this protocol greatly depends
the ability to distinguish channels m0 and m1, which is
where the entanglement assistance comes in. Our main
idea is to make use of the fact that any entangled state
can provide an advantage in channel discrimination [10].
By choosing d large enough compared to the output di-
mension of the mi, we can achieve a locking effect, where
even the smallest advantage a weakly entangled state can
provide in channel discrimination can be amplified.

The second approach we present in this paper is set in
the usual framework of many independent channel uses
and without feedback. Our main result in this section is
an entropic condition on a given state ρAB and a given
channel M : A→ C, which is sufficient for the existence
of another channel N : AD → C, the Holevo capacity
of which can be increased by using ρAB . Namely, we
require S(C|B)ω < Smin(M) (∗), where ωCB = M ⊗
id (ρAB) and Smin denotes the minimum output entropy.
The channel N is constructed from M in a way which
was introduced in [11] in order to show equivalence of
additivity between the minimum output entropy and the
Holevo capacity. If M is entanglement-breaking, so will
be N , hence the Holevo quantity will equal the capacity.
Using (∗) and the transpose depolarising channel [12] as
M , we can show that the two-qubit Werner state can
provide an advantage in the capacity for q ≤ 0.345, i.e.
for values where it is not one-way distillable, hence useless
for dense coding [4]. As only entangled states can provide
an advantage in the Holevo capacity, the condition (∗)
with a suitable choice of M can also serve as an entropic
entanglement witness for the state ρAB .
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The Heisenberg limit for laser coherence
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Abstract. To quantify quantum optical coherence requires both the particle- and wave-natures of light.
For an ideal laser, it can be thought of as the number of photons emitted into the beam with the same
phase. This number, C, for an ideal laser was thought to be on the order of the square of the photon number
in the laser itself, O(µ2). Here, assuming nothing about the laser operation, only some assumptions on the
ideality of the laser, we find the ultimate (Heisenberg) limit: C = O(µ4). Moreover, as a first, we employ
a state-of-the-art quantum-information-theory tool, the matrix product states, to find a laser model that
achieves this scaling.

Keywords: Laser Coherence, Quantum Optics, Matrix Product States

1 Introduction

Quantum theory underpins much modern technolog-
ical development, and sets the ultimate limits to the
performance of devices — the best conceivable perfor-
mance towards which scientists and engineers can work
under the constraint of a given resource (such as energy
or power). In this context, a quantum enhancement ex-
ists when the ultimate limit, also known as a Heisen-
berg limit, scales better in terms of the resource than the
standard quantum limit (SQL) [1]. The latter is also de-
rived employing quantum theory, but using a set of ‘stan-
dard’ assumptions on how the device must work. The
quadratic quantum enhancement found in static phase
estimation [2, 3] is well known, and there are many other
metrological examples [1, 4]. Here, by contrast, we prove
that there can be a quadratic quantum enhancement in
the production of a physical property of great importance
for both classical and quantum technology: optical coher-
ence.

A laser beam epitomises optical coherence in all its as-
pects, including a long coherence time. This time can
be converted to a dimensionless measure of coherence,
C, by multiplying by N , the number of photons emitted
per unit time. This gives, loosely speaking, the number
of photons emitted consecutively that are mutually co-
herent. The quantum limit to the coherence time was
famously studied by Schawlow and Townes over 60 years
ago [5]. However, even more rigorous subsequent work [6]
made assumptions not entailed by fundamental require-
ments such as local conservation of energy. In the 21st
century, our ability to engineer and control quantum sys-
tems [7, 8] has changed our conception of what is prac-
tical. At the same time, our understanding of quantum
processes has been deepened through theoretical and nu-
merical quantum-information-theory techniques such as
operational super-selection rules (SSRs) [9, 10], and ma-
trix product states (MPSs) [11, 12, 13]. Hence it is plau-
sible that the Schawlow–Townes limit, Cideal

SQL = O(µ2),
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to laser coherence is only a SQL, and that a Heisenberg
limit can be proven to lie beyond it.

The central result of this paper is that the true ultimate
limit, the Heisenberg limit, for a laser beam having prop-
erties akin to those of the ideal models, is Cideal

HL = Θ(µ4).
This quadratic improvement implies vastly better per-
formance in the limit µ � 1 which characterises most
lasers. We prove the existence of a quadratic quantum
enhancement in laser coherence creation by the following
steps. First, we state our conditions on the laser and
its beam. Second, we show analytically from these the
upper bound of C = O(µ4). Third, guided by our tensor-
network description of such an ideal laser, we introduce a
µ-parametrized family of laser models and show numeri-
cally that C = Θ(µ4). Fourth, we relay on some theoret-
ical and numerical results to show that all conditions are
satisfied in our tensor-network model. We conclude with
a discussion of open questions.

2 Conditions defining an ideal laser

We formally consider the following conditions as defin-
ing an ideal laser assumptions, which are sufficient for
deriving the Heisenberg limit to the coherence.

1. One-dimensional beam. The beam propagates
away from the laser in a particular direction, at a con-
stant speed, and has a single transverse mode and a sin-
gle polarisation. Mathematically, at any time T ∈ R,
the beam is describable by a one-parameter quantum
field b̂(t), satisfying [b̂(t), b̂†(s)] = δ(t − s), defined for

t ∈ (−∞, T ], such that b̂(t) is independent of T . The

argument of b̂(t) is the time at which that infinitesimal

part of the beam was created by the laser, and b̂†(t)b̂(t)
is the operator for photon flux (photons per unit time).

2. Autochthonous phase. The coherence of the
beam proceeds only from the laser. That is, a phase shift
imposed on the laser state at some time T will lead, in
the future, to the same phase shift on the beam emitted
after time T as well as on the laser state. The phase shift
at time T on the laser (which may have been prepared by
measurement on the beam generated prior to T ) is de-
scribed by the unitary transformation Ûζ = exp(−iζn̂c).
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The effect of this, at any time T ′ > T , on the state of
the cavity plus the beam segment generated in the in-
terval (T, T ′], is described by the unitary transformation

Û ′ζ = exp(−iζ(n̂c + n̂′b)), where n̂′b =
∫ T ′
T
b̂†(s)b̂(s)ds is

the photon number operator for the generated beam seg-
ment.

3. Stationarity. The statistics of the laser and beam
are invariant under time translation, in the long-time
limit. In particular, the mean of n̂c has a unique long-
time limit, µ.

4. Ideal Glauber(1),(2)-coherence. The sta-
tionary beam is close to an ideal laser beam [14,

15, 16, 6] — an eigenstate of b̂(t) of eigenvalue

β(t) =
√
N ei

√
`W (t), with W (t) a Weiner process [16]

— in the sense that the beam’s first- and second-
order Glauber coherence functions [17] well approximate
those of the ideal beam. The first- and second-order
Glauber coherence functions are defined as G(1)(s, t) =

〈b̂†(s)b̂(t)〉 , G(2)(s, s′, t′, t) = 〈b̂†(s)b̂†(s′)b̂(t′)b̂(t)〉. G(1)

yields the photon flux N = G(1)(t, t), and the coherence
C = maxω |

∫∞
−∞G(1)(s, t)e−iωsds|. The requirement on

G(1) in this Condition is that the laser power spectrum
is Lorentzian (or close to it) with linewidth ` ≡ 4N/C,
while the requirement on G(2) implies that the photon
statistics are Poissonian (or close to it).

3 Analytical derivation

Here, we only sketch the analytical proof of that the
above Conditions lead to the upper bound C = O(µ4).
Consider a heterodyne measurement [18] of the laser
beam in the interval [t − τ, t), where τ =

√
3/(2N `)

(this value is chosen to give the tightest bound, below).
From the result, the observer can form an estimate, φF,
of the phase of the laser beam at that time. Consider
two methods by which a second, newly arrived, observer
can estimate φF. The first method is by heterodyne mea-
surement of the laser beam in the interval (t, t+τ ]. From
Condition 4 we can show that the mean square error
(MSE) for this estimate can attain 4

√
8/(3C). The sec-

ond method is by direct measurement on the laser cavity
at time t. Now, Condition 2 ensures that information
about φF can only be encoded in that quantity conju-
gate to n̂c, which has mean µ from Condition 3. Using
a result from Ref. [19], the MSE of any such estimate is
bounded below by k/µ2, where k ≈ 1.8936. Condition
2 also implies that the first method accesses only that
phase information stored in the cavity at time t. Thus
the MSE from the first method cannot be smaller than
that of the second, which cannot be smaller than k/µ2.
Hence,

Cideal . 11.90µ4. (1)

4 The tensor network description

MPS methods are widely used in quantum informa-
tion theory and condensed matter physics [13, 20], and
have had some applications in quantum optics [21, 22],
but have never been used to describe a laser beam, to
the best of our knowledge. In particular, while Ref. [21]
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Figure 1: Conceptual diagram of our iMPS laser model
containing five elements: the cavity (c), a pump, a vac-
uum input, the beam output (b), and a sink (s), all of
which are essential for laser operation. We consider the
sink and beam as a joint four-level system. The time evo-
lution of the cavity (c) is governed by the generative inter-

action V̂q =
∑
jq+1,m,n

A
[jq+1]
mn |jq+1〉o|m〉c〈n|, which maps

a D-dimensional vector space into a 4 × D-dimensional
one.

points out that a cavity quantum-electrodynamics sys-
tem can be generally emulated using such a sequential
process, the authors were not concerned with describing
coherence generation (in the sense defined above) by a
laser. Rather, they assumed external sources of coher-
ence, i.e. lasers, driving their cavity QED system.

Fig. 1 illustrates our MPS description of an ideal laser
system. As pictured in the figure, we are interested in the
one-site unit-cell infinite MPS (iMPS) that V̂ eventually
creates for arbitrary consecutive times q0δt and (q0 +
1)δ, where δt is an arbitrarily small time (connecting the
discretized system to the continuum model). In terms of
the A operators used above, the iMPS is given by

|ΨiMPS〉=
∑

...,jq0 ,jq0−1,...

〈Φ(q=+∞)|c · · ·A
[jq0 ]

(q0)

×A[jq0−1]

(q0−1) · · · |Φ(q=−∞)〉c|..., jq0 , jq0−1, ...〉o , (2)

where |Φ(q)〉c denotes the state of the cavity at integer
time q. We suppose in the last step, q = +∞, the cav-
ity decouples from the output. Since there exists trans-
lational invariance in the outputs, we now drop the (q)-
subscripts. The iMPS in Eq. (2) is fully equivalent to the
tensor-network algorithm introduced in Ref. [23] when it
reaches its fixed-point for the familiar reduced density
matrix of the laser cavity, ρss, i.e.

∑
j Â

[j]ρssÂ[j]† = ρss.
(Note also that the orthogonality of A-matrices are fixed
due to the nature of the isometry and are heavily sparse
due to photon number conservation.)
A-matrices relate to the laser’s one-photon gain oper-

ator as Ĝ = A[0]/
√
N δt and to one-photon loss operator

as L̂ = A[3]/
√
N δt. To obtain the ultimate limit to co-

herence, we do not assume linear damping (Ln ∝
√
n).

Rather, guided by iMPS optimization of C, we define our
family of models by the choices

ρn ∝ sin4

(
π
n+ 1

D + 1

)
, Gn = 1 , Ln ∈ R+, (3)

for which µ (Condition 3) equals (D− 1)/2 and N (Con-
dition 4) equals 1 (which simply sets a convenient time
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Figure 2: iMPS calculations (squares) of the beam co-
herence C for our laser model as a function of dimension
D = 2µ + 1. The line is a fit C ∝ D4. Inset: numeri-
cal calculation of first-order Glauber coherence function
G(1)(s, 0), which is indistinguishable from the ideal ex-
ponential decay (solid line).

unit). For our model, the coherence can be evaluated as
C =

∫∞
−∞G(1)(s, t)ds = 2Tr[L̂†L−1+ (L̂ρss)], where L−1+ is

the inverse of L on its row space. We evaluate this for
the above family of models, with D up to 1000. The data
fit a power law C ∼ 0.0619(8)µ4, as shown in Fig. 2.

We can show analytically that our model exactly sat-
isfies Conditions 1–3, and we also showed numerically
(not presented here) that Condition 4 is satisfied by our
model for µ� 1. Hence it shows that the scaling of the
upper bound in our theorem is achievable, albeit with a
far smaller coefficient than that in Eq. (1).

5 Conclusion

The Schawlow–Townes limit to laser coherence C (the
number of mutually coherent photons emitted in the
beam) is only a standard quantum limit. Beyond it lies
a Heisenberg limit which scales quadratically better in
terms of µ (the number of excitations in the laser it-
self). For µ large this represents a vast improvement in
laser coherence properties. We constructed a model that
achieves this quantum enhancement in scaling, while re-
taining the same first- and second-order coherence prop-
erties as an ideal laser beam (a constant-intensity coher-
ent state with a diffusing phase). It is the assumption of
these coherence properties that allowed us to prove the
Heisenberg limit Cideal

HL = O(µ4). It is thus natural to ask
whether relaxing this assumption would enable an even
higher scaling to be achieved. Preliminary results sug-
gest that this is indeed the case. However, this remains
to be investigated, along with many other fundamental
and practical issues.
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Abstract. Quantum repeaters are indispensable for the quantum internet over the globe. The quantum
repeaters had been believed to require matter-based quantum memories or qubits. Recently, this belief was
disproved by a proposal of all-photonic quantum repeaters with no use of matter quantum memories and
matter qubits. In this work, we demonstrated a proof-of-principle experiment of all-photonic time-reversed
adaptive (TRA) Bell measurement for a key component of the all-photonic quantum repeaters.
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Quantum internet [2]—which is internet with an ability
to transmit not only classical information but also quan-
tum information—enables us to accomplish a variety of
applications, such as quantum teleportation [3], quan-
tum key distribution (QKD) [4, 5] and precise atomic
clock synchronization [6], among arbitrary parties all over
the world. For this, it is reasonable to utilize not only
satellites [7, 8, 9] but also optical fiber networks that
have been already installed in the world. An impor-
tant building block for such a quantum internet against
loss of photons in optical fibers is to utilize quantum re-
peaters [10, 11] over an optical fiber network. The quan-
tum repeaters had been believed to require matter-based
quantum systems for quantum memories or qubits. How-
ever, a theoretical proposal disproved this belief by show-
ing all-photonic quantum repeaters with the use of no
matter quantum memories and matter qubits[12]. Due
to its all-optical nature, this scheme has several advan-
tages compared to conventional quantum repeaters with
matter quantum memories. For example, (1) the repeti-
tion rate could be as high as one wants, (2) the scheme
could work at room temperature without cooling sys-
tems, and (3) the scheme does not need quantum in-
terfaces for wavelength conversion of photons.
In this work [1], we demonstrated all-photonic time-

reversed adaptive (TRA) Bell measurement as a proof-
of-principle experiment for a key component of the all-
photonic quantum repeaters. In the previous propos-
als [12, 13], a lot of single photons are required for
implementing the TRA Bell measurement, but our ex-

∗ikuta@mp.es.osaka-u.ac.jp

perimental design dramatically reduces the number of
the photons for an initial state for the TRA Bell mea-
surement. In addition, it does not require large-scale
optical switches and quantum nondemolition measure-
ment [13], let alone quantum error correcting codes. The
TRA Bell measurement is based on the concept of the
‘time-reversal’ in the proposal of all-photonic quantum
repeaters and combination of a local delayed preparation
of the Greenberger-Horne-Zeilinger (GHZ) state with uti-
lization of the type-II fusion gate [14]. The conceptual
experimental setup is shown in Fig. 1. The three-photon
GHZ state in modes 1, 2 and 3 is initially prepared. The
situation in the figure is that photons in modes A and
B, which may be entangled with a distant node, are sent
to the TRA Bell measurement system, and only the pho-
ton in mode A survives. Photon detection of the fusion
gate for photon 1 disentangles the photon from the GHZ
state, and the fusion gate for photon A and 2 teleports
the quantum state of photon A to photon 3. If only the
photon B reaches and photon A is lost, photon 2 is dis-
entangled from the GHZ state and the quantum state
of photon 1 is teleported to photon 3. An important
feature is that the switch between connecting and disen-
tangling is performed passively. We clearly observed that
the quantum state of the survived single photon was tele-
ported faithfully with no disturbance from the other lost
photons. If the GHZ state is treated in a lossless man-
ner, our TRA Bell measurement system could double the
achievable distance of the QKD in principle. This means
that it could have the same impact as the all-photonic
intercity QKD [13].

152



failure

success

A

B 1

2

3

=

PBS HWP single photon detector

GHZ state

Figure 1: Our experimental setup of the all-photonic time-reversed adaptive Bell measurement for polarizing photons.
The type-II fusion gate is composed of polarizing beamsplitters (PBSs), half-wave plate (HWP) and single photon
detectors.
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Abstract. Topology in quench dynamics gives rise to intriguing dynamic topological phenomena, which
are intimately connected to the topology of static Hamiltonians yet challenging to probe experimen-
tally. Here we theoretically characterize and experimentally detect momentum-time skyrmions in parity-
time (PT )-symmetric non-unitary quench dynamics in single-photon discrete-time quantum walks. The
emergent skyrmion structures are protected by dynamic Chern numbers defined for the emergent two-
dimensional momentum-time submanifolds, and are revealed through our experimental scheme enabling
the construction of time-dependent non-Hermitian density matrices via direct measurements in position
space. Our work experimentally reveals the interplay of PT symmetry and quench dynamics in inducing
emergent topological structures, and highlights the application of discrete-time quantum walks for the
study of dynamic topological phenomena.

Keywords: photonic quantum walk, parity-time-symmetric, skyrmions, quantum quench

1 Introduction

Topological phases feature a wealth of fascinating
properties governed by the geometry of their ground-
state wave functions at equilibrium, but topological phe-
nomena also manifest as non-equilibrium quantum dy-
namics in driven-dissipative and Floquet systems, as well
as in quench processes. Here we experimentally establish
discrete-time photonic quantum walks (QWs) as one of
the promising arena for engineering and detecting dy-
namic topological phenomena, among which, single pho-
tons, starting from their initial states, are subject to re-
peated unitary operations.

Here we theoretically characterize and experimentally
detect dynamic skyrmion structures, a two-dimensional
topological object, in PT -symmetric one-dimensional
QWs of single photons. In QW dynamics, dynamic
skyrmions manifest themselves in the momentum-time
spin texture of the time-evolved density matrix, and
are protected by quantized dynamic Chern numbers in
emergent momentum-time submanifolds. To detect dy-
namic skyrmions, we devise an experimental scheme
where time-dependent momentum-space density matrices
of spatially non-localized states are constructed based on
a combination of interference-based measurements and
projective measurements in position space. We con-
firm the emergence of dynamic skyrmion structures when
QW dynamics correspond to quenches between distinct

∗wyiz@ustc.edu.cn
†gnep.eux@gmail.com

FTPs in the PT -symmetry-unbroken regime, where the
dynamics is coherent despite being non-unitary. By
contrast, when the system is quenched into the PT -
symmetry-broken regime, skyrmions are absent in the
momentum-time space, as the dynamics become incoher-
ent. Our work unveils the fascinating relation between
emergent topology and PT -symmetric non-unitary dy-
namics, and opens up exploration of higher-dimensional
dynamic topological structures using QWs.

2 Quench dynamics in PT -symmetric
QWs

We experimentally implement PT -symmetric non-
unitary QWs on a one-dimensional lattice L (L ∈ Z)
with single photons in the cascaded interferometric net-
work illustrated in Fig. 1. The corresponding Floquet
operator is [1]

U = R

(
θ1

2

)
SR

(
θ2

2

)
MR

(
θ2

2

)
SR

(
θ1

2

)
, (1)

where R(θ) rotates coin states (encoded in the horizontal
and vertical polarizations of single photons |H〉 and |V 〉)
by θ about the y-axis, and S moves the photon to neigh-
bouring spatial modes depending on its polarization.
The loss operator M = 1w ⊗

(
|+〉 〈+|+

√
1− p |−〉 〈−|

)
enforces a partial measurement in the basis |±〉 =
(|H〉 ± |V 〉) /

√
2 at each time step with a success prob-

ability p ∈ [0, 1]. Note that the non-unitary QW driven
by U reduces to a unitary one p = 0.
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Figure 1: Experimental setup. Photons are generated via spontaneous parametric down conversion through a Type-I
non-linear β-Barium-Borate (BBO) crystal. The single signal photon can be prepared in an arbitrary linear polarization
state via a polarizing beam splitter (PBS) and wave plates. Conditional shift operation S and coin rotation R are
realized by a beam displacer (BD) and two half-wave plates (HWPs), respectively. For non-unitary QWs, a sandwich-
type HWP-PPBS-HWP setup is inserted to introduce non-unitarity, where PPBS is the partially polarizing beam
splitters. The signal and heralding photons are detected by avalanche photodiodes (APDs).
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Figure 2: (a) Phase diagram for QWs governed by the
Floquet operator U in Eq. (1), with the corresponding
topological numbers ν as a function of coin parameters
(θ1, θ2). (b) Schematic illustrations of the time evolution
of n(k, t) on a Bloch sphere when Ef

k is real (left) and
imaginary (right), respectively.

We define the quasienergy ε and eigenstate |ψ〉 as

U |ψ〉 = γ−1e−iε|ψ〉, where γ = (1 − p)− 1
4 . U possesses

passive PT symmetry with PT γU (PT )
−1

= γ−1U−1,
where PT =

∑
x | − x〉〈x| ⊗ σ3K, σ3 = |H〉〈H| − |V 〉〈V |,

and K is the complex conjugation. U also features topo-
logical properties, characterized by winding numbers de-
fined through the global Berry phase. We show the
topological phase diagram of the system in Fig. 2(a),
where distinct FTPs are marked by their correspond-
ing winding numbers. The boundaries between PT -
symmetry-unbroken and -broken regimes are also shown
in red-dashed lines, with PT -symmetry-broken regimes
surrounding topological phase boundaries.

To simulate quench dynamics, we initialize the walker
photon in the eigenstate |ψi〉 of a Floquet operator

U i = e−iH
i
eff , characterized by coin parameters (θi

1, θ
i
2).

The walker at the t-th time step is given by |ψ(t)〉 =
e−iHefft|ψi〉, such that the resulting QW can be identified
as a sudden quench between H i

eff and Heff. Adopting
notations in typical quench dynamics, we denote U and
Heff as U f and H f

eff in the following, characterized by coin
parameters (θf

1, θ
f
2).

We denote pre- and post-quench Floquet operators in
each k-sector as U i

k and U f
k, respectively, whose eigen-

states are |ψi,f
k,±〉. Quasienergies of U i,f

k are denoted as

εi,fk,±, with εi,fk,± = ±Ei,f
k .

By invoking the biorthogonal basis, the non-unitary
time evolution of the system is captured by a non-
Hermitian density matrix, which can be written as

ρ(k, t) =
1

2
[τ0 + n(k, t) · τ] , (2)

where n(k, t) = (n1, n2, n3), τ = (τ1, τ2, τ3), τi =∑
µ,ν=± |ψf

k,µ〉σ
µν
i 〈χf

k,ν | (i = 0, 1, 2, 3), and 〈χf
k,µ|(

|ψf
k,µ〉

)
is the left (right) eigenvector of U f

k. Here, σ0

is a 2× 2 identity matrix, and σi (i = 1, 2, 3) is the cor-
responding standard Pauli matrix.

As illustrated in Fig. 2(b), when Ef
k is real, n(k, t)

rotates around poles of the Bloch sphere with a period
t0 = π/Ef

k. Thus, momenta corresponding to poles of
the Bloch sphere are identified as two different kinds of
fixed points, where the density matrices do not evolve in
time. In contrast, when Ef

k is imaginary, there are no
fixed points in the dynamics, as n(k, t) asymptotically
approaches the north pole in the long-time limit.

When U i and U f belong with distinct FTPs in the
PT -symmetry-unbroken regime, fixed points of different
kinds necessarily emerge in pairs. Each momentum sub-
manifold between a pair of distinct fixed points can be
combined with the S1 topology of the periodic time evo-
lution to form an emergent S2 momentum-time manifold,
which can be mapped to the S2 Bloch sphere of n(k, t).
The Chern number characterizing such an S2 → S2 map-
ping is finite and gives rise to intriguing skyrmion struc-
tures in the emergent momentum-time manifolds.

In our experiment, we perform projective mea-
surements and interference-based measurements to
construct the Hermitian density matrix ρ′(k, t) =
|ψk(t)〉〈ψk(t)|. This is achieved by writing ρ′(k, t) =
1
2

∑3
j=0

∑
x1,x2

e−ik(x1−x2) 〈ψx2
(t)|σj |ψx1

(t)〉σj , where
|ψx(t)〉 is the coin state on site x at the t-th time
step. We experimentally measure 〈ψx2

(t)|σj |ψx1
(t)〉

(j = 0, 1, 2, 3) for each pair of positions x1 and x2 di-
rectly. We then calculate the non-Hermitian density ma-
trix ρ(k, t) from ρ′(k, t) and determine n(k, t) through
n(k, t) = Tr [ρ(k, t)τ].
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of n(k, t) in momentum-time space. The quasi-energy spectrum associated with U f is completely imaginary in this
case.

3 Results

We first study fixed points and momentum-time
skyrmions in the PT -symmetry-unbroken regime. For
comparison, we also experimentally characterize these
quantities in unitary dynamics. We initialize the walker
on a localized lattice site |x = 0〉 and in the coin state
|ψi
−〉c. Importantly, |ψi

k,−〉 = |ψi
−〉c is an eigenstate of U i

k

for all k, with the corresponding (θi
1, θ

i
2) on black dashed

lines in Fig. 2(a). Without loss of generality, we choose
(θi

1 = π/4, θi
2 = −π/2) for both the unitary and non-

unitary cases.
For the first case of study, we implement unitary QWs

with |ψi
−〉c = (|H〉 + i |V 〉)/

√
2 and (θf

1 = −π/2, θf
2 =

π/3), which simulate quench processes between FTPs
with νi = 0 and νf = −2.

For the second case of study, we implement non-
unitary QWs with p = 0.36, |ψi

−〉c = 0.7606 |H〉 +

0.6492i |V 〉, and
[
θf

1 = −π/2, θf
2 = arcsin( 1

α cos π6 )
]

(here
α = γ

2 (1 +
√

1− p)). The post-quench FTP is in the
PT -symmetry unbroken regime with νf = −2.

Comparing Figs. 3(a) and (b), we see that dy-
namic skyrmion structures in the unitary and the PT -

symmetric non-unitary quench processes are qualita-
tively similar; albeit, in the non-unitary case, skyrmion
structures are slightly deformed due to the shift of fixed
points.

In the PT -symmetric-symmetry-broken regime, we
first initialize the walker on a localized lattice site in the
coin state (|H〉+ |V 〉) /

√
2 and evolve it under U f char-

acterized by (θf
1 = −π/2, θf

2 = 1
2 (π − arccos 1

α )), which
has a completely imaginary quasienergy spectrum. As
shown in Fig. 4(a), there is no periodical evolution in
n(k, t) anymore. Instead, different components of n(k, t)
slowly approach a steady state with n = (0, 0, 1) in the
long-time limit. This is more clearly seen in momentum-
time space shown in Fig. 4(b), where skyrmion structures
are absent and vectors in all k-sectors tend to point out
of the plane in the long-time limit.
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Abstract. We propose a discrete spacetime formulation of quantum electrodynamics in one-dimension
(the Schwinger model) in terms of quantum cellular automata, i.e. translationally-invariant local quantum
circuits. These have exact gauge covariance and a maximum speed of information propagation. The
continuum quantum field theory is recovered as a “convergent” sequence of quantum cellular automata,
parameterized by the spacetime lattice spacing. This model provides a quantum simulation algorithm
for the dynamics, and represents, to the best of our knowledge, a first complete QCA formulation of an
interacting QFT.

Keywords: Quantum Cellular Automaton, Quantum Simulations, Schwinger Model, Quantum Field
Theory

1 Introduction

Recently, a number of alternative descriptions of rel-
ativistic particles have emerged, which are attractively
simple [1, 2, 3, 4, 5, 6]. These employ concepts from quan-
tum information and quantum simulation to express the
particles’ dynamics directly as a circuit of local quantum
gates. In the one-particle sector, these Quantum Walk
models can simulate relativistic fermions propagating in
(3 + 1)–dimensions, also in the presence of background
electromagnetic and gravitational fields. In the two-
particle sector, these interacting Quantum Walks models
were shown to exhibit molecular binding. However, the
many-particle sector of interacting quantum field theories
(QFT) have so far remained unexplored by these discrete
models.

In this work [7], we propose a discrete spacetime for-
mulation of quantum electrodynamics (QED) in one di-
mension (the Schwinger model) [8], in terms of quantum
cellular automata (QCA), which are essentially transla-
tionally invariant circuits of local quantum gates.

From a practical point of view, the QCA defines a
quantum simulation algorithm for the dynamics of an in-
teracting QFT (leaving aside the problems of state prepa-
ration and measurements [9], however). But, from a
theoretical point of view it also constitutes a proof-of-
principle showing that natively discrete formulations of
an interacting QFT are possible and elegant. In this pic-
ture, the QFT is defined as a “convergent” sequence of
QCA, parameterized by the spacetime lattice spacing—
echoing the notions of continuum limit and renormaliza-
tion.

In the paper, we discuss why we may hope to circum-
vent some of the technical issues of standard formulations
of QFT this way. This includes problems coming from
discrete space and continuous time formulations, such as
the infinite speed of information propagation, and the

⇤pablo.arrighi@univ-amu.fr
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‡farreltc@tcd.ie

fermion doubling problem, both of which do not occur in
our formulation. In addition, standard formulations of
interacting quantum field theories always need a form of
discretization (usually in the form of a momentum cut-
o↵) because there is no way of defining quantum theories
which make sense in the continuum, unlike in classical
field theory. Hence, rather than attempting a continuous
formulation which fails and then having to renormalize
it, it may be advantageous to start with a well-defined
genuinely discrete one such as a QCA.

Because the formulation comes with a representation
of scaling transformations (necessary to define the con-
tinuum limit), it is possible in principle to also ob-
tain a representation of the Lorentz group as done in
Refs. [10, 11, 12, 13].

Our construction is intuitive and requires little pre-
requisites. It leads to a simple, explanatory model of
a QFT based on quantum information concepts. Given
that QFT can be rather intricate, we believe this also
constitutes an important pedagogical asset.

2 Quantum Cellular Automaton

Our QCA is defined by the circuit depicated in Fig-
ure 1. Each site of a one-dimensional lattice, with po-
sition x = n", n 2 Z, is associated with 2 qubits, or
equivalently two fermionic (Dirac) modes.

Each mode can be occupied or empty, which corre-
sponds to orthogonal states. The red wires represent
“left-moving” modes, while the black wires represent
“right-moving” modes (a terminology coming from the
fact that, in the noninteracting and massless limit, the
gates like W are just swaps).

The green wiggly lines represent an extra infinite-
dimensional Hilbert space associated with each edge be-
tween two Fermionic site. This is the Hilbert space of
the local electromagnetic modes, or gauge field. Because
it involves infinite-dimensional Hilbert spaces, this model
is not a standard QCA, but it is possible in principle to
limit these Hilbert spaces to a finite basis.
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Figure 1: (1 + 1)–QED QCA structure. At x + "/2 posi-
tions lies a wire carrying a state representing the gauge
field. Its sole role is to count the Fermions passing by,
and to undergo a phase accordingly: this phase triggers
the interaction.

If we think of the modes simply as qubits, then each
crossing between a red and a blue wire on the dashed line
corresponds to a controlled-Z gate which multiplies the
state by a minus sign only if both modes are occupied.

Each box represents the same unitary gate W . It takes
as input a right-moving and a left-moving mode, as well
as the electric field in between the two modes. Let us
denote the input fermionic states as |iji, i, j = 0, 1. Sim-
ilarly, let us denote the output states as |iji. We also
use the discrete basis |li, l 2 Z for the eigenstates of the
electric field on each edge, with eigenvalues el, where e,
where e is the charge of our fermions. Hence the electric
field operator on a given edge is E = eL, where

L =
X

l2Z
|lihl|.

The gate W , which entirely specifies the dynamics of
the theory, is defined by:

W =
⇣
|00ih00|� |11ih11| + cV †|01ih10| + cV |10ih01|

� is|01ih01|� is|10ih10|
⌘
e

i
2 "

2e2L2
,

where c = cos(m"), s = sin(m"), m being the “bare”
mass of the fermions. The operator V † increases the
discrete value of the electric field by 1:

V † =
X

l2Z
|l + 1ihl|.

This gate can be intuitively interpreted as follows: the
two fermions, when present, just pass past each other
with amplitude cos(m"), or change direction with ampli-
tude sin(m"). If there was no electric field, this would
be the well known Dirac QCA, whose continuum limit
is the the one-dimensional QFT representing free Dirac
fermions of mass m [4, 14].

3 Gauge invarience

The operator V in the gates simply makes sure that
the electric field to the right of a fermion is one step
large than that of the left of a fermion. This is what
makes the dynamic invariant under spatially local U(1)
gauge transformations as follows.

A gauge transformation corresponds to a choice of a
di↵erent element ei�(x) of the group U(1) at each vertex
at a given time t, where x = n", n 2 Z.

These phases act on the Hilbert space of our system
as follows: on the fermions at the point x, it maps |nmi
to ei(n+m)�(x), where n, m = 0, 1. But it also maps the
electric field states |li in between sites x and x + " to
e�il(�(x+")��(x))|li.

Hence, the state is gauge-invariant if the initial state
is in the basis spanned by states which are tensor prod-
ucts of fermionic states |nmi and electric field states |li
such that those phases cancel out, i.e., reading from left
to right, if the field value increases by 1 per fermion en-
countered.

The dynamical steps defined by W preserve the gauge
invariance of the states by increasing (resp. decreasing)
the electric field by one quantum everytime a fermion
passes left (resp. right).

Instead of requiring gauge-invariance on the states, we
can alternatively demand that we restrict observables to
only gauge invariant ones. These form a quasilocal C⇤-
algebra, of which the QCA step is an automorphism.

4 Continuum limit

For zero mass (m = 0), the "-dependence of our gates
W is chosen such that, in conjunction also with strong as-
sumptions on the states and observables, the QCA ought
to converge for " ! 0 to a quantum field theory: the
(massless) Schwinger model.

This is possible because the massless Schwinger model
is exactly solvable. For non-zero mass, however, it is
likely not possible to find the exact dependence of the
QCA on " that is requires to converge to a smooth dy-
namics. Instead, one must expend the dynamics on pow-
ers of m around m = 0, and find the dependence in " for
each order, a procedure known as renormalization.

In the zero mass case, in order to recover the stan-
dard Schwinger model, it is essential that we restrict
the states to a specific Fock state which is spanned by
creating a finite number of fermions on top of a special
state |⌦i called the vacuum. In order to preserve gauge-
invariance, each fermion creation is associated with an
increase in the electric field everywhere on the right side
of it (local operators are recovered when considering only
gauge-invariant even-order polynomials in those creation
operators, as per the usual fermionic parity constraint).

These new creations operators are similar to those used
in solving the Schwinger model in Ref. [8], and satisfy the
usual fermionic anticommutation relations.

The vacuuum state |⌦i that is required is not, as one
might expect, the tensor product of the states |00i in the
above notation (let’s call it the computational vacuum).

158



Instead, |⌦i corresponds to the vaccuum of the Dirac
QFT, i.e, the so-called Dirac see, which is an infinite
superposition of states with various occupation numbers.

It is most easily formulated as being the vaccuum for
di↵erent fermions, whose creation amounts to the cre-
ation or annihilation of our original modes depending on
the sign of their momentum (i.e., we are talking about
the Fourier transform of the creation operators). It is
these new fermions which correspond to the electrons and
positrons.

In order to obtain a continuum limit, however, we need
extra restrictions on the Fock states: there needs to be a
momentum cuto↵ so that they are approximately con-
stant at the level of the lattice spacing. In conjunc-
tion, we also need a momentum cuto↵ on observables,
namely, they must be generated by “smeared” creations
operators, i.e., linear combinations of the electron and
positron creation operators with a wavefunction whose
Fourier transform is also zero or rapidely decaying be-
yond a momentum cuto↵.

With those assumptions, we provide a fairly detailed
arguments (although not a proof) that the dynamics con-
verge to the solution of the Schwinger model. Techni-
cally, we show how an appropriately smeared version of
the fermions density converges to a field operator which
evolves as a free boson of e↵ective mass e/

p
⇡.

One may be surprised that the continuum limit is one
involving bosons rather than a QFT of electrons and
positrons, however, this is a peculiarity of the Schwinger
model which comes from the fact that the model is con-

fined: the energy of a pair of electron-positron increases
with the distance between them. It is unclear to us
whether a continuum limit could be formulated that lead
to a more “microscopic” formulation of the QFT directly
in terms of fermions.
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3 Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, UK.

Abstract. We construct compression protocols for parametric families of tensor network states. We start
from exact protocols, constructed by partitioning the tensor network into constant and variable tensors,
and by defining a suitable flow network in which the variable tensors are associated to the source and
the physical systems are associated to the sink. Our protocols use a quantum memory of size determined
by the minimum cut of the flow network, which is intuitively related to the flow of information from
the variable tensors to the physical systems. We propose efficient algorithms to realise the compression
protocols based on certain properties of tensor network states. For arbitrary tensor network states with
given network topology and given edge dimensions, the memory usage of our protocols is optimal when
all edge dimensions are powers of a given integer, and otherwise is optimal up to a multiplicative factor
of at most log2 3. Applying the above technique, we show that arbitrary translationally invariant tensor
network states of n identical systems can be compressed without errors into O(log n) memory qubits,
which is the optimal scaling with n. Finally, we provide examples of approximate compression protocols
for translationally invariant matrix product states, showing that states with finite correlation length can
be compressed by operating on a small subset of the physical systems.

Keywords: Quantum data compression, tensor networks, matrix product states

Quantum data compression [1] is one of the pillars of
quantum information theory. At the foundational lev-
el, it establishes the qubit as the basic unit of quan-
tum information. At the more practical level, it pro-
vides a blueprint for the efficient transmission of quantum
data in future quantum networks, with applications to
distributed quantum computing [2] and quantum cloud
computing [3].

The ultimate limit for compressing long sequences of
independently prepared quantum states was established
by Schumacher in the pure state case [1], and later ex-
tended to mixed states [4, 5, 6]. Universal compression
protocols for the scenario where the average state of each
system is unknown, except for an upper bound on it-
s von Neumann entropy, were provided in Ref. [7]. In
recent years, there has been an interest in developing
compression protocols for identically prepared systems
[8, 9, 10, 11, 12]. Such systems occur in a wide range
of tasks from quantum tomography [13, 14] to quantum
cloning [15, 16], estimation [17, 18], and machine learn-
ing [19]. Compression protocols for identically prepared
systems, studied in Refs. [8, 9, 10, 11, 12], have found
applications in quantum metrology [20] and inspired new
results in quantum state estimation [21]. A basic in-
stance of compression of identically prepared systems was
demonstrated experimentally in Ref. [22].

Most of the compression protocols considered so far as-
sume that the input systems are in a product state. How-
ever, many relevant scenarios involve correlated systems,
whose state cannot be expressed as a tensor product of
single-system states. The ability to store correlated s-
tates into a smaller amount of quantum bits is important
for the simulation of many-body quantum systems. For

∗baige@connect.hku.hk
†yangyu@phys.ethz.ch
‡giulio@cs.hku.hk

example, it was shown that O(log n) 1 qubits are enough
to simulate specific models of n-qubit many-body systems
[23, 24, 25], and this result led to simulation of a 32-spin
Ising chain using only 5 qubits [26]. In addition, many-
body states can be used as probes in quantum metrology
[27], and thus compression protocols for many-body s-
tates are useful to transmit such probes or to store them
until they are measured.

In this paper we address the compression of tensor net-
work states, a broad class that includes cluster states
[28, 29], matrix product states (MPS) [30, 31, 32], pro-
jected entangled pair states (PEPS) [33, 34], tree tensor
networks [35], and multi-scale entanglement renormaliza-
tion ansatz (MERA) states [36]. Our first result involves
translationally invariant MPSs [31], hereafter abbrevi-
ated as TIMPS. We show that a completely unknown
TIMPS of n identical systems with given bond dimension
can be compressed without errors into a number of logical
qubits growing at most as O(log n). Our result enables a
compressed simulation of various models of many-body
quantum states, such as the one-dimensional Ising model
[37] and the AKLT model [38]. The logarithmic scaling
of the total memory is optimal, as the set of TIMPSs in-
cludes the set of all identically prepared states, for which
the optimal compression protocol is known to require
Ω(log n) memory qubits, both for exact [10] and approx-
imate protocols [11, 12]. The same result holds for states
on higher dimensional lattices such as PEPSs: a gener-
ic translationally invariant n-particle state with a given
bond dimension can be perfectly stored into O(log n) log-
ical qubits. We then consider generic tensor network s-
tates without translational symmetry, but with the prop-
erty that all tensors are constant, except for those on the
boundary. For every subset of systems in the bulk, we
show that our compression protocols satisfy an area law:

1Here and in the following log := log2.
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the number of logical qubits used to compress the sys-
tems in the chosen subset is proportional to the size of
its boundary.

Our compression protocols are based on a general tech-
nique applicable to arbitrary tensor network states. The
idea is to define a mapping from tensor networks to flow
networks [39], namely networks with two distinguished
vertices (the source and the sink) and with a non-negative
number (the capacity) assigned to each edge. For a given
parametric family of tensor network states, we first iden-
tify the variable tensors, that is, those that depend on
the parameters specifying the states in the family. Then,
we construct a flow network by associating the variable
tensors with the source, and the physical systems to the
sink. The capacity of an edge is defined as the logarithm
of the dimension of the Hilbert space associated to that
edge.

Our compression protocols use a number of qubits e-
qual to the minimum cut in the network, defined as the
minimum sum of the capacities of the edges crossing a
partition of the network in two subsets, one containing
the source, and the other containing the sink. This fea-
ture provides a graphical way to construct compression
protocols, and motivates the search of tensor network
representations with small values of the minimum cut.

Intuitively, the minimum cut is a bottleneck to the
amount of information flowing from the free parameter-
s to the physical systems, and therefore determines the
compressibility of the parametric family. For the family
of all tensor network states with given network topology
and given edge dimensions, the number of memory qubits
used by our protocol is minimum, provided that all the
edge dimensions are powers of the same integer. For arbi-
trary edge dimensions, the amount of memory is optimal
up to a multiplicative factor of at most log 3, whose pres-
ence is due to the failure of the quantum version of the
“max-flow min-cut theorem” [40].

We can efficiently realise the compression protocols
on quantum computers under assumptions that hold for
many tensor network states including TIMPS and MER-
A. We construct the algorithm using the universal quan-
tum emulator [41], which simulates the encoding and de-
coding processes by consuming a polynomial number of
input-output pairs.

We conclude the paper with a discussion of approx-
imate compression protocols. Specifically, we consider
the compression of MPSs with finite correlation length
[31, 42] and with variable boundary conditions. We show
that any such MPS can be approximately compressed by
acting on a small number of systems near the boundaries.
This allows us to cut and connect MPSs with local oper-
ations, which is convenient to measurement-based quan-
tum computation (MBQC) [43, 44] using MPSs as re-
source states.

The full version of this paper can be found in [45].
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stochastic simulation
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Abstract. Stochastic simulation plays an important role in quantitative science, enabling future predic-
tions based on past observations. Here we report on systematic means to generate such models coherently,
and its experimental realization using a photonic quantum information processor. A key feature of the
processor is that it creates a quantum superposition of all possible future trajectories a stochastic sys-
tem can evolve into. This superposition allows us to introduce, and demonstrate, the idea of comparing
statistical futures of two classical processes via quantum interference. We demonstrate interference of
two 16-dimensional quantum states, representing statistical futures of a given process, with a visibility of
0.96± 0.02.
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Many of the most interesting phenomena are
complex—whether in urban design, meteorology or fi-
nancial prediction, the systems involved feature a vast
array of interacting components. Predicting and sim-
ulating such systems often requires the use of a pro-
hibitive amount of data, evincing a pressing need for more
efficient tools in algorithmic modelling and simulation.
Quantum technologies have shown the potential to dra-
matically reduce the amount of working memory required
to simulate stochastic processes [1, 2]. A quantum device
can replicate the system’s conditional future behaviour,
while storing less past information than provably opti-
mal classical counterparts. The key to achieving a quan-
tum memory advantage is maintaining coherence of the
quantum memory during the simulation process. This
advantage was first illustrated for simulating a particu-
lar stochastic process, where relevant past information
was encoded within non-orthogonal polarisation states
of a single photon [5]. The scheme, however, maintained
quantum coherence over only a single simulation cycle.
This limited the resulting simulator exhibited a memory
advantage only when simulating a single time step.

In this talk, we first review recent results showing how
unitary quantum circuits for generating future statistics
of a stochastic process can be systematically designed –
such that coherence is maintained at all stages of sim-
ulation [3]. We then introduce our recent experiments
that realize such a quantum simulator using (time-bin)
encoding in an optical system [4]. We illustrate how the
resulting devices have the added benefit of being able to
create a quantum superposition of all possible future tra-
jectories of a stochastic process. We implement two such
quantum simulations in parallel, simultaneously generat-
ing superpositions over the trajectories for each of two
independent systems. Experimentally, this corresponds
to using our quantum simulators to produce and control
high-dimensional quantum states. These are interfered,
allowing estimation of how well the corresponding statis-

tical futures coincide.
Framework – A stochastic process describes a se-

quence of possible random variables Xt, where t < 0
can be considered the past and t ≥ 0 the future. Any
simulator that seeks to replicate correct conditional fu-
ture statistics must retain relevant past information in
some memory system. This involves a prescription for
configuring its memory S in an appropriate state s for
each possible observed past, such that systematic actions
on S recover a sequence of future outputs that correctly
sample desired conditional future statistics. The amount
of past information stored in memory is quantified by
the Shannon entropy of S. The minimal possible mem-
ory required, Cµ, is known as the statistical complexity
and is an important measure of structure in complexity
science [6, 7, 8, 9].

A quantum simulator can further reduce this memory
by encoding relevant past information in non-orthogonal
quantum states. In particular, we introduce methods to
design quantum machines that generate future statistics
using by sequential application of an appropriate unitary
U with an sequence of blank ancilla (see Fig. 1). Each
interaction corresponds to a time-step of the stochastic
process, and entangles memory and tape. Measuring the
ancilla after interaction then provides a sample of desired
statistics at that time-step. This construction ensures
that the memory advantage is maintained at all times
during simulation. Moreover, if the tape is left unmea-
sured, it is automatically set to a quantum superposition
of all possible conditional futures of the process.

Simulating Futures – Our experiment considers sim-
ulating a particular stochastic process known as the per-
turbed coin [1]. It consists of a binary random variable
that represents the state of a possibly biased coin inside
a box. At each time step, the box is perturbed, causing
the coin to flip with some probability. The process is the
defined by two parameters, l and m. l is the probability a
coin in tails stays in tails. While m is similarly defined as
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Figure 1: A unitary quantum simulator works by record-
ing relevant past information about a process within
some internal memory state. At each time step, the sim-
ulator interacts with the kth ancilla through the same
unitary operator U . Measuring the ancilla samples the
statistical distribution of the process, and at the same
time the internal state of the simulator collapses into
the correct memory state required for further simula-
tion steps. If ancilla’s are left unmeasured, the sim-
ulator instead generates a superposition of all possible
conditional futures. In our experiment the simulates the
perturbed coin, U has a specific gate sequence (as de-
scribed by inset) while the quantum memory is a single
qubit initialized in either |S0〉 =

√
l|0〉 +

√
1− l|1〉 or

|S1〉 =
√

1−m|0〉+
√
m|1〉, depending on initial state of

the coin.

for when the coin is initially heads. The resulting state
of the coin is then emitted as output. Repetition of this
procedure generates a string of 0s and 1s, whose statis-
tics define the perturbed coin process. The process has
statistical complexity of Cµ = −q log q−(1−q) log(1−q),
where q represents the proportion of time-steps the coin
is in heads. The exact elementary gate decomposition for
the associated U can be determined (see inset in Fig. 1).

We implement the memory system and multiple an-
cillas — here, corresponding to three time-steps — by
encoding on a single photon. The ancillas, which can
be read to obtain the classical outcomes of the process,
are encoded in the arrival time of the photon, and the
memory state of the simulator is encoded in its polari-
sation. Thus, for a simulation of M time steps, a 2M -
dimensional system corresponding to 2M different pho-
ton arrival times replaces M distinct ancillary photons.
Instead of measuring the classical outcome at each time
step, our quantum information processor keeps the pho-
ton and builds up a superposition in a high-dimensional
Hilbert space; in our case M = 3, and the output of
the simulator is 16 dimensional (8 arrival time modes
× 2 polarisation modes). The associated experimen-
tal setup is shown in Fig. 2. Here, one of the photons
(the lower beam) is prepared in the appropriate initial
a state (|S0〉 or |S1〉) depending on the past. It then
passes through three sequential blocks, which represent
the three time steps being simulated. In each block, the
short and long paths correspond to outcomes 0 and 1,

Pump laser
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Lower beam

BiBO crystal

Prism mirror

Beam block

SMF coupler
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Mirror GT
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HWP with hole

QWP PBS

BS

Fibre BS
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Figure 2: (a) Polarisation qubits from the two out-
put beams of a spontaneous parametric down-conversion
source are used as memory states for the simulation two
separate and potentially different processes Π1 (red) and
Π2. To implement the three-step simulation, three pro-
cessor blocks are built (labelled Step 1, Step 2, and Step
3). In each step, path and arrival time modes are also
employed to realise the relevant physical operation (see
related publication [4]). The output of one of the simu-
lators (lower beam) is used to perform the polarisation
tomography for determining Cq. To measure the overlap
of the future statistics of two processes, both photons are
used, while the other outputs of the third beam splitter
are interfered in a fibre BS (yellow box). (b) A close-up
of two vertically-separated beams passing through two
HWPs with holes, each of which only acts on one of the
beams.

respectively. In this way, we obtain the probability dis-
tribution of the stochastic process as simulated by our
quantum information processor, together with the final
memory state of our simulator, which is needed for fur-
ther simulation steps. Running this simulator, our sta-
tistical predictions agree with optimal predictions to a
fidelity of at least 0.991 (detailed statistics in accompa-
nying manuscript [4]).

The resulting memory cost Cq is shown in Fig. 3a,
demonstrating that quantum processing can significant
reduce the amount of past information needed for simu-
lating a multi-step stochastic process. To guarantee that
associated memory cost during this simulation does not
increase, we require the internal dynamics to be close
to (ideally, completely) unitary. We can verify via two-
photon quantum interference. We use the complete setup
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Figure 3: (a) The memory cost Cq of our quantum simulator as function of m, the probability the coin does not flip
when in tails. The probability of remaining in heads l is fixed at 0.4. Experimental measurements of Cq (magenta
dots) fit well with theory (magenta line), and is significantly lower than the classical limit Cµ (turquoise line). (b)
Two-photon interference of a quantum simulator simulating two separate instances of the same stochastic process to
verify that it maintains coherence. c Magenta and turquoise elements (points—experiment; curves—theory) show
the comparison of the statistical futures from two different stochastic processes by two-photon interference visibility.
In each case, one process (Π1) is fixed, and the other process (Π2) has fixed m but varying l, and both processes
begun with the same past. Magenta represents interference of the output states of the simulators for Π1 (l = 0.5, and
m = 0.5) with Π2 (m = 0.5, and l varying). Turquoise represents interference of the output states of the simulators for
Π1 (l = 1.0, and m = 1.0) with Π2 (m = 0.5, and l varying). Uncertainties are so small that they are barely visible.

of Fig. 2, where the photon depicted by the orange path is
now also goes through the apparatus. Both the photons
pass independently through the three sequential blocks,
with each experiencing nominally the same optical ele-
ments. If the coherence between the different time bins
and polarisations exploited in our simulation is main-
tained, we expect a complete interference, or unit visibil-
ity. The result in Fig. 3b shows a visibility of 0.96± 0.02
for the case where the theoretical output states of the ap-
paratus are uniform superpositions of all time bins and
polarisations (which is the scenario where the highest
discrepancy from the ideal visibility would be expected
as it is most susceptible to imperfections). The high
value obtained here indicates that our simulator is (al-
most) implementing a unitary operator, and the entropy
of our system does not significantly increase throughout
the simulation process.
Interfering Futures – Modifying this setup allows us

to compare two different processes, Π1 and Π2. Clearly,
one way to perform such a statistical comparison is
to consider each process individually, and sample its
outcomes to reconstruct the corresponding distribution.
These two reconstructed distributions can then be com-
pared. However, we notice that in our quantum simu-
lation, all the information about the future statistics is
already encoded in the state that exists in our appara-
tus. Thus, we do not need to collapse the superposition
of possible outcomes by sampling, instead we can exploit
this superposition for our task of comparing the future
of processes. In particular, by simultaneously running
quantum simulations of processes Π1 and Π2 in parallel
and interfering the resulting output states, we can esti-
mate the overlap of their future statistics.

In our experiment, we realise different processes by ap-
plying different operations to the two photons (red beam
and orange beam) in the three blocks of the setup in

Fig. 2. We fix one of the processes and change the other
process gradually. As the parameters defining the pro-
cesses become increasingly similar, the two output prob-
ability distributions overlap more. This is reflected in the
experiment by a higher visibility value, showing how the
comparison between two sets of future statistics can be
evaluated via interference visibility. Results are shown
in Fig. 3c, where the experimental values are close to
theoretical predictions.

Discussion – Our multi-step photonic implementa-
tion of a stochastic simulation has verified the memory
advantage available with quantum resources. We have
demonstrated that it is possible to maintain this advan-
tage at all stages of the simulation by preserving quantum
coherence, as opposed to previous experiments [5, 10].
Furthermore, we showed that superpositions of statisti-
cal distributions of potential process futures can be in-
terfered. Technologically, our results demonstrate yjay
high- (here, 16-) dimensional quantum states can be en-
coded, manipulated in photonic temporal and polarisa-
tion modes with high fidelity [11, 12], and interfered with
an extremely high visibility [13].

The time-bin encoding techniques in our experiment
can be extended to other small or medium-scale simula-
tions by expanding the number of time bins. For exam-
ple, 108 time bin modes have been realized in the context
of communication complexity [14]. However, the num-
ber of bins does not scale efficiently with the number of
qubits, and thus very-large-scale simulations are not pos-
sible with this encoding. This is not a fundamental prob-
lem, as the concepts that we demonstrate can be equiva-
lently implemented in any potential quantum processor.
Meanwhile interfering future statistics has direct relation
to other protocols, such as potential reduced communi-
cation complexity when comparing vectors quantum fin-
gerprinting or image recognition [14, 15, 16].

165



References

[1] Gu, M., Wiesner, K., Rieper, E. & Vedral, V. Quan-
tum mechanics can reduce the complexity of classical
models. Nat. Commun. 3, 762 (2012).

[2] Mahoney, J. R., Aghamohammadi, C. & Crutch-
field, J. P. Occam’s quantum strop: Synchroniz-
ing and compressing classical cryptic processes via a
quantum channel. Sci. Rep. 6, 20495 (2016).

[3] Binder, F. C., Thompson, J. & Gu, M. Practical
unitary simulator for non-markovian complex pro-
cesses. Phys. Rev. Lett. 120, 240502 (2018).

[4] Ghafari, F., Tischler, N., Di Franco, C., Thompson,
J. & Gu, M. Pryde, G. Interfering trajectories in
experimental quantum-enhanced stochastic simula-
tion. Nat. Comms. 10, 1630 (2019).

[5] Palsson, M. S., Gu, M., Ho, J., Wiseman, H. M.
& Pryde, G. J. Experimentally modeling stochastic
processes with less memory by the use of a quantum
processor. Sci. Adv. 3, e1601302 (2017).

[6] Grassberger, P. Toward a quantitative theory of self-
generated complexity. Int. J. Theor. Phys. 25, 907–
938 (1986).

[7] Crutchfield, J. P. & Young, K. Inferring statistical
complexity. Phys. Rev. Lett. 63, 105 (1989).

[8] Shalizi, C. R. & Crutchfield, J. P. Computational
mechanics: Pattern and prediction, structure and
simplicity. J. Stat. Phys. 104, 817–879 (2001).

[9] Crutchfield, J. P., Ellison, C. J. & Mahoney, J. R.
Time’s barbed arrow: Irreversibility, crypticity, and
stored information. Phys. Rev. Lett. 103, 094101
(2009).

[10] Ghafari, F. et al. Observing the ambiguity of sim-
plicity via quantum simulations of an ising spin
chain. Preprint at http://arxiv.org/abs/1711.03661
(2017).

[11] Franson, J. D. Bell inequality for position and time.
Phys. Rev. Lett. 62, 2205 (1989).

[12] Kwiat, P. G., Steinberg, A. M. & Chiao, R. Y. High-
visibility interference in a Bell-inequality experiment
for energy and time. Phys. Rev. A 47, R2472 (1993).

[13] Zhang, Y. et al. Engineering two-photon high-
dimensional states through quantum interference.
Sci. Adv. 2, e1501165 (2016).

[14] Xu, F. et al. Experimental quantum fingerprinting
with weak coherent pulses. Nat. Commun. 6, 8735
(2015).

[15] Kumar, N., Diamanti, E. & Kerenidis, I. Efficient
quantum communications with coherent state fin-
gerprints over multiple channels. Phys. Rev. A 95,
032337 (2017).

[16] Shalev-Shwartz, S. & Ben-David, S. Understanding
machine learning: From theory to algorithms (Cam-
bridge University Press, 2014).

166



Open quantum systems are harder to track than open classical systems
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Abstract. For a Markovian open quantum system it is possible, by continuously monitoring the en-
vironment, to perfectly track the system (know its pure state) without altering the master equation.
However, typically a positive-dimensional manifold of states in Hilbert space is explored, even for a finite
D-dimensional system and, consequently, an infinite classical memory is required to track the state. Our
paper concerns exceptional adaptive measurement schemes that result in the system stochastically jumping
between a finite ensemble of states, K. We answer the long-standing open question of whether the minimum
K is generically larger than D and thus establish that, indeed, open quantum systems are harder to track
than open classical systems. See arXiv:1905.10935.

Keywords: Open quantum systems, quantum measurement, Schrödinger-HJW theorem, WV theorem

1 Introduction

Tracking an open quantum system requires measuring
the environment to which the system is coupled. In this
way, the experimentalist gains knowledge of the quantum
trajectory [1] followed by the system of interest. For the
case of perfect detector efficiency, no system information is
lost into the environment and the system trajectory maps
the path of a pure quantum state. It is of interest to ask,
how much memory is required to track such a pure state
trajectory? The answer is typically that an infinite mem-
ory is required, due to the fact that generic monitoring
schemes will result in a continuous (or piece-wise continu-
ous) quantum state trajectory that explores a non-zero
dimensional manifold of pure states. Remarkably, this is
not always the case: it has been shown [2–6] that, via the
implementation of especially chosen system-dependent
adaptive measurement schemes, quantum trajectories of
some systems can be constrained to a finite number, K, of
pure quantum states. This has profound consequences for
the memory requirements of tracking an open quantum
system, as a classical device with only K states (a ‘finite
state machine’ [7]) is sufficient to follow the quantum
evolution. In this paper, we will investigate the minimum
ensemble size, Kmin, that is achievable, given complete
freedom of measurement scheme. In particular, we com-
pare and contrast Kmin with the dimension, D, of the
quantum system and so address some long-standing open
questions of interest raised in Refs. [3, 4]. Note that an ef-
fectively classical system (which explores a finite ensemble
of orthogonal pure states) will have Kmin = D.

The choice of monitoring of a generic open quantum
system can have a profound effect upon its evolution. The
system, by definition, is interacting with the environment
and, for suitable initial conditions, becomes entangled
with it. The measurement of the environment by an
experimentalist effects ‘quantum steering’ [8] upon the
system. In this paper we are concerned with the case

∗prahladw@gmail.com
†h.wiseman@griffith.edu.au

of continuous Markovian dynamics induced by the bath,
also known as quantum white noise (QWN) coupling; the
system will then, in the absence of measurement, obey
a Lindblad-form master equation (ME) for the density
matrix [1]:

ρ̇ = Lρ ≡ −i[Ĥeffρ− ρĤ†eff ] +
L∑

l=1

ĉlρĉ
†
l , (1)

where Ĥeff ≡ Ĥ − i
∑

l ĉ
†
l ĉl/2 and Ĥ is the Hermitian

Hamiltonian.
The stochastic path followed by the state is known as

a quantum trajectory, and different monitoring schemes
will lead to different types of quantum trajectories [1, 9].
In fact, there are an infinite number of ways to measure
the environment that maintains a pure quantum state
for the system. Here, we are concerned with quantum
jump trajectories, rather than diffusive trajectories, as
the latter would rule out a finite ensemble of realised
quantum states. However, in between the quantum jumps
the experimentalist is continuously updating the system
state in a non-trivial way, as the ‘no-click’ results also
carry information, albeit an amount that scales with dt.
This information affects the state even when it is a state
of maximal information (i.e. pure), unlike the classical
case, leading to smooth but non-unitary evolution be-
tween jumps. Thus, it is clear that the system generically
explores a continuum of states in Hilbert space.

Whilst a non-zero dimensional manifold of states is
therefore typically associated with continuous measure-
ment, the Schrödinger-Hughston-Jozsa-Wootters (S-HJW)
theorem [10–12], by contrast, gives physical meaning to
any pure state ensemble representing a mixed state matrix
(also called a density matrix) ρ. In particular, for finite
D = rank(ρ), one may consider ensembles,

ρ =
K∑

k=1

℘k |φk〉 〈φk| , (2)

for any choice of K, provided that D ≤ K < ∞. The
S-HJW theorem states that if there exists physically a
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purification, in a higher dimensional Hilbert space, of a
system in a mixed state ρ, then for any ensemble that
represents ρ, there is a way to measure the environment(s)

— that is, make measurements in the larger Hilbert space
that act as the identity on the system Hilbert space —
such as to collapse the system into one of the pure states
|φk〉 with the appropriate probability ℘k. Note that in
general these states are not mutually orthogonal, even for
K = D, and this must be so for K > D.

The S-HJW theorem applies to a measurement on the
environment at a particular time. If this is a time remote
from the initial conditions, and the system obeys Eq. (1)
with a unique stationary solution ρss of rank D [13], then
in Eq. (2), ρ = ρss. An obvious question is: can the finite
ensembles representing ρss allowed by the S-HJW theorem
also pertain, at remote times, to continuous monitoring?
To address this we make the additional assumption, men-
tioned above, that the ME has been derived from a QWN
coupling. Then we can ask whether a given pure state
ensemble can be realised continuously by the experimen-
talist via a carefully chosen measurement scheme. That
is, is it possible, merely by obtaining information from
the bath in the right way, to force a quantum system,
obeying a given ME, to behave like a discrete classical
system, in the sense of jumping between a given finite set
of pure states? A theorem by Wiseman and Vaccaro [2]
says that this question is equivalent to asking whether the
following finite set of algebraic constraints can be satisfied

∀k, L |φk〉 〈φk| =
K∑
j=1

κjk (|φj〉 〈φj | − |φk〉 〈φk|) (3)

for some ensemble {(℘k, |φk〉) : k} of size K. The real-
valued transition rates, κjk ≥ 0, naturally determine the
occupation probabilities ℘k. A valid solution is known
as a physically realisable ensemble (PRE) [2], because
there exists some measurement procedure that will re-
alize the ensemble in the sense described above, even if
that procedure may by difficult to implement in prac-
tice. In particular, it is known that the measurement
scheme required to achieve a PRE is generally adaptive
in nature [3].

Most of the difficulty of our research program arises
due to the system of non-linear constraints defined by
Eq. (3) being difficult to solve, even numerically, when
D > 2. The difficulty of this task becomes exponentially
larger as the number of equations and variables increases.
In fact, the problem is known to fall into the NP-complete
complexity class [14]. This alone does not prohibit the
constraints’ solution; it just places low practical bounds
on the system size that can be solved. Two major tools
are used in order to aid our computational efforts to solve
Eq. (3). The first is that of symmetry, as was recently
introduced by the authors [6]. Secondly, we newly apply
two powerful software packages (MAGMA [15] and PHC-
pack [16]) to PREs that respectively take advantage of
Gröbner basis [17] and polynomial homotopy continua-
tion [18] techniques.

It was shown in Ref. [2] that there are ensembles that
represent ρss but that are not PREs (this was referred to

as the “preferred ensemble fact” ). A fundamental ques-
tion for open quantum systems is whether, for a given
master equation, there exist any finite PREs. It was found
in Ref. [3] that for D = 2 it always possible to find at
least one K = 2 PRE. For D > 2, a heuristic argument,
using free parameter and constraint counting, was made
in Ref. [3] predicting that one can expect a PRE to exist
if K ≥ (D − 1)2 + 1. This separation from the classical
case (where K = D is necessary and sufficient) for D > 2
would indicate a profound difference between quantum
and classical open systems. However, the heuristic argu-
ment of Ref. [3] was not tested against numerical evidence,
and both the quantum–classical gap, and the very exis-
tence of finite quantum ensembles in general, remained
conjectural. The question of whether ME symmetries can
alter our expectations regarding the minimal size of PREs
was treated in [6]. There it was found that a commonly
employed invariant subspace symmetry can reduce the
heuristic ensemble size to K ≥ 1

2

(
D2 −D + 2

)
, which is

still larger than D for D > 2. Here, we will further refine
the heuristic arguments in order to take account of the
number of decoherence channels, that is the number of
Lindblad operators in Eq. (1).

In this paper we address the three most important
open questions raised by Ref. [3]. We answer the first
two definitively, and provide strong numerical evidence
to support our conjectures regarding the third. The first
question (Q1) is: are there MEs for which the minimally
sized PRE is larger than D? The second question (Q2) is
as follows: is an ensemble size of K = (D−1)2 +1 always
sufficient for a PRE to be found? The third question
(Q3) is: does this refined form of the argument in Ref. [3]
reliably predict whether PREs are feasible for a ME of a
given form?

2 Results

Our first result, being a refined heuristic for the exis-
tence of PREs taking into account L, will guide us when
answering the proposed research questions. As mentioned,
a heuristic is obtained by the counting of free parameters
(describing the system state and the transition rates be-
tween them) and constraints (provided by Eq. (3)). By
considering the dimension of the post-detection Hilbert
space, which is constrained by L and D, it is possible to
rule various graphs out as possibly representing PREs.
Transcribing this to an algebraic constraint on the number
of transition rates leads to

Kmin = (D− 1)2 + 1 + 1{L<D−1} × (2D − 2L− 1) , (4)

where 1{A} is the indicator function, which is 1 if A is true
and 0 otherwise. That is, if L ≥ D− 1 then we reproduce
the minimum ensemble size suggested in Ref. [3]. But
if L < D − 1, the minimum ensemble size is larger by
2D − 2L − 1, making it equal to Kmin = D2 − 2L + 1.
For all values of L, Kmin ∼ D2 and in the ‘worst’ case, of
L = 1, we find Kmin = D2 − 1 (for D > 2).
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2.1 Q1: Are open quantum systems harder to
track than open classical systems? (Yes)

In order to answer this central question in the affir-
mative, it needs to be proven that there exists a ME
such that K = D states are not sufficient for a PRE to
be formed (Q1). This is because a classical system can
always be tracked with K = D states as the occupation (1
or 0) of each state could, in principle, always be known by
monitoring the environment. It is also of interest to look
for a generic difference in difficulty of tracking quantum
and classical systems. That is, we ask whether K = D is
insufficient in general, for randomly drawn MEs. The com-
putational algebraic technique we use is to obtain Hilbert
Nullstellensatz certificates of infeasibility for examples of
the polynomial system defining PREs. Specifically, our
heuristic (Eq. (4)) suggests that the simplest case to look
at is D = K = 3. By randomly generating some D = 3
MEs, we were able to obtain the necessary certificates and
thus rule out K = 3 PREs for those MEs. Consequently,
we have provided very strong evidence that generically
open quantum systems harder to track than open classical
systems.

2.2 Q2: is an ensemble size of K = (D − 1)2 + 1
always sufficient for a PRE to be found, as
suggested in Ref. [3]? (No)

The heuristic of Eq. (4) suggests that when L < D − 1
more than (D − 1)2 + 1 PRE members are required. To
prove this requires obtaining Hilbert Nullstellensatz for
the relevant polynomial systems. The easiest case to
tackle is D = 3, L = 1, for which Eq. (4) indicates
Kmin = 8. The computational difficulty proved too great
for K = 6, 7, but we were able to obtain Nullstellensätze
for K = 5 ensembles for randomly generated MEs. Given
that (D − 1)2 + 1 = 5 for D = 3, we have thus shown
that (D − 1)2 + 1 ensemble members is not generically
sufficient for a PRE to be found.

2.3 Q3: does our refined heuristic (Eq. (4)) re-
liably predict whether PREs are feasible for
a ME of a given form? (Yes)

Q1 and Q2 were answerable via Nullstellensatz, how-
ever, Q3 requires actually finding some PREs. The com-
pletely generic case was too computationally difficult, so
ME symmetries were introduced in order to reduce the
number of constraints and parameters. The symmetry
consequently changes the relationship between constraints
and parameters and leads to the introduction of a new, but
similar, heuristic. We take evidence supporting the new
heuristic as also being evidence for the original heuristic,
due to their similar derivation and nature. Our examina-
tion consisted of randomly drawing 240 symmetric D = 3
MEs spread over L = 1, 2, 3. The symmetry utilized was
that real-valued density matrices stayed as real-valued
under the ME evolution. The modified heuristic predicts
that PREs are feasible for K = 4 when L > 1. By
utilising the techniques of polynomial homotopy continu-
ation [16, 19], K = 4 PREs were found for some of the
L = 3 MEs, as predicted by the heuristic. L = 2 PREs

were found once further symmetry was introduced, also
consistent with our heuristic.

3 Discussion

In this paper, we have answered a number of open
questions concerning PREs. Most importantly, we now
state that open quantum systems are harder to track
than open classical systems. That is, despite complete
freedom given to the experimentalist, D > 2 quantum
systems generically cannot form PREs with D members.
Furthermore, for small L, the minimally sized ensemble
is generically larger than that for larger L. Our investi-
gations were guided by the formation of a new heuristic
(modifying a previously existing one that did not con-
sider L) describing when the existence of a PRE was
feasible. All obtained results were consistent with this
heuristic, giving us confidence in its most interesting fea-
ture: Kmin ∼ D2, implying a quadratic gap between the
classical and quantum tracking problems.

It is perhaps appropriate to conclude with a differ-
ent perspective on the significance of there being a gap
between D and Kmin. This gap makes open quantum
systems harder to track than open classical systems, as
per our title, but also suggests that there is a resource
associated with an open quantum system. Specifically,
despite only having D internal states, we have shown
that generically, for D > 2, a PRE can represent a fi-
nite classical hidden Markov model having K > D states
and therefore provide can a compression relative to the
classical implementation [20]. It seems likely that this
compression could be arbitrarily large as increasing K
leads to a larger ratio of parameters to constraints. Sim-
ilarly, for a stochastic process with a fixed number of
states that can be mapped to a PRE, a lower internal
entropy implementation is possible as the PRE is com-
prised, in general, of non-orthogonal states [21]. The
relation between these complementary perspectives on
open quantum systems is surely a fruitful topic for future
research.
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Randomness expansion certified by quantum contextuality in a trapped
ion system
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Abstract. The randomness can be certified by observing the violation of quantum contextuality in-
equalities based on the Kochen-Specker theorem. In a single quantum system, one can test contextuality
which significantly simplifies the experimental requirements to observe the violation comparing to the
ones based on nonlocality tests. However, it is not yet resolved how to ensure compatibilities for sequential
measurements that is required in contextuality tests. Here, we employ a modified Klyachko-Can-Binicioğlu-
Shumovsky contextuality inequality, which can ease the strict compatibility requirement on measurements.
On a trapped single 138Ba+ ion system, we experimentally realize self-testing protocol of quantum random
number expansion by observing violation of the contextuality inequality without the detection loopholes.
We perform 1.29 × 108 trials of experiments and extract the randomness of 8.06 × 105 bits with a speed
of 270 bits s−1. Our demonstration paves the way for the practical high-speed spot-checking quantum
random number expansion and other secure information processing applications.

Keywords: randomness expansion, quantum contextuality, self-testing, ion trap

1 Randomness expansion protocol certi-
fied by the KCBS inequality

In this work [1], in order to test contextuality, we im-
ploy the Klyachko-Can-Binicioğlu-Shumovsky (KCBS)
inequality which uses five observables Ai taken ±1 and
shows that there is no hidden variables models in the
smallest dimension d = 3. Based on the original KCBS
inequality

⟨A1A2⟩+⟨A3A2⟩+⟨A3A4⟩+⟨A5A4⟩+⟨A5A1⟩ ≥ −3, (1)

where the five observables A1, A2, . . . , A5 are the pro-
jectors on the axes respectively. The maximal violation
of the inequality (1) is achieved when five state vectors
{|vi⟩} form a regular pentagram as shown in Fig. 1(a).
The connected axes |vi⟩ and |vi+1⟩ are orthogonal, rep-
resenting compatibility of the corresponding observables
Ai and Ai+1. ⟨AiAj⟩ denotes the expectation value of the
observables in the time order of AiAj for the sequential
measurements.

we use modified inequality [2, 3] to reveal quantum
correlations without the requirement of the perfect com-
patibility on sequential measurements, all the imperfec-
tions in control and the disturbances from classical and
quantum noise are characterized and compensated.

⟨χKCBS⟩ = ⟨A1A2⟩+ ⟨A3A2⟩+ ⟨A3A4⟩
+ ⟨A5A4⟩+ ⟨A5A1⟩ − ⟨A1A1⟩ ≥ −4

−(ϵ12 + ϵ32 + ϵ34 + ϵ54 + ϵ51 + ϵ11),

(2)

∗ummark@gmail.com
†xma@tsinghua.edu.cn
‡kimkihwan@mail.tsinghua.edu.cn

where ϵij describes the incompatibility between a same
pair of observables Ai and Aj in different time orders,
AiAj and AjAi:

ϵij = |⟨Aj |AjAi⟩ − ⟨Aj |AiAj⟩| . (3)

We employ a spot-checking protocol [4] to achieve
the first experimental demonstration of the strict ran-
domness expansion with exponential gain. In this sce-
nario, we can expand the randomness from the gener-
ated strings merely based on the experimental observed
data that violate the modified KCBS inequality in a self-
testing manner. According to the definition of Ref. [4],
the score of the KCBS game is given by g ∈ {0, 1}. Thus,
Eq. (2) can be rewritten in the form KCBS game G,

gKCBS = −1

6
(⟨A1A2⟩+ ⟨A3A2⟩+ ⟨A3A4⟩+ ⟨A5A4⟩

+ ⟨A5A1⟩ − ⟨A1A1⟩+ ϵ12 + ϵ32 + ϵ34

+ϵ54 + ϵ51 + ϵ11).
(4)

The classical winning probability is χg = 2/3 while
maximal quantum winning probability is χ′

g = (4
√
5 −

4)/6 ≈ 0.824. The gap between χg and χ′
g enables ran-

domness expansion. Our randomness expansion protocol
is listed as follows:

• Choose a bit t ∈ {0, 1} according to the Binomial
distribution (1− q, q).

• If t = 1 (“game round”), the game G is played with
our device and the output is recorded. Outputs of
game rounds are additionally collected for checking.

• If t = 0 (“generation round”), {1, 2} is given to our
device and the output is recorded.
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• Steps 1-3 are repeated N times.

• Calculate the score gKCBS from all game round
outputs. If gKCBS < χg, then abort. Otherwise,
move to to randomness extraction.

We note that we do not require the perfect compat-
ibility. Instead, we assume approximate compatibility,
which can be quantified by the terms of ϵij and ⟨A1A1⟩ in
(2). Due to those terms, the violation of the inequality of
(2) is getting difficult if two sequential measurements are
deviated from the perfect compatibility. However, in our
scheme, two measurements in a context are performed on
a single system, which makes it impossible to exclude the
possibility that a malicious manufacturer sabotage the
compatibility assumption by registering the setting and
results of the first measurements and using them for the
second measurements. Therefore, our protocol can not be
viewed as a fully-device independent scenario. We need
the trust of the device that the measurement settings are
close enough to be compatible, but it is fine to have im-
perfections in the realization and disturbance from clas-
sical or quantum noisy environments since the amount of
introduced incompatibilities are quantified. Our protocol
is well fitted to a scenario of trusted but error-susceptible
devices. Given these assumptions, the generated random-
ness is certified by only experimental statistics.
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Figure 1: KCBS pentagram and experimental procedure.
(a) Initial state and five axes which form a pentagram in
d=3 space. (b) We first prepare initial |3⟩ state, then
perform two sequential measurements of Ai and Aj .

2 Experimental realization
Although the experimental violations of the KCBS in-

equality has been demonstrated using a single trapped
171Yb+ ion [5], it is not possible to test the modified

KCBS inequality (2) since when we observe fluorescence
in the first measurement, the state is ruined and the sec-
ond measurement is meaningless. In this work [1], we de-
velop a single 138Ba+ ion system to obtain full-correlation
results from the sequential measurements. Our protocol
fully closes detection loophole realizing in a qutrit system
of the 138Ba+ ion by taking advantage of its long-lived
5D5/2 states that can be used for the coherent shelving
of a quantum state during the sequential measurements.
The basic operations are based on quadrupole transitions
between 6S1/2 and 5D5/2 are coherently manipulated by a
narrow-line laser with the wavelength of 1762 nm, which
is stabilized to a high-finesse optical cavity. Fig. 2(a)
shows the qutrit configuration in a 138Ba+ ion.

Fig. 1(b) shows our sequential measurement config-
uration. Each sequential measurement contains a uni-
tary rotation Ui, projective measurement, and an inverse
unitary rotation U†

i . Each unitary rotation Ui is com-
prised of first R2 (θ2i, ϕ2i) then R1 (θ1i, ϕ1i). In projec-
tive measurement, we assign ai = 1(−1) if flourescence is
(not) detected. At each game round, one of 11 measure-
ment configurations {{1, 2}, {2, 1}, {2, 3}, {3, 2}, {3, 4},
{4, 3}, {4, 5}, {5, 4}, {5, 1}, {1, 5}, {1, 1}} is randomly se-
lected. Note that each observable is included in at least
two different contexts, when Alice and Bob receive i and
j, they could not know the setting of the other. Pulse
sequences of two measurements are independently gener-
ated by their own Direct Digital Synthesizer (DDS) and
amplifiers, sent to the acousto-optic modulator (AOM)
through independent paths, and finally applied to the
ion on different time order. The experimental setup is
shown in fig. 2(b).

3 Experimental results
We perform 1.29 × 108 trials of experiments and ex-

tract the randomness of 8.06 × 105 bits with the speed
of 270 bits s−1. The detailed experimental results of the
measurements are summarized in Table 1. Our test prob-
ability is qexp = 10−4 ∼ O((log3Nexp)/Nexp), and the re-
quired amount of initial random seed is O(log4Nexp) bits.
The min-entropy of final randomness is 5.3 × 10−3 per
bit, thus the output random bits is Θ(Nexp), achieving
exponential randomness expansion. All the experimen-
tal data is optimized by calculation based on test data
shown in fig. 3. In real number, we get 6.88× 105 bits of
min-entropy which exceeds 2.35 × 105 bits of input ran-
domness, resulting 4.52×105 net random bits, expansion
rate per round is 3.5× 10−3.
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Figure 2: Experimental setup of the 138Ba+ ion system.
(a) The energy level diagram of a 138Ba+ ion for a qutrit
system, which is represented by two Zeeman sublevels
|mD = +1/2⟩ ≡ |1⟩, |mD = +3/2⟩ ≡ |2⟩ in the 5D5/2

manifold, and |mS = +1/2⟩ ≡ |3⟩ sublevel in the 6S1/2

manifold. The 493 nm and 650 nm lasers are used for
Doppler cooling, EIT cooling, optical pumping and de-
tection. The 614 nm laser is used for depopulation of
5D5/2 level to 6S1/2 level. (b) The experimental setup
of a trapped 138Ba+ ion for testing KCBS inequality and
for the spot checking random number expansion.
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Figure 3: The relation of the score of KCBS game
gKCBS , number of total rounds N , test probability q,
and randomness expansion rate with smoothing param-
eter δ = 10−2. (a) The minimum number of rounds to
have net randomness depending on the score gKCBS . The
minimum N decreases as gKCBS increases. We can get
net randomness only within the shadow area. Our ex-
perimental gKCBS = 0.795 and Nexp = 1.29 × 108 are
shown as the green circle. (b) Randomness expansion
rate at different gKCBS and q for our Nexp. Only with
the combination of large enough gKCBS and proper q can
we obtain net randomness.

Table 1: Experimental results for different observables
and compatibility terms for the KCBS inequality (2).
Total game rounds are 1.2 × 104. The standard devia-
tions of the final result are 0.015 and 0.023 for the single
observables and correlations, respectively, 10−3 order for
the compatibility terms, all as shown in the parenthe-
sis. The standard deviation for the violation σ is 0.068
and our experimental data shows the violation of the ex-
tended inequality (2) with 11 σ.

{i, j} ⟨AiAj⟩ ⟨Ai⟩ ⟨Aj⟩ ϵij
{1,2} -0.768(23) 0.082(15) 0.091(15) 0.005(2)
{2, 1} -0.783(23) 0.096(15) 0.065(15) 0.017(4)
{2, 3} -0.767(22) 0.098(14) 0.088(14) 0.033(5)
{3,2} -0.750(23) 0.107(15) 0.098(15) 0.009(3)
{3,4} -0.773(23) 0.084(15) 0.082(15) 0.019(4)
{4, 3} -0.762(22) 0.122(14) 0.068(14) 0.000(0)
{4, 5} -0.782(23) 0.095(15) 0.075(15) 0.014(3)
{5,4} -0.789(22) 0.056(15) 0.094(15) 0.025(4)
{5,1} -0.773(22) 0.100(14) 0.069(14) 0.000(0)
{1, 5} -0.767(23) 0.109(15) 0.066(15) 0.007(2)
{1,1} 0.977(21) 0.106(15) 0.108(15) 0.001(1)

gKCBS = 4.772(68)/6 = 0.795(11)
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Abstract. Characterising unknown quantum states and measurements is a fundamental problem in
quantum information processing. In this manuscript, we provide a novel scheme to self-test local quan-
tum systems using non-contextuality inequalities. Our work leverages the graph-theoretic framework for
contextuality introduced by Cabello, Severini, and Winter, combined with tools from mathematical opti-
misation that guarantee the unicity of optimal solutions. As an application, we show that the celebrated
Klyachko-Can-Binicioğlu-Shumovsky inequality and its generalisation to contextuality scenarios with odd
n-cycle compatibility relations admit robust self-testing.

Keywords: Self-Testing, Contextuality, KCBS Inequality, Bell Nonlocality

1 Introduction

The deployment and analysis of mathematical models
have been a crucial tool to advance our scientific under-
standing of the physical world. Nevertheless, complex
mathematical models often admit a multitude of possi-
ble solutions, a phenomenon that can lead to ambiguity
and erroneous predictions when the solution of the model
is used to study some real-life problem. Models with no
uniquely-identifiable solutions manifest themselves across
most fields of science and mathematics, typical examples
being the nonuniqueness of solutions to partial differen-
tial equations and the existence of multiple Nash equi-
libria in non-coopearative games. More pertinent to this
work, the uniqueness of the ground state of a Hamilto-
nian is a problem with important engineering applica-
tions. Indeed, quantum annealing crucially relies on the
uniqueness of the ground state of the underlying Hamil-
tonian, which is used to encode the solution of an opti-
mization problem. From a practical standpoint, the noisy
nature of the collected data governing the model selec-
tion process, suggests we should employ “robust” models,
i.e., models that have a unique solution that is moreover
stable under perturbations of the input data. Notwith-
standing the ubiquitousness and importance of problems
related to the unicity and robustness of the solutions of
a given model, there is no general framework allowing to
address these questions in a unified manner.

One of the most extensively used modeling tools in sci-
ence and engineering is mathematical optimization. In
this setting, the model is specified by a family of deci-
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‡avarvits@gmail.com
§warsi.naqueeb@gmail.com
¶adan@us.es
‖cqtklc@gmail.com

sion variables that satisfy certain feasibility constraints.
The goal is then to find the value of the decision vari-
ables that maximizes an appropriate measure of perfor-
mance. Undoubtedly, the most important optimization
model is linear programming, where the decision vari-
ables are scalar variables subject to affine constraints. An
equally important optimization model is semidefinite pro-
gramming (SDP), constituting a wide generalization of
linear programming with extensive modeling power and
efficient algorithms for solving them. Unlike linear pro-
grams, the decision variables in a SDP are vectors, and
the constraints are defined in terms of the inner products
of the vectors. SDPs have many important applications
in physics, e.g. in quantum foundations (Bell nonlocality,
contextuality, steering) [10, 1, 2], quantum information
theory (entanglement witnesses, tomography, quantum
state discrimination) [3, 4, 5], quantum cryptography [7],
and quantum complexity [8], just to mention a few. Most
importantly, the aspect of SDPs that is crucial to this
work is that they offer a general framework for studying
uniqueness and robustness of model solutions.

In this manuscript, we employ the paradigm of iden-
tifiable robust models to characterize untrusted devices
via contextuality. Contextuality refers to the impossi-
bility of reproducing a set of probability distributions,
each of them for a context (defined as a set of compati-
ble and mutually nondisturbing observables), that share
some marginal probabilities with a joint probability dis-
tribution in a single probability space. Quantum theory
is an example of a contextual theory [6]. In this work we
appropriately extend the paradigm of Bell self-testing to
the framework of contextuality. In terms of techniques,
our work leverages the well-known link between contex-
tuality and semidefinite programming identified in the
seminal work by Cabello, Severini, and Winter [1], com-
bined with some less-known results concerning the unic-
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ity and robustness of optimal solutions to semidefinite
programs. Roughly speaking, we show that the nearness-
of-optimality of the CSW semidefinite program bounds
the distance in the SDP-solution space, which in turn
translates into a bound on the distance from the ideal
quantum realization. We believe that the tools employed
in this paper will have value outside of the domain of con-
textuality, e.g., see [9] for a recent application in Bell non-
locality. Our results render new insights into the founda-
tions of quantum contextuality and a proof-of-principle
approach to characterize the underlying quantum states
and measurements manifesting quantum contextuality
via experimental statistics. We provide an innovative
scheme to attest robust self-testing for any noncontextu-
ality inequality and present a concrete illustration for the
case of the generalized KCBS inequality, which is defined
for any odd number of measurement events n ≥ 5.

2 Background and Results (Informal)

We proceed to provide the non-technical version of our
important results and the necessary background. The
technical version of the same can be accessed via the
arXiv link https://arxiv.org/abs/1812.07265. The
contextual nature of a theory can be attested via the
violation of certain linear inequalities, referred to as non-
contextuality inequalities. The maximum quantum value
of the linear expression for a non-contextuality inequal-
ity can be calculated using semidefinite programming. A
semidefinite program (SDP) corresponds to optimizing
a linear function over the cone of positive semidefinite
matrices (of certain fixed size) intersected with an affine
space. SDPs constitute one of the most important mod-
els of mathematical optimization due to their modeling
power and the existence of efficient algorithms for solving
them.

The relevance of SDPs to the study of contextuality is
found in the works of Cabello, Severini and Winter, where
the authors related contextuality with graph theory [1].
It was shown that the classical and quantum bounds on
a non-contextuality inequality can be given by specific
graph theoretic numbers. Moreover, it was shown that
the quantum value of a non-contextuality inequality is
given by a SDP. Concretely, the maximum quantum value
is equal to

max
N∑
i=1

Xii

s.t. Xii = X0i, ∀i ∈ [N ],

Xij = 0, i, j ∈ E,

X00 = 1, X ∈ S1+N
+ ,

(1)

which is a SDP known as the Lovász theta number of the
graph G = (V,E). Here S1+N

+ is a positive semidefinite
matrix with N+1 rows (columns) and [N ] = {1, 2, · · ·N}.
The matrix X is referred to as a “Gram matrix” and can
be used to get back the measurement settings (quantum
projectors) and the quantum state leading to the quan-
tum value.

Based on the tools provided in our technical
manuscript (https://arxiv.org/abs/1812.07265), it
can be established that “Given a non-contextuality in-
equality with the maximum quantum value Bq, if an
experimental arrangement achieves this bound and the
corresponding SDP optimization matrix “X” is unique
then the underlying quantum state and measurements
are unique up to an isometry ”. In technical words, the
non-contextuality inequality admits self testing. More-
over, the self-testing is guaranteed to be “robust”.

Using the tools implemented in the last result, we also
showed that the KCBS inequality and its generalizations
admit robust self-testing.

3 Conclusions

In this work we introduced an appropriate extension of
the notion of Bell self-testing to the framework of contex-
tuality, where the noncontextuality assumption is not en-
forced via locality. In our main technical result, we iden-
tified a sufficient condition for showing that an arbitrary
noncontextuality inequality is a robust self-test. As an
application of our main theorem, we showed that the cel-
ebrated KCBS noncontextuality inequalities are robust
self-tests. Our main theorem is not restricted to KCBS
inequalities and can be used to self-test other noncon-
textuality inequalities, given they satisfy the necessary
conditions; this will the be the topic of future investiga-
tions. Equally important, our proof techniques leverage a
largely unnoticed connection between unicity problems in
physics with uniqueness properties of optimization prob-
lems, which we believe will be of independent interest to
the physics community.
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Abstract. Uncertainty principle bounds the uncertainties about incompatible measurements, clearly setting quan-
tum theory apart from the classical world. Its mathematical formulation, uncertainty relation, plays an irreplaceable
role in quantum technologies. However, neither uncertainty principle nor uncertainty relation can fully describe
the complementarity between quantum measurements. As an attempt to advance the efforts of complementarity
in quantum theories, we formally propose a complementary information principle, significantly extending the one
introduced by Heisenberg. First, we build a framework of black box testing consisting of pre- and post-testing with
two incompatible measurements, introducing a rigorous mathematical expression of complementarity with definite
information causality. Second, we provide majorization lower and upper bounds for the complementary information
by utilizing the tool of semidefinite programming. In particular, we prove that our bounds are optimal under ma-
jorization due to the completeness of majorization lattice. Finally, as applications of our framework, we present a
general method to outer-approximating all uncertainty regions and also establish fundamental limits for all qualified
joint uncertainties.
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1 Introduction
Backgrounds: Uncertainty principle unfolds a central mys-
tery of quantum theory, namely complementarity [1]—a given
physical attribute can only be revealed at the price of another
complementary attribute being suppressed. As a more general
concept, complementarity can also be exhibited through other
“duality paradox”, such as wave-particle duality. The arise of
complementarity differentiates quantum theory from its clas-
sical counterpart, leading to a plethora of applications such
as entanglement detection [3–6], Einstein-Podolsky-Rosen
(EPR) steering detection [7–12] as well as quantum key dis-
tribution [13–15].

In recent developments, the study of uncertainty relations
becomes a main approach to explore the complementarity
of measurements. A series of efforts have been devoted to
seeking the optimal bounds on uncertainty relations for given
specific uncertainty measures, such as Shannon or Rényi en-
tropies [16–40]. However, there is no doubt that the com-
plete information of the physical attributes of incompatible
measurements should be fully preserved in the set of their
outcome probability vectors [41]. Inevitable losses of infor-
mation will occur whenever we project a high dimensional
probability vector to its one-dimensional entropic values. To
have a full-scale understanding of complementarity between
incompatible measurements and to be able to find more prac-
tical applications, it is of great importance to consider a more
general framework, in which the complementary information
remains undistorted.
Outline of results: In this work, we establish a new frame-
work of complementary information principle, characteriz-
ing the trade-off between incompatible measurements with re-
spect to their outcome probability vectors. Our main contri-
butions can be outlined as follows:
∗mathxiao123@gmail.com
†kf383@cam.ac.uk
‡gour@ucalgary.ca

1. We introduce the notion of marginal majorization
and provide majorization lower and upper bounds for
the complementary information between incompatible
measurements by utilizing the tool of semidefinite pro-
gramming. In particular, we prove that our bounds are
optimal under majorization by using the completeness
of majorization lattice.

2. We introduce the universal uncertainty region based on
the complementary information principle and demon-
strate its application to outer-approximating uncertainty
regions with any given uncertainty measures in gen-
eral [42], in contrast to previous developments which
only restricted to specific uncertainty measures [43] or
weak measures [44, 45]. The generality and efficiency
of our approach make it suitable as a benchmark for the
forthcoming research on uncertainty regions.

3. Finally, we discuss another application of our frame-
work in bounding general forms of joint uncertainties.
Our method works for all quantified joint uncertainty
measures and provides strong supports for finding their
fundamental limits.

The technical version of this work is attached after the ex-
tended abstract.

2 Details of Results
2.1 Complementary Information Principle

The basic task of black box testing is shown in Fig. 1. An
unknown black box prepares two independent and identically
distributed resources ρ, which are being tested by incompat-
ible measurements M and N chronologically. Without loss
of generality, we assume that the test with M (a.k.a. pre-
testing) is performed first. After that, we do the test with N
(a.k.a. post-testing). Each test is performed repeatedly, re-
turning us an outcome probability distribution. Prior to the
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Figure 1: Diagram of black box testing. Two independent and
identically distributed resources ρ is prepared by an unknown
black box. After the preparation, two test with incompatible
measurements M and N are being preformed chronologically.

test, the knowledge associated with the outcomes is the “un-
certainty” of the measurement. Once the test is completed and
its outcome is physically observed, this knowledge turns into
our “information gain” of the same measurement. The fol-
lowing discussion will focus on the study of complementarity
between the information gain from the pre-testing and the un-
certainty of post-testing before it is actually performed. Sup-
pose the outcome probability distribution from the pre-testing
is given by p. Since the post-testing will be performed over
the same quantum state, its outcome is necessarily confined
by the information gain p we obtained. We denote the set of
all possible outcome q from the post-testing as Q(M,N,p).

To exhibit the complementarity study quantitatively, we in-
troduce the right-majorization (p1,q1) ≺R (p2,q2) if p1 = p2
and q1 ≺ q2, interpreting that two sets of black box testing ad-
mit the same pre-testing outcome while the first post-testing
outcome is more uncertain than the second one. The left-
majorization can be similarly defined as (p1,q1) ≺L (p2,q2) if
q1 = q2 and p1 ≺ p2. Both ≺R and ≺L are called marginal ma-
jorizations, which is more informative than ≺ in our context.

Based on the notion of marginal majorizations, we are now
in a position to quantify the complementarity. Due to the fact
that a probability simplex with majorization forms a complete
lattice [46, 47], then any possible q ∈ Q must be confined
within two unique probability vectors r, t. The following the-
orems establish an explicit construction of the optimal choices
of r and t.

Theorem 1. Let M = {|u j〉}
n
j=1 and N = {|v`〉}n`=1 be the mea-

surements of pre- and post-testing respectively. If the outcome
probability of M is given by p = (c j)n

j=1, then any outcome
probability q of N is bounded as (p, r) ≺R (p,q) ≺R (p, s)
where r and s can be explicitly computed via semidefinite pro-
grams. Their explicit forms are given in the technical version
attached.

An intuitive understanding of this result can be illustrated
in terms of Lorenz curves. Denote the Lorenz curve of q as
L(q). Then the majorization relation x ≺ y can be geometri-
cally interpreted as L(x) laying everywhere below L(y). To
find the optimal r and t such that r ≺ q ≺ t for all q ∈ Q
is equivalent to find the tightest Lorenz curves bounding L(q)
from below and above for all q ∈ Q, respectively. The lower
bound r can be shown as optimal. To obtain the optimal upper
bound, it suffices for us to perform an additional flatness pro-
cess [48]. Denote t as the probability vector after performing

the flatness process on s. Then the bounds r and t can be en-
sured as optimal for the set Q under the order of majorization.

Theorem 2. Based on the same settings in Theorem 1, for any
probability vectors x and y such that x ≺ q ≺ y for all q ∈ Q,
it holds x ≺ r ≺ q ≺ t ≺ y.

Our results inspire a new form of “information causal-
ity” [49]: the information that an observer can gain from a
state in the past confines the uncertainty associated with the
same state in the future. In other words, the physical attribute
of the uncertainty associated with N can only be exhibited
at the expense of information gained from M. One extreme
case is that without any information gain from the pre-testing,
our majorization bounds lead to the trivial result for the post-
testing, i.e. (1/n, 1/n, . . . , 1/n) ≺ q ≺ (1, 0, . . . , 0). Another
extreme case is Heisenberg’s uncertainty principle, which cor-
responds to the situation where we obtain an outcome from
pre-testing with certainty. That is, the outcome probability
vector p has one entry equal to 1 and 0 otherwise. Calculation
of our upper bound gives us q ≺ t , (1, 0, . . . , 0) indicat-
ing the uncertainty of the measurement N. For this reason,
our complementary information principle (Theorem 1) signif-
icantly extends the one by Heisenberg, providing a much more
complete characterization of the complementarity between in-
compatible measurements.

2.2 Universal Uncertainty Regions
Since the pioneering work of Deutsch [16], much has been

done in the direction of lower-bounding the joint uncertain-
ties f (p(ρ)) + g (q(ρ)) > b, where p(ρ) and q(ρ) are outcome
probability distributions of the pre- and post-testing on state ρ
respectively, and f , g are valid uncertainty measures. In the
case of uncertainty region

R( f , g) :=
⋃
ρ

{
( f (p(ρ)) , g (q(ρ)))

}
, (1)

the relation f (p(ρ)) + g (q(ρ)) is nothing but a strainght line
with slope −1 in the coordinate plane of ( f (p), g(q)), and its
optimal lower bound b = minρ { f (p(ρ)) + g (q(ρ))} is then
achieved at the tangent line to the bottom left of R( f , g) as
shown in Fig. 2. Namely the description of uncertainty re-
gions can be much more informative than uncertainty rela-
tions. However, no efficient method is known to characterize
the region R ( f , g) in general. As an application of the ma-
jorization bounds in Theorem 1 and 2, we can provide a gen-
eral approach for outer-approximations.

Consider the statistics set R :=
⋃
ρ

{
(p(ρ),q(ρ))

}
in Rn ×

Rn by collecting all compatible pairs of pre- and post-testing
outcome probabilities. Note that the set of all quantum states
ρ can be divided into equivalent classes based on the outcome
probability p of pre-testing. Then R can be fine-grained as

R =
⋃

p∈Sn

Rp, with Rp :=
{
(p,q) : q ∈ Q(M,N,p)

}
, (2)

where Sn := {x ∈ Rn :
∑

i xi = 1, xi ≥ 0,∀i} is the probability
simplex of dimension n. For any fixed p, the majorization
bounds r, t set a boundary for the set Q(M,N,p). Thus we
have the relaxation

Rp ⊆ R̃p, with R̃p :=
{
(p,q) : r ≺ q ≺ t

}
. (3)
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As a consequence, by taking the union with respect to p, we
have the relaxation of the whole region,

R ⊆ R̃ with R̃ :=
⋃

p∈Sn

R̃p. (4)

Finally, any uncertainty regionR( f , g) can be retrieved by pro-
jecting R from Rn×Rn to R×R via the uncertainty measures f ,
g, and the projection of R̃ will give us an outer-approximation
of R( f , g) accordingly. Since R̃ can be used to generate an ap-
proximation of uncertainty region with any measures, we thus
name it a universal uncertainty region. We emphasize that this
universal region R̃ as well as its projections can be explictly
depicted by running p over the probability simplex, which is
significantly more tractable than characterizing R by taking ρ
over the set of all quantum states.

Theorem 3. Let M = {|u j〉}
n
j=1 and N = {|v`〉}n`=1 be the

measurements of pre- and post-testing respectively. For any
uncertainty measures f for M and g for N, their uncer-
tainty region is outer-approximated as R ( f , g) ⊆ R̃ ( f , g) with
R̃ ( f , g) :=

{
( f (p), g(q)) : (p, q) ∈ R̃

}
. In particular, the

outer-approximation is tight R ( f , g) = R̃ ( f , g) when n = 2.

Note that for any given pre-testing outcome probability p,
the majorization bounds r and t can be computed explicitly.
Combining the Schur-concavity of the uncertainty measure g,
the fine-grained outer-approximation can be simplified as

R̃p ( f , g) = {( f (p) , y) | g(t) 6 y 6 g(r)} . (5)

By running p over the probability simplex, we can explic-
itly depict the whole region R̃( f , g). A schematic diagram is
given in Fig. 2, which legibly explains how our approximation
method works. It is also worth mentioning that our results can
also be easily generalized to multiple testings.

Due to the generality of our approach, the approximation
is not guaranteed to work well for every uncertainty mea-
sures. But we should stress that our approximation can be
computed explicitly and is valid for any eligible uncertainty
measures, liberating us from specific forms of uncertainty re-
lations. More importantly, this is the first efficient method to
approximating uncertainty regions in general, which can be
used as a benchmark for future works.

2.3 Fundamental Limits for Joint Uncertainties
As another illustration of the generality of our framework,

we study the joint uncertainties given by the most general
measure J : Rn × Rn → R for a pair of probability vec-
tors (p,q) ∈ R [42]. Such a measure includes the usual
forms f (p) + g(q), f (p)g(q), f (p ⊗ q) and f (p ⊕ q) as spe-
cial cases. To capture the essential properties of a mea-
sure of joint uncertainties, it has been argued in [42] that J
should meet the following postulates : (i) Non-negativity:
J(p,q) > 0; (ii) Monotonicity under randomly relabelling:
J(D1p,D2q) > J(p,q) for all doubly stochastic matrices D1
and D2. The characterization of the joint uncertaintiesJ(p,q)
is crucial in the study of quantum information and quantum
measurements, leading to a plethora of applications [3–12].
In particular, any state-independent lower bound b of J(p,q)

f (p)

g(q)0

b

min
ρ
{ f (p) + g(q)}(:= b)

f (p) + g(q) > b

g(r)

g(t)
outer-approximation R̃ ( f , g)

outer-approximation R̃p ( f , g)
fine-grained

uncertainty region R ( f , g)

Figure 2: (color online) A schematic diagram depicts
the uncertainty region R ( f , g) (magenta) with its outer-
approximation R̃ ( f , g) (cyan), and the fined-grained outer-
approximation R̃p ( f , g) (orange). The optimal uncertainty re-
lations f (p) + g(q) > minρ{ f (p) + g(q)} is tangent to the left
lower boundaries of R ( f , g).

leads to a uncertainty relation J(p,q) > b while any state-
independent upper bound a of J(p,q) gives us a reverse un-
certainty relation a > J(p,q). A natural question is to ask
how to find a and b for joint uncertainties J(p,q) in general.

By associating Hardy-Littlewood-Pólya theorem [50],
which states that two probability vectors x ≺ y if and only
if x = Dy for some doubly stochastic matrix D, with our
marginal majorization bounds from Theorem 1 and 2, we es-
tablish the state-independent bounds a > J(p,q) > b with

a := min
{

max
p∈Sn

J(p, r),max
q∈Sn

J(u,q)
}
,

b := max
{

min
p∈Sn
J(p, t),min

q∈Sn
J(v,q)

}
. (6)

In particular, the bounds a and b are tight for the qubit case.
More remarkably, our method works for all quantified joint
uncertainty measures and provides strong supports for finding
their fundamental limits.
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in the manipulation of quantum coherence
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Abstract. Although quantum coherence plays a fundamental role in enabling quantum advantages
in technological applications, the operational rules governing its manipulation are still not very well
understood. Here, we investigate the operational capabilities of the dephasing-covariant incoherent
operations (DIO), the largest class of quantum channels which can neither create nor detect coherence, in
efficiently manipulating quantum coherence as a resource. We first show that pure-state transformations
under DIO are completely governed by majorization, establishing for the first time necessary and sufficient
conditions for such transformations, and showing that DIO forms another class of operations in which
majorization plays a vital role. We then propose an operationally-motivated extension of the set DIO,
the input-dependent class ρ-DIO, and characterize its capabilities. We show that, although ρ-DIO cannot
detect the coherence of input state ρ, they can distill more coherence than DIO. Curiously, the advantage
disappears at the asymptotic level, where both sets of operations achieve the same performance, thus
establishing ρ-DIO as a good operational substitute for DIO.

Keywords: Quantum coherence, Quantum resource theories, One-shot quantum information theory

1 Introduction
Quantum coherence, or superposition, is an intrin-

sic feature of quantum mechanics which underlies the
advantages enabled by quantum information process-
ing and quantum technologies [1]. The resource theory
of quantum coherence [1–4] has found extensive use in
the characterization of our ability to manipulate coher-
ence efficiently within a rigorous theoretical framework,
wherein the properties of a resource are investigated
under a suitable set of allowed (“free”) operations which
reflect the constraints placed on the manipulation of the
given resource [5, 6]. Despite many promising develop-
ments in the establishment of a comprehensive theory
of coherence, the constraints on its manipulation are
not clear [1, 7, 8] — in particular, no compelling set
of physically-motivated assumptions managed to single
out a unique class of free operations under which the
operational features of coherence should be investigated,
mirroring the fundamental role of local operations and
classical communication in the resource theory of en-
tanglement [9]. This has motivated the definition and
characterization of a multitude of possible sets of free
operations, and sparked efforts to compare their opera-
tional power [7, 8, 10–25].
Many proposed types of free operations stem from

meaningful physical considerations: these include the
physically incoherent operations [7], which only require
the use of incoherent ancillary systems and incoherent
measurements, making them very easily implementable;
the strictly incoherent operations [4, 12], which allow for
a similar implementation with an incoherent ancilla; or
the genuinely incoherent operations [14], which preserve
any incoherent state. However, these operations were
found to be very limited in their operational capabilities
[14, 26, 27], suggesting that any non-trivial and useful
resource theory of coherence would require a larger set of
allowed maps. It therefore remains to uncover the exact
capabilities of different sets of operations, establishing
the ultimate limits on our power to manipulate quan-
tum coherence while bound by the resource-theoretic

restrictions.
Out of the many choices of operations, the study of

operations based on dephasing covariance has recently
attracted significant attention due to their strong physi-
cal justification and considerable operational power [7,
8, 15, 18–20, 22, 23]. In this work, we characterize the
operational capabilities of such dephasing-covariant
incoherent operations (DIO) [7, 8], which constitute
the largest class of channels which can neither create
nor detect (use) coherence and can be considered to be
inherently “classical” operations [23, 28]. We establish
for the first time a complete description of pure-state
transformations under these operations by relating them
with the theory of majorization, revealing also an opera-
tional connection between DIO and various other classes
of free operations. We then introduce an extension of
the class DIO, the input-dependent ρ-DIO, and char-
acterize its properties in coherence manipulation. We
show in particular that it satisfies a curious property:
even though ρ-DIO cannot detect the coherence of the
state ρ, they can still distill more coherence from ρ than
the class DIO; however, this advantage disappears in
the asymptotic limit, where DIO again match the capa-
bilities of ρ-DIO. Our results provide novel insight into
the operational power of free operations in the manipu-
lation of coherence, shedding light on the capabilities of
dephasing-covariant channels in state transformations,
and in particular suggest that ρ-DIO — a structurally
simpler class of channels than DIO — can be employed
as a substitute for DIO without sacrificing its physical
relevance. The results provide insight into the structure
of the physical constraints on coherence manipulation
and establish new connections in the operational descrip-
tion of quantum coherence.

1.1 DIO and ρ-DIO
Quantum coherence is inherently a basis-dependent

concept. We will therefore fix an orthonormal basis
{|i〉}di=1 which we deem incoherent, and use I to de-
note the set of all states diagonal (incoherent) in this
basis. We will use ∆(·) =

∑
i |i〉〈i| · |i〉〈i| to denote the
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completely dephasing channel in this basis.
The class of operations MIO is defined to consist of

all maps which do not create coherence in the sense that
σ ∈ I ⇒ Λ(σ) ∈ I. Due to their inability to create co-
herence, it can be regarded as the largest possible class
of free operations. However, it satisfies some undesirable
properties such as being able to increase the diagonal
rank of a pure state [13]: a two-level superposition∑2
i=1 ψi |i〉 can be mapped with MIO to a multi-level

superposition
∑3
i=1 φi |i〉, which could be regarded as

effectively increasing the strength of the coherence con-
tained in the state. To circumvent this problem, more
restricted choices of operations can be defined. One such
class are the precisely DIO, defined to be all maps which
commute with the completely dephasing channel, i.e.
Λ ◦∆(ρ) = ∆ ◦ Λ(ρ) ∀ρ. The crucial difference between
MIO and DIO is that DIO neither create nor detect co-
herence, in the sense that measurement statistics under
any incoherent measurement remain unaffected by the
DIO operation Λ: we have 〈i|Λ(ρ)|i〉 = 〈i|Λ(∆(ρ))|i〉
for all i. These operations have previously been con-
sidered in various contexts [15, 28], and indeed they
admit several interpretations. The operations DIO can
be regarded as inherently classical [23, 28], as any clas-
sical (incoherent) observer is unable to distinguish Λ(ρ)
from Λ ◦∆(ρ), and hence is unable to say whether the
coherence of ρ has been employed in the process. The
latter point shows that DIO can also be understood as
the operations which do not use coherence [12], as the
properties of the output system accessible to a classical
observer are independent of the coherence of the input.

The ability to detect coherence is of particular impor-
tance in practical setups relying on quantum coherence,
such as general interferometric experiments [12, 23, 29].
A general interferometric protocol can be understood as
consisting of three separate parts: first, a state in super-
position is created; second, path-dependent phases are
encoded in the state with suitable unitary operations;
and third, the information about the paths is extracted
in a measurement. It is then explicit that the ability
to create (in the first step) and detect (in the last step)
coherence are crucial for any such setup to work, and
indeed any operation which can neither create nor detect
coherence is inherently free and cannot be used in such
an experimental protocol.

However, consider now a scenario in which the input
coherent state ρ of a protocol is known: the operations
which cannot detect the coherence of the input state are
then precisely those which satisfy Λ◦∆(ρ) = ∆◦Λ(ρ) for
this choice of ρ, and indeed it is not necessary to impose
dephasing-covariance for all quantum states if one is
concerned with detecting the coherence of ρ specifically.
This point of view motivates us to define the class of
ρ-dephasing covariant incoherent operations (ρ-
DIO), which we take to be the operations which commute
with the dephasing channel ∆ for a given input state ρ.

It is clear that a ρ-DIO map can in principle create
or detect coherence when acting on an input state other
than ρ. However, the definition of ρ-DIO is justified
whenever one deals with an explicit protocol which trans-
forms a fixed input state to some desired output. Two of
such protocols form the foundations of the manipulation

of coherence as a quantum resource: these are the tasks
of coherence distillation [4, 19, 25], which aims to con-
vert a given input state to a maximally coherent state,
as well as coherence dilution [4, 18], which performs the
opposite transformation of a maximally coherent input
state to some desired state. The definition of ρ-DIO then
motivates the question: can the operational capabilities
of DIO be surpassed by operations which do not detect
the coherence of ρ? To address this question, we first
describe the transformations achievable under DIO, and
later investigate whether ρ-DIO can outperform DIO.

2 Transformations under DIO
Although a fundamental and operationally meaningful

choice of operations, the class DIO is relatively unex-
plored, and few of its properties are known. Other
sets of operations are better understood: in partic-
ular, it is known that the transformations of pure
states under the classes of incoherent operations (IO)
[3] and strictly incoherent operations (SIO) [4, 12]
are governed by majorization theory, in a similar way
to the manipulation of pure-state entanglement un-
der local operations and classical communication [30].
Precisely, one has that a pure-state transformation
|ψ〉 =

∑
i ψi |i〉 → |φ〉 =

∑
i φi |i〉 is achievable under

IO or SIO if and only if ∆(ψ) ≺ ∆(φ) [13, 31, 32], i.e.
if
∑k
i=1 |ψi|2 ≤

∑k
i=1 |φi|2 ∀k ∈ {1, . . . , d} where we

assume that the coefficients of the states are arranged
so that |ψ1| ≥ . . . ≥ |ψd|. Our first contribution is to
extend this relation to the class DIO.

Theorem 1 The deterministic pure-state transforma-
tion ψ → φ is possible under DIO if and only if
∆(ψ) ≺ ∆(φ).

This establishes DIO as another class of operations in
which pure-state transformations are fully governed by
majorization theory, and reveals an operational equiva-
lence between DIO, IO, and SIO in manipulating pure
states. The equivalence is non-trivial: for example, there
exist coherence monotones which can increase under DIO
despite always decreasing under the action of SIO/IO
[33].
The Theorem immediately lets us apply a plethora

of results to coherence manipulation under DIO. For
instance, the recent investigation of moderate-deviation
interconversion rates under majorization in [34, 35] al-
lows one to precisely characterize DIO transformations
beyond the single-shot regime; similarly, a recent inves-
tigation of quantum coherence fluctuation relations [36]
relies purely on the theory of majorization, and our result
immediately establishes that the results can be directly
applied to describe the fluctuations and battery-assisted
transformations under DIO operations.

The result can also be extended to so-called heralded
probabilistic transformations, where a state |ψ〉 is trans-
formed to one of the states {|φj〉} with a correspond-
ing probability pj , and the information about the final
state is encoded onto a classical flag register; one can
show that this is possible under DIO if and only if
∆(ψ) ≺

∑
j pj∆(φj). This again establishes an equiva-

lence between DIO, IO, and SIO in such transformations.

183



3 Coherence manipulation with ρ-DIO
The existence of a ρ-DIO transformation between

states ρ and ω is equivalent to the existence of a quantum
channel Λ such that Λ(ρ) = ω and Λ(∆(ρ)) = Λ(∆(ω)).
This has strong connections with the concept of relative
majorization [37–39], and could perhaps suggest that
majorization will also play a role in ρ-DIO transforma-
tions, making them no more powerful than DIO. We
will show that this in fact not the case. To investigate
this problem, we now focus on the fundamental tasks of
distillation and dilution.

3.1 Distillation
The ε-error one-shot distillable coherence under the

class ρ-DIO is defined to be the maximal size of the
maximally coherent state |Ψm〉 =

∑
i

1√
m
|i〉 achievable

under a single ρ-DIO transformation; formally, we have

C
(1),ε
d,ρ-DIO(ρ) :=log max

{
m
∣∣∣ max
Λ∈ρ-DIO

F (Λ(ρ),Ψm)≥1−ε
}
.

Our first result exactly characterizes this quantity in
terms of the hypothesis testing relative entropy Dε

H [40]

Dε
H(ρ||X) :=−log min{TrMX | 0≤M≤1, 1−TrMρ ≤ε}.

In particular, we have the following.

Theorem 2 The one-shot distillable coherence under
ρ-DIO for any input state ρ is given by

C
(1),ε
d,ρ-DIO(ρ) = bDε

H(ρ‖∆(ρ))clog , where bxclog = logb2xc.

This explicitly shows a very intuitive property of the
class of operations ρ-DIO: the more distinguishable a
state ρ is from its dephased version ∆(ρ), the more
coherence we can extract from it using ρ-DIO.

Of particular importance will be the case ε = 0, that
is, exact deterministic distillation of coherence. In par-
ticular, combining the results of Thm. 1 and 2, we have
the following.

Corollary 3 A pure state |ψ〉 =
∑
i ψi |i〉 can be deter-

ministically transformed to |Ψm〉 under DIO iff

max
i
|ψi|2 ≤

1

m
, (1)

while the transformation is possible under ψ-DIO iff

〈ψ|∆(ψ)|ψ〉 =
∑
i

|ψi|4 ≤
1

m
. (2)

The above allows us to easily construct examples of
states such that, even though |ψ〉 → Ψm is impossi-
ble under DIO, the transformation can be achieved
by ψ-DIO. Consider for example the state |ψ〉 :=(√

5
8 ,
√

3
16 ,
√

3
16

)T
, for which it can be verified that

∆(Ψ2) � ∆(ψ), which means the transformation |ψ〉 →
|Ψ2〉 is impossible by DIO (and in fact by all MIO [19]).
However, we easily compute

∑
i |ψi|4 = 59

128 <
1
2 and so

C
(1),0
d,ψ-DIO(ψ) = 1 and hence one coherence bit Ψ2 can be

distilled exactly. This explicitly shows an operational
advantage provided by the operations ρ-DIO over DIO
in state transformations and in particular in coherence
distillation. Such an advantage is rather surprising: to

any classical observer, the distillation protocol is indis-
tinguishable from a classical operation, yet it can distill
more coherence than even the powerful class MIO.
However, consider now the many-copy scenario in

which we have access to multiple copies of the given
state ρ and perform joint quantum operations on the
composite system ρ⊗n. In the asymptotic independent
and identically distributed (i.i.d.) limit, one can then
define the distillable coherence under ρ-DIO as

C∞d,ρ-DIO(ρ) = lim
ε→0

lim
n→∞

1

n
C

(1),ε
d,ρ⊗n-DIO(ρ⊗n). (3)

A simple application of Thm. 1 together with the
quantum Stein’s lemma [41, 42] reveals that we have
in fact C∞d,ρ-DIO(ρ) = S(ρ‖∆(ρ)), that is, the rela-
tive entropy of coherence S(ρ‖∆(ρ)) characterizes the
asymptotic rate of coherence distillation under ρ-DIO.
But it is known already that under DIO we also have
C∞d,DIO(ρ) = S(ρ‖∆(ρ)) [19, 20], which means that ρ-
DIO do not perform any better than DIO in the asymp-
totic limit. Taking into consideration the operational
gap between the operations DIO and ρ-DIO in single-
shot transformations, the asymptotic result can be quite
surprising, since it effectively shows that the advantage
provided by ρ-DIO over DIO will be relatively minor
and will disappear completely at the asymptotic level.

3.2 Dilution
Consider the case when one wants to transform a

maximally coherent state Ψm into a general state ρ,
using a Ψm-DIO protocol. The one-shot coherence cost
is given by

C
(1),ε
c,Ψm-DIO(ρ) :=log min

{
m
∣∣∣ max
Λ∈Ψm-DIO

F (Λ(Ψm), ρ)≥1−ε
}
.

To characterize this quantity, we will consider the coher-
ence monotone [13]

R∆(ω) := min

{
λ

∣∣∣∣ ω + λσ

1 + λ
∈ I, σ ∈ D, ∆(σ) = ∆(ρ)

}
.

It is easy to verify that R∆(Λ(ω)) ≤ R∆(ω) for any
ω-DIO operation Λ. Using this quantity, we have the
following.

Theorem 4 The one-shot coherence cost under
Ψm-DIO operations is given by C

(1),ε
c,Ψm-DIO(ρ) =⌈

log min
{
R∆(ω) + 1

∣∣∣ ω ∈ D, F (ρ, ω) ≥ 1− ε
}⌉

log
.

Interestingly, combining the above with the results ob-
tained previously for DIO [18], we have that

C
(1),ε
c,DIO(ρ) = C

(1),ε
c,Ψm-DIO(ρ); (4)

that is, the operations Ψm-DIO provide no advantage
over DIO whatsoever. Combining this with the fact
that the asymptotic coherence cost under DIO is given
exactly by S(ρ‖∆(ρ)) [20], we have that the relative
entropy between ρ and ∆(ρ) completely characterises
the asymptotic transformations under ρ-DIO.

The monotone R∆ can in fact characterize state trans-
formations under ρ-DIO which go beyond coherence
distillation and dilution; in particular, we have that if
R∆(ω) + 1 ≤ 1/Tr ρ∆(ρ), then there exists a ρ-DIO
map such that Λ(ρ) = ω. Several other conditions char-
acterizing general transformations under ρ-DIO can be
obtained in a similar way.
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Accuracy enhancing protocols for quantum clocks

Yuxiang Yang, Lennart Baumgärtner, Ralph Silva, and Renato Renner
Institute for Theoretical Physics, ETH Zürich, Switzerland

The accuracy of the time information generated by clocks can be enhanced by allowing them to
communicate with each other. Here we consider a basic scenario where a quantum clock receives
a low-accuracy time signal as input and ask whether it can generate an output of higher accuracy.
We propose protocols that, using a clock with a d-dimensional state space, achieve an accuracy
enhancement by a factor d (in the limit of large d). If no feedback on the input signal is allowed, this
enhancement is temporary. Conversely, with feedback, the accuracy enhancement can be retained
for longer. The protocols may be used to synchronise clocks in a network and define a time scale
that is more accurate than what can be achieved by non-interacting clocks.

For the full article, see arXiv:1905.09707.
That progress in quantum technologies is commonly

accompanied by progress in high-precision time-keeping,
as witnessed again recently [1, 13, 14], is not a coinci-
dence. There are indeed fundamental reasons why the
use of quantum phenomena enables more accurate time
measurements than purely classical means [2, 9]. One
of these reasons is of information-theoretic nature — a
quantum clock with a d-dimensional state space can hold
log2 d qubits of information about time, whereas a corre-
sponding classical clock only holds log2 d classical bits.

From the viewpoint of information theory, it is natural
to study clocks both individually and in scenarios where
multiple clocks can communicate with each other and
hence exchange information about time. This is prac-
tically relevant, since networks of clocks are commonly
used to define a time scale that is more reliable than what
any individual clock could achieve.1 Furthermore, it is
known that the accuracy of frequency measurements can
be enhanced with correlated quantum systems [2, 9]. In
future networks of quantum clocks, this fact may be ex-
ploited to define a highly accurate global time scale [11].

Here we study a basic task that a clock may carry out
within such a communication scenario: the enhancement
of time information (see Fig. 1). More precisely, we con-
sider a setup where one clock, the Enhancing Clock (EC),
receives information from another clock about what time
it is. Combining this input with internal information,
the EC is supposed to output more accurate information
about what time it is. For this, it may also send feed-
back to the clock that generates the input. We note that,
while this scenario merely involves two clocks, it serves
as a building block for larger clock networks.

The concept of enhancing time information also plays a
crucial role for operating individual high-precision clocks,
such as atomic clocks [4, 13, 14]. In a caesium clock,
for instance, one may regard the gas of caesium atoms
as the EC, which receives an input, in the form of a

1 The International Atomic Time, which serves as a basis for the
Coordinated Universal Time (UTC), is defined as an average of
the reading of approximately 400 atomic clocks, with a weighting
that depends on the measured stability of the individual clocks.

microwave signal, from an electronic oscillator (e.g., a
crystal oscillator), and also feedbacks to this oscillator.
Radio clocks also fall into this scheme. They receive time
signals sporadically (e.g., once an hour), which they use
in combination with an internal quartz crystal to output
a continuous time signal.

As already noted, the ability of clocks to generate ac-
curate time information is related to their size, measured
in terms of the dimension d of their state space — the
larger d is, the more accurate the clock can be [17, 19].
In this work we show that this is also the case for the
task of enhancing time information. Specifically, we pro-
pose protocols which allow an EC of size d to enhance
the accuracy of an input signal up to a factor of d. These
protocols make use of the effect that quantum systems
can evolve in a reversible fashion without any dissipation,
allowing them to outperform basic classical protocols.

Quantifying Accuracy — For our purposes, a clock
is a quantum system that autonomously emits informa-
tion about time. We suppose that this time information
comes in the form of ticks, which subdivide time into

FIG. 1. Accuracy enhancement. The enhancing clock
(EC) receives a clock signal from an input clock (IC) and pro-
duces an enhanced clock signal as output. The performance
of the protocol can be further improved when feedback on the
input clock is allowed.
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2

intervals [17].2

To motivate the definition that follows for an accuracy
measure operationally, we note that the ticks emitted by
a clock can be used to time-tag events. The tick that
is generated before all the others is taken as a starting
point, and we therefore refer to it as the 0-th tick. If
an event occurred before the j-th tick, we tag it with
“j − 1”, and if it occurs after, we tag it with “j”. For
a perfect clock, whose ticks occur at fixed times, this
tagging is deterministic and, in this sense, unambiguous.
This is no longer the case for an imperfect clock, where
the exact emission time Tj of the j-th tick can be random.
Nevertheless, we may define a (1− ε)-confidence interval
Cj of time for each tick j, demanding that Cj contains Tj
except with a fixed probability ε > 0. Whenever an event
lies either before or after the interval Cj , the distinction
between tag “j − 1” and “j” would still be unambiguous
with confidence at least 1 − ε. Only events that occur
within the interval Cj would be more likely to be classified
erroneously.

Following this idea, we may introduce a family of inac-
curacy measures, Σj(ε), parameterised by ε ∈ [0, 1] and
j ∈ N. Roughly, Σj can be interpreted as the fraction of
events for which the time tag “j” may be ambiguous, i.e.,
events that lie within the interval Cj , among all events
that occur between the (j − 1)-th and the j-th tick.

Definition 1 (Inaccuracy). For any desired confidence
level 1− ε, the ε-inaccuracy of the j-th tick is defined as

Σj(ε) := inf
Cj=[µ−σ2 ,µ+σ

2 ]
Pr[Tj /∈Cj ]≤ε

σ

µ/j
, (1)

where the infimum ranges over intervals Cj with any
width σ and centre µ that contain the time Tj of the j-th
tick with probability at least 1− ε.

An important special case is that of an i.i.d. clock,
where the time durations between ticks, i.e., the dif-
ferences Tj − Tj−1, are independent and identically dis-
tributed for all j ∈ N. The behaviour of an i.i.d. clock
is thus fully defined by the distribution of the first tick.
One can use the Hoeffding inequality to bound the in-
accuracy of later ticks from the first, in particular for
those distributions of T1 that have bounded tails (e.g.
sub-Gaussian).

Stable quantum clocks — Given an input clock sig-
nal, the goal of accuracy enhancement is to produce an
output signal with as small inaccuracy as possible, using
an enhancing clock (EC) as in Fig. 1. To model the EC,
we extend the concept of autonomous clocks developed
in [7, 8, 17, 18], which produce signals without an exter-
nal time reference. An autonomous clock is characterised

2 Note that is conceptually distinct from the treatment of clocks
in the context of metrology, which is common in the literature
(see, for instance, Refs. [3, 10, 11]). A discussion on the same
may be found in the full text.

by two key ingredients: a finite-dimensional clock system
(which can be either classical or quantum) that evolves
continuously in time and a detector that constantly mea-
sures the clock system and produces ticks [17, 19]. In
what follows, we will usually operate the clock as a reset
clock as in [19], i.e., it shall admit the same state, called
the reset state, after each tick.

We assume that the EC is an autonomous quantum
clock equipped with a switch that determines whether
the detector is on or off. In the first case, the dynam-
ics of the clock, Dtick, corresponds to that of the au-
tonomous clock as defined in [17], i.e., the clock state is
constantly measured and ticks can be produced. In the
second case, the dynamics, Dno−tick, corresponds to uni-
tary evolution, i.e., the clock evolves periodically without
any dissipation.

Our protocols for accuracy enhancement work for those
clocks such as the Quasi-Ideal Clocks [18] which fulfil
a stability criterion, which is a condition placed on a
family of clocks of increasing dimension d. Details may be
found in the arXiv version. In summary, one can imagine
that a clock satisfying this criterion has a “hand” moving
on a dial, with the detector located at one point. The
criterion then demands that the clock ticks if and only if
the hand is close the detector regardless of (a) how long
the hand was evolving under Dno−tick and (b) where the
hand started, as long as it did not start too closely to the
detector.

The stability criterion is independent of the input sig-
nal and can be applied to any autonomous quantum
clock. In particular, it is satisfied by Quasi-Ideal Clocks
[18, 19]. These are the most accurate autonomous clocks
for which analytical upper bounds on the inaccuracy
have been calculated [18, 19]. Specifically, a Quasi-Ideal
Clock of dimension d achieves a first-tick inaccuracy of
O(d−1+ν) for any positive ν and for any confidence level
1− ε < 1 in the limit of large d.

The accuracy enhancement protocol — This pro-
tocol requires a quantum EC satisfying the stability cri-
terion discussed above. When we write that the clock
is set to (Ψ,D), we mean that the clock state is set to
Ψ and the switch that controls the dynamics is set to
D ∈ {Dtick,Dno−tick}.

Protocol 1 Accuracy enhancement without feedback by
controlling the EC’s switch.

(Initialization) On receiving the first input tick, reset the
EC to (Ψ0,Dtick).

1: loop
2: Wait for an EC tick.
3: Produce an output tick and set the EC to

(Ψ0,Dno−tick).
4: Wait for an input tick.
5: Set the EC’s dynamics to Dtick.
6: end loop

See Fig. 2 for a visual explanation of this protocol.
One sees there that the input signal uncertainty must
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(a)

FIG. 2. Tick patterns of the input signal and the en-
hancing clock (EC) in Protocol 1. The pikes mark in-
tervals within which ticks occur with high probability. Here
the protocol succeeds in generating accurate ticks, indicated
in the lower half of the figure. The ticks of the input signal,
which are shown in the upper half of the figure, are used to
turn on the detector of the EC. The green dotted pikes corre-
spond to ticks of the EC that are suppressed when it evolves
unitarily.

fall within a single period of the EC. From this it can be
argued that the minimal inaccuracy of the output signal
(for the first tick) is approximately the product of the
inaccuracies of the input signal and the EC. More pre-
cisely, for Quasi-Ideal Clocks of dimension d we are able
to prove the following attainable enhancement,

Theorem 1. Let the input clock be i.i.d. and such that
Σin(ε) < 2/3, and let the EC be a Quasi-Ideal Clock.
Then, for any ε0 > ε, for j < 2/(3Σin(ε)), and for large
enough d, the inaccuracy of the j-th output tick of Pro-
tocol 1 satisfies

Σout
j (εj) ≤

5j2

3
· Σin(ε)

d1−ν
. (2)

This is a temporary enhancement, since the inaccu-
racy increases quadratically with the number of ticks.
However, this can be eliminated if feedback on the in-
put signal is allowed, by modifying step (3) of the above
protocol to also include a reset to the initial state of the
input clock.

Comparison to non-quantum protocols — The
protocol is dependent upon the unitary evolution of the
EC under Dno−tick. We now present a protocol that does
not require switching between different dynamics, and
would work even for classical ECs. We find that accuracy
enhancement is possible, but less than Protocol 1.

Protocol 4 Accuracy enhancement without controlling
the dynamics of the enhancing clock.

1: loop
2: Wait for an input tick.
3: Wait for an EC tick.
4: Produce an output tick.
5: end loop

101 102101.5101 102
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Asymptotic Inaccuracy Upper Bound (r.h.s. of Eq. (10))

Figure 1: Numerical results for the improvement in accuracy of the coherent and incoherent accuracy
enhancement protocol in the first tick. An i.i.d. box-shaped input tick of R(in) = 300 is improved
depending on the clock dimension d. The Logarithmic scale in R clearly shows a scaling of (2�2⌫) log d
for both the Coherent and Incoherent protocol.

1

FIG. 3. Numerical results for the performance of dif-
ferent accuracy enhancing protocols. The graph shows
the inaccuracy Σout = Σout(ε0) for various protocols (Proto-
col 3 is described in the arXiv version). The input is assumed
to be i.i.d. and box-shaped with Σin(ε) ≈ 0.33 and ε = 0.01.
The horizontal axis shows the dimension d of the EC in log-
arithmic scale. The confidence on the output is chosen to be
the same as the one on the input, i.e. ε0 = 0.01. For both
Protocol 1 and 4 the scaling is approximately proportional to
d−1, but the accuracy of the latter is worse. This may be com-
pared to a basic protocol that simply bunches d ticks of the
input signal together to one output tick (Protocol 3), whose
inaccuracy scales like d−

1
2 . The dotted line represents the

asymptotic upper bound on the output inaccuracy, Eq. (2)
(evaluated for an EC with tail probability εECd = 0.001),
which is seen to be close to tight already above d ∼ 20.

See Fig. 3 for a comparison of the performance of
Protocols 1, 4 and another protocol detailed in the full
text that also does not use switching dynamics.

Our protocols can be used as a subroutine of a highly
accurate clock consisting of a macroscopic oscillator pro-
ducing clock signals and a quantum system that further
improves their accuracy. They may also be employed in
a network setting to establish a common clock signal for
multiple, and possible distant, nodes, which is crucial for
various applications [5, 6, 12, 15]. Although each node
may be equipped with a clock, these clocks suffer from
random drifts as they produce more and more ticks with-
out synchronisation. Our accuracy enhancing protocols,
especially the one without feedback, fit this task well.

The task considered in this work can be regarded as
signal processing [16], where an input signal is processed
by a special-purpose system. The difference between the
particular task of clock signal processing as considered
here and general signal processing is that, in the former,
no time reference other than the input signal is available.
Common operations in signal processing, like time shifts,
are therefore prohibited, which makes the task harder.
Our work represents a first concrete step towards a the-
ory of time signal processing by harnessing quantum me-
chanics.
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Noise-induced amplification: Parametric amplifiers cannot simulate all
phase-preserving linear amplifiers
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Abstract. A deterministic quantum linear amplifier must add noise to its input. Here we show how
an amplifier, while being linear and phase-preserving, overturns the following two important and widely
accepted beliefs in the literature: (i) Noise added internally by the amplifier is purely deleterious, the sole
purpose of which is to impose quantum theory. (ii) A phase-preserving linear amplifier, no matter how it
is physically realised, can be simulated by a parametric amplifier [C. M. Caves et al., Phys. Rev. A 86,
063802 (2012)].

Keywords: linear amplifiers, quantum noise, quantum optics

Linear amplification has long been an integral part of
quantum measurements whereby a weak signal is ampli-
fied to a detectable level [1, 2]. In more recent times,
due to advances in quantum optics and quantum infor-
mation, linear amplifiers are also seen as a facilitating
component of many useful tasks such as state discrimi-
nation [3], quantum feedback [4], metrology [5], and en-
tanglement distillation [6, 7].

Quantum mechanics commands any linear amplifier to
add noise to its input [8]. Such noisy amplification of a
single bosonic input can be modelled by a linear differ-
ential equation for its amplitude (annihilation operator)
of the form

d

dt
â(t) = κ â(t) + f̂(t) , (1)

where κ is the amplification rate (a positive real number),
and f̂(t) represents noise added by the amplifier (or inter-
nal noise). Generally f̂(t) is assumed to be a zero-mean
Markov process. It is due to amplifier degrees of freedom.
The time-dependent solution â(t) to (1) — often at a des-
ignated time instant — is defined as the output of the
amplifier corresponding to the input â(0). The ultimate
performance of a linear amplifier is thus determined by
the least amount of noise that it must add consistent with
quantum theory. Such quantum-limited performance of
linear amplifiers had been studied as early as the 1960s
for phase-preserving amplifiers [9, 10]. These results were
later unified, and further generalised to phase-sensitive
amplifiers by Caves [11].

It is a long held belief that amplifier-added noise is
nothing but mere nuisance. This view has motivated
noise-reduction methods in linear amplifiers [12, 13, 14],
or methods which evade it altogether by trading the am-
plifier’s deterministic operation for noiseless gain [15, 16,
17]. It should not come as a surprise that amplifier-added
noise is viewed as something purely negative since it has

∗photonicboy@gmail.com

not been shown to behave otherwise in all known exam-
ples of linear amplifiers to date. In fact, the ubiquity of
such added noise in linear amplifiers has led Caves et al.
to argue that any phase-preserving linear amplifier, no
matter how it is realised, is equivalent to a parametric
amplifier (paramp) [18]. An implicit caveat for this to be
true, as we will show, is that the added noise be inde-
pendent of the signal (though it may not be obvious how
other kinds of noise would arise). In other words, con-
ventional wisdom regards the amplifier noise to be only
additive [19], neglecting the possibility that it may also
be multiplicative or otherwise.

In this work1, we show how multiplicative noise may
arise in phase-preserving linear amplifiers and that this
has two very important implications for the theory of lin-
ear amplifiers: (i) Such noise serves to impose quantum
mechanics on the amplifier and simultaneously amplify
an input signal. This is in stark contrast to the con-
ventional view that the sole function of added noise is to
enforce quantum theory. (ii) It violates the equivalence of
phase-preserving linear amplifiers to the paramp model
claimed in Ref. [18]. To the best of our knowledge, this
is the first time that a phase-preserving linear amplifier
has been shown to fall outside the scope of the paramp.
This finding advances the current understanding of lin-
ear amplifiers, showing that a complete theory of noise
in phase-preserving amplifiers remains to be found.

A further implication of our result is that the paramp
cannot be programmed to emulate an arbitrary linear
phase-preserving amplifier. Programmability is a concept
in quantum information which captures the idea that one
can “reconfigure” parts of a quantum device in order to
simulate another quantum device insofar as their outputs
are concerned (see Sec. 3 for a precise definition of pro-
grammability) [21]. The main result of Ref. [18] may then
be restated in (quantum) information theoretic terms as
conjecturing that a paramp can be programmed to out-

1See arXiv:1903.09370 (https://arxiv.org/abs/1903.09370).
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put a state identical to the state outputted by any linear
phase-preserving amplifier (which is shown to be incor-
rect in Sec. 2 and is the sense in which “simulate” is used
in our paper title).

1 Noise-induced amplification

If we demand that amplification be linear and the re-
sult of noise alone, then the average of the added noise
can no longer be zero because linear amplification re-
quires the average amplitude 〈â〉 to satisfy d〈â〉/dt =
γ 〈â〉 with γ being positive (and real if it is to be phase
preserving [11, 18]). We show that this is possible when

d

dt
â(t) = â†(t) ŵ(t) . (2)

That is, it is possible to choose a noise process ŵ(t) that
ensures [â(t), â†(t)] = 1̂ for all t, and simultaneously sat-
isfies the requirement for amplification〈

â†(t) ŵ(t)
〉

= γ
〈
â(t)

〉
, (3)

where γ ≥ 0. Unlike the ‘signal-plus-noise’ model of (1),
the noise in (2) is multiplicative but otherwise ŵ(t) itself
may be treated as zero-mean and Markovian, just like
f̂(t) in (1). We refer to (2) and (3) as noise-induced
amplification (“noisi amplification”), and to the amplifier
as a “noisiamp”. The amplitude gain of the noisiamp is
g(t) = 〈â(t)〉/〈â(0)〉 = exp(γ t).

The model of (2) and (3) can be realised by using a
gain medium that mediates two-photon interactions. An
effective model for this is an interaction Hamiltonian that
couples a single bosonic mode (representing the signal) to
a collection of two-level atoms via two-photon exchanges
in the rotating-wave approximation. One can show, that
such an interaction Hamiltonian within the Born–Markov
approximation leads to (2) on setting the excited-state
and ground-state atomic populations equal. The oper-
ator ŵ(t) is then realised by a weighted sum over the
Pauli lowering operators for each atom (the weights be-
ing coupling constants). The detailed derivation of (2)
and (3) is left to Ref. [20]. In Ref. [20] we have also
found the underlying atom-photon interactions responsi-
ble for noisi amplification [shown in Fig. 1(b), where it is
contrasted to a model of (1) realised using atom-photon
interactions]. This explains, in physical terms, how an
inherently nonlinear interaction (i.e. a two-photon pro-
cess) can result in linear amplification which is usually
associated with one-photon processes.

Noisi amplification can be understood as classical cor-
relation between the internal noise source of the ampli-
fier and the signal that is being amplified. This is the
essential content of (3). Though such equations are not
typically encountered in the amplifier literature, it is cer-
tainly allowed within the Born–Markov framework. The
important point to note here is that the Markov approx-
imation does not treat ŵ(t) as truly white. All that is
required is for ŵ(t) to have a small but nonzero correla-
tion time, otherwise (3) would be zero and there would be
no amplification. In other words, if there is no correlation
between the noise and signal, there is no amplification.

(b) 

𝜔0 

𝜔0 

(a) 

𝜔0 

Figure 1: (a) Fundamental atom-photon interactions
which realise the linear amplifier of (1). The amplifier
derives its gain from population inversion in the atoms.
Photons emitted spontaneously contribute to noise and
are shown in blue while stimulated ones contribute to
the signal and are in red (with the original signal photon
shown in black). (b) Elementary atom-photon interac-
tion responsible for the linear gain of the noisiamp in
(2): A two-photon emission with one of the emitted pho-
tons being stimulated and one spontaneous via an inter-
mediate virtual level. See Ref. [20] for a more complete
description.

2 Inequivalence to the paramp

A paramp has two inputs, â and b̂. The input mode
â represents the signal amplitude to be amplified and
acts on Hilbert space HA. Mode b̂ is an ancillary system
acting on HB and whose initial state is σ. If we assume
the signal mode to be prepared in an initial state ρ(0),
then the paramp output in the Schrödinger picture is
defined by

ρ(t) = E(t) ρ(0) = TrB
[
Ŝ(t) ρ(0)⊗ σ Ŝ†(t)

]
. (4)

Here TrB denotes a partial trace over HB and Ŝ(t) =
exp[κ (â b̂ − â†b̂†) t] where κ ≥ 0 (see also Fig. 2). In
Ref. [18], it was asserted that any phase-preserving lin-
ear amplifier, no matter how it is physically realised, is
always equivalent to the paramp for some (κ, t) (which
determines its amplitude gain), and a physical choice of
σ, thus leading to a complete classification of such ampli-
fiers. We have analysed in Ref. [20] the phase properties
of the noisiamp to show that it satisfies all the assump-
tions required in Ref. [18] to fall under the ambit of the
paramp model. We now show that, despite this, the noisi-
amp is irreproducible by a paramp as illustrated in Fig. 2.

For the paramp to be equivalent to the noisiamp, it
is necessary that moments of the output â(t) from the
paramp be identical to the moments of â(t) from the
noisiamp for an arbitrary input state ρ(0) sent into both
types of amplifiers. Now we show that this cannot be
satisfied by considering the output amplitude and photon
number corresponding to both types of amplifiers. For
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  A 

𝑆  ( ⊗ ) 𝑆 †   ℰ ≠ A 

Figure 2: Top: An arbitrary phase-preserving linear am-
plifier described by the map A. The input is shown in
black while the output (the amplified signal) is shown
in red. The added noise due to the internal physics of
the amplifier is shown as the blurry blue outline on the
output. Bottom: Paramp model—Ref. [18] argues that
regardless of the amplifier’s internal physics, they may all
be thought of as a two-mode squeezing operation with an
appropriately chosen Ŝ and σ. The noisiamp of this pa-
per is a counterexample to this.

the noisiamp they are [20]

〈â(t)〉 = g 〈â(0)〉 , (5)〈
n̂(t)

〉
= g4

〈
n̂(0)

〉
+

g4 − 1
2

. (6)

The same quantities for the paramp are

〈â(t)〉 = G 〈â(0)〉+
√

G2 − 1 〈b̂(0)〉 , (7)〈
n̂(t)

〉
= G2

〈
n̂(0)

〉
+

(
G2 − 1

) 〈
b̂(0) b̂†(0)

〉
. (8)

where G = cosh(κ t). Note that all initial moments for
the ancillary mode are taken with respect to σ while those
for the signal mode are taken with respect to ρ(0). By
linearity one must choose, 〈b̂(0)〉 = 0 for the paramp. To
ensure the two amplifiers give identical 〈â(t)〉 we must
also set G = g. Now consider an input signal prepared in
some state, say ρ1 with average photon number 〈n̂(0)〉1.
It is necessary that the noisiamp output the same photon
number as the paramp corresponding to this input, i.e.

g4
〈
n̂(0)

〉
1

+
g4 − 1

2
= g2

〈
n̂(0)

〉
1

+
〈
b̂(0) b̂†(0)

〉
. (9)

Similarly we may consider another input state ρ2 with
a different average photon number 〈n̂(0)〉2. The same
requirement leads to

g4
〈
n̂(0)

〉
2

+
g4 − 1

2
= g2

〈
n̂(0)

〉
2

+
〈
b̂(0) b̂†(0)

〉
. (10)

Subtracting (10) from (9) we get

g4
[〈

n̂(0)
〉
1
−

〈
n̂(0)

〉
2

]
= g2

[〈
n̂(0)

〉
1
−

〈
n̂(0)

〉
2

]
. (11)

Equation (11) clearly cannot be satisfied unless g = 1 =
G (which means no amplification). Thus, the paramp
cannot be a universal model for all phase-preserving lin-
ear amplifiers. Note that it is the difference in how 〈n̂(t)〉
scales with g in the two types of amplifiers that makes
the paramp and noisiamp inequivalent. The noisiamp is
the first counterexample known to date that violates the
conjecture of Ref. [18]. A second counterexample is given
in Ref. [20].

3 Programmability

Interestingly the claimed universality of the paramp
model of Ref. [18] can be understood in terms of the
concept of programmability defined for a set of maps [21].
A family of completely-positive maps {Φk}k acting on
ρ ∈ HS is defined to be programmable if and only if
there exist a set of states {σk}k (σk ∈ HB) and a fixed
unitary Û (independent of k) acting on HS ⊗ HB such
that

Φkρ = TrB[Û(ρ⊗ σk)Û†] . (12)

If we let {Φk}k describe the set of phase-preserving lin-
ear amplifiers with a common gain, then we see that
Ref. [18] may be understood as claiming {Φk}k to be
programmable by a paramp i.e. with Û = Ŝ [two-mode
squeezing with a fixed κ t, defined underneath (4)]. We
have thus shown that there are in fact some phase-
preserving linear amplifiers (namely ones with multiplica-
tive noise) that a paramp cannot be programmed to sim-
ulate.
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Abstract.

In this talk, I discuss our experimental developments
for the quantum computation with trapped ions. The
performance of a physical quantum device can be evalu-
ated by the three criteria, which are the coherence time
of a qubit, the fidelity of a logical gate, and number of
qubits involved in coherent operations.

We have demonstrated the coherence time of a single
171Yb+ ion-qubit over 600 s with sympathetic cooling
by a 138Ba+ ion and optimized dynamical decoupling-
pulses in an ambient magnetic field condition [1]. Re-
cently, we experimentally investigate the limiting factors
and enhance the coherence time to more than twice. We
find that ambient magnetic-field noise and phase noise of
the local oscillator are main sources for decoherence. To
suppress field fluctuation, we enclose our vacuum system
with a two-layer µ-metal magnetic-shielding and use a
permanent magnets to produce stable field. In this way,
we observe the coherence time of field-sensitive qubit is
increased to more than 30 ms. For the reference of the
local oscillator, we use a crystal oscillator, which has one
order of magnitude smaller Allan deviation than our pre-
vious Rb clock at 1 s. With such improvements, we ob-
serve the enhancement for the coherence time of clock
state of 171Yb+ ion.

We also have developed a five-qubit programmable sys-
tem and realized a global quantum gate. A quantum al-
gorithm can be decomposed into a sequence consisting of
single qubit and 2-qubit entangling gates. To optimize
the decomposition and achieve more efficient construc-
tion of the quantum circuit, we can replace multiple 2-
qubit gates with a single global entangling gate. Here,
we propose and implement a scalable scheme to real-
ize the global entangling gates on multiple 171Yb+ ion
qubits by coupling to multiple motional modes through
external fields. Such global gates require simultaneously
decoupling of multiple motional modes and balancing of
the coupling strengths for all the qubit-pairs at the gate
time. To satisfy the complicated requirements, we de-
velop a trapped-ion system with fully-independent con-
trol capability on each ion, and experimentally realize the
global entangling gates. As examples, we utilize them to
prepare the Greenberger-Horne-Zeilinger (GHZ) states in
a single entangling operation, and successfully show the
genuine multi-partite entanglements up to four qubits
with the state fidelities over 93.4 % [2].

∗kimkihwan@mail.tsinghua.edu.cn

For the improvements of logic gate fidelities, we apply
a scheme of quantum error mitigation based on prob-
abilistic error cancellation [3], which requires no addi-
tional qubit resources different from the scheme of quan-
tum error correction. We benchmark the performance
of the protocol of the probabilistic error cancellation in
our trapped-ion system. We clearly observe that effec-
tive gate fidelities exceed physical fidelities. The error
rates are effectively reduced from (1.10 ± 0.12) × 10−3

to (1.44 ± 5.28) × 10−5 and from (0.99 ± 0.06) × 10−2

to (0.96 ± 0.10) × 10−3 for single- and two-qubit gates,
respectively [4]. We believe our demonstration opens
up the possibility of implementing high-fidelity compu-
tations on a near-term noisy quantum device.
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