
 
Asian 
Quantum 
Information 
Science Conference 2019 

 

 
Abstract Booklet 
Poster Day 1 

 
 
 

August 19-23, 2019 
Venue: KIAS, Seoul, Korea 

 
 

Hosted by KIAS (Korea Institute for Advanced Study) 
 
 

 
 
 
Edited by Shigeru Yamashita and Seung-Woo Lee 



Posters

August 19, 2019 (Mon.) [Poster Session I]

1. Deng-Gao Lai, Fen Zou, Bang-Pin Hou, Yun-Feng Xiao, and Jie-Qiao Liao

Simultaneous cooling of coupled mechanical resonators in cavity optomechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

2. Fen Zou, Li-Bao Fan, Jin-Feng Huang, and Jie-Qiao Liao

Enhancement of few-photon optomechanical effects with cross-Kerr nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3. Ibrahim Yahaya Muhammad, Sikarin Yoo-kong, and Tanapat Deesuwan

Quantum random walk on a one-dimensional lattice with two entangled particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4. Yu Guo, Bai-Chu Yu, Xiao-Min Hu, Bi-Heng Liu, Yu-Chun Wu, Yun-Feng Huang, Chuan-Feng Li, and Guang-Can Guo

Measurement-device-independent quantification of irreducible entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5. Eunok Bae and Soojoon Lee

Continuous hidden shift problem on R
n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

6. Lei Xiao, Kunkun Wang, Xiang Zhan, Zhihao Bian, Kohei Kawabata, Masahito Ueda, Wei Yi, and Peng Xue

Observation of critical phenomena in parity-time-symmetric quantum dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

7. Lei Xiao, Xingze Qiu, Kunkun Wang, Zhihao Bian, Xiang Zhan, Hideaki Obuse, Barry C. Sanders, Wei Yi, and Peng

Xue

Higher winding number in a non-unitary photonic quantum walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

8. WoongSeon Yoo

New proof and Bell-like inequalities of Arrow’s impossibility theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

9. Feng-Xiao Sun, Qiongyi He, Qihuang Gong, Run Yan Teh, Margaret D. Reid, and Peter D. Drummond

Quantum tunneling and cat-like steady states in a degenerate parametric oscillator with anharmonic nonlinearity . . . . . . .19

10. Ryuji Takagi

Skew informations from an operational view via resource theory of asymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

11. Ryuji Takagi, Bartosz Regula, Kaifeng Bu, Zi-Wen Liu, and Gerardo Adesso

General resource theories in quantum mechanics and beyond: operational characterization via discrimination tasks . . . . 26

12. Chang-Jiang Huang, Qi Yin, Jun-Feng Tang, Daoyi Dong, Guo-Yong Xiang, Chuan-Feng Li, and Guang-Can Guo

Experimental realization of a quantum autoencoder via a universal two-qubit unitary gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

13. Yu Guo, Xiao-Min Hu, Zhi-Bo Hou, Huan Cao, Jin-Ming Cui, Bi-Heng Liu, Yun-Feng Huang, Chuan-Feng Li, Guang-

Can Guo, and Giulio Chiribella

Experimentally probing quantum communication in a superposition of causal orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

i



14. Huan Cao, She-Cheng Gao, Bi-Heng Liu, Zheng-Wei Zhou, Jacquiline Romero, Zhao-Hui Li, Si-Yuan Yu, Yun-Feng

Huang, Chuan-Feng Li, and Guang-Can Guo

Distribution of high-dimensional orbital angular momentum entanglement at telecom wavelength over 1km vortex fiber . 37

15. Masayuki Miyamoto, Masakazu Iwamura, and Koichi Kise

A Quantum Algorithm for Minimum Steiner Tree Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

16. InU Jeon and Hyunseok Jeong

Measurement-device-independent verification of channel steering and channel coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

17. Seok Hyung Lie, Hyukjoon Kwon, M.S. Kim, and Hyunkseok Jeong

Unconditionally secure qubit commitment scheme using quantum maskers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42

18. Shin Funada and Jun Suzuki

Uncertainty relation for the position of an electron in a uniform magnetic field from quantum estimation theory . . . . . . . . . 44

19. Changhun Oh, Changhyoup Lee, Leonardo Banchi, Su-Yong Lee, Carsten Rockstuhl, and Hyunseok Jeong

Optimal measurements for quantum fidelity between Gaussian states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

20. Yonghae Lee, Hayata Yamasaki, Gerardo Adesso, and Soojoon Lee

One-shot quantum state exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

21. Niklas Johansson and Jan-Ake Larsson

Reversibility and its Connection to the Quantum Computational Speed-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

22. Amandeep Singh Bhatia, Mandeep Kaur Saggi, Ajay Kumar, and Sushma Jain

Matrix Product State Based Quantum Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

23. Kiarn T. Laverick, Areeya Chantasri, and Howard M. Wiseman

Quantum State Smoothing for Linear Gaussian Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

24. Dongkeun Lee and Wonmin Son

Bell type measurements in the 1D infinite spin-1 chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66

25. Yonggi Jo and Wonmin Son

Measurement-device-independent quantum secret sharing using high-dimensional quantum states . . . . . . . . . . . . . . . . . . . . . 69

26. Hayato Arai, Yuuya Yoshida, and Masahito Hayashi

Perfect Discrimination of Non-Orthogonal Separable Pure States on Bipartite System in General Probabilistic Theory . . 71

27. Nathan Shettell and Damian Markham

Graph States as a Resource for Quantum Metrology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75

28. Z-H. Xiang, J. Huwer, R. M. Stevenson, J. Skiba Szymanska1, M. B. Ward, I. Farrer, D. A. Ritchie, and A. J. Shields

Network Integration of Quantum Dot Device and Entanglement in Cambridge Fiber Network . . . . . . . . . . . . . . . . . . . . . . . . . 78

ii



29. Yuuya Yoshida and Masahito Hayashi

Necessary and Sufficient Condition of Asymptotic Decoupling for Markovian Quantum Dynamics . . . . . . . . . . . . . . . . . . . . . 80

30. Sebastien Designolle, Mate Farkas, and Jedrzej Kaniewski

Incompatibility robustness of quantum measurements: a unified framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

31. Min Namkung and Younghun Kwon

Coherence distribution and depletion in training quantum classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

32. Jaehee Shin, Donghoon Ha, and Younghun Kwon

Optimal Discrimination of Four Qubit States when Postmeasurement information on subsystem is available . . . . . . . . . . . . 91

33. Seongjeon Choi, Seokhyung Lee, and Hyunseok Jeong

Quantum information transmission of a multiphoton qubit using optical hybrid entanglement . . . . . . . . . . . . . . . . . . . . . . . . . 94

34. Wooyeong Song, Marcin Wiesniak, Nana Liu, Marcin Pawlowski, Jinhyoung Lee, Jaewan Kim, and Jeongho Bang

A classical-quantum hybrid oracle architecture for an oracle identification problem in the NISQ era . . . . . . . . . . . . . . . . . . . 97

35. Do Kien Tri, Yu Xiang, and Qiongyi He

Detection of multipartite Einstein-Podolsky-Rosen steering in Greenberger-Horne-Zeilinger-like states . . . . . . . . . . . . . . . 100

36. Matthew Ho, Mile Gu, and Thomas J. Elliott

Robustness and inference of structural complexity of quantum models of stochastic processes . . . . . . . . . . . . . . . . . . . . . . . . 103

37. Jihwan Kim, Donghoon Ha, and Younghun Kwon

Quantum ensembles which is error tolerant in prior probability when minimum error discrimination is performed on two

quantum states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

38. Jeongsoo Kang, Min Namkung, and Younghun Kwon

Understanding Entanglement Survival in Hybrid Quantum System composed of Two-level Atom and Superconducting Circuit

in Noisy Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

39. Keita ISHIKAWA, Tiancheng WANG, and Tsuyoshi Sasaki USUDA

Comparison of quantum reading in non-symmetric loss using maximum and non-maximum quasi-Bell states . . . . . . . . . . 111

40. Hyunseong Jang, Jihwan Kim, and Younghun Kwon

Efficient Quantum Algorithm for Solving Traveling Salesman Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

41. Yuto Takahashi, Keita Ishikawa, Shogo Usami, and Tsuyoshi Sasaki Usuda

Performance Evaluation of Ghost Imaging with Orthogonal/Non-orthogonal Quantum States . . . . . . . . . . . . . . . . . . . . . . . . 117

42. Feng Ding and Xueyuan Hu

Masking Quantum Information and Hyperdisks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

iii



43. Keisuke SATO, Souichi TAKAHIRA, Kenji NAKAHIRA, and Tsuyoshi Sasaki USUDA

Relation of ‘α-order Renyi’ Subentropy and Mutual Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

44. Ryo Kurama and Noboru Kunihiro

New Quantum Algorithms for Modular Inverse and Its Application on the Elliptic Curve Discrete Logarithm Problem . . 127

45. Salman Beigi and Leila Taghavi

Quantum Speedup Based on Classical Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

46. Wakaki Hattori and Shigeru Yamashita

The decomposition of an MPMCT gate in consideration of NNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

47. Ryota Yonekura, Hidefumi Hiraishi, and Hiroshi Imai

A BDD-based approach to the Ising partition function via Eulerian subgraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

48. Kota Asai and Shigeru Yamashita

Efficient Mapping of the ZX calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

49. Tiancheng Wang, Kenji Nakahira, and Tsuyoshi Sasaki Usuda

Design criteria for a robust quantum receiver in the presence of phase noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

50. Mana Yoshida, Shogo Usami, and Tsuyoshi Sasaki Usuda

Evaluation of quantum gain for KCQ protocol using best binary codes in high or low rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

51. Ya Cao, Fei Gao, DanDan Li, and QiaoYan Wen

Quantum control with side information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

52. Ayal Green, Yupan Liu, and Guy Kindler

Towards a quantum-inspired proof for IP = PSPACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

53. Max Wilson, Sam Stromswold, Filip Wudarski, Thomas Vandal, Walter Vinci, Norm Tubman, Alejandro Perdomo-Ortiz,

and Eleanor Rieffel

Optimizing quantum heuristics with machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

54. Shashank Kumar Ranu, Anil Prabhakar, and Prabha Mandayam

Finite-key analysis for differential phase encoded measurement-device-independent quantum key distribution . . . . . . . . . . 160

55. Robertson C. Esperanza and Francis N. C. Paraan

Ground state entanglement in an extended Hubbard model with Ising-like interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

56. Yudai Suzuki, Hiroshi Yano, Sho Sasaki, Naoki Yamamoto, and Qi Gao

A study on the encoding function for the binary classification problem via quantum support vector machine . . . . . . . . . . . 167

57. Kanto Teranishi, Hidefumi Hiraishi, and Hiroshi Imai

Breakout Local Search for Finding Graph Minors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

iv



58. Cleofe Dennielle P. Ayang-ang and Francis N. C. Paraan

Quantum phase transitions and Schmidt gap closing in a Kitaev chain with long-ranged interactions . . . . . . . . . . . . . . . . . 174

59. Risa Segawa, Shigeru Yamashita, and Rudy Raymond

Minimizing Quantum Circuits for Simultaneous Two-Qubit Measurement by Single-Qubit Measurements . . . . . . . . . . . . . . 176

60. Kwangil Bae and Wonmin Son

Generalized nonlocality criteria under the correlation symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

61. Yohei Wakabayashi and Shigeru Yamashita

A handy condition of bridge compression for topological quantum circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

62. Nikolai Miklin, Jakub J. Borkala, and Marcin Pawlowski

Self-testing of unsharp measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

63. Haozhen Situ, Zhimin He, Yuyi Wang, Lvzhou Li, and Shenggen Zheng

Quantum Generative Adversarial Networks for Discrete Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

64. Hayata Yamasaki and Mio Murao

Distributed Encoding and Decoding of Quantum Information over Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

65. Xi Chen, Bin Cheng, Zhaokai Li, Xinfang Nie, Nengkun Yu, Man-Hong Yung, and Xinhua Peng

Experimental Cryptographic Verification for Near-Term Quantum Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

66. Xin Wang, Mark M. Wilde, and Yuan Su

Quantifying the magic of quantum channels (merged into Efficiently computable bounds for magic state distillation - Long

Talk on August 19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

v



Simultaneous cooling of coupled mechanical resonators in cavity
optomechanics

Deng-Gao Lai1 Fen Zou1 Bang-Pin Hou2 Yun-Feng Xiao3 Jie-Qiao Liao1 ∗

1 Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education,
Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal

University, Changsha 410081, China
2 College of Physics and Electronic Engineering, Institute of Solid State Physics, Sichuan Normal University,

Chengdu 610068, China
3 State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Collaborative Innovation

Center of Quantum Matter, Beijing 100871, China

Abstract. Quantum manipulation of coupled mechanical resonators has become an important research
topic in optomechanics because these systems can be used to study the quantum coherence effects involving
multiple mechanical modes. A prerequisite for observing macroscopic mechanical coherence is to cool the
mechanical resonators to their ground state. Here we propose a theoretical scheme to cool two coupled
mechanical resonators by introducing an optomechanical interface. The final mean phonon numbers are
calculated exactly and the results show that the ground-state cooling is achievable in the resolved-sideband
regime. By adiabatically eliminating the cavity field in the large-decay regime, we obtain the cooling
limits, which show the smallest achievable phonon numbers and the parameter conditions under which the
optimal cooling is achieved. Finally, the scheme is extended to the cooling of a chain of coupled mechanical
resonators.

Keywords: resonators, phonon numbers, cooling limit

1 Model and Hamiltonian

We consider a three-mode optomechanical system,
which is composed of one cavity mode and two mechani-
cal modes, as illustrated in Fig. 1. The cavity-field mode
is coupled to the first mechanical mode via the radiation-
pressure coupling, and the two mechanical modes are
coupled to each other via the so-called position-position
interaction. To manipulate the optical and mechanical
degrees of freedom, a proper driving field is applied to
the optical cavity. The Hamiltonian of the system reads
(~ = 1)

H = ωca
†a+

∑
l=1,2

(
p2xl
2ml

+
mlω̃

2
l x

2
l

2

)
− λa†ax1

+η (x1 − x2)
2
+Ω(a†e−iωLt + aeiωLt), (1)

where a and a† are, respectively, the annihilation and
creation operators of the cavity mode with the resonance
frequency ωc. The coordinate and momentum operators
xl and pxl are introduced to describe the lth (l = 1, 2) me-
chanical resonator with massml and resonance frequency
ω̃l. The optomechanical coupling between the cavity field
and the first mechanical mode is described by the λ term
in Eq. (1), where λ = ωc/L denotes the optomechanical
force of a single photon, with L being the rest length of
the optical cavity. The η term depicts the mechanical
interaction between the two mechanical resonators. The
parameters ωL and Ω are, respectively, the optical driv-
ing frequency and driving amplitude, which is determined
by the driving power via the relation Ω =

√
2PLκ/ωL,

where PL is the power of the driving laser, and κ is the
decay rate of the cavity field.
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Figure 1: (a) Schematic of the three-mode optomechan-
ical system. A single-mode cavity field with resonance
frequency ωc is coupled to an end mirror with resonance
frequency ω̃1 via the radiation pressure coupling. The
end mirror is coupled to another mechanical resonator
with resonance frequency ω̃2 via the “position-position”
interaction. (b) By adiabatically eliminating the cavity
mode, the model (a) can be simplified as two mechani-
cal modes b1 and b2 whose coupling strength is η0. Each
harmonic oscillator is also coupled to its own heat bath
with initial phonon numbers n̄1 and n̄2 by decay rates
γ1 and γ2. Additionally, the mode b1 is coupled to an
effective optical bath with the effective decay rate γopt
and thermal occupation n̄opt.

2 Ground state cooling and cooling lim-
its

Mathematically, the final mean phonon numbers in the
two mechanical resonators can be calculated by the rela-

1
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Figure 2: (Color online) The final mean phonon numbers

(a) nf1 and (b) nf2 in the two mechanical resonators vs the
effective driving detuning ∆/ω1 and the decay rate κ/ω1.
The used parameters are given by ω1/2π = ω2/2π = 10
MHz, γ1/ω1 = γ2/ω1 = 10−5, ωc/ω1 = 2.817 × 107,
η0/ω1 = 0.04, m1 = m2 = 250 ng, n̄1 = n̄2 = 1000,
L = 0.5 mm, PL = 50 mW, and λ = 1064 nm. The black
solid curves correspond to nf1 = nf2 = 1.

tion

nfl =
1

2
[⟨δq2l ⟩+ ⟨δp2l ⟩ − 1], (2)

where

⟨δq2l ⟩ =
1

2π

∫ ∞

−∞
Sql(ω)dω, l = 1, 2, (3a)

⟨δp2l ⟩ =
1

2π

∫ ∞

−∞
Spl

(ω)dω =
1

2πω2
l

∫ ∞

−∞
ω2Sql(ω)dω.

(3b)

Here the fluctuation spectra of the position and momen-
tum of the two mechanical oscillators are defined by

So(ω) =

∫ ∞

−∞
e−iωτ ⟨δo(t+ τ)δo(t)⟩ssdτ, (4)

for o = ql=1,2 and pl=1,2. The fluctuation spectrum can
also be expressed in the frequency domain as

⟨δõ(ω)δõ(ω′)⟩ss = So(ω)δ(ω + ω′), (o = ql, pl). (5)

In Fig. 2, we plot the final mean phonon numbers nf1
and nf2 as a function of the driving detuning ∆/ω1 and
the cavity-field decay rate κ/ω1. When κ/ω1 ≪ 1, the
phonon sidebands can be resolved from the cavity emis-
sion spectrum, and this regime is called as the resolved-
sideband limit. We can see that the two resonators can be

cooled efficiently (nf
1 , n

f
2 ≪ 1) in the resolved-sideband

limit and under the driving ∆/ω1 ∼ 1, which means that
the ground-state cooling is achievable in this system. For
a given value of the ratio κ/ω1, the optimal driving de-
tuning is given by ∆ ≈ ω1. This is because the energy
extraction efficiency between the cavity mode and the
first mechanical mode should be maximum at ∆ = ω1,
and the small deviation of the exact value of ω1 in re-
alistic simulations is caused by the counter RW term in
the linearized interaction between the cavity mode and
the first mechanical mode. Physically, the generation of
an anti-Stokes photon will cool the mechanical oscillator
by taking away a phonon from the mechanical resonator.
For the optimal cooling detuning ∆ ≈ ω1, the frequency
ω1 of the phonon exactly matches the driving detuning
∆ and hence ∆/ω1 = 1 corresponds to the optimal cool-
ing. At the optimal driving ∆ = ω1, the final mean
phonon numbers become worse with the increase of the
ratio κ/ω1.
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Figure 3: (Color online) Final mean phonon numbers (a)

nf1 and (b) nf2 as a function of κ/ωm. In addition, we take
∆ = ωm, γ1/ωm = γ2/ωm = 10−6, and η0/ω1 = 0.02.
Other parameters are the same as those given in Fig. 2.
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Figure 4: (Color online) Final mean phonon numbers

(a) nf1 and (b) nf2 as a function of η0/ωm. The insets are
zoom-in plots of the phonon numbers in a narrower range
of η0/ωm. We take ∆ = ωm, κ/ω1 = 0.2, and PL = 70
mW. Other parameters are the same as those given in
Fig. 3.

Below, we derive the approximate cooling results in the
bad-cavity regime such that compact expressions of the
cooling limits can be obtained. This is achieved by elim-
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inating adiabatically the cavity field in the large-decay
regime (κ ≫ G̃) and then calculating the final phonon
numbers under the RWA (ω1,2 ≫ G̃). Thus, the approx-
imate expressions of the final mean phonon numbers can
be obtained as

nf1 ≈γ1n̄1
Γ1

+
γoptnopt + χn1,χ

Γ1 − 4χ
, (6a)

nf2 ≈γ2n̄2 + χn2,χ

χ+ γ2
, (6b)

where nopt = κ2/4(ωm+∆)2, n1,χ = γ2n̄2(4χ+Γ1)/[(Γ1+
γ2)(χ+γ2)], and n2,χ = (γ1n̄1+γ2n̄2+γoptnopt)/(Γ1+γ2)
with Γ1 = γ1+γopt. We also introduce the effective decay

rates γopt = 4|G̃|2/κ and χ = 4η20/(γ1+γopt) correspond-
ing to the optomechanical channel and the mechanical
coupling channel, respectively. To evaluate the approxi-
mate cooling results, we compare the approximate results
with the exact results. It shows that the approximate and
exact phonon numbers coincide well with each other in
κ ≈ 0.1ωm ∼ 0.5ωm and η0 ≈ 0 ∼ 0.05ωm. Figure 3(a)
shows that difference between the approximate result and
the exact result increases when κ < 0.1ωm. This is be-
cause the adiabatic elimination procedure only works un-
der the condition κ ≫ G̃. In Fig. 4(a), we see that the
two results do not matched well for a large η0 (for exam-
ple η0/ωm > 0.05 in our simulations). This phenomenon
can be explained based on the parameter requirement of
the system stability. In the case of Ω1 ≈ ω2 and γ1 = γ2,
the parameter condition is reduced to γopt > 4χ. Corre-
sponding to Fig. 4(b), when η0/ωm > 0.05 , the stability
condition γopt > 4χ is violated.

3 Cooling of a chain of coupled mechan-
ical resonators
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Figure 5: (Color online) Final mean phonon numbers in
the mechanical resonators as a function of the effective
driving detuning ∆ when (a) N = 3 and (b) N = 4.
Other parameters are given by G/ωm = 0.2, η0/ωm =
0.1, κ/ωm = 0.3, γm/ωm = 10−5, and n̄ = 1000.

In this section, we extend the optomechanical cooling
means to the cooling of a coupled-mechanical-resonator
chain. Without loss of generality, we assume that all
the mechanical resonators are identical, having the same
frequency, decay rate, and thermal occupation number.
Meanwhile, the couplings between the mechanical res-
onators are much smaller than the mechanical frequency

and hence the rotating-wave approximation is justified.
In this case, the Hamiltonian of the system can be written
in a frame rotating at the driving frequency as

HI = ∆a†a+ ωm

N∑
j=1

b†jbj − (Ga†b1 +G⋆b†1a)

−
N−1∑
j=1

η0(b
†
jbj+1 + b†j+1bj), (7)

where a (a†) and bj=1−N are the annihilation (creation)
operators of the cavity mode and the jth resonator. The
parameter ∆ is the driving detuning after the lineariza-
tion of the optomechanical coupling, G is the strength of
the linearized optomechanical coupling, and ωm and η0
are the frequency of these resonators and the coupling
strength between the neighboring mechanical resonators,
respectively. To include the dissipations, we assume that
the cavity is coupled to a vacuum bath and the mechan-
ical resonators are coupled to independent heat baths at
the same temperatures. Then the evolution of the system
can be governed by the quantum master equation

ρ̇ = i[ρ,HI ] +
κ

2
(2aρa† − a†aρ− ρa†a)

+
γm
2

(n̄m + 1)
N∑
j=1

(2bjρb
†
j − b†jbjρ− ρb†jbj)

+
γmn̄m

2

N∑
j=1

(2b†jρbj − bjb
†
jρ− ρbjb

†
j), (8)

where ρ is the density matrix of the coupled cavity-
resonator system, n̄m is thermal phonon number of the
heat baths of these mechanical resonators, κ and γm are
the decay rates of the cavity mode and the mechani-
cal resonators, respectively. To evaluate the cooling ef-
ficiency, we solve the steady-state solution of quantum
master equation (8) and calculate the average occupation
numbers in the cavity and these mechanical resonators.
We see that the ground-state cooling is achievable and
the final phonon numbers successively increase from nf1
to nfN at the optimal effective detuning ∆ = ωm. The
physical reason for this phenomenon is that the system
is a cascade system and the vacuum bath of the optome-
chanical cavity provides the cooling reservoir to extract
the thermal excitations in these mechanical resonators,
which are thermally excited by their heat baths. After
the linearization, the system is reduced to an array of cou-
pled bosonic modes. Then the vacuum bath provides the
cooling channel of the cavity, and the cavity provides the
cooling channel of the first mechanical resonator. Succes-
sively, the former resonator provides the cooling channel
for the next resonator. As a result, the cooling efficiency
is higher for a mechanical oscillator which is closer to the
cavity.
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Enhancement of few-photon optomechanical effects with cross-Kerr
nonlinearity
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Abstract. Few-photon optomechanical effects are not only important physical evidences for understand-
ing the radiation-pressure interaction between photons and mechanical oscillation, but also have wide
potential applications in modern quantum technology. Here we study the few-photon optomechanical
effects including photon blockade and generation of the Schrödinger cat states under the assistance of a
cross-Kerr interaction, which is an inherent interaction accompanied the optomechanical coupling in a gen-
eralized optomechanical system. By exactly diagonalizing the generalized optomechanical Hamiltonian and
calculating its unitary evolution operator, we find the physical mechanism of the enhancement of photon
blockade and single-photon mechanical displacement.

Keywords: Cross-Kerr interaction, Photon blockade, Schrödinger cat states

1 Model and Hamiltonian
We consider a generalized optomechanical model,

which is composed of a single-mode optical field and a
mechanical mode [see Fig. 1(a)]. The Hamiltonian of the
generalized optomechanical model reads (ℏ = 1)

Ĥgom = ωcâ
†â+ωM b̂

†b̂− g0â
†â(b̂†+ b̂)− gcKâ

†âb̂†b̂, (1)

where â (â†) and b̂ (b̂†) are, respectively, the annihilation
(creation) operators of the cavity mode and the mechan-
ical mode, with the corresponding resonance frequencies
ωc and ωM . The g0 term denotes the optomechanical cou-
pling between the cavity field and the mechanical mode,
with the coupling strength g0. The gcK term describes
the cross-Kerr interaction between the cavity field and
the mechanical mode, with the coupling strength gcK.

To calculate the eigensystem of Ĥgom, we introduce
a conditional displacement operator D̂(ξ̂) = exp[ξ̂(b̂† −
b̂)], where the displacement amplitude ξ̂ is a nonlinear
function of the photon number operator â†â,

ξ̂ =
g0â

†â

ωM − gcKâ†â
=

∞∑
m=0

ξ[m]|m⟩a a⟨m|, (2)

with the m-photon induced mechanical displacement

ξ[m] =
mg0

ωM −mgcK
, (3)

where we introduce the number states |m⟩a (m =
0, 1, 2, · · · ) of the cavity mode. The Hamiltonian Ĥgom
can be diagonalized as follows,

ˆ̃Hgom = D̂†(ξ̂)ĤgomD̂(ξ̂)

= ωcâ
†â+ (ωM − gcKâ

†â)b̂†b̂− δ̂, (4)

where we introduce the optical nonlinearity as
∗jfhuang@hunnu.edu.cn
†jqliao@hunnu.edu.cn
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Figure 1: (Color online) (a) Schematic diagram of the
generalized optomechanical model. (b) Diagram of the
eigenenergy spectrum of the Hamiltonian Ĥgom in the
subspace associated with zero, one, and two photons.

δ̂ =
g20 â

†ââ†â

ωM − gcKâ†â
=

∞∑
m=0

δ[m]|m⟩a a⟨m|, (5)

with the m-photon energy shift

δ[m] =
g20m

2

ωM −mgcK
. (6)

The eigensystem of the Hamiltonian ˆ̃Hgom can be ex-
pressed as

ˆ̃Hgom|m⟩a|n⟩b = Em,n|m⟩a|n⟩b, (7)

where |n⟩b (n = 0, 1, 2, · · · ) are number states of the me-
chanical mode. The corresponding eigenvalues are

Em,n = mωc + (ωM −mgcK)n− δ[m]. (8)
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Figure 2: (Color online) (a) Plot of g(2)(0) as a function
of gcK/ωM under g0/ωM = 0.5, 0.7 and the single-photon
resonance ∆c = δ[1]. (b) Plot of g(2)(0) as a function of
gcK/ωM and g0/ωM at ∆c = δ[1]. Other parameters are
κ/ωM = 0.1, γM/ωM = 0.001, Ω/κ = 0.01, and n̄M = 0.

The eigensystem of the Hamiltonian Ĥgom can be ob-
tained as

Ĥgom|m⟩a|ñ(m)⟩b = Em,n|m⟩a|ñ(m)⟩b, (9)

where we introduce the m-photon displaced number
states of the mechanical mode as

|ñ(m)⟩b ≡ exp[ξ[m](b̂† − b̂)]|n⟩b. (10)

For studying few-photon optomechanical effects, we
show the eigenenergy levels of Ĥgom in the subspace asso-
ciated with zero, one, and two photons in Fig. 1(b). Phys-
ically, the induced optical nonlinearity depicted by δ[m]

[cf. δ[1] and δ[2] in Fig. 1(b)] is the origin of the photon
blockade effect in this generalized optomechanical model.
In addition, the photon-number-dependent displacement
ξ[m] in this model is not a linear function of the photon
number m. This nonlinear conditional photon displace-
ment can be used to create quantum superposition states
of the mechanical mode.

2 Photon blockade effect
To show the photon blockade effect, we introduce a

monochromatic driving field to the cavity. The driving
Hamiltonian is given by

Ĥd = Ω(â†eiωdt + âe−iωdt), (11)

where Ω and ωd are the driving strength and driving
frequency, respectively. For below convenience, we work
in a frame rotating at the driving frequency ωd, then the
Hamiltonian of the total system becomes

Ĥ(I)
sys = Ĥ(I)

gom +Ω(â† + â), (12)

with

Ĥ(I)
gom = ∆câ

†â+ωM b̂
†b̂−g0â†â(b̂†+ b̂)−gcKâ

†âb̂†b̂, (13)

where ∆c = ωc − ωd is the detuning of the cavity fre-
quency with respect to the driving frequency.

To include the dissipations of the cavity field and the
mechanical resonator, we study the photon blockade ef-
fect in the open-system case by using the method of quan-
tum master equation. The quantum master equation in
the rotating frame is written as
dρ̂(t)

dt
= −i[Ĥ(I)

sys , ρ̂(t)] + κD[â]ρ̂(t) + γM (n̄M + 1)D[b̂]ρ̂(t)

+γM n̄MD[b̂†]ρ̂(t), (14)

where we assume that the cavity field is connected with
a vacuum bath, while the mechanical resonator is a heat
bath at temperature T . κ and γM are, respectively, the
decay rates of the cavity field and the mechanical os-
cillator. The n̄M = (eℏωM/(kBT ) − 1)−1 is the average
thermal phonon number associated with the mechanical
dissipation, with kB being the Boltzmann constant. The
Lindblad superoperators used in Eq. (14) are defined by

D[ô]ρ̂(t) =
1

2
[2ôρ̂(t)ô† − ô†ôρ̂(t)− ρ̂(t)ô†ô] (15)

with ô = â, b̂, and b̂†.
By numerically solving Eq. (14), we can get

the steady-state density operator ρ̂ss of the sys-
tem, and then the photon-number probabilities
Pm=0,1,2 = Tr[

∞∑
n=0

|m⟩a|n⟩b a⟨m|b⟨n|ρ̂ss] can be
calculated numerically. The second-order cor-
relation function g(2)(0) can also be obtained by
g(2)(0) = Tr(â†â†ââρ̂ss)/[Tr(â†âρ̂ss)]

2.
In Fig. 2(a) we plot the correlation function g(2)(0)

at the steady state as a function of gcK/ωM , under
given values of g0/ωM and ∆c = δ[1]. Here we can see
that the correlation function exhibits an oscillating pat-
tern with several resonance peaks located at specific val-
ues of gcK/ωM . Moreover, we can see that the value
of g(2)(0) of the generalized optomechanical system is
greater (less) than those of the typical optomechanicl
system when g0/ωM = 0.5 (0.7). It indicates that the
cross-Kerr interaction could either enhance or suppress
the photon blockade effect. A more comprehensive anal-
ysis of these phenomena is shown in Fig. 2(b), in which
we plot the correlation function as a function of g0/ωM

and gcK/ωM under the single-photon resonant transition
|0⟩a|0⟩b → |1⟩a|0̃(1)⟩b. We can see that the value of
g(2)(0) is approximately equal to 1 when g0/ωM < 0.1,
which indicates that the photon blockade effect can not
be observed. For a given value of g0/ωM , the correla-
tion function g(2)(0) experiences some oscillations with
the increasing of the ratio gcK/ωM .
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Figure 3: (Color online) The Wigner functions W (±)(η)
for the mechanical oscillator states |Φ(±)(ts)⟩b: (a),(b)
gcK/g0 = 0.25 and (c),(d) gcK/g0 = 0. (e),(f) The proba-
bility distributions P (±)[X(θ0)] for the states |Φ(±)(ts)⟩b
as a function of X(θ0) at different value of gcK/g0. Other
parameters are ωc/ωM = 1000, and g0/ωM = 1.2.

3 Generation of the Schrödinger Cat
states

To generate the mechanical cat states, we consider an
initial state |ψ(0)⟩ = (|0⟩a + |1⟩a)|0⟩b/

√
2 of the system,

where |m⟩a(m = 0, 1) denotes the Fock state of the cavity
field and |0⟩b is the ground state of the mechanical res-
onator. By utilizing the unitary evolution operator Û(t),
the state of the system at time t can be obtained as

|ψ(t)⟩ = Û(t)|ψ(0)⟩

=
1√
2
[|0⟩a|0⟩b + eiϑ(t)|1⟩a|β(t)⟩b], (16)

By expanding the cavity-mode state with basis states
|±⟩a = (|0⟩a ± |1⟩a)/

√
2, Eq. (16) becomes

|ψ(t)⟩ = 1

2

[
1

N+(t)
|+⟩a|Φ(+)(t)⟩b +

1

N−(t)
|−⟩a|Φ(−)(t)⟩b

]
,

where we introduce the mechanical cat states

|Φ(±)(t)⟩b = N±(t)[|0⟩b ± eiϑ(t)|β(t)⟩b], (17)

which are quantum superposition of the ground state |0⟩b
and the coherent state |β(t)⟩b. The normalization con-
stants N±(t) are given by

N±(t) =

[
2

(
1± cos[ϑ(t)]e−

|β(t)|2
2

)]−1/2

. (18)

For the mechanical mode in the density matrix ρ̂b, the
Wigner function is defined by

W (η) =
2

π
Tr[ρ̂bD̂(η)eiπb̂

†b̂D̂†(η)], (19)

where D̂(η) = exp(ηb̂† − η∗b̂) is a displacement operator.
For the rotated quadrature operator

X̂(θ) =
1√
2
(b̂e−iθ + b̂†eiθ), (20)

its eigenstate is denoted by |X(θ)⟩b: X̂(θ)|X(θ)⟩b =
X(θ)|X(θ)⟩b. For the states |Φ(±)(t)⟩b, we can obtain
the probability distributions of the rotated quadrature
operator X̂(θ) as

P (±) [X(θ)] =
∣∣∣b⟨X(θ)|Φ(±)(t)⟩b

∣∣∣2 . (21)

In Figs. 3(a) and 3(b), we plot the Wigner functions
W (±)(η) for the mechanical cat states |Φ(±)(ts)⟩b with
ts = π/(ωM − gcK) being the detection time. Here we
can see that the positions of the two main peaks in the
Wigner functions are located at the origin and the point
corresponding to β(ts) in the phase space. Moreover, we
see clear interference pattern (in the region between the
two peaks) in the Wigner functions. More importantly,
the two main peaks in the Wigner functions of the states
|Φ(±)(ts)⟩b can be distinguished in the phase space. In
addition, in Figs. 3(c) and 3(d) we show the Wigner func-
tions of the two states in the absence of the cross-Kerr
interaction. By comparing the Wigner functions in the
two cases: gcK/g0 = 0.25 and 0, we can see that the dis-
tance between the two peaks is enhanced and that the
interference fringes become more clear in the presence of
the cross-Kerr interaction. This implies that the cross-
Kerr interaction is helpful to the generation of macro-
scopic mechanical cat state. This enhancement can also
be seen from the probability distributions P (±)[X(θ0)]
for the states |Φ(±)(ts)⟩b, as shown in Figs. 3(e) and 3(f).
Here, the angle of rotation θ0 = arg[β(ts)] − π/2 is cho-
sen such that the quadrature direction is perpendicular
to the link line between the two main peaks. It can be
seen that a stronger oscillation exists in the probability
distributions corresponding to the generated cat states in
the presence of the cross-Kerr interaction.
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Quantum random walk on a one-dimensional lattice with two entangled particles
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Abstract
We study the evolution of a two-particle system on a one-dimensional lattice, subjected to quan-

tum random walk. The quantum random walk of these two particles may contain spatial entanglement,
thus offering a resources for quantum information and quantum communication purposes. The degree of
spatial entanglement depends on the initial states of both particles and coins. Then we set out to investi -
gate the behavior of the entanglement through the discrete evolution in various scenarios of the initial
condition. The result of the study shows that most of the cases the spatial entanglement exhibits damped
oscillating behavior throughout the walk causing from the configuration of the particle’s state and size of
the lattice at nth step. In the asymptotic limit, the degree of the spatial entanglement will approach to a
certain value as a result of vanishing battle between loss and gain of the entanglement in the walking
process.

Keywords: quantum random walk, spatial entanglement, quantum information and communication
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One of the core problems of quantum theory lies in the cer-
tification and quantification of quantum entanglement, which
is the key resource in various quantum information processes.
An important physical property in the entanglement certifica-
tion is the dimension of quantum states, which places an upper
bound for the entanglement of a system.

However, studying only on the relation between the di-
mension of quantum states and the entanglement seems not
enough, since the practical application of entanglement is also
relevant to the quantum operations that we can perform on
these states. If the local quantum operations are limited, we
can not make full use of the existing entanglement of the
quantum state. Recently it is pointed out in Ref. [1] that a
two-ququart maximally entangled state (MES), can actually
be written as two two-qubit MES, however, if general joint
local operations can not be performed between the two two-
qubit states, the entanglement the two-ququart MES can not
be thoroughly displayed by these two two-qubit MES. There-
fore the authors propose the notion of irreducible dimension.
Instead of considering only the dimension of a quantum state,
they consider the dimension of a quantum system, which in-
cludes two elements, quantum states and a set of quantum op-
erations. A system has reducible dimension if both the quan-
tum states and quantum operations are separable into those
of lower-dimensional subsystems, otherwise it has irreducible
dimension. We can see that a system with entanglement of ir-
reducible dimension, which we will call irreducible entangle-
ment in short, can make better use of the entanglement than
those with reducible one of the same dimension, so it is impor-
tant to distinguish irreducible entanglement in the certification
process.

The most important part of distinguishing irreducible en-
tanglement lies in certifying the irreducibility of the quantum
operations, which is directly relevant to the capability of using
the existing entanglement. This is not a trivial task in practi-
cal entanglement certification scenario, where we usually do

not have the information of the systems—we have to treat the
measurement apparatus as black boxes, and certify the entan-
glement only with the measurement statistics it produce. In
Ref. [1], the authors show that some device-independent (DI)
entanglement witness can not distinguish irreducible entan-
glement, since it is incapable to detect whether the quantum
operations are reducible. A solution for the two-ququart sys-
tems is proposed by having additional tests to check the quan-
tum operations, but it is not a general one, and its robustness
requires assumptions of constraining the classical communi-
cation between the local subsystems and the two distant par-
ties.

In this article we try to give a more general solution to the
problem, we show that a recently proposed protocol called
quantitative measurement device independent entanglement
witness (QMDIEW) in Ref. [2], developed from measure-
ment device independent (MDI) quantum test and semiquan-
tum scenarios, can naturally distinguish the irreducibility of
the quantum operations, thus witnesses irreducible entangle-
ment. We prove that in a QMDIEW, the quantified entangle-
ment exceeds the upper bound of m-dimensional systems only
if the shared system is entangled in irreducible dimension at
least m + 1, and the result is robust against the most gen-
eral classical communication scheme. We then experimen-
tally demonstrate the protocol on a two-qutrit system and ob-
serve a lower bound of its generalized robustness (GR) that
exceeds the value of arbitrary 2-dimensional systems.
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Continuous hidden shift problem on Rn

Eunok Bae1 ∗ Soojoon Lee1 †

1 Department of Mathematics and Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Korea

Abstract. There have been several research works on the hidden shift problem, quantum algorithms
for the problem, and their applications. However, all the results have focused on discrete groups. So, we
define a continuous hidden shift problem on Rn as an extension of the hidden shift problem, and construct
a quantum computing algorithm for solving this problem efficiently.

Keywords: quantum algorithm, hidden shift problem, continuous hidden shift problem

1 Introduction

Quantum computers can solve certain problems expo-
nentially faster than classical computers by taking advan-
tage of the quantum mechanical properties such as quan-
tum interference and superposition. Many researchers
have been studying algebraic problems which can be
solved efficiently on a quantum computer, for instance,
hidden subgroup problem [1, 2, 3, 8, 9, 10, 11, 17], hid-
den shift problem [6, 7, 13, 16], hidden polynomial prob-
lem [14, 15, 20], and hidden symmetry subgroup prob-
lem [18, 19].

In particular, the hidden shift problem has provided a
frame work to solve various problems such as the shift
Legendre symbol problem [7], Gauss sum estimation [4],
and the stabilizer problem [6]. It has been shown that
several interesting and important problems have been
related to the hidden shift problem. For example, it
was proved that the hidden shift problem for the abelian
group ZN can be used to solve some lattice problem over
ZN [3, 5], and it was also discovered that an efficient al-
gorithm of the hidden shift problem for the symmetric
group Sn would yield an efficient algorithm for the graph
isomorphic problem [14].

The hidden shift problem can be cast in the following
terms: Let f0 and f1 be two injective functions from a
finite group G to a finite set satisfying that there exits
an element u in G such that the equality f0(x) = f1(xu)
holds for all x in G. The task is to find the hidden shift
u.

Although there is no general algorithm to solve the
hidden shift problem even for abelian groups, it has been
known that there are efficient algorithms to solve the
problem for some groups. Friedl et. al [6] found an
efficient quantum algorithm for the hidden shift prob-
lem over Znp for any fixed prime number p, and a sim-
ilar work for the problem over the group Znpk has been

done by Ivanyos [16], where pk is any fixed prime power.
However, when m is not a prime power, the hidden shift
problem for the group Znm still remains unsolved.

All known results on the hidden shift problem have
been concerned with only discrete groups. Thus, it is
natural to ask whether there exits an efficient quantum
algorithm for solving a continuous hidden shift problem,

∗eobae@khu.ac.kr
†level@khu.ac.kr

which is the hidden shift problem on a continuous group.
Considering a continuous version of a certain problem can
be helpful to solve unsolved problems as in the results of
Eisenträger et. al [21]. They found an efficient quan-
tum algorithm for solving a continuous hidden subgroup
problem to compute the unit group of an arbitrary de-
gree number field. It was also shown that the algorithm
can pose a threat to certain lattice-based cryptosystems.

In this paper, we consider a hidden shift problem for a
continuous group, and answer the question.

2 Hidden shift problem on a continuous
group

To deal with the hidden shift problem on a continuous
group, we need a suitable definition. The following def-
inition can be considered as a continuous version of the
original problem.

Definition 1 (Continuous hidden shift problem)
Let S be the set of unit vectors in some Hilbert space.
For two injective functions f0, f1 : Rn × Z2 → S, let
f : Rn × Z2 → S be defined by fa(x) = f(x, a), with the
following promises:

1. f(x, 0) = f(x+ u, 1)
for all x ∈ Rn and for some u ∈ Rn;
2. ‖|f(x, a)〉 − |f(y, b)〉‖ ≤ α · dist(x− au, y − bu)
for all x, y ∈ Rn and a, b ∈ Z2, where |f(·, ·)〉 is a pure

state corresponding to f(·, ·).
The goal of the problem is to find u, which is called the

hidden shift.

Note that the given oracle function f is efficiently com-
putable, and the positive constant α in condition 2 is
called a Lipschitz constant of the function f .

As in Ref. [20], let us first define a window function
ω : R→ C as

ω(x) =

{√
2 sin(πx) if x ∈ [0, 1],

0 otherwise.

Then ω is a Lipschitz function with unit L2-norm sup-
ported on [0, 1]. For a sufficiently large number ∆ and a
sufficiently small number δ = ∆−1, let us define

w(x1, . . . , xn) =
1

∆n/2

n∏
j=1

ω
(xj

∆

)
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for x = (x1, . . . , xn) ∈ Rn. For convenience, we assume
that ∆ =

√
2q for sufficiently large q with u2i ≤ ∆ for all

i.
Now, we are ready to construct our algorithm for solv-

ing the hidden shift problem with the above materials as
follows.

Theorem 2 (Quantum algorithm for solving the
hidden shift problem on Rn)
Input : The oracle function f : Rn × Z2 → S that hides
the shift u ∈ Rn.

0. If f(0, 0) = f(0, 1), then output 0.
1. Create the initial state√

δn/2
∑
x̃∈Zn

∑
c∈Z2

w(x) |x̃〉 |c〉

with x = δx̃.
2. Apply the oracle function f .
3. Perform the QFTZn×Z2 , which can be implemented

by the phase estimation technique as in Ref. [21], and
measure on the first two registers.

4. Consider the samples (ỹ, 1).
5. Use the values of ỹ non-orthogonal to ũ among the

samples (ỹ, 1) to find ũ.
6. Compute u = δũ.
Output : u

Remark 1 Since it is difficult to compute continuous
variables, we need to truncate and discretize the continu-
ous domain Rn of the oracle functions by using the win-
dow function w and the small number δ. As in Ref. [21],
we use the following variables in our calculations;

Real Domain: x = δx̃ ∈ δZn
Fourier Domain: y = δ−1ỹ ∈ Rn/δ−1Zn

• In Step 2, the state becomes

|ψδ〉 =

√
δn

2

∑
x̃∈Zn

∑
c∈Z2

w(x) |x̃〉 |c〉 |f(x, c)〉 .

• In Step 3, QFTZn×Z2
means the quantum Fourier

transform performing over the group Zn × Z2. As
in the original hidden shift problem, it is necessary
to perform the Fourier transform and measure in
the standard basis for the continuous hidden shift
problem as well. However, the Fourier transform
over any infinite group cannot be implemented by
a quantum computer. So, we can perform the ap-
proximate quantum Fourier transform on the in-
finite group by means of a variation of the phase
estimation algorithm on the register on the group
and ancillary register, which was used in Ref. [21].

• In Step 5, we reduce the hidden shift problem to
the random-linear-disequations problem to find the
hidden shift u as in the method of Ref. [16].

3 Analysis of our algorithm

In this section, we analyze our quantum algorithm pre-
sented in the above section. As in the way of Ref. [21],
instead of directly measuring in the Fourier basis of the
continuous group directly, we use the phase estimation to
approximate the probability distribution pδ(y, 1) of the
variable δ−1ỹ by the distribution of p(y, 1), when δ is
close to 0. We can derive these two distributions from
the following quantum states:

|ψδ〉 =
√
δn/2

∑
x̃∈Zn

∑
c∈Z2

|x̃〉 |c〉 |ψ(x, c)〉 ,

|ψ〉 =
1√
2

∫
Rn

∑
c∈Z2

|x〉 |c〉 |ψ(x, c)〉 dx,

where |ψ(x, c)〉 = w(x) |f(x, c)〉. Precisely, pδ and p are
from the Fourier transform of ψδ and ψ, respectively:

pδ(y, 1) =< ψ̂δ(y, 1)|ψ̂δ(y, 1) >,

p(y, 1) =< ψ̂(y, 1)|ψ̂(y, 1) >

with ψ̂δ = FδZnψδ and ψ̂ = FRnψ. We can show that pδ
goes to p as δ is close to 0.

So, it is enough to focus on the distribution p(y, 1)
which can be calculated precisely;

p(y, 1) =
1

2
− 1

2
cos(2π 〈u, y〉)

n∏
i=1

cos
(πui

∆

)
.

Although the probability that a sample y is orthogonal
to u is not zero, which is different from the original hid-
den shift problem, it can be shown that the probability
is (exponentially) small when n is large enough by the
following Propositions and Lemma. In other words, the
samples (y, 1) after the Fourier sampling subroutine are
mostly non-orthogonal to u.

In order to show that the probability that a sample y
is orthogonal to u is small enough when n is sufficiently
large, we consider the case when the number of y satis-
fying the equation 〈u, y〉 = 0 attains a maximum value.
Note that we actually get the samples ỹ instead of y to
return ũ first and recover u from ũ in the practical im-
plementation of our algorithm.

Lemma 3 For any n, k ∈ N, let q = 4k, ∆ = 2q/2

and ũ ∈ Zn2q . The number of ỹ ∈ Zn2q which is or-
thogonal to ũ has the maximum value, 2k(4n−3), when
ũ = (ũ1, . . . , ũn) = (

√
∆, . . . ,

√
∆). Moreover, the proba-

bility that ỹ ∈ Zn2q is orthogonal to ũ is at most 1/23k in
our algorithm.

Theorem 4 There is a quantum algorithm for solving
the continuous hidden shift problem on Rn in polynomial
time in n.

4 Discussion

It has been known that the hidden shift problem over
discrete groups can affect cryptosystems [23, 24]. In par-
ticular, Bonnetain and Naya-Plasencia [24] recently con-
structed an efficient quantum algorithm to solve the hid-
den shift problem over the abelian group Zw2p , and proved
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that the algorithm can be used to establish a quantum
attack in a cryptosystem claimed to be secure quantumly.

In this work, we have defined a continuous hidden shift
problem over the group Rn, and have shown that a quan-
tum computer can efficiently solve the problem. Thus it
is natural to consider whether the continuous version of
this problem can also have any crypto-related applica-
tions. In fact, a similar consideration has been involved
in the previous results. In Refs. [21, 22], it has been
shown that a continuous hidden subgroup problem in-
duces a quantum attack on cryptosystems based on the
hardness of finding a short generator of a principal ideal,
although the discrete hidden subgroup problem cannot
break them [10, 12]. Inspired by these results, we ex-
pect that our result could have an application related to
cryptography.
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Abstract. We experimentally simulate non-unitary quantum dynamics using a single-photon interfer-
ometric network and study the information flow between a parity-time (PT )-symmetric non-Hermitian
system and its environment. We observe oscillations of quantum-state distinguishability and complete in-
formation retrieval in the PT -symmetry-unbroken regime. We then characterize in detail critical phenom-
ena of the information flow near the exceptional point separating the PT -unbroken and -broken regimes,
and demonstrate power-law behavior in key quantities such as the distinguishability and the recurrence
time. We also reveal how the critical phenomena are affected by symmetry and initial conditions.

Keywords: critical phenomena, PT -symmetry, non-unitary quantum dynamics

1 Introduction

Parity-time (PT )-symmetric non-Hermitian systems
feature unconventional properties in synthetic systems
ranging from classical optical systems and microwave
cavities to quantum gases and single photons. In
these systems, the spectrum is entirely real in the PT -
symmetry-unbroken regime, in contrast to the regime
with spontaneously broken PT symmetry. As a re-
sult, the dynamics is drastically different in the PT -
symmetry-unbroken and -broken regimes, and dynami-
cal criticality occurs at the boundary between the two
regimes. In previous experiments, such unconventional
dynamical properties as well as signatures of the PT -
transition point, or the exceptional point, were observed
in classical PT -symmetric systems with balanced gain
and loss. Whereas quantum systems with passive PT
symmetry were realized recently, critical phenomena in
PT -symmetric quantum dynamics are yet to be experi-
mentally explored. Understanding these critical phenom-
ena in the quantum regime provides an important per-
spective for the study of open quantum systems and is
useful for applications in quantum information.

A paradigmatic example of PT -symmetric non-unitary
dynamics in the context of open quantum systems is the
reversible-irreversible criticality in the information flow
between a system and its environment. Here, informa-
tion lost to the environment can be fully retrieved when
the system is in the PT -symmetry-unbroken regime be-
cause of the existence of a finite-dimensional entangle-
ment partner in the environment protected by PT sym-
metry. In contrast, the information flow is irreversible
when the system spontaneously breaks PT symmetry.
Close to the exceptional point, physical quantities such

∗gnep.eux@gmail.com

as distinguishability between time-evolved states and the
recurrence time of the distinguishability exhibit power-
law behavior.

In this work, we simulate PT -symmetric non-unitary
quantum dynamics using a single-photon interferometric
network, and experimentally investigate the critical phe-
nomena in the information flow close to the exceptional
point. To extract critical phenomena from non-unitary
dynamics, a faithful characterization of the long-time dy-
namics is necessary. This poses a serious experimen-
tal challenge, because maintaining and probing coherent
dynamics in the long-time regime is difficult. We over-
come this difficulty by directly implementing non-unitary
time-evolution operators at any given time, and simulate
the non-unitary quantum dynamics by performing non-
unitary gate operations on the initial state. Since our
experimental protocol is general enough to implement a
broad class of non-unitary operators, we are able to ex-
amine in detail the role of symmetry and initial states
on non-unitary quantum dynamics driven by a series of
related non-Hermitian Hamiltonians.

2 Experimental setup

To simulate the dynamics of a two-level PT -symmetric
system, we encode basis states in the horizontal and ver-
tical polarizations of a single photon, with |H〉 = (1, 0)T

and |V 〉 = (0, 1)T. We generate heralded single photons
via type-I spontaneous parametric downconversion, with
one photon serving as a trigger and the other as a sig-
nal photon. The signal photon is then projected into the
initial state |H〉 or |V 〉 with a polarizing beam splitter
(PBS) and a half-wave plate (HWP), and is sent to the
interferometric network as illustrated in Fig. 1.

Experimentally, instead of implementing a non-
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Figure 1: Experimental setup. A photon pair is created via spontaneous parametric downconversion (SPDC). One of
the photons serves as a trigger, the other is projected into the polarization state |H〉 or |V 〉 with a polarizing beam
splitter (PBS) and a half-wave plat (HWP), and then goes through various optical elements.

Hermitian Hamiltonian, we directly realize the time-
evolution operator U at any given time t and access time-
evolved states by enforcing U on the initial state. As
illustrated in Fig. 1, this is achieved by decomposing U
according to

U = R2(θ2, ϕ2)L(θH , θV )R1(θ1, ϕ1), (1)

where the rotation operator Rj(θj , ϕj) (j = 1, 2) is real-
ized using a quarter-wave plate (QWP) at ϕj and a HWP
at θj , and the polarization-dependent loss operator L is
realized by a combination of two beam displacers (BDs)
and two HWPs with setting angles θH and θV .

Here, the setting angles {θj , ϕj , θH , θV } of wave plates
are determined numerically for each given time t, such

that U = e−iĤefft. In our experiment, the effective non-
Hermitian Hamiltonian is given by

Ĥeff = σ̂x + ia(σ̂z − 1̂), (2)

where σ̂x(z) are the standard Pauli operators, and 1̂ is
the identity operator. The non-Hermitian Hamiltonian
Ĥeff possesses passive PT symmetry, which can be easily
mapped to a PT -symmetric Hamiltonian ĤPT with bal-
anced gain and loss, with ĤPT = Ĥeff + ia1̂. Here, a > 0
controls non-Hermiticity, and the Hamiltonian becomes
Hermitian for a = 0; the system is in the PT -symmetry-
unbroken (-broken) regime for 0 < a < 1 (a > 1), with
the exceptional point located at a = 1.

The non-unitary dynamics of the system is captured
by the time-dependent density matrix

ρ1,2(t) =
e−iĤPT tρ1,2(0)eiĤ

†
PT t

Tr
[
e−iĤPT tρ1,2(0)eiĤ

†
PT t

] , (3)

with the initial density matrices ρ1(2)(0) =
|H(V )〉〈H(V )|. Note that applying Heff or HPT in
Eq. (3) would give the same time-dependent matrices.
Experimentally, we construct the density matrix at
any given time t via quantum-state tomography after
signal photons passed through the interferometric setup.
Essentially, we measure the probabilities of photons in
the bases {|H〉 , |V 〉 , |P+〉 = (|H〉 + |V 〉)/

√
2, |P−〉 =

(|H〉−i |V 〉)/
√

2} through a combination of QWP, HWP,
and PBS, and then perform a maximum-likelihood esti-
mation of the density matrix. The outputs are recorded
in coincidence with trigger photons. Typical measure-
ments yield a maximum of 18, 000 photon counts over 3
seconds.
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Figure 2: Information retrieval in the PT -symmetry-
unbroken regime. (a)-(c) Oscillations of the distinguisha-
bility D(t) for a < 1, and between the two time-evolved
states starting from |H〉 and |V 〉. Dots with error bars
represent the experimental results, while the curves show
the theoretical predictions. (d) Recurrence time T of the
distinguishability as a function of ε = 1− a.

3 Measuring distinguishability

We characterize information flowing into and out of
the system via the trace distance defined by

D [ρ1(t), ρ2(t)] =
1

2
Tr |ρ1(t)− ρ2(t)| , (4)

with |A| =
√
A†A. The trace distance D measures

the distinguishability of the two quantum states char-
acterized by ρ1(t) and ρ2(t). An increase in the distin-
guishability signifies information backflow from the en-
vironment, whereas a monotonic decrease means unidi-
rectional information flow to the environment. In Fig. 2,
we show the time evolution of the distinguishability when
the system is in the PT -symmetry-unbroken regime with
a < 1. For comparison, we also show the case of a uni-
tary evolution with a = 0. As illustrated in Figs. 2(a-c),
D(t) oscillates in time when a < 1, suggesting complete
information retrieval with the initial trace distance fully
restored periodically. The period of the oscillation T , or
the recurrence time, increases as the system approaches
the exceptional point. We extract the recurrence time by
fitting the experimental data with a Fourier series. As
shown in Fig. 2(d), the recurrence time agrees well with
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Figure 3: Unidirectional information flow to the environ-
ment in the PT -symmetry-broken regime. (a) Decay of
the distinguishability in the PT -broken regime with dif-
ferent coefficients a > 1. (b) Relaxation time τ of the dis-
tinguishability as a function of ε = 1− a. The blue solid
curve shows the theoretical result τ = 1/2

√
a2 − 1. We

readout the experimental results (dots with error bars)
by fitting the experimental data to an exponential func-
tion.

the analytic expression T = π/
√

1− a2. In the limit
ε→ 0 with ε = 1− a, the recurrence time should diverge
as T ∼ ε−1/2.

In Fig. 3(a), we show the time evolution of the dis-
tinguishability when the system is in the PT -symmetry-
broken regime with a > 1. Here, the distinguishability
decays exponentially in time. Fitting the experimental
data using D(t) = D(0)e−t/τ , where D(0) is a constant
and τ is the relaxation time, we find that the relaxation
time increases as the system approaches the exceptional
point. As shown in Fig. 3(b), the measured τ agrees
excellently with the analytical result τ = 1/2

√
a2 − 1,

which also diverges with a power-law scaling τ ∼ |ε|−1/2

as ε→ 0.
Finally, at the exceptional point (a = 1), the distin-

guishability exhibits power-law behavior in the long-time
limit. As illustrated in Fig. 4(a), the long-time behavior
of the distinguishability agrees well with the theoretical
prediction D(t) ∼ t−2. Importantly, the observed critical
phenomena do not depend on the details of the system
but the order of the exceptional point, which signifies
their universality. We note that the measurement suffers
from a relatively larger systematic error at long times due
to the small D(t).

4 Symmetry and initial states

Since our experimental protocol is quite general and
capable of implementing a broad class of non-unitary op-
erators, we are able to investigate the role of symmetry
and initial states on the information flow and critical phe-
nomena. In particular, we experimentally simulate non-
unitary dynamics governed by i) ĤT = σx + iaσy and

ii) Ĥ = σx + (c + ia)σz. Whereas ĤT has time-reversal
symmetry T ĤT T −1 = ĤT with complex conjugation T ,
Ĥ has no relevant symmetries for a 6= 0 and c 6= 0.

We first study dynamics under ĤT with different pa-
rameters and initial states (|H〉±|V 〉)/

√
2. Since eigenen-

ergies of ĤT are given as ±
√

1− a2, the exceptional point
is located at a = 1. As shown in Fig. 4(b), the same
critical phenomena emerge under time-reversal symme-
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Figure 4: (a) Power-law behavior of the distinguishabil-
ity D(t) ∼ t−2 of the PT -symmetric system with ini-
tial states {|H〉 , |V 〉}. (b)(c) Power-law behavior of the
distinguishability of the time-reversal symmetric system
at the exceptional point a = 1 with initial states (b)
(|H〉 ± |V 〉)/

√
2 or (c) {|H〉 , |V 〉}. The power law be-

haviors D(t) ∼ t−2 in (b) and D(t) ∼ t−1 in (c) demon-
strate the dependence of the critical phenomena on the
initial state. In the long-time limit, the experimentally
measured distinguishability agrees well with theoretical
predictions. The blue solid curves show the theoretical
prediction, and the red dashed lines indicate their asymp-
totes.

try: information is retrieved only in the symmetry-
unbroken regime (0 < a < 1), and critical scaling is still
D(t) ∼ t−2. However, when we choose the initial states
{|H〉 , |V 〉}, the critical scaling at the exceptional point
is now D(t) ∼ t−1, as illustrated in Fig. 4(c). This new
universality arises because |H〉 is one of the eigenstates
of ĤT . We note that the same scaling relation can be re-
alized under ĤPT with the initial states (|H〉±i |V 〉)/

√
2

as (|H〉− i |V 〉)/
√

2 is one of the eigenstates of ĤPT . For
the dynamics governed by Ĥ, however, the lack of sym-
metry therein prevents the information retrieval and the
distinguishability decays in time just as in the symmetry-
broken cases.

5 Conclusion

We have experimentally simulated PT -symmetric
quantum dynamics using single-photon interferometric
networks. Enforcing non-unitary gate operations on pho-
tons and performing quantum-state tomography, we have
reconstructed a time-dependent density matrix of the PT
dynamics at arbitrary times.Our work is the first ex-
perimental demonstration of critical phenomena in PT -
symmetric non-unitary quantum dynamics. We expect
that critical phenomena associated with higher-order ex-
ceptional points can also be probed using a similar ap-
proach.
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Abstract. Topological matter exhibits exotic properties yet phases characterized by large topological
invariants are difficult to implement, despite rapid experimental progress. A promising route toward higher
topological invariants is via engineered Floquet systems, particularly in photonics, where flexible control
holds the potential of extending the study of conventional topological matter to novel regimes. Here we
implement a one-dimensional photonic quantum walk to explore large winding numbers. By introducing
partial measurements and hence loss into the system, we detect winding numbers of three and four in
multi-step non-unitary quantum walks, which agree well with theoretical predictions.

Keywords: winding number, quantum walk, partial measurement

1 Introduction

Topological phases are typically characterized by
integer-valued topological invariants, associated with the
emergence of robust edge states through the so-called
bulk-boundary correspondence. Recent experiments re-
veal and characterize topological edge states and bulk
topological invariants in settings ranging from condensed
matter to synthetic systems. However, the experimen-
tally detected topological invariants are typically small
and limited to two, with the only exception being the re-
cently engineered topological photonic materials in two
dimensions, with Chern numbers greater than two hav-
ing been reported. In one dimension, while topological
phases with large winding numbers have been theoreti-
cally studied, e.g., in quantum transport or in quantum-
walk dynamics, experimental realization is still lack-
ing. Realizing systems with large topological invariants,
whether large Chern numbers in two dimensions or large
winding numbers in one dimension, is fundamentally im-
portant goal for the study of topological matter.

In this work, we report experimental detection of large
winding numbers of three and four in photonic non-
unitary quantum walks, which are scalable to feature
even higher winding numbers. By periodical partial mea-
surements on polarization of the photonic walker, we re-
alize multi-step non-unitary quantum walks in one di-
mension supporting Floquet topological phases (FTPs).
As for two-step non-unitary quantum walks, partial mea-
surement introduces loss to the quantum-walk dynam-
ics and provides a natural detection channel for FTP
winding number. Whereas FTPs in two-step non-unitary
quantum walks are directly related to those in a lossy
Su-Schrieffer-Heeger (SSH) model, the multi-step non-
unitary quantum walks here are analogous to adding
longer-range hopping terms in the lossy SSH model,

∗wyiz@ustc.edu.cn
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which gives rise to higher winding numbers.We detect
winding numbers of three and four through average dis-
pacements.

Our experimental detection of large winding numbers
in non-unitary FTPs offers the exciting prospect of ex-
ploring topological phases characterized by large topolog-
ical invariants in non-unitary or non-Hermitian settings,
which will create further opportunities in engineering un-
conventional topological phenomena using photonics.

2 Multi-step non-unitary quantum walks

We introduce the photonic setup for multi-step non-
unitary quantum walks, where the walker is shifted more
than twice at each time step. We focus on three- and
four-step non-unitary quantum walk in this work. As il-
lustrated in Fig. 1, the three-step quantum walk is on a
one-dimensional lattice L (L ∈ Z) with periodic bound-
ary condition, and the dynamics is governed by the Flo-
quet operator

Ũ ′3 := MU ′3 = MR

(
θ1

2

)
SR (θ2)SR (θ2)SR

(
θ1

2

)
.

(1)
Here, the coin operator R(θ) rotates single-photon polar-
ization by θ about the y-axis, where coin states are hor-
izontally polarized (|H〉) and vertically polarized (|V 〉).
The polarization-dependent shift operator S moves the
walker with coin state |H〉 (|V 〉) to the left (right) by
one lattice site. Non-unitary dynamics is enforced by the
loss operator

M = 1w ⊗
(
|+〉 〈+|+

√
1− p |−〉 〈−|

)
, 0 < p 6 1,

(2)
where |±〉 = (|H〉 ± |V 〉)/

√
2, and 1w =

∑
L |x〉 〈x| with

x denoting the position of the walker. The loss operator
is equivalent to performing a partial measurement Me =
1w⊗

√
p |−〉 〈−| in the basis {|+〉, |−〉} at each time step,

with p the probability of a successful measurement.
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Figure 1: We show a three-step non-unitary quantum walk up to 4 time steps as an example. The photon pair is
created via spontaneous parametric downconversion. One photon serves as a trigger. The other photon is projected
into the polarization state |+〉 with a polarizing beamsplitter (PBS) and a half-wave plate (HWP, at 22.5◦) and then
proceeds through the quantum-walk interferometric network.

Whereas R and S are implemented by using appropri-
ate wave plates and beam displacers (BDs), the partial
measurement operator Me is realized by a sandwich-type
setup involving two half-wave plates (HWPs) and a par-
tially polarizing beamsplitter (PPBS). At each measure-
ment step in the quantum-walk dynamics, photons in
the state |−〉 are reflected by the PPBS with probability
p. Photons are then detected by single-photon avalanche
photodiodes (APDs) and lost from the quantum-walk dy-
namics.

Topological properties in the experimental three-step
non-unitary quantum walk are introduced via the effec-

tive non-Hermitian Hamiltonian H
′(3)
eff defined through

Ũ ′3 = exp
[
−iH

′(3)
eff

]
. For the homogeneous single-photon

quantum walk considered here, H
′(3)
eff (k) = Ekn · σ in

momentum k space, with σ the Pauli vector, Ek the
quasienergy spectrum, and n the direction of the spinor
eigen-vector for each momentum −π < k ≤ π. Similar to
the case of the two-step non-unitary quantum walk, the
winding number of the three-step quantum walk, which
serves as a topological invariant of the system, is the
number of times the real component of n winds around
the x-axis as k varies through the first Brillouin zone.

For a given FTP with chiral symmetry, two distinct
winding numbers (ν′, ν′′) exist for Floquet operators fit-
ted in different time frames. Whereas the correspond-
ing winding number for Ũ ′3 is ν′, ν′′ is similarly de-
fined through the winding of the spinor eigen-vector

of the non-Hermitian Hamiltonian H
′′(3)
eff , where Ũ ′′3 =

exp
[
−iH

′′(3)
eff

]
and

Ũ ′′3 := MSupR(θ2)SR(θ1)SR(θ2)Sdown. (3)

Here, Sup =
∑

x (|x+ 1〉 〈x| ⊗ |V 〉 〈V |+ |x〉 〈x| ⊗ |H〉 〈H|)
and Sdown =

∑
x (|x〉 〈x| ⊗ |V 〉 〈V |+ |x− 1〉 〈x| ⊗ |H〉 〈H|).

Depending on the coin parameters, the absolute value of
the winding numbers can take large integer values up to
three, as we show in the phase diagram in Fig. 2(a).

Similar to three-step quantum walks, we define four-
step non-unitary quantum walks from constructing the
evolution operators

Ũ ′4
( ′) := MR

[
θ1(2)

2

]
SR(0)SR

[
θ2(1)

]
SR(0)SR

[
θ1(2)

2

]
,

(4)

By analyzing the effective non-Hermitian Hamiltonians

H
′(4)
eff and H

′′(4)
eff respectively associated with the Floquet

operators Ũ ′′4 and Ũ ′′4 , it is straightforward to demon-
strate that FTPs exist for four-step quantum walks,
which are characterized by integer-valued winding num-
bers as large as four. Importantly, both the three- and
four-step quantum walks defined in Eqs. (1), (3) and
(4) have chiral symmetry in the unitary limit (p = 0),
with the chiral symmetry operator given by Γ = σx as
ΓUΓ = U−1, where U designates the Floquet operator of
the corresponding quantum walk. Consistent with pre-
vious studies, we find that topological properties of the
non-unitary quantum-walk dynamics derive from those
in the unitary limit, which are in turn protected by chi-
ral symmetry. Hence, chiral symmetry in the unitary
limit is crucial for the perseverance of the FTPs in the
non-unitary case (p > 0).

3 Detecting topological invariants from
losses

In two-step non-unitary quantum walks, topological
invariants can be probed by monitoring losses. As we
experimentally demonstrate and explain, topological in-
variants of the multi-step non-unitary quantum walks are
determined from losses by measuring average displace-
ment

〈∆x〉 =
∑
x

∞∑
t′=1

xPth(x, t′), (5)

for the walker-coin system initialized in the state |ψ0〉 =
|x = 0〉 ⊗ |+〉. Here, the probability of the walker being
detected at x during the t-th time step is

Pth(x, t) = 〈ψt−1|U ′†3 M†e (|x〉 〈x| ⊗ 1c)MeU
′
3 |ψt−1〉 ,

(6)

where |ψt〉 = (Ũ ′3)t |ψ0〉, and 1c is a 2 × 2 identity oper-
ator.

To experimentally probe the average displacement in
the non-unitary quantum walk with t steps in total, we
perform coincidence measurements on the number of the
reflected photons NR(x, t′) (t′ = 1, ..., t) at each position
successively up to t. We then construct the probability

Pexp(x, t′) =
NR(x, t′)∑

x′

[∑t
t′′=1NR(x′, t′′) +NT(x′, t)

] , (7)
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Figure 2: (a) Phase diagram for three-step non-unitary
quantum walks characterized by the topological invari-
ants (ν′, ν′′) as functions of the coin parameters (θ1, θ2).

(ν′, ν′′) are calculated from the Floquet operators Ũ ′3 and

Ũ ′′3 , respectively. (b) Measured average displacements of
three-step non-unitary quantum walks corresponding to
Ũ ′3 with different loss parameters p = 1, 0.36. Coin pa-
rameters vary along the line θ1 = θ2 + π/2, as indicated
by dots in Fig. 2(a). The dashed curve indicates expected
results of infinite-step quantum walks. The solid curve
indicates numerical simulations for quantum walks with
4 time steps and the experimental results are presented
by dots. Experimental errors are due to photon-counting
statistics.
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Figure 3: (a) Phase diagram for four-step non-unitary
quantum walks in terms of the topological invariants
(ν′, ν′′). (ν′, ν′′) are calculated from the Floquet opera-

tors Ũ ′4 and Ũ ′′4 respectively. Measured average displace-

ments of four-step non-unitary quantum walks of Ũ ′4 (b)

and Ũ ′′4 (c) with different loss parameters p = 1, 0.36.
Coin parameters vary along the line θ1 = θ2 + π/2 as
indicated by dots in Fig. 3(a). Experimental errors are
due to photon-counting statistics.

where NT(x, t) is the number of transmitted photons at
the last step t. The average displacement is then

〈∆x〉exp =
∑
x

t∑
t′=1

xPexp(x, t′). (8)

To detect topological invariants, we realize three-step
non-unitary quantum walks with two different loss pa-
rameters p = 1, 0.36. The corresponding phase dia-
gram is shown in Fig. 2(a), where the topological invari-
ants (ν′, ν′′) are functions of the coin parameters (θ1, θ2).
Thirten sets of coin parameters (θ1, θ2) are chosen along
the line θ1 = θ2 + π/2, as indicated in Fig. 2(a). The
topological invariant ν′ assumes values −3, −1, 1 to 3
along the line, while ν′′ is fixed at 0. The walker starts
from x = 0, and the initial coin state is chosen to be |+〉.

Measured average displacements are shown in Fig. 2(b)

for the Floquet operator Ũ ′3 (as ν′′ is always zero, the

average displacements for Ũ ′′3 are not shown). These re-
sults agree well with the numerical simulations of three-
step quantum walks up to 4 time steps and demonstrate
plateaux close to the quantized values of ν′ calculated
for quantum walks with infinite time steps. We observe
that with increasing loss parameter p, measured aver-
age displacements at a given time step converge faster
to the quantized values. This result is consistent with
the measurement results for two-step non-unitary quan-
tum walks and suggests that the quantum Zeno effect is
weak in these systems. Meanwhile, regardless of the loss
parameter, it takes much longer for the displacements
to converge near topological phase transitions, where the
topological invariants undergo abrupt changes.

We then implement four-step non-unitary quantum
walks with the loss parameters p = 1, 0.36. The cor-
responding phase diagram is shown in Fig. 3(a). As the
coin parameters vary along the dotted line θ1 = θ2 +π/2
in the phase diagram, the topological invariants (ν′, ν′′)
change from (−4, 0), (0,−4), (4, 0), to (0, 4). The mea-

sured average displacements for the operators Ũ ′4 and Ũ ′′4
up to 3 time steps are shown in Figs. 3(b) and 3(c), re-
spectively, which agree well with the corresponding nu-
merical simulations.

4 Discussion

We experimentally realize FTPs with large topological
invariants in photonic multi-step non-unitary quantum
walks. The topological invariants are detected by moni-
toring the average displacements of the walker.

Our experimental scheme can be extended to quan-
tum walks with more steps, where FTPs with even higher
winding numbers can be prepared and probed. This ex-
tension would significantly enrich the experimentally ac-
cessible non-unitary FTPs in one dimension, and would
stimulate further studies on dynamic properties of non-
unitary FTPs.

Another interesting direction would be the exploration
of the relation between FTPs in non-unitary quantum-
walk dynamics and those in a parity-time-symmetric con-
figuration. This is particularly relevant due to the exis-
tence of hidden pseudo-unitarity in our system, which is
intimately connected with the reality of the quasienergy
spectrum and hence with parity-time symmetry as well.
Our experiment, with its excellent extendibility, opens
up the avenue toward a hierarchy of FTPs with large
winding numbers, and sheds new light on understanding
topological phenomena in non-unitary systems.
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Information  is  physical:  logical  phenomenon
correspond  to  structures  of  the  nature.  Landauer
principle dictates that it takes at least an unit energy
to erase a classical  information unit and No-cloning
theorem dictates that the quantum information cannot
be cloned[1].

Games have information theoretic meanings such
as (i) games have physical meanings, (ii) games are
governed by dynamics and (iii) games are measures
of complexity. Specifically, the voting as a game is a
famous  concept  in  Boolean  analysis  governed  by
Arrow’s  impossibility theorem[2,3]:  ‘dictatorship’  is
inevitable  in  the  classical  voting.  It  was  recently
found that its quantum extension does not hold[4].

We propose a new proof of Arrow’s impossibility
theorem based on the fact that the dictatorship in the
voting  is  equivalent  to  the  cloning  operator  in  the
circuit. The equivalence is a meaning of the voting.

We interpret  phenomenon in infinite voting with
the thermodynamics of the information. It was proven
that  Arrow’s  theorem  does  not  hold  if  either  the
number  of  voters  or  alternatives  is  infinite.  Infinite
phenomenon  can  be  explained  by  thermodynamic
limits and Landauer principle.

We suggest Bell-like inequalities of voting where
the  quantum voting  violates.  The  voting  is  a  well-
known communication complexity problem[5].  Bell-
violations  explain  the  quantum  supremacy  of
communication  complexity  problems[6].  Moreover,
the thought experiment of voting is presented.
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author whose advisor is Prof.Soo-Jong Rey.
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Abstract. Recent experiments in superconducting circuit with Josephson junction nonlinearities give
rise to new properties [1]. We obtained exact analytic solutions for the steady-state of this single-mode
case of subharmonic generation. In the region of weak nonlinearities, we obtained analytic solutions for
the tunneling time over which the time symmetry-breaking is lost [2]. And for strong nonlinearities, we
find that a cat-like steady state can be formed, which is a mixed state whose purity will be reduced by the
driving. We also show that steady-state pure cats cannot survive with single-photon loss concerned [3].

Keywords: quantum optics, quantum tunneling, Schrödinger cat, DPO, phase space methods.

1 Introduction

Quantum time symmetry breaking is widespread in
non-equilibrium quantum optics and superconducting
circuits. This is implicit in the use of coherent states,
which have a well-defined phase, to describe lasers [4, 5].
Discrete time symmetry breaking takes place in intra-
cavity subharmonic generation [6]. For quantum opti-
cal systems, an exact solution for the steady-state quan-
tum density matrix [7] is known for special cases. From
this, one can calculate quantum tunneling between time
phases [8]. Transient Schröinger cats are also possible in
this case [9, 10, 11]. Tunneling in these systems demon-
strates the existence of long range time order, which has
been confirmed in optical experiments [12].

Macroscopic superposition states have been pro-
posed in quantum computation [13], quantum telepor-
tation [14], quantum metrology [15] and quantum key
distribution [16]. As well as transient macroscopic su-
perpositions and tunneling, subharmonic generators can
generate space-time ordering [17]. These effects are re-
lated to time crystals [18], which are recent, similar phe-
nomena. Physically, such devices are quantum squeezed
state generators. Below threshold, they are used to re-
duce quantum noise in gravity-wave detectors [19, 20],
while networks of above threshold parametric devices are
used for NP-hard optimization [21, 22].

Quantum subharmonic generation with anharmonic
nonlinearities has been achieved in superconducting cir-
cuits [1]. Relatively large cat states were observed. In
our studies [2, 3], we find that the physics of the quan-
tum steady state is different from previous studies, where
a complex manifold is introduced. In the region of weak
nonlinearities, we obtained analytic solutions for the tun-
neling time. Our results show that the anharmonicity

∗qiongyihe@pku.edu.cn

will enhances quantum tunneling rates, which may have
practical applications for escaping a local minimum in
quantum neural networks [21, 22]. And in the region of
strong nonlinearities, we find that a cat-like steady state
can be formed, which is a mixed state whose purity will
be reduced by the driving. Since pure cat states are un-
achievable because of the inevitable single-photon loss,
we propose a scheme to form an approximate steady-
state cat state in realizable systems.

2 Steady state of DOP with anharmonic
nonlinearity

We consider a general model for two coupled bosonic
modes of an open system. The annihilation and creation
operators of the k-th mode are ak, a

†
k at frequencies ωk.

They have a non-interacting Hamiltonian in the rotating
frame of H0 = ~

∑
∆ka

†
kak, where ∆k = ωk − kω0 �

ω0 for a input laser frequency of 2ω0. The interaction
Hamiltonian is then given by

HI = ~
χ

2
a†21 a

2
1 +

(
i~
κ

2
a2a
†2
1 + i~E2a†2 + h.c.

)
. (1)

Here E2 is the envelope amplitude of the driving for the
mode a2, and κ, χ are the parametric and anharmonic
nonlinearities [23] respectively. Anharmonic nonlineari-
ties are only included for the mode a1.

With adiabatic approximation and generalized P-
representation [24], we find the steady-state probability
distribution P (α, α+) = N exp [−Φ (α, α+)], where

Φ
(
α, α+

)
= −2α+α−c ln[λc−α2]−c∗ ln[λ∗c−α+2], (2)

with dimensionless parameters c = γ/g−1 and λc = ε/g,

where γ = γ
(1)
1 + i∆1, g = γ

(2)
e + iχe, γ

(2)
e = γ

(2)
1 +

γ
(1)
2

2

∣∣∣∣ κ

γ
(1)
2 +i∆2

∣∣∣∣2, χe = χ − ∆2

2

∣∣∣∣ κ

γ
(1)
2 +i∆2

∣∣∣∣2 and ε = κ
γ2
E2.
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Figure 1: We show the potential Φ(~β) on the manifold.

Figure (a) shows the real part of Φ(~β) with the parame-
terized variables (x, y), and figure (b) shows the related

contour figure of Re[Φ(~β)]. Figure (c) shows the im-

age part of Φ(~β) with (x, y), and the figure (d) shows

the related contour figure of Im[Φ(~β)]. In these figures,
c = 1 + 0.5i and λ = 3.

All the parameters here can have complex values, which is
necessary when treating the situations in recent quantum
circuit experiments [1].

3 Quantum tunneling with weak nonlin-
earity

Geometrically, we can regard the quantum dynamics
as occurring via a distribution function defined on a two-
dimensional manifold embedded in a four-dimensional
complex space, considering that α and α+ are two com-
plex independent variables. Then the potential Φ can be
expressed as in Fig. 1. We note that there are two lo-
cal minima and a saddle point in the potential, thus the
quantum tunneling will take place.

The analytic solution of the tunneling time is obtained
with the potential-barrier approximation. Comparing
with the numerical results, they agree with each other
in the large tunneling time limit, where the potential-
barrier approximation is valid, as shown in Fig. 2.

4 Cat-like steady state with strong non-
linearity

In the region of strong nonlinearities, the probability
distribution can be expressed in Fig. 3. In extremely
strong nonlinearity limit, c → −1, the distribution ap-
proaches the delta-function form, which resembles the
Schrödinger cat. And in the large driving limit, λ→∞,
the distribution reduce to a classical mixture of coherent
states.

Further studies tell us that the delta-form steady-state
distribution is a mixed state rather than a pure state,
which is only valid in the limit c → −1. We also find
that pure steady-state cats are only reachable if there is
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Figure 2: Comparisons of the tunneling times obtained
using the P-representation (blue lines) and the number-
state expansion (red circles) changing with the anhar-
monic nonlinearity χ (a) and the parametric nonlinearity
κ (b). In figure (a), the other parameters are γ = 1.5kHz,
γ(2) = 0.8kHz, ε = 10kHz. In figure (b), γ = 1.5kHz,

γ
(2)
1 = 0.1kHz, γ2 = 20kHz, χ = 0.1kHz, E2 = 40kHz.
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Figure 3: Real parts of steady-state probability distribu-
tions for (a) c = −0.6 − 0.2i and λc = −0.193 + 0.096i,
and (b) large λ: c = −0.6− 0.2i and λc = −1.93 + 0.96i.

no single-photon loss, as shown in Fig. 4. This is because
the parity symmetry breaks once the single-photon loss
is nonzero.

By changing the driving, we show in Fig. 5 that the
exact distribution is similar to the mixed delta-form dis-
tribution, while the pure cat state is a different distribu-
tion which is only vaild if there is no single-photon loss.

5 Summary

We have discussed general properties of quantum tun-
neling and cat-like steady states in subharmonic genera-
tion with anharmonic nonlinearities. In the weak nonlin-
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Figure 4: Comparing the average photon numbers (a)
and the second order correlation functions (b). The blue
dashed line is obtained from the mixed cat distribution,
the red solid line from the analytic method, the black
dash-dotted line from the pure cat state, and the magenta
circles are obtained with γ = 0 and initial vacuum state.
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Figure 5: Comparing the average photon number (a) and
the second-order correlation function (b) with λ varying.
In this case, c = −0.99 − 0.1i. The lines have the same
meanings as in the Fig. 4.

earity case [2], we obtain analytic solutions for the tun-
neling time which are confirmed by number state calcula-
tions. We find that additional anharmonic terms increase
the tunneling rate. This could be useful in quantum neu-
ral networks [21, 22] for escaping a local minimum. In
the region of strong nonlinearities [3], we get an exact an-
alytic solution for the steady states. We show that in the
limit of extremely strong nonlinearities, the steady state
will reduce to a cat-like mixed state. We also conclude
that true Schrödinger cats cannot survive in the steady
state unless there is no single-mode loss.
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Skew informations from an operational view
via resource theory of asymmetry

Ryuji Takagi1 ∗

1 Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract. The Wigner-Yanase skew information was proposed to quantify the information
contained in quantum states with respect to a conserved additive quantity, and it was later
generalized to a class called metric-adjusted skew informations. We analyze this general family
of the skew informations from an operational point of view by utilizing the fact that they are
valid asymmetry resource monotones. We show that such an approach allows for clear physical
meanings as well as simple proofs of some of the basic properties of the skew informations. Notably,
we constructively prove that any type of skew information cannot be superadditive, where the
violation of the superadditivity had been only known for a specific class of skew informations
with numerical counterexamples. We further show a weaker version of superadditivity relation
applicable to the general class of the skew informations, which proves a conjecture previously
proposed for the Wigner-Yanase skew information as a special case. We finally discuss an
application of our results for a situation where quantum clocks are distributed to multiple parties.

1 Introduction

Quantifying the information contents is a cen-
tral theme in information theory, but it becomes
subtle when the system has a certain symmetry
and possesses a conserved quantity because, in such
cases, some observables can be measured more eas-
ily than others as observed by Wigner, Araki, and
Yanase [2–4]. Motivated by this observation, the
Wigner-Yanase skew information was proposed as
an information-theoretic quantity that measures the
information contents contained in a quantum state
with respect to a conserved additive quantity [5].
This is later extended to Wigner-Yanase-Dyson skew
informations, and further to the general family of
metric-adjusted skew information [6], establishing a
connection with with information geometry [7].

The characterization of the skew informations by
information geometry then further finds a connec-
tion to the measures of asymmetry in the context of
resource theories. Resource theories are formal frame-
works dealing with quantification and manipulation
of intrinsic physical quantities, called resources, asso-
ciated with given physical settings [8]. In particular,
resource theory of asymmetry [9] accounts for the
capability of breaking the relevant symmetry pos-
sessed by the system. It has been found that not only
Wigner-Yanase-Dyson skew informations [10, 11] but
the whole family of skew informations [12] serve as
valid asymmetry quantifiers, providing another oper-
ational aspect to this information-theoretic quanti-
ties. It is thus highly desired to unveil the general
properties shared by the skew informations in the
general family. However, due to the generality of the
skew informations as well as restrictions imposed on

∗rtakagi@mit.edu

them, investigating properties of the skew informa-
tions usually requires highly involved mathematical
techniques [6, 13] that are not physically very in-
tuitive, and it is hoped that the operational view
stemming from the resource theory would provide
another route that gets around with these difficulties.

Here, we employ an operational approach to ana-
lyze the general class of skew informations, extending
the argument in Ref. [10] employed for a special class
of skew informations. We see that operational views
provided by the resource theory allow for richer phys-
ical intuitions as well as simpler proofs of some of
the important properties. Notably, we constructively
show that any skew information cannot be superad-
ditive. The superadditivity of the Wigner-Yanase
skew information was listed as a desired property for
the skew information to be an information measure,
and Wigner and Yanase themselves proved this prop-
erty for pure bipartite states [5]. It had been widely
believed that it would hold in general until counterex-
amples have been recently found [14–16]. On the
other hand, it has been also shown that “classical”
states always satisfy the superadditivity [17, 18], so
it would be essential to investigate what property
of the state contributes to the violation of the su-
peradditivity, since it might be an indicator of some
form of “quantumness”. However, the previously
shown counterexamples are purely numerical exam-
ples obtained by exhaustive computational search
or semianalytical forms which fail to provide much
physical insights. In this work, we find that the vio-
lation of the superadditivity is a natural consequence
from the resource-theoretic point of view, providing
a fully analytical and physically clear proof for the
violation of the superadditivity. We also propose and
prove a weaker version of superadditivity relation
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that holds for any skew information, which proves
the conjecture posed in Ref. [16] as a special case of
our results. We finally apply our results to a physical
situation where quantum clocks are distributed to
multiple parties. The full paper is found in Ref. [1].

2 Preliminaries

We first review the resource theory of asymmetry.
The resource theory of asymmetry with group G
corresponds to the setting where one has free access
to quantum states that are invariant (symmetric)
under group action whereas states that can break the
group symmetry, asymmetric states, are considered
precious, and thus resources. Formally, the state ρ is

called a symmetric state if UgρU
†
g = ρ, ∀g ∈ G where

Ug is a unitary representation of the group element
g. A relevant set of free operations are covariant
operations E satisfying the covariance condition: E ◦
UIg = UOg ◦ E ∀g ∈ G where UXg (·) refers to the
application of unitary representation of g on the
system X, and X = I,O correspond to the input
system and output system of E . Then, any function
R from quantum states to real number satisfying
R(ρ) ≥ R(E(ρ)), ∀ρ for any covariant operation E
is called asymmetry monotone. Here we only deal
with the U(1) group whose unitary representation
is labeled by a real number t as UX(t) = exp(iHXt)
where HX is an observable defined on system X.

We next briefly review the skew informations. Sup-
pose the system possesses an additive conserved quan-
tity whose observable is denoted by H. To quan-
tify the information contained by quantum states
with respect to the conserved quantity, Wigner and
Yanase proposed the Wigner-Yanase skew informa-
tion IWY (ρ,H) = −1

2 Tr([
√
ρ,H]2). Later, a general

family of skew informations called metric-adjusted
skew informations were introduced

If (ρ,H) =
f(0)

2
Tr [(i[H, ρ]) cf (Lρ, Rρ) (i[H, ρ])]

where cf (x, y) :=
[
yf(xy−1)

]−1
is the Morozova-

Chentsov function [19], and f is a standard operator
monotonic function. Note that the Wigner-Yanase
skew information is reconstructed by taking an ap-
propriate form of cf (x, y). Remarkably, all the skew
informations are valid asymmetry monotones [12].

3 Properties of skew informations as
asymmetry monotones

In this abstract, we discuss two properties for
which resource-theoretic arguments turn out to be
useful. An extended list for such properties are found
in Ref. [1]

Monotonicity under the partial trace The
skew informations of the subsystem are not greater
than the skew informations of the total system.
If (ρ12, H12) ≥ If (ρ1, H1) where H12 = H1 ⊗ I +

I ⊗ H2. As asymmetry measures, this relation en-
tails a natural physical meaning; if one throws away
a subsystem, the capability of breaking the sym-
metry (e.g. accuracy of quantum clock) must de-
crease. From resource-theoretic perspective, this is
concisely obtained by that the partial trace is in-
deed a covariant operation. Also, a related property
If (ρ12, H1 ⊗ I) ≥ If (ρ1, H1) has been proved in
Ref. [13, 20] for Wigner-Yanase-Dyson skew infor-
mations by an explicit but involved calculation. By
our argument, however, one can immediately prove
even more general relation applicable to any skew
information as a special case of the monotonicity
under partial trace when H2 = 0.

Decrease under measurements not disturb-
ing the conserved quantity In Ref. [21], the
dynamics of Wigner-Yanase skew information un-
der the measurement that does not disturb the
conserved quantity have been investigated. Specif-
ically, they considered the measurement operation

M(·) =
∑

j Ej · E
†
j whose measurement operators

commute with the observable corresponding to the
conserved quantity; [Ej , H] = 0, ∀j. This implies
Tr[M(ρ)H] = Tr[ρH], so the expectation value of the
conserved quantity is not disturbed. For such a mea-
surement, they asked whether the Wigner-Yanase
skew information would decrease under determinis-
tic measurement IWY (M(ρ), H) ≤ IWY (ρ,H) and
under selective measurement

∑
j pjI

WY (σj , H) ≤
IWY (ρ,H) where pj = Tr[EjρE

†
j ] and σj =

EjρE
†
j/pj . They proved that the former holds in gen-

eral and proved the latter holds for two-dimensional
systems, while they left the higher dimensional cases
as a conjecture.

Our resource-theoretic approach immediately
proves these relations at the most general level: for
general dimensions and for any skew information. To
see this, note that the condition [Ej , H] = 0, ∀j im-

plies that M is a covariant operation and Ej ·E†j are
covariant completely-positive trace non-increasing
maps. Then, these relations follow from the mono-
tonicity and selective monotonicity of the skew infor-
mations as asymmetry monotones.

4 Superadditivity

Superadditivity of the skew informations refers to
the property that the skew informations for total
states are never less than the sum of local skew infor-
mations: If (ρ1...n, H1...n) ≥

∑n
k=1 I

f (ρk, Hk) for any
n ∈ N, ρ1...n, and H1...n with H1...n =

∑n
k=1Hk ⊗ Ik̄

where ρk = Trk̄ ρ1...n is the reduced state on the k th
subsytem, and Ik̄ is the identity operator acting on
the subsystems other than k th subsystem.

Here, we employ an operational argument to show
the violation of superadditivity relation for any choice
of f .
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Theorem 1. Any skew information If cannot be
superadditive.

The idea is that one can construct a covariant
operation which creates larger sum of the local asym-
metry than the global asymmetry. For such a co-
variant operation, we consider the protocol proposed
by Åberg [22], which approximately implements a
desired unitary only using covariant operations and
a resource state. What is interesting about the pro-
tocol is that it is “perfectly repeatable” in the sense
that one can reuse the resource state again and again
without degrading the quality of the implementation
of the unitary. Thus, one can keep applying the
approximate unitary that creates local asymmetry
forever while the global asymmetry is upper bounded
by the asymmetry of the initial resource state because
of the covariance of the protocol. This observation
naturally leads to the fact that any skew information
is prohibited from being superadditive as a valid
asymmetry monotone. The detailed proof can be
found in Ref. [1].

Weak superadditivity Although the superaddi-
tivity does not hold in general, one can still ask
whether some weaker version of superadditivity holds.
We prove such weak superaditivity relation by an
operational approach, proving the conjecture posed
in Ref. [16] as a special case.

Theorem 2. For any ρ1...k and H12...k =
∑

j Hj⊗Ij̄,
If (ρ1...k, H12...k) ≥ 1

k

∑k
j=1 I

f (ρj , Hj) holds. More-

over, 1
k is the maximum constant for β(k) such that

If (ρ1...k, H12...k) ≥ β(k)
∑k

j=1 I
f (ρj , Hj) holds for

any ρ1...k and H12...k.

The first part can be immediately obtained by
using the monotonicity under partial trace. As for
the second part, we show that if β(k) is larger than
1/k, the sum of local asymmetry must grow sublin-
early with respect to the number of qubits. However,
becaue Åberg’s protocol is perfectly repeatable, one
can construct a state whose local asymmetry grows
linearly, which leads to the contradiction. A detailed
proof can be found in Ref. [1].

Distributed quantum clocks The above Theo-
rems provide an interesting implication for the situ-
ation where quantum clocks are distributed to mul-
tiple parties. Suppose that k parties A1, A2, . . . , Ak
share some number of copies of state ρ1...k while each
party only has access to their reduced state and does
not know the description of the global state ρ1...k.
Assume also that they share a limited amount of
entanglement among each other, which only enables
them to send a limited number of qubits by quantum
teleportation although they can freely make classi-
cal communication. This is a situation relevant to
the setups such as quantum network and distributed
quantum computation [23, 24].

From the perspective that the skew informations
are asymmetry monotones, it is natural to see that

they serve as quantifiers for how useful they are for
metrological tasks [9]. In particular, when the con-
served quantity is chosen as the Hamiltonian, the
skew informations may be seen as the quality of
the state as a quantum clock [25]. Suppose that
A1 desires to possess a quantum clock with high
precision that requires the amount of skew infor-

mation Ifth > If (ρ1, H1). In such a situation, A1

could ask the other parties to send their states via
quantum teleportation, but A1 would like to make
sure that it will be indeed possible to achieve the
desired level of asymmetry by doing so because oth-
erwise the precious entanglement will be wasted. To
this end, suppose A1 asks the other parties to mea-
sure the skew information of their own reduced state
(by, for instance, a method provided by Ref. [26])
and report it back by classical communication. A1

then tries to infer the total skew information she
would obtain If (ρ1...k, H1,...,k) by reported values
If (ρj , Hj), j = 2, . . . , k.

Theorem 1 warns A1 not to make a naive decision
in which she asks the other parties to send their

states when
∑k

j=1 I
f (ρj , Hj) ≥ Ifth because it may

be the case that ρ1...k significantly violates the super-

additivity relation such that If (ρ1...k, H1,...,k) < Ifth.
On the other hand, Theorem 2 ensures that if A1

asks the other parties to send their states only when
1
k

∑k
j=1 I

f (ρj , Hj) ≥ Ifth, she will certainly obtain the
enough amount of asymmetry to implement a quan-
tum clock with the desired accuracy. Moreover, it is
the best possible she can do because 1/k is the maxi-

mum constant to ensure that If (ρ1...k, H1,...,k) ≥ Ifth
holds as shown in Theorem 2.

5 Conclusions

We analyzed properties of the general family of
skew informations from operational perspectives in
the context of resource theory of asymmetry. We
showed that such operational approach can give
clearer physical meanings as well as simpler proofs of
some of the properties of the skew informations. We
in particular provided the first full analytical proof
for violation of superadditivity property and prove
weak superadditivity relations valid for general skew
informations. We also discussed an application of
our results to a situation where quantum clocks are
distributed to multiple parties, providing the optimal
strategy for a single party to ensure that the enough
amount of asymmetry will be obtained after costly
quantum communications.

Our results not only indicate much potential of
analyzing information-theoretic quantities from oper-
ational perspectives, motivating to extend the anal-
ysis to a broader class of the quantities beyond the
skew informations, but also shed new light on further
applications of resource-theoretic considerations.

24



References

[1] Ryuji Takagi. Skew informations from an oper-
ational view via resource theory of asymmetry.
arXiv preprint arXiv:1812.10453, 2018.

[2] E.P. Wigner. Die messung quantenmechanischer
operatoren. Z. Physik, 131:101, 1952.

[3] Huzihiro Araki and Mutsuo M. Yanase. Mea-
surement of quantum mechanical operators.
Phys. Rev., 120:622–626, Oct 1960.

[4] Mutsuo M. Yanase. Optimal measuring appara-
tus. Phys. Rev., 123:666–668, Jul 1961.

[5] E. P. Wigner and M. M. Yanase. Information
contents of distribution. Proceedings of the Na-
tional Academy of Sciences of the United States
of America, 49:910, June 1963.

[6] Frank Hansen. Metric adjusted skew informa-
tion. Proceedings of the National Academy of
Sciences, 105(29):9909–9916, 2008.

[7] Shun-ichi Amari and Hiroshi Nagaoka. Methods
of information geometry, volume 191. American
Mathematical Soc., 2007.

[8] Eric Chitambar and Gilad Gour. Quantum
resource theories. Rev. Mod. Phys., 91:025001,
Apr 2019.

[9] Gilad Gour and Robert W Spekkens. The
resource theory of quantum reference frames:
manipulations and monotones. New J. Phys.,
10(3):033023, 2008.

[10] Iman Marvian. Symmetry, asymmetry and quan-
tum information. PhD thesis, 2012.

[11] Iman Marvian and Robert W Spekkens. Ex-
tending noethers theorem by quantifying the
asymmetry of quantum states. Nature commu-
nications, 5:3821, 2014.

[12] Chao Zhang, Benjamin Yadin, Zhi-Bo Hou,
Huan Cao, Bi-Heng Liu, Yun-Feng Huang,
Reevu Maity, Vlatko Vedral, Chuan-Feng Li,
Guang-Can Guo, and Davide Girolami. Detect-
ing metrologically useful asymmetry and entan-
glement by a few local measurements. Phys.
Rev. A, 96:042327, Oct 2017.

[13] Elliott H Lieb. Convex trace functions and the
wigner-yanase-dyson conjecture. Advances in
Mathematics, 11(3):267 – 288, 1973.

[14] Frank Hansen. The wigner-yanase entropy is
not subadditive. Journal of Statistical Physics,
126(3):643–648, Feb 2007.

[15] Robert Seiringer. On the failure of subadditiv-
ity of the wigner–yanase entropy. Letters in
Mathematical Physics, 80(3):285–288, Jun 2007.

[16] Liang Cai, Nan Li, and Shunlong Luo. Weak
superadditivity of skew information. Journal
of Physics A: Mathematical and Theoretical,
41(13):135301, 2008.

[17] Shunlong Luo. Notes on superadditivity of
wigner–yanase–dyson information. Journal of
Statistical Physics, 128(5):1177–1188, Sep 2007.

[18] Shunlong Luo and Qiang Zhang. Superadditiv-
ity of wigner-yanase-dyson information revisited.
Journal of Statistical Physics, 131(6):1169–1177,
Jun 2008.

[19] E. A. Morozova and N. N. Chentsov. Markov
invariant geometry on manifolds of states. Jour-
nal of Soviet Mathematics, 56(5):2648–2669, Oct
1991.

[20] X Li, D Li, H Huang, and LC Kwek. Averaged
wigner-yanase-dyson information as a quantum
uncertainty measure. Eur. Phys. J. D, 64(1):147,
2011.

[21] Shunlong Luo and Qiang Zhang. Skew in-
formation decreases under quantum measure-
ments. Theoretical and Mathematical Physics,
151(1):529–538, Apr 2007.
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Abstract. One of the central problems in the study of resource theories is to provide a given
resource with an operational meaning, characterizing physical tasks in which the resource can
give an explicit advantage over all resourceless objects. We show that this can always be
accomplished for all convex resource theories — describing the resource content of not only
states, but also measurements and channels — both within quantum mechanics and in general
probabilistic theories (GPTs). We in particular find that discrimination tasks provide a unified
operational description for quantification and manipulation of resources by showing that the
family of robustness resource measures can be understood as the maximum advantage provided
by any physical resource in several different discrimination tasks, as well as establishing that
such discrimination problems can fully characterize the allowed transformations within the given
resource theory. Our results establish a fundamental connection between the operational tasks of
discrimination and core concepts of resource theories — the geometric quantification of resources
and resource manipulation — valid for all physical theories beyond quantum mechanics with no
additional assumptions about the structure of the GPT required.

1 Introduction

A rigorous understanding of quantum resources
is one of the ultimate goals in quantum informa-
tion science. In addition to the apparent theoretical
interest, it also has high relevance to burgeoning
quantum information technologies such as quantum
communication [3, 4], quantum cryptography [5, 6],
and quantum computation [7, 8]. Quantum resource
theories [9] have recently attracted much attention
as powerful tools which offer formal frameworks al-
lowing for the characterization of quantification and
manipulation of intrinsic resources associated with
quantum systems.

Although applications of the resource-theoretic
framework have enhanced systematic studies of many
physical settings, these setting-specific resource the-
ories do not tell us much about how to understand
the individual properties and results in a unified
fashion. One could then wonder whether the gen-
erality of the framework allows one to go beyond
specific examples and obtain results applicable to
a broad class of settings, thus providing a unified
picture of resources in general. A complete study
of which features are universal among all resources,
stemming from only the very foundations of quantum
mechanics, therefore remains a major area of inves-
tigation, and such a general approach has recently
gained much attention [9–18]. In fact, one can pose
an even more fundamental question: can common
features of resource theories be understood without

∗rtakagi@mit.edu
†bartosz.regula@gmail.com

relying on quantum mechanics at all? This motivates
us to extend the framework of resource theories to
general probabilistic theories (GPTs) [19–22], a fam-
ily of physical theories which includes classical and
quantum probability theory as special cases, and
investigate a unified characterization of general re-
sources in the extensive formalism of GPTs rather
than limiting it to quantum mechanics.

In our works [1, 2], we contribute to advancing
general resource theories with regard to one of the
central questions that can be asked about them:
their operational characterization. As the very word
“resource” suggests, understanding the operational
aspects of resources — how they can be utilized for
physical tasks, and what limitations a resource theory
places on the conversion of physical resources — has
central importance both theoretically and practically.
However, it frequently requires resource-specific ap-
proaches and does not easily generalize to encompass
all physically relevant resource theories, and it is
thus highly desired to find a fundamental class of
operational tasks that would allow for the under-
standing of the resourcefulness of a given physical
property in general settings. Here, we solve this
problem at the most general level — we characterize
quantification and manipulation of resources in gen-
eral convex resource theories defined in any GPT for
not only states, but also measurements and channels,
in terms of the fundamental tasks of state and chan-
nel discrimination. Our results establish tools for
the resource quantification and endow fundamental
resource measures called robustness measures [17, 23–
25] with an explicit operational interpretation as the
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advantage that a physical object can provide in var-
ious discrimination tasks, and show that such dis-
crimination tasks fully characterize the conversion
between states or measurements with free operations
of the given resource theory. Our results indicate
that many physical quantities, seemingly different
and unrelated to each other, can be understood in a
unified way and are all encompassed together in the
operational perspective of resource theories.

2 Quantification of resources and dis-
crimination tasks

Channel discrimination is one of the most funda-
mental operational tasks in quantum information
theory [26–33] and in GPTs [19, 20, 34–36] where
one is to decide which channel was applied to the
input state by making a measurement on the out-
put. The average probability of successfully dis-
criminating a channel sampled from the channel
ensemble {pi,Λi}i with input state ρ and measure-
ment {Mi}i where each Mi is an effect (known as a
POVM element in quantum mechanics) is written
as psucc({pi,Λi}, {Mi}, ρ) =

∑
i pi 〈Mi,Λi(ρ)〉. Note

that the canonical bilinear form 〈E,ω〉 is understood
as the Hilbert-Schmidt inner product Tr[Eω] in quan-
tum mechanics. Our first result shows that for any
choice of convex and closed set of free states F ,
any resource state is helpful for some channel dis-
crimination task. This in particular provides clear
operational meaning for all the bound resource states
(e.g. bound entangled [37], magic [38, 39], and gen-
uine non-Gaussian states [40]), whose applicability
in physical tasks is often uncertain.

Theorem 1. Let F be a convex and closed set of
free states. Then, ρ /∈ F if and only if there exist a
channel ensemble {pi,Λi} such that

max{Mi} psucc({pi,Λi}, {Mi}, ρ)

maxσ∈F max{Mi} psucc({pi,Λi}, {Mi}, σ)
> 1.

The next natural question is about quantification:
what is the relation between the resource contents of
the given state and the advantage in channel discrim-
ination that it can provide? To this end, we consider
the generalized robustness resource measure, which
can be defined for any convex and closed set of free

states F as RF(ρ) = min
{
r
∣∣∣ ρ+rτ

1+r ∈ F , τ ∈ D
}

where D refers to the set of all states — that is,
RF corresponds to the least amount of noise (in the
form of convex admixtures) that can destroy the
resource content of a given state. We will quan-
tify the advantage that a quantum state ρ pro-
vides over all free states F in the discrimination
of {pi,Λi}i using the measurement strategy {Mi}i
as the ratio of psucc({pi,Λi}, {Mi}, ρ) to the best
success probability when using a free input state,
maxσ∈F psucc({pi,Λi}, {Mi}, σ). The following result
shows explicitly that, in any convex resource theory,
the maximal such ratio optimized over all choices

of channel ensembles and measurement strategies is
given precisely by the generalized robustness.

Theorem 2. Let F be a convex and closed set of
free states. Then, for any state ρ, it holds that

max
{pi,Λi}
{Mi}

psucc({pi,Λi}, {Mi}, ρ)

maxσ∈F psucc({pi,Λi}, {Mi}, σ)
= 1+RF (ρ).

This result ensures that the generalized robustness
with respect to any choice of F admits an operational
interpretation: it serves as an exact quantifier for
the advantage that a given state enables in a class
of channel discrimination problems. In Ref. [1], we
also consider relaxing the constraints on measure-
ments under the setting of theory of entanglement,
coherence, and magic.

Next, we extend our consideration to measure-
ments. Understanding the discriminative power
of restricted sets of measurements is of central
importance not only in characterizing the opera-
tional consequences precipitated by limitations of
physically allowed measurements, but often also in
studying the very fundamental structure of the un-
derlying GPT [36, 41, 42]. We will show that a
robustness measure associated with the measure-
ment can provide a precise answer to the ques-
tion. Let MF be some convex and closed set of
measurements, which we will define as MF :={
{Mi}i ∈M

∣∣ Mi ∈ EF ∀i
}

where EF is some cho-
sen convex and closed set of free effects which we
are able to access within the constraints of the
given resource theory. We define the generalized
robustness of measurement with respect to EF for
a given measurement M = {Mi}i as REF (M) :=

min
{
r
∣∣ Mi+r Ni

1+r ∈ EF ∀i, {Ni}i ∈M
}

whereM is

the set of all measurements. Consider now the state
discrimination task where one is to discriminate
states sampled from a state ensemble {pi, σi}i by
making a measurement {Mi}i with average success
probability psucc({pi, σi},M) =

∑
i pi 〈Mi, σi〉.

Theorem 3. Let MF be the set of measurements
whose effects are elements of EF . Then,

max
{pi,σi}

psucc({pi, σi},M)

maxF∈MF
psucc({pi, σi},F)

= 1 +REF (M).

The above Theorem establishes an explicit connec-
tion between the inherent resourcefulness of a given
measurement and the advantage realized in state
discrimination tasks with respect to a general set
of free measurements, which ensures an operational
interpretation to the generalized robustness of mea-
surements in any resource theory corresponding to
measurements. We additionally establish a connec-
tion between generalized robustness and single-shot
information theory in Ref. [2].

However, states and measurements are not the
only objects that can be regarded as resourceful

— it is often natural to attribute resources to dy-
namical components of the system, i.e. channels,
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in many physical situations in information process-
ing. Analogously to the cases of states and mea-
surements, for given convex and closed set of free
channels OF , we propose the generalized robust-
ness measure for channel Λ with respect to OF as

ROF (Λ) := minΘ

{
r
∣∣ Λ+rΘ

1+r ∈ OF , Θ ∈ T
}

where

T is the set of all channels. 1 To see the operational
meaning of this measure, let us consider the prob-
lem of discriminating an ensemble of quantum states
by an application of the channel I ⊗ Λ, with aver-
age success probability psucc({pj , σj}, {Mj}, I⊗Λ) =∑
pj Tr [I⊗ Λ(σj)Mj ] . We then have the following

result, characterizing the robustness measure as the
maximum advantage that the given channel provides
for such channel-assisted state discrimination tasks.

Theorem 4. Let OF be a convex and closed set of
free channels. Then

max
A,{Mj}

psucc(A, {Mj}, I⊗ Λ)

maxΞ∈OF psucc(A, {Mj}, I⊗ Ξ)
= 1+ROF (Λ)

where A refers to a state ensemble. One can take
another approach to quantify resourcefulness of chan-
nels based on the underlying theory of states. We
introduce suitable measures for this approach and
provide their operational characterization in Ref. [2].

3 Manipulation of resources and discrim-
ination tasks

Finding the necessary and sufficient conditions for
the existence of transformation between a given input
object and output object by means of free operations
is one of the most important questions to address,
as it underlies the operational capabilities of a given
resource theory. We call a family of monotones a
complete set of monotones if it fully characterizes the
necessary and sufficient conditions for the existence
of a free transformation. Such monotones were found
in specific settings [15, 44–53], but no set of gen-
eral conditions with clear operational meaning was
previously known to provide a comprehensive char-
acterization of transformations in general resource
theories.

We will now show that performance enhanced by
a state or measurement in a class of channel or state
discrimination tasks precisely serves as a complete
set of monotones for general resource theories defined
in any GPT. This, together with the results obtained
above, completes a full operational characterization
of general resource theories of states and measure-
ments, and strengthens the connection between re-
source theories and discrimination tasks. In this
abstract, we only discuss the state transformation;
the argument about measurement transformations
goes analogously, and the details can be found in [2].

Let O be a convex and closed set of free oper-
ations. Consider the channel discrimination over

1For the simplicity of the discussion, here we will limit our-
selves to quantum theory although it can be easily generalized
to GPTs under suitable assumptions [43].

all valid choices of channel ensembles, but al-
low for the application of a single chosen prior
transformation from the set O to the ensem-
ble before applying the channels to be discrimi-
nated. The success probability for this task for a
choice of channel ensemble {pi,Λi}i and measure-
ment {Mi}i is given by p̃succ({pi}, {Λi}, {Mi}, ω) :=
maxΞ∈O

∑
i pi 〈Mi,Λi ◦ Ξ(ω)〉 . The following result

shows that this success probability serves as a com-
plete set of monotones for state transformations un-
der the free operations O.

Theorem 5. There exists Λ ∈ O
such that ω′ = Λ(ω) if and only if
it holds that p̃succ({pi}, {Λi}, {Mi}, ω) ≥
p̃succ({pi}, {Λi}, {Mi}, ω′) for all channel ensembles
{pi,Λi} and measurements {Mi}.

In fact, we find that the Theorem can be greatly
simplified: in particular, it is sufficient to consider
only two-outcome measurements to fully describe the
transformations allowed within any resource theory,
thus providing an accessible method of characterizing
resourceful state manipulation. We discuss several
other connections between state transformations and
discrimination tasks in [2].

4 Concluding remarks

We provided a general operational characteriza-
tion of quantification and manipulation of resources

— two core concepts of resource theories — in terms
of state and channel discrimination tasks. The gen-
erality of our works is three-fold: our formulations
encompass general convex resource theories, are ap-
plicable to all types of resource objects (states, mea-
surements, and channels), and major parts of the
results are valid in all general probabilistic theories
beyond quantum mechanics.

In addition to providing fundamental insights span-
ning a broad class of physical theories, the results
are immediately applicable to a wide range of phys-
ical resources in quantum information theory. The
resource theories of coherence, (bi- or multipartite)
entanglement, magic, athermality, asymmetry, and
many others all fit the framework introduced herein
and therefore all of our results apply to them immedi-
ately. In the case of measurements, many significant
insights can be gained from studying classes of mea-
surements such as separable, PPT, incoherent, or
Pauli measurements, all of which are again special
cases of the resource theories considered in our works.
The generality of the results also provides insights
into the foundation of quantum mechanics, as our
results in particular show an equivalence between the
robustness measures (a priori a geometric concept)
and the advantage provided in discrimination tasks
in any GPT; therefore, one cannot hope to separate
a given theory from quantum mechanics by finding
a gap between these two quantities. The results also
provide an experimentally accessible way of bounding
resource measures as well as characterizing resource
transformations in any GPT by relating them with
discrimination tasks.
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As a ubiquitous aspect of modern information technology, data compression has a wide range
of applications. Therefore, quantum autoencoder which can compress quantum information into
a reduced space is fundamentally important to achieve atomatical data compression in the field
of quantum information. Such a quantum autoencoder can be implemented through training the
parameters of a quantum device using machine learning. In this paper, we experimentally realize a
universal two-qubit unitary gate and achieve a quantum autoencoder by applying machine learning.
Also, this quantum autoencoder can be used to discriminate two groups of nonorthogonal states.

Introduction. A traditional autoencoder can
compress classical data into a lower-dimensional space.
As shown in Fig.1(a), the input information represnted
by yellow dots can be compressed into fewer dots after
the encoder ε and a decoder D can reconstruct the
input data at the output. For a quantum device to
realize an autoencoder, as illustrated in Fig.1(b), a
parameterized unitary U j(p1, p2, · · · , pn) is trained as
a quantum autoencoder where measurement results are
considered and an optimization algorithm is employed.
Fig.1(b) also indicates the scheme for our experiment:
the core issue is to use the same 2-qubit unitary operator
U to encode two 2-qubit states |ϕ1〉, |ϕ2〉 into two qubit
states. In the classical scheme, we use stochastic gradient
descent to optimize the parameterized unitary gate.

The setup for a universal two-qubit unitary gate is
shown in Fig.1(c). It is well known that any binary
quantum alternative of a photon can serve as a qubit.
Thus, by choosing polarization and path degrees of
freedom as two qubits, we can achieve the 2-qubit
universal parameterized unitary gate combining path
unitary gate with polarization gate [1].

In this paper, we experimentally realize a universal
two-qubit unitary gate and achieve a quantum autoen-
coder based on the theoretical model in Ref. [2].
Our quantum autoencoder can encode two 2-qubit pure
states |ϕ1〉, |ϕ2〉 into two qubit states without any other
restriction. Besides encoding qubits, our device can also
be used to discriminate two groups of nonorthogonal
states.

Experiment Setup and Results. In the part of
state preparation, since the Mach − Zehnder interfer-
ometer in Fig.1(c) is difficult to realize and keep phase
stable, we use two phase stable Sagnac interferometers
to separately implement state preparation and M–Z
interferometer. At the beginning (Fig.2(a)), photon pairs
with wave length λ = 808 nm are created by type-
I spontaneous parametric down-conversion (SPDC) in
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FIG. 1: (a) A graphical representation of encoding and
decoding process. The map ε encodes the input data
(yellow dots) into a lower-dimensional space (red dots). The
decoder D can reconstruct the input data at the output
(green dots). (b) The hybrid scheme for training a quantum
autoencoder [16]. The input state |ϕi〉 is compressed by
parameterized unitary U j(p1, p2, · · · , pn). When overlaps
between trash state and reference state for all states in
the input set are collected, a classical learning algorithm
computes and sets a new group of parameters to the unitary
U j+1(p1, p2, · · · , pn). (c) Universal two-qubit unitary gate
composed of two beam splitters, two mirrors and four same
single-qubit parts (V1,V2,VR,VL). (d) Each single-qubit part
is composed of two QWPs, a HWP, and a phase shifter (PS).

a nonlinear crystal (BBO). One photon is detected by
a single-photon counting module (SPCM) as a trigger,
another photon is prepared in the state of very pure
horizonal polarization noted as |H〉 through a polarizer
beam splitter (PBS). Then a half-wave plate (HWP)
along with a PBS can control the path-bit of the photon.
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In each path, a HWP and a quarter-wave plate (QWP)
are used to control the polarization of the photon, as
shown in Fig.2(b). Thus, we can produce any expected
phase stable two-qubit state thanks to the first Sagnac
interferometer.
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FIG. 2: Experiment setup for realizing a quantum
autoencoder. The setup consists of three modules. (a)-(b)
state preparation: Photon pairs are created by type-I SPDC
through a BBO. One photon is set as a trigger and another
photon is prepared in the state |H〉 through a PBS. Then
a HWP along with a PBS can control the path-bit of the
photon. In each path, a HWP and a QWP are used to control
the polarization of the photon. (c)-(e) parameterized unitary
U and measurements: The second Sagnac interferometer
contains four unitary polarization operators V1, V2, VR, VL.
Due to the structure of Sagnac interferometer, produced
two-qubit states go through the NBS-coated surface twice.
Thus, a parameterized universal two-qubit unitary gate is
achieved. Then, a QWP, a HWP and a PBS can form any
local measurements on polarization. (f) classical optimization
algorithm: Our algorithm is mainly carried out by a computer
and electronic-controlled devices.

The parameterized unitary U is realized with the
help of the second Sagnac interferometer in Fig.2(c).
It is worth noting that there is a special beam-
splitter cube which is half PBS-coated and half
coated by non-polarizer beam splitter (NBS) in the
junction of two Sagnac interferometers. The second
Sagnac interferometer contains four unitary polarization
operators V1, V2, VR, VL. Each of them is composed
of two quarter-wave plates (QWP), a half-wave plate
(HWP), and a phase shifter (PS), which are all electronic-

controlled. Meanwhile, due to the structure of Sagnac
interferometer, produced two-qubit states go through the
NBS-coated surface twice. Thus, as illustrated before,
we finally achieve the parameterized universal two-qubit
unitary gate.

We can construct any local measurements on polar-
ization just by a QWP, a HWP and a PBS in Fig.2(d)-
(e). Our classical programme is mainly carried out by
a computer and electronic-controlled devices including
phase shifter, HWPs and QWPs.

For characterization of our unitary gate, we estimate
the process matrix using the maximum-likelihood
method [3] for many different but significant gates such
as identity gate, controlled-not gate, controlled-Z gate,
controlled-Hadamard gate, SWAP gate,

√
iSWAP gate

and so on. Some results of the process tomography are
shown in Fig.3. The real elements and the imaginary
elements are plotted respectively, with ideal theoretical
values overlaid. For clarity, we use red to represent
positive and blue to represent negative. Our fidelity
is computed by tr

√√
χexpχ

√
χexp. Here χexp is the

experimental process matrix and χ is the theoretical
process matrix. The average fidelity of our gates is 0.953.

(c) (d)

(a) (b)

FIG. 3: Characterization of experimentally realized gates.
A two-qubit gate can be described by its process matrix
χ̃. Specifically, each input state ρ is mapped to an output
Σmnχ̃mnÊmρÊ

†
n, where the summation is over all possible

two-qubit Pauli operators Êk. Here we plot the real elements
in Fig.3(a) (Fig.3(c)) and the imaginary elements in Fig.3(b)
(Fig.3(d)) of CNOT (SWAP), with ideal theoretical values
overlaid. For clarity, we use red to represent positive and
blue to represent negative. The fidelity of CNOT/SWAP is
0.957/0.948.

Now we turn to the core issue of encoding the
quantum information into lower dimension. Our goal
is to achieve a 2-qubit unitary operator U which can
encode two 2-qubit states |ϕ1〉, |ϕ2〉 into two qubit states
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|ϕ′1〉, |ϕ′2〉. For example, we encode two 2-qubit states
|RH〉, |LV 〉 into states |ϕ′1〉|R〉, |ϕ′2〉|R〉. Here |R〉/|L〉
stands for path qubit and |H〉/|V 〉 stands for polarization
qubit. Thus, we can trash the path qubit and obtain
the compressed states |ϕ′1〉, |ϕ′2〉 which maintain the
original quantum information totally in polarization
qubit. Similarly, encoding the information into path
qubit is also feasible. Fig.4(a) (Fig.4(b)) shows the result
of encoding {|RH〉, |LV 〉} into path (polarization) qubit.
Here infidelity is the cost funtion in our algorithm and
iterations indicate the train process. Results of encoding

another set of states { 12 |RD〉+
√
3
2 |LV 〉, |LV 〉} into path

(polarization) qubit is shown in Fig.4(c) (Fig.4(d)). The
performance of our quantum autoencoder is related to
the experimental conditions such as imperfect NBS-
coated surface, unbalanced coupling efficiency, and
uneven wave plates. Though under these imperfect
conditions, the cost funtion can still approach 0 after a
few iterations.
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FIG. 4: The results of encoding two 2-qubit states into two
qubit states. Here we show the results of encoding different
initial states into different qubits (path/polarization). (a) en-
code {|RH〉, |LV 〉} into path qubit. (b) encode {|RH〉, |LV 〉}
into polarization qubit. (c) encode { 1

2
|RD〉+

√
3
2
|LV 〉, |LV 〉}

into path qubit. (d) encode { 1
2
|RD〉 +

√
3
2
|LV 〉, |LV 〉} into

polarization qubit. Here infidelity is the cost funtion in our
algorithm and iterations indicate the train process.

Apart from encoding quantum information into lower
dimension, we find our quantum autoencoder can also
realize the discrimination between two different groups
of nonorthogonal states by encoding different groups
into orthogonal path/polarization qubits. For example,
encode two groups of nonorthogonal states {|φi〉}, {|ϕj〉}
into states {|ϕ′i〉|R〉}, {|ϕ′j〉|L〉}. Thus we can realize the
bound of min-error discrimination between two different
groups of nonorthogonal states after some iterations.

We follow the core principle in Ref. [4] to derive
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FIG. 5: The results of discriminating two
different groups of nonorthogonal states. The
bound for (a)-(b) is plotted in blue dashed
line. (a) encode {cos θ1/2|RH〉 + sin θ1/2|RV 〉, θ1/2 = ±
4◦ } & {cos θ3/4|RH〉 + sin θ3/4|RV 〉, θ3/4 = 60◦ ± 4◦}
into different polarization qubits. (b) encode
{cos θ1/2|RH〉 + sin θ1/2|RV 〉, θ1/2 = ± 2◦} &
{cos θ3/4|RH〉 + sin θ3/4|RV 〉, θ3/4 = 30◦ ± 2◦}
into different polarization qubits. (c) encode
{cos θ1|RH〉 + sin θ1|LH〉, θ1 ∈ [−50◦, 50◦]} &
{cos θ2|RV 〉+sin θ2|LV 〉, θ2 ∈ [−50◦, 50◦]} into different path
qubits, (d) encode {cos θ1|RH〉+sin θ1|RV 〉, θ1 ∈ [−20◦, 20◦]}
& {cos θ2|LH〉 + sin θ2|LV 〉, θ2 ∈ [−20◦, 20◦]} into different
polarization qubits. Here infidelity is the cost funtion in our
algorithm and iterations indicate the train process.

the error bound and the optimal strategies to realize
the min-error discrimination between two groups. Some
of the results are shown in Fig.5. The blue dashed
line is the bound of min-error discrimination between
two different groups of nonorthogonal states. We also
show our agent’s learning ability by encoding groups
of path/polarization orthogonal states into orthogonal
polarization/path states in Fig.5(c)-(d).
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Abstract: Communication in a network generally takes place through a sequence of intermediate nodes con-
nected by communication channels. In the standard theory of communication, it is assumed that the communi-
cation network is embedded in a classical spacetime, where the relative order of different nodes is well-defined.
In principle, a quantum theory of spacetime could allow the order of the intermediate points between sender and
receiver to be in a coherent superposition. Here we experimentally realise a table-top simulation of this exotic
possibility, by transmitting quantum information through certain entanglement-breaking channels in an optical
quantum switch.

Keywords: quantum communication, indefinite causal order, quantum switch

Introduction. The extension of the theory of communi-
cation to scenarios where quantum channels act a superpo-
sition of orders was recently addressed in a series of works
[1–3]. These works demonstrated advantages over the stan-
dard communication model where the communication chan-
nels are quantum but their order is fixed, as it is normally
assumed in the field of quantum Shannon theory [4]. For
example, Ref. [1] showed that two completely depolarising
channels acting in a superposition of two orders can transmit a
non-zero amount of classical information, whereas in the stan-
dard model of quantum Shannon theory they would complete-
ly block any kind of information. Similar advantages arise in
the transmission of quantum information [2], sometimes lead-
ing to a complete removal of the noise [3]. The advantages
over the standard model of quantum communication suggest
that quantum superpositions of spacetimes would have major
consequences on quantum communication networks.

Here we experimentally test the consequences of the su-
perposition of causal orders for quantum communication net-
works, demonstrating the possibility of heralded [2] and de-
terministic quantum communication [3] through channels that
individually have zero quantum capacity. The experimental
realisation of communication protocols using quantum chan-
nels in a superposition of orders is important not only as a sim-
ulation of communication in quantum spacetimes, but also as
a step towards a new technology of quantum communication
with control over multiple transmission lines.

Communication networks and superposition of orders.—
In a network scenario, the communication between the sender
and a receiver proceeds through a sequence of intermediate
nodes, with the transmission between one node and the next
described by a suitable quantum channel. Here we will con-
sider the case of n = 2 communication channels, E andF , the
former connecting two intermediate nodes at spacetime points
P and P ′, and the latter connecting two intermediate nodes at
spacetime points Q and Q′.

In the standard setting, the causal relations among space-

time points are well-defined, and so is the order of the inter-
mediate nodes between the sender and receiver. For example,
one can have the order P � P ′ � Q � Q′, indicating that
signals can be transmitted from P to P ′, and then to Q and
to Q′. Assuming for simplicity that no noise takes place in
the transmission from P ′ to Q, this configuration leads to the
overall channel FE . In another spacetime configuration, one
could have the order Q � Q′ � P � P ′, corresponding to
the channel EF (again, assuming that no noise takes place in
the transmission from Q′ to P ). In either configurations, the
sender and receiver are assumed to know the structure of s-
pacetime, and therefore to know whether the overall channel
is EF or FE .

New possibilities arise when the background spacetime is
treated quantum mechanically [2]. One can associate the basic
configurations P � P ′ � Q � Q′ and Q � Q′ � P � P ′

to two orthogonal states |0〉 := |P � P ′ � Q � Q′〉 and
|1〉 := |Q � Q′ � P � P ′〉, forming a basis for an effective
two-dimensional quantum system, called the order qubit. The
order qubit can be interpreted as a coarse-grained description
of a quantum spacetime in which the communication network
is embedded. Hereafter, the state of the order qubit will be
denoted by ω.

The insertion of two quantum channels E and F into a
quantum spacetime in the state ω can be described by the
quantum SWITCH (QS) transformation [5, 6] Sω : (E ,F) 7→
Sω(E ,F), defined as

Sω(E ,F) (ρ) :=
∑
i,j

Wij (ρ⊗ ω)W †ij , (1)

with

Wij := EiFj ⊗ |0〉〈0|+ FjEi ⊗ |1〉〈1| , (2)

where {Ei} and {Fj} are the Kraus operators of E and F ,
respectively. Note that quantum switch is independent of the
choice of {Ei} and {Fj}.

34



2

We interpret the channel Sω(E ,F) as describing the action
of the channels E and F combined together in a superposition
of orders depending on the state of the order qubit ω. In this
scenario, it is assumed that the sender cannot encode informa-
tion in the order qubit, but the receiver can access it and use
to enhance the decoding. It is worth stressing that the trans-
formation Sω : (E ,F) 7→ Sω(E ,F) does not provide a way
to bypass the channels E and F , in the sense that there is no
way for the sender and the receiver to transmit information
independently of the channels E and F [2].

The interference between the two alternative orders pro-
vides dramatical advantages in both classical and quantum
communications over standard quantum Shannon theory, as
it was predicted theoretically in a number of examples [1–
3]. All these examples involve pairs of Pauli channels, of the
form E~p =

∑3
i=0 piσiρσi and F~q =

∑3
i=0 qiσiρσi, where

(σ0, σ1, σ2, σ3) are the Pauli matrices (I,X, Y, Z). Sup-
pose that the two channels E~p and F~q are combined in a
superposition of orders, with the control qubit is in the s-
tate ω = |+〉〈+|, corresponding to the uniform superposition
|±〉 := (|0〉 ± |1〉)/

√
2. From Equations (1)and (2), the re-

sulting channel Sω(E~p,F~q) acts as

S(E~p,F~q)(ρ) = r+C+(ρ)⊗ |+〉〈+|+ r−C−(ρ)⊗ |−〉〈−| ,
(3)

where r+ and r− are the probabilities defined by r− :=
r12 + r23 + r13, rij := piqj + pjqi, and r+ := 1 − r− are
probabilities, and C+ and C− are the Pauli channels defined by

C+ =
(
∑3
i=0 rii/2)ρ+

∑3
i=1 r0i σiρσi

r+
(4)

and

C− =
[r12 σ3ρσ3 + r23 σ1ρσ1 + r31 σ2ρσ2]

r−
. (5)

Hence, a receiver who measures the order qubit in the ba-
sis {|+〉, |−〉} can separate the two channels C+ and C−, and
adapt the decoding operations to them.
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FIG. 1. Experimental setup.

Quantum communication with entanglement-
breaking channels.— Consider a bit flip channel
Bs(ρ) = (1 − s) ρ + s σ1ρσ1 and phase flip channel
Pt(ρ) = (1− t) ρ+ t σ3ρσ3, corresponding to Pauli channels
E~p and F~q with ~p = (1 − s, s, 0, 0) and ~q = (1 − t, 0, 0, t),
respectively [2]. For s = t = 1/2, the two channels are
entanglement-breaking, and therefore unable to transmit any
quantum information. In contrast, the channel C− of Equation
(5) is the unitary gate σ2, and therefore it allows for the
noiseless heralded transmission of a qubit, meaning that the
receiver can decode the message without any error through
the channel C−.

The possibility of noiseless heralded quantum communica-
tion is an important difference between the communication
model with independent quantum channels in a superposition
of orders and the related communication model with indepen-
dent quantum channels traversed in a superposition of paths
[7–9]. In the second model, noise can be reduced, but nev-
er completely removed. While every real experiment involves
some level of noise, the in-principle possibility of noiseless
communication through superposition of orders implies that
the experimental fidelities can be arbitrarily close to 1.

In our experiment, we report an average fidelity of 0.9747±
0.0012 with the unitary gate σ2 predicted by the theory. We
reconstructed the channel matrix γij from the tomographic da-
ta and used it to find the input state that maximises the one-
shot coherent information in Eq. (??). The optimisation can
be reduced to three real parameters (α, θ, ψ) by parameter-
ising the qubit state ρ as ρ = α0|φ〉〈φ| + (1 − α0)|φ⊥〉〈φ⊥|,
where |φ〉 = cos(θ)|0〉+sin(θ)eiψ|1〉 and |φ⊥〉 = sin(θ)|0〉−
cos(θ)eiψ|1〉 are basis states. Since the entropy exchange
is independent of the choice of purification, the parameter-
s (α0, θ, ψ) completely determine the coherent information.
Fig. 2 shows the experimental results for the evaluation of the
coherent information Ic of the channel C− and also the whole
channel S(Bs,Pt). For channel C−, the result is a coherent
information of about 0.812±0.003, obtained with parameters
α0 = 0.500, θ = 0.0723π, and ψ = 0.790π. The deviation
of the channel capacities from their theoretical predictions are
due to imperfect channel simulations and measurement error.
The dependence of the coherent information on α0 and θ is
shown in Fig. 2 (b) for fixed ψ = 0.790π. More generally, the
coherent information Q1 of the channel S(Bs,Pt) is further
show in Fig. 2 (c) as a function of t, with s = t. One can
find out that, as long as t > 0.62, Ic of S(Bt,Pt) (red line)
surpasses the coherent information when the two channels are
combined in a fixed order (black line). Our experimental re-
sults (cyan rhombuses) verified the existence of the advantage
of indefinite causal order and the possibility of heralded, high-
fidelity communication.

An even more radical example of quantum communication
in a superposition of order corresponds to two entanglement-
breaking channels F(ρ) = 1/2(σ1ρσ1 + σ2ρσ2) [3]. In nor-
mal conditions, the channel F cannot transmit any quantum
information. Still, when two such channels are inserted in
the quantum SWITCH, the channels C+ and C− of Equations
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FIG. 2. Quantum communication with entanglement-breaking channels. (a) Real part of the reconstructed matrix of S(Bs,Pt), for s = t =
1/2. The fidelity is 0.9747 ± 0.0012. (b) Coherent information Ic for S(Bs,Pt) with s = t = 1

2
as a function of θ and α0, for fixed

ψ = 0.790π. (c) Coherent information Q1 for the channel S(Bt,Pt) with t ∈ [0, 1]. The experimental results are marked as cyan rhombuses,
while the correspond theoretical predictions are plotted in the red line. For comparison, the coherent information of the two dephasing channels
combined in a definite order is also shown in the black line. (d-e) Real parts of the reconstructed matrices of C+ and C− of the channel S(F ,F).
(f) Coherent information Q1 for channel S(F ,F) as a function of θ and α0, for fixed ψ = 0.155π. Error bars are smaller than the marker
size.

(4) and (5) are both unitary, enabling the deterministic noise-
less transmission of one qubit. This effect it is more dramatic
than the heralded noiseless communication discussed in the
previous paragraphs. While the heralded noiseless transmis-
sion does not guarantee a quantum capacity, the deterministic
noiseless transmission of our second example guarantees in
principle a maximal capacity.

In our experiment,we find that the conditional channels C+
and C− have fidelities 0.9823 ± 0.0013 and 0.9846 ± 0.0014
with the corresponding unitary gates, respectively. The coher-
ent information is 0.855 ± 0.004 and can be obtained when
α0 = 0.500, θ = 0.7575π, and ψ = 0.155π. The correspond-
ing data are presented in Figures 2 (e) and 2 (d). Figure 2 (f)
reports the result of coherent information of channel S(F ,F)
varying with the parameters α0 and θ, while ψ is set to be
0.155π.
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Distribution of high-dimensional orbital angular momentum entanglement at telecom
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High-dimensional entanglement exhibites massive potential in increasing channel capacity and re-
sistance to noise in quantum information processing. However, its distribution is quite a challenging
task. Here we report the first distribution of three-dimensional orbital angular momentum (OAM)
entanglement via a 1-km-length vortex fiber. Using an actively-stabilizing phase precompensation
technique, we successfully transport one photon of a three-dimensional OAM entangled pair. It still
shows a fidelity up to 71% with respect to the three-dimensional maximal-entangled-state (MES).
In addition, we certify that the high-dimensional entanglement survives the transportation by gen-
eralized Bell inequality, obtaining a violation of ∼ 3 standard deviations with I3 = 2.12 ± 0.04.

Encoding in a multi-dimensional state space is bene-
ficial for increasing channel capacity and improving the
tolerance to noise or eavesdropping in secure quantum
communications [1–3]. High-dimensional entanglement,
exhibits more complex structures of entanglement [4–6],
and stronger nonclassical correlation.

OAM allows for encoding large amount of informa-
tion per photon and its dimension scalability is much
more desirable compared to other DOFs. The blos-
som of OAM manipulating technology in recent years
make an essential step toward manipulating quantum
system beyond qubit[7–9]. However, undistibuted high-
dimensional OAM entanglement becomes a challenging
task which will advance the quantum application beyond
lab proof-of-principle demonstrations, as is recognized to
be a valuable project [10, 11].

There are two method to distribute OAM entangle-
ment. One is free-space propagation, spin-orbit hybrid
2-d entanglement distribution across Vienna has been ex-
ploited [12]. However, OAM is highly sensitive to atom-
ospheric turbulence and subject to weather, line-of sight,
or time of day. The other potential way is fiber transport.
But only two dimensional entanglement can be identified
and the transmission distance is just 30 cm in Ref.[13]
and 40 cm in Ref.[14].

The main difficulties of sending photonic entanglement
through long-distance fiber lie in two aspects: crosstalk
and intermodal dispersion. These problem prevent the
distribution of entanglement going beyond lab-scale and
toward higher-dimension.

∗ hyf@ustc.edu.cn
† cfli@ustc.edu.cn

Figure 1. Schematic of the experimental setup. The prec-
ompensation module (blue painted area) is used for compen-
sating the intermodal dispersion induced by 1-kilometer-long
OAM fiber. SLM: spatial light modulator, DM: dichroic mir-
rors, DP: dove prism. The phase locking system is detailed
in top right inset.

In our experiment, several developments has been
made to overcome these problems. The schematic ex-
perimental setup is depicted in Fig. 1. First, we de-
velop a high quality three-dimensional OAM entangle-
ment source with a satifying fidelity of 0.888±0.007, con-
sidering of the need for balancing the trade-off between
high fidelity and narrow bandwidth, which are both im-
portant for long-distance distribution. In most cases, the
OAM entanglement state is prepared by thin crystal in
order to obtain a high-fidelity resource. However, in such
cases the bandwidth of the twins photons is too wide for
long-distance transmission even though a higher fidelity
entanglement is accessible using thin crystal. In the
regime of long-distance distribution or quantum mem-
ory, a narrow bandwidth is required. We carefully op-
timize all the optional parameters to make a balance,
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finally adjusting properties of entangled source suitable
for long-distance distribution. Besides, we experimen-
tally identify the intermodal dispersion simply using co-
incidence instrument, and we further design an actively-
stabilizing precompensation module to eliminate this in-
termodal dispersion. This module is based on introduc-
ing a reverse dispersion to pre-compensate it before enter-
ing the 1-km fiber. With these measures we successfully
transport one of the three-dimensional OAM entangled
twin photon through a 1 km fiber. Owing to the the ad-
vantage of vortex fiber, the OAM spiral wavefront could
survive the transport hence direct quantum tomography
is accessible, quantifying a high surviving fidelity up to
0.71±0.02 with respect to 3*3 maximally entangled state.
Furthermore, certification of three-dimension entangle-
ment is approved by testing CGLMP inequality with the

violation about 3 standard deviations (I3 = 2.12± 0.04)
.

The most tough challenges for distributing high-
dimensional OAM entanglement has been settled down,
and distributing distance is extended more than three
orders over previous work [13, 14], if practical OAM-
entanglement-based applications would like to advance
beyond laboratory. It is the first time to distribute high-
dimensional OAM entanglement and our method is ex-
tendable to both higher-dimension and longer-distance
in principle. The preserved spiral wavefront make the
distributed entangled state capable of further manipu-
lation.We believe that our result will motivate further
experimental research into novel protocol of longdistance
high-dimensional quantum communications.
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A Quantum Algorithm for Minimum Steiner Tree Problem
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Abstract. Minimum Steiner tree problem is a well-known NP-hard problem. For the minimum Steiner
tree problem in graphs with n vertices and k terminals, there are many classical algorithms that take
exponential time in k. In this paper, to the best of our knowledge, we propose the first quantum algo-
rithm for the minimum Steiner tree problem. The complexity of our algorithm is O∗(1.812k). A key to
realize the proposed method is how to reduce the computational time of dynamic programming by using
a quantum algorithm because existing classical (non-quantum) algorithms in the problem rely on dynamic
programming. Fortunately, dynamic programming is realized by a quantum algorithm for the travelling
salesman problem, in which Grover’s quantum search algorithm is introduced. However, due to difference
between their problem and our problem to be solved, recursions are different. Hence, we cannot apply
their technique to the minimum Steiner tree problem in that shape. We solve this issue by introducing a
decomposition of a graph proposed by Fuchs et al.

The full version of this extended abstract is available at https://arxiv.org/abs/1904.03581.
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Keywords: Minimum Steiner Tree, The Dreyfus-Wagner Algorithm, Dynamic Programming, Grover
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1 Introduction

Given an undirected graph G = (V,E), a weight w :
E → R+, and a subset of verticesK ⊆ V , usually referred
to as terminals, a Steiner tree is a tree that connects all
vertices in K. In this paper, let n = |V | be the size of
vertices and k = |K| be the size of terminals. A Steiner
tree T is the minimum Steiner tree (MST) when the to-
tal edge weight

∑
e∈E(T ) w(e) is the minimum among all

Steiner trees of K. Note that all leaves of a Steiner tree
T are vertices in K. The task that finds a minimum
Steiner tree is called minimum Steiner tree problem, and
this problem is known as an NP-hard problem [1]. Note
that for fixed k, this problem can be solved in polynomial
time, which means that the minimum Steiner problem is
fixed parameter tractable [2, 3].Although there are dif-
ficulties in solving the minimum Steiner tree problem,
this problem is applied to solve problems such as power
supply network, communication network and facility lo-
cation problem [4]. Since these practical problems need
to be solved, researching the exponential algorithm that
has better base is significant.

A naive way to solve the minimum Steiner tree prob-
lem is to compute all possible trees. However, the num-
ber of all trees in the graph G = (V,E) is O(2|E|) at
worst. However, an exhaustive search is not realistic.
The Dreyfus-Wagner algorithm (the D-W algorithm) is
a well-known algorithm based on dynamic programming
for solving the Steiner problem in time O∗(3k) [5]. The
O∗ notation hides a polynomial factor in n and k. This
algorithm has been the fastest algorithm for decades. In
2007, Fuchs et al. [6] have improved this to O∗(2.684k)

∗This research was done when the first author studied in Osaka
Prefecture University.
†miyamoto.masayuki.46s@st.kyoto-u.ac.jp
‡masa@cs.osakafu-u.ac.jp
§kise@cs.osakafu-u.ac.jp

and Mölle et al. [7] to O((2 + δ)knf(δ
−1)) for any con-

stant δ > 0. For a graph with a restricted weight range,
Björklund et al. have proposed an O∗(2k) algorithm us-
ing subset convolution and Möbius inversion [8]. An im-
portant thing is that the dynamic programming part of
these algorithms [7, 6, 8] use the D-W algorithm.

In order to speed up classical algorithms, use of quan-
tum algorithms is an effective technique. In particular,
Grover’s quantum search (Grover search) [9] and its gen-
eralization, quantum amplitude amplification [10, 11], are
widely applicable. Grover search brings quadratic speed
up to an unstructured search problem [9, 12]. This is one
of the advantages quantum algorithms have over classi-
cal algorithms. For NP-hard problems, speeding up using
Grover search [9] is a typical method. However, simply
applying Grover search to a classical algorithm does not
always make faster than the best classical algorithm in
many problems. For example, in [13], by using quantum
computers, the Travelling Salesman Problem (TSP) for
a graph which has n vertices is solved in time O∗(

√
n!)

which is the square root of the classical complexityO∗(n!)
of an exhaustive search. However, the best classical algo-
rithm for TSP takes only O∗(2n) [14, 15] which is clearly
faster than O∗(

√
n!).

In order to speed up algorithms for the minimum
Steiner tree problem, it is thought that use of Grover
search is also an effective technique. Combining classi-
cal algorithms with Grover search is one of the ways to
make an algorithm faster than the best classical algo-
rithm. For example, Ambainis et al. [16] have combined
Grover search with algorithms for TSP, Minimum Set
Cover Problem and so on that use dynamic program-
ming. A naive way is replacing the dynamic program-
ming part of the algorithm of Ambainis et al. by D-W
algorithm. However, we cannot use the method of Am-
bainis et al. in the same way because the characteris-
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Table 1: Comparison of the algorithms.
Algorithm Complexity classical or quantum
Dreyfus and Wagner [5] O∗(3k) classical
Fuchs [6] O∗(2.684k) classical

Mölle [7] O((2 + δ)knf(δ
−1)) classical

Björklund [8] ( best known in the restricted weight case) O∗(2k) classical
This paper O∗(1.812k) quantum

tic of minimum Steiner tree problem differs from that
of TSP. Hence, we adapt this method to a method pro-
posed by Fuchs et al. [6] for applying Grover search. The
decomposition method of Fuchs et al. is optimized for
a classical computer. We optimize the decomposition
for a quantum computer. Our algorithm achieved the
complexity O∗(1.812k). This improvement of complexity
brings more than 104 times speed up compared to O∗(2k)
even in the case of k = 100. Table 1 shows the complexity
of classical algorithms for minimum Steiner tree problem
and our proposed algorithm.
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Measurement-device-independent verification of channel steering and
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Abstract. We propose measurement-device-independent verification protocol of channel coherence and
channel steering. We first obtain channel-state duality using any bipartite pure state with full Schmidt-
rank, which guarantees that, channel is coherent and steerable if and only if dual state is non-separable and
steerable with respect to a bystander. Subsequently, following canonical protocol, we verify the dual state in
measurement-device-independent manner, which completes measurement-device-independent verification
of channel coherence and channel steering. We further analyze the effect of imperfect preparation of
pure states used for obtaining channel-state duality, and found that the lower bound of noise threshold is
determined by robustness measures.
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Extended Abstract

Given a quantum channel from an input to an output
system, it is of our interest to check information leakage
to a third party, say a bystander. To analyze this, we can
come up with a concept of broadcasting channel [1] con-
sisting of one input and two output systems, where one
of the outputs is a bystander, by which we can retrieve
the original channel by disregarding the bystander’s sys-
tem. If the broadcasting channel can be described by sum
of decompositions into subchannel and bystander’s local
state, we call it an incoherent extension [2]. Intuitively,
incoherent extension of the channel implies that the in-
formation leakage to the third party is not more than
classical randomness. If broadcasting channel is not an
incoherent, we call it a coherent extension, which means
that the information leakage to the third party is more
than classical randomness. We can verify coherence of
the extended channel in two different scenarios : whether
we trust the bystanders side, or not. If we trust, the ver-
ification protocol is device-dependent and we call it as
channel coherence, and if we do not trust, the verifica-
tion protocol is one-sided-device-independent and we call
it as channel steering [2].

In this research, we propose the verification protocol of
channel coherence and channel steering in measurement-
device-independent (MDI) way [3]. To do this, we first
obtain the dual state of the given channel using bipartite
pure state with full Schmidt-rank, and prove two theo-
rems. 1. The dual state of the extended channel is IO/B
entangled, where B is a bystanders system, if and only
if the channel extension is coherent. 2. The dual state
of the extended channel is steerable by bystanders side
if and only if the channel extension is steerable. Con-
sequently, based on two theorems, we convert the given
extended channel into tripartite state and verify their en-
tanglement or steerability in the MDI way as suggested
in Refs. [4, 5]. This protocol completes the MDI veri-
fication of the channel coherence and channel steering.
Moreover, we analyze the effect of imperfect preparation

∗jeongh@snu.ac.kr

of the bipartite pure states with full Schmidt-rank used
for obtaining the dual state from the given channel. We
found that, for undesired noise which is separable or un-
steerable type, the threshold of the noise for successful
MDI verification of channel coherence and steering are
bounded from below by RE/(1 + RE) and RS/(1 + RS),
where RE is the robustness of entanglement [6] and RS is
the robustness of steering [7]. Together with loss-tolerant
property of MDI verification protocol [4, 5], this would
help us to overcome large amount of noise and uncontrol-
lable affairs in practical situation.
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Abstract. A commitment scheme allows one to commit to hidden information while keeping its value
recoverable when needed. Despite considerable efforts, an unconditionally and perfectly secure bit com-
mitment has been proven impossible both classically and quantum-mechanically. The situation is similar
when committing to qubits instead of classical bits as implied in the no-masking theorem [K. Modi et al.,
Phys. Rev. Lett. 120, 230501 (2018)]. In this work, we find that circumvention of the no-masking theorem
is possible with the aid of classical randomness. Based on this, we construct an unconditionally secure
quit-commitment scheme that utilises any kind of universal quantum maskers with optimal randomness
consumption, which is distributed by a trusted initializer. This shows that randomness, which is normally
considered only to obscure the information, can benefit a quantum secure communication scheme. This
result can be generalised to an arbitrary dimensional system.
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1 Introduction

In a commitment protocol, a sender (say Alice) com-
mits to a secret value in the way that a receiver (Bob)
cannot access the value until it is revealed. On the other
hand, Bob should be able to reject Alice’s cheating of
revealing a value different from the originally committed
value. A commitment scheme, which has many crypto-
graphical applications[1, 2], is said to be unconditionally
secure when the scheme does not depend on the compu-
tational power of both participants, while it isperfectly
secure when the scheme works with zero probability of
failure. However, an unconditionally and perfectly se-
cure commitment protocol is impossible. If a commit-
ment protocol is unconditionally and perfectly binding,
which means that any attempt of Alice to change the al-
ready committed secret value can be detected by Bob,
then there should be a unique secret value for each com-
mitment provided by Alice to Bob. If so, the protocol,
however, cannot be unconditionally and perfectly con-
cealing, i.e., Bob could have some information about the
committed value before Alice discloses it, because Bob
with unlimited computational power can reveal the se-
cret value by searching through every possible secret val-
ues and corresponding commitments.

Quantum bit-commitment is an attempt to circumvent
this difficulty by using quantum mechanics [3]. However,
it has been proven [4, 5] that an unconditionally secure
commitment of a classical value is impossible even with
the aid of quantum mechanics. Meanwhile, a fully clas-
sical breakthrough was developed by Rivest [6] as intro-
ducing a partially credible mediator, “trusted initializer,”
who is only involved in the beginning (setup) of the pro-
tocol and does not receive any information during the
remaining protocols. In Ref. [6], it was shown that the
trusted initializer enables the construction of uncondi-
tionally secure commitment schemes for classical bits.

It transpired that the situation is similar for qubit com-
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mitment, in which the commited secret value is a qubit.
A result recently proven by Modi et al. [7] known as the
no-masking theorem states that it is impossible to en-
code quantum information in a bipartite pure quantum
state so that it is inaccessible to local subsystems. As a
corollary, an unconditionally and perfectly secure qubit
commitment is also forbidden [7]. It shows that qubit
commitment schemes with straightforward protocols are
vulnerable to entanglement-based attacks [7].

One might expect that the no-masking theorem can be
extended to mixed states similarly as the case of the no-
broadcasting theorem [8] extended from the no-cloning
theorem [9]. In this work however, we show that this is
not the case. We first prove a stronger version of the no-
masking theorem by showing that one additionally needs
at least log2 d bits and 2 log2 d bits of randomness re-
spectively when entanglement is available and when only
zero one-way quantum discord is allowed in the masked
bipartite quantum state. We then introduce a simple way
to circumvent the strengthened no-masking theorem by
constructing explicit examples of quantum masker that
consumes the minimal amount of randomness.

We further show that the class of universal quantum
maskers that consume uniform randomness can be used
for unconditionally secure qubit commitment schemes by
introducing a trusted initializer, whose role is very simi-
lar to that of Rivest’s commitment scheme. Our scheme
has a security advantage over Rivest’s scheme even when
applied to the bit commitment as it avoids a certain type
of security failure.
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Figure 1: A schematic description of the qubit-commitment protocol proposed in this work. Lane 1-2 belongs to Alice,
lane 3-5 to Bob, and lane 6-7 to Ted. ρC gate denotes the preparation of the secret state ρC to which Alice commits,
and VA denotes the unitary transformation secretly applied on the system A by Alice to cheat Bob. Note that this
diagram does not show the classical information flow.
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Abstract. We investigate the uncertainty relation of one electron in a uniform magnetic field by the quantum
estimation theory. As the two-parameter unitary models, we use two sets of unitary transformations that make a
shift in the position of the electron probability density. The sets of the generators used are the canonical momenta
and the mechanical momenta. In both cases, we obtain non-trivial bounds unlike the result of Heisenberg-Robertson
uncertainty relation. Although both models make a shift in the position of the position probability density, the
uncertainty relation derived from the quantum Cramér-Rao bounds of those two models are different.
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1 Introduction
The uncertainty relation based on the quantum estimation

theory was investigated by many authors [1, 2, 3, 4, 5]. In the
present work, we set up a specific physical model, a model
of one electron in a uniform magnetic field and investigate
the uncertainty relation regarding the position of the electron
by the parameter estimation problem of two-parameter unitary
model. In this model, the Heisenberg-Robertson uncertainty
relation [6, 7] of the position operators of an electron (x, y)
only yields to the following trivial inequality. (∆ρx)(∆ρy) ≥
|⟨[x, y]⟩|/2 = 0, because two position operators x and y com-
mute, i.e., [x, y] = 0. In the relation above, ∆x denotes the
(quantum) standard deviation about x with respect to a state ρ,
which is defined by (∆ρx)2 = tr [ρ (x − ⟨x⟩)2] = ⟨x2⟩ρ − ⟨x⟩2ρ
with ⟨A⟩ρ = tr [ρ A], the expectation value about an observable
A. ∆ρy is defined similarly. Usually, when the uncertainty re-
lation is discussed, the Heisenberg-Robertson uncertainty re-
lation makes sense only for two non-commuting observables,
see for example [8, 9, 10]. In contrast, the quantum estimation
theoretical formulation of the uncertainly relation is applica-
ble when discussing two-commuting observables as shown in
this paper.

In order to derive the uncertainty relation between x and
y based on the quantum estimation theory, we need to intro-
duce a parametric model describing the position measurement
of the electron. We use the unitary transformation gener-
ated by the canonical momenta px and py with the parame-
ter θ = (θ1, θ2). We define the family of states ρp

θ generated
by this transformation from the reference state ρ0, which is
known:

Model 1: ρ
p
θ = e−iθ1 px e−iθ2 pyρ0eiθ2 py eiθ1 px . (1)

By estimating the parameter θ1 (θ2), we can infer the expecta-
tion value of x (y).

Besides this ‘natural’ unitary transformation, we use an al-
ternative unitary transformation. That is

Model 2: ρπθ = e−iθ1πx e−iθ2πyρ0eiθ2πy eiθ1πx , (2)
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where π⃗ = p⃗ + eA⃗. The vector potential for the uniform field
B⃗ is denoted by A⃗. The charge of an electron is −e (e > 0).
Both Model 1 and Model 2 make a shift in position of the
position probability density which is defined by the product
of the wave function and its complex conjugate.

As the main contribution, we derive the uncertainty rela-
tion by the trade-off relation between the components of mean
square error (MSE) matrix by using the quantum Cramér-Rao
(C-R) inequality. We compare the results of Model 1 and
Model 2. The uncertainty relation from the quantum C-R in-
equalities of Model 1 and Model 2 are different though both
Model 1 and Model 2 make the same shift in the position of
the position probability density. In either case of the pure state
or the thermal state as the reference state, Model 2 gives more
precise measurement for the position of electron.

2 Preliminaries
Hamiltonian With using the two sets of the the creation
and annihilation operators, a, a† and b, b† such that [a, a†] =
[b, b†] = 1, Hamiltonian H and z component of the angular
momentum L are expressed as [11]

H = ω(a†a +
1
2

), (3)

L = xpy − ypx = a†a − b†b. (4)

ω = eB/m is the cyclotron frequency. We assume the mag-
netic field B⃗ is along the z axis i.e., B⃗ = (0, 0, B). Eqs. (3), (4),
and the generators expressed by a, a† and b, b† are given in
Appendix 5.1.

Reference state Since the energy eigenstate is infinitely de-
generated [12], we choose the tensor product of the vacuum
states as the reference state ρ0 which is denoted by

ρ0 = |0⟩a a⟨0 | ⊗ |0⟩b b⟨0 | = |0, 0⟩ ⟨0, 0| . (5)

The wave function of this state is known as the Lowest Landau
Level (LLL), ψ0 0(x, y) = ⟨x, y | 0, 0⟩ ∝ e−

x2+y2

2λ2 , where λ2 =

2(eB)−1.
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Unitary transformations We introduce two kinds of uni-
tary transformations, e−iθ1 px e−iθ2 py and e−iθ1πx e−iθ2πy . We con-
sider that we have them act on the LLL, ψ0 0(x, y). We can
show

|e−iθ1 px e−iθ2 pyψ0 0(x, y)|2 = |ψ0 0(x − θ1, y − θ2)|2,
|e−iθ1πx e−iθ2πyψ0 0(x, y)|2 = |ψ0 0(x − θ1, y − θ2)|2, (6)

where
|ψ0 0(x − θ1, y − θ2)|2 ∝ e−

(x−θ1)2+(y−θ2)2

λ2 . (7)

Therefore, both Model 1 and Model 2 make a shift in position
of the position density probability.

3 Uncertainty relation for pure state model
It is known that the right logarithmic derivative (RLD) does

not exist in general when the reference state is a pure state.
Only the symmetric logarithmic derivative (SLD) exists [13].
For the coherent model, the generalized RLD also exists and
provides the tight bound [14]. We calculate the SLD and the
generalized RLD Fisher information matrices by the method
given in [13, 14]. We obtain the uncertainty relation from the
quantum C-R inequalities. The inequalities we derived from
the the quantum C-R inequality are given in Appendix 5.2.
The inverse of the quantum Fisher information matrices are
given in Appendix 5.3.

3.1 Model 1: unitary model generated by px and py

In Model 1, the generators of the unitary transformation px

and py commute. We can show that the SLD’s commute on the
support of the states and that the SLD C-R bound is achiev-
able [15].

The SLD Fisher information matrix and the MSE matrix are
denoted by Gp

S and Vθ, respectively. Then, from the SLD C-R
inequality Vθ ≥ (Gp

S)−1, we obtain the following inequalities.

V1 1 ≥
λ2

2
, V2 2 ≥

λ2

2
.

where Vθ = [Vi j]. The generalized RLD is equal to the SLD.
Figure 1 shows the SLD C-R bound (dotted lines). λ2/2 is

a half of the square of the spread of the LLL wave function
Eq. (7). This result shows that the measurement accuracy is
limited by the spread of the probability density of the electron
in the LLL, because of the quasi-classical nature of Model 1,
i.e., the SLD’s commute.

3.2 Model 2: unitary model generated by πx and πy

Let Gπ
S denote the SLD Fisher information matrix of Model

2 with respect to the reference state ρ0 [Eq. (5)]. From
Vθ ≥ (Gπ

S)−1, we obtain the following inequalities.

V1 1 ≥
λ2

4
, V2 2 ≥

λ2

4
.

Notably, the relation (Gp
S)−1 = 2(Gπ

S)−1 holds.
Let G̃π

R denote the generalized RLD Fisher information.
From the generalized RLD C-R inequality Vθ ≥ (G̃π

R)−1 [14],
we obtain the following inequality,

(V1 1 −
λ2

4
)(V2 2 −

λ2

4
) ≥ λ4

16
. (8)

Model 1 SLD Model 2 Generalized RLD Model 2 SLD

0.0 0.5 1.0 1.5 2.0

0.0

0.5
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2.0

λ-2V11

λ-2V22

Figure 1: Uncertainty relation of Model 1 and Model 2 given
by the quantum C-R inequalities. The SLD C-R bound of
Model 1 is the blue dotted lines. The allowed region of Model
1 for the MSE matrix components (V1 1, V2 2) given by SLD C-
R inequality is the blue region. The allowed region of Model
2 is above the black solid line, the region given by the in-
equality (8) which is derived from the generalized RLD C-R
inequality. The allowed region of Model 2 by the SLD C-R in-
equality consists of all of the light, dark gray and blue regions
.

Figure 1 shows the SLD C-R bound (dashed line) and the
generalized RLD C-R bound (solid line) of Model 2 as well.
An optimal measurement for Model 1 is to measure x and y,
and the SLD C-R bound is achievable. Since Model 2 is a co-
herent model, the generalized RLD bound is achievable [14].
Unlike the result of Model 1, the bound for Model 2 is not
limited by a constant. It is always lower than that for Model 1.

4 Uncertainty relation for mixed state model
Next, we use a mixed state as the reference state to see

how the noise affects the measurement accuracy of the elec-
tron position. For the purpose, as the mixed state, we choose
a thermal state. However, in the current system we are con-
sidering, there is no unique thermal state, because the energy
eigenstate is (infinitely) degenerated [12]. Then, a thermal
state of this system is not uniquely specified by the tempera-
ture only. To resolve this degeneracy problem, we impose a
condition that the expectation value of the angular momentum
⟨L⟩0 = tr [ρ0 L] is constant. Given an arbitrary value of ⟨L⟩0,
the reference state ρβ, µ is denoted by

ρβ, µ = Z−1
β, µe−βH+µL, (9)

where Zβ, µ = tr [e−βH+µL] is the partition function and µ is the
chemical potential. By using the coherent states which are
defined by

a |z⟩a = z |z⟩a , b |z⟩b = z |z⟩b . (10)

ρβ, µ is expressed as

ρβ, µ = ρ0, a ⊗ ρ0, b, (11)

where

ρ0, a =
1

2πκ2
a

∫
e
− |z|2

2κ2a |z⟩a a⟨z | d2z, ρ0, b =
1

2πκ2
b

∫
e
− |z|2

2κ2b |z⟩b b⟨z | d2z.
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2κ2
a and 2κ2

b are

2κ2
a = (eβω−µ − 1)−1, 2κ2

b = (eµ − 1)−1. (12)

The relation among µ, κa, κb, and ⟨L⟩0 are given in Ap-
pendix 5.4.

The reference state ρβ, µ is expressed as a tensor product of
two independent Gaussian states with different temperatures.
We obtain the uncertainty relation from the SLD and RLD C-
R inequalities [2, 3].

The inverse of the quantum Fisher information matrices
calculated from the reference state ρβ, µ are given in Ap-
pendix 5.5.

4.1 Model 1: unitary model generated by px and py

Let Gp thermal
S and Gp thermal

R denote the SLD and RLD Fisher
information matrices, respectively. The shape of the uncer-
tainty relation from the quantum C-R bounds changes depend-
ing on the value of |⟨L⟩0|.

Case (i). When |⟨L⟩0| ≤ 1/2, the SLD C-R bound de-
fines a tighter lower bound, because the matrix inequality
(Gp thermal

S )−1 − (Gp thermal
R )−1 ≥ 0 holds, if and only when

|⟨L⟩0| ≤ 1/2.
Case (ii). In the other case, |⟨L⟩0| > 1/2, however, there

is no matrix ordering between the RLD and SLD Fisher in-
formation matrices. This means that both inequalities con-
tribute to the uncertainty relation. Figure 2 shows an exam-
ple of the quantum C-R bound given by the current anal-
ysis for Case (ii) (|⟨L⟩0| > 1/2). The allowed region of
Model 1 for the MSE matrix components (V1 1, V2 2) is the
blue region which is defined by two quantum C-R bounds,
the SLD and the RLD C-R bounds. The parameters used are
κ2

a = 1, κ2
b = 1/2, |⟨L⟩0| = 1 > 1/2. The RLD and SLD C-R

bounds have two intersection points in this case.
Finally, we briefly discuss achievability of the above uncer-

tainty relation. We can show that Model 1 is not D-invariant.
Hence, the RLD C-R bound is not achievable [16]. We can
also show that the SLD C-R bound is (asymptotically) achiev-
able if and only if ⟨L⟩0 = 0. In our model, this is equivalent
to ⟨L⟩0 = 0. When ⟨L⟩0 , 0, neither the RLD C-R bound nor
SLD C-R bound is even asymptotically achievable. There-
fore, the uncertainty relation is not tight, except for the special
choice of the parameter, ⟨L⟩0 = 0.

4.2 Model 2: unitary model generated by πx and πy

The SLD and RLD Fisher information matrices of Model
2 are denoted by Gπ thermal

S and Gπ thermal
R , respectively. Since

this model is a Gaussian shift model, the RLD C-R bound is
achievable [2, 17].

The RLD C-R inequality gives the following inequalities

V 11 ≥
λ2

4
(1 + 4κ2

a ), V 22 ≥
λ2

4
(1 + 4κ2

a ), (13)

[V 11 −
λ2

4
(1 + 4κ2

a )][V 22 −
λ2

4
(1 + 4κ2

a )] ≥ λ4

16
. (14)

The SLD C-R inequality gives the following

V 11 ≥
λ2

4
(1 + 4κ2

a ), V 22 ≥
λ2

4
(1 + 4κ2

a ).

Figure 2 shows the RLD C-R bound (black solid line) and the
SLD C-R bound (black dashed lines). We see that the quantum
C-R bounds of Model 2 stays lower than those of Model 1.

Model 1 SLD Model 1 RLD Model 2 RLD Model 2 SLD

1.0 1.5 2.0 2.5

1.0

1.5

2.0

2.5

λ-2V11

λ-2V22

Figure 2: Uncertainty relation of Model 1 and Model 2 given
by the quantum C-R inequalites. The temperature parameters
used are κ2

a = 1, κ2
b = 1/2, ⟨L⟩0 = 1, i.e., ⟨L⟩0 > 1/2. The

allowed region of Model 1 for the MSE matrix components
(V1 1, V2 2) is the blue region. The allowed region of Model 1
is given by both the SLD C-R bound (blue dotted lines) and
the RLD C-R bound (blue solid line). The allowed region of
Model 2 for the MSE matrix components (V1 1, V2 2) is the
gray region. The RLD C-R bound (black solid line) is achiev-
able.

5 Conclusion
We have investigated the uncertainty relation of one elec-

tron in a uniform magnetic field by the parameter estimation
of θ = (θ1, θ2) in the two-parameter unitary models. Two
different sets of generators for the unitary transformation are
used. One is a set of canonical momenta, px and py (Model
1) and the other is a set of mechanical momenta, πx and πy

(Model 2). In the both cases, we got non-trivial bounds unlike
the result of Heisenberg-Robertson uncertainty relation.

Although both models give the same effect to the position
probability density defined by the product of the wave func-
tion and its complex conjugate, the uncertainty relation from
the quantum C-R bounds of both models are different.

With the pure state as the reference state, the C-R bound
is quasi-classical for Model 1 and it is quantum mechanical
for Model 2. With the thermal state as the reference state,
the quantum C-R bound is complicated and its shape changes
when the angular momentum ⟨L⟩0 is at 1/2 for Model 1.
Model 2 becomes a simple Gaussian shift model. In either
case of the pure or thermal state, Model 2 gives more precise
measurement.
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Appendix
5.1 Hamiltonian

Hamiltonian H for an electron motion in a uniform mag-
netic field in the units, ℏ = 1 and c = 1 is

H =
1

2m
( p⃗ + eA⃗)2. (15)

where −e and m are the charge of an electron, (e > 0) and the
mass of the electron, respectively. A⃗ is a vector potential. The
canonical observables describing this systems are px, x, py,
and y. We will investigate uncertainty relation of an electron
motion in a uniform magnetic field B⃗ = (0, 0, B), B > 0. We
use the symmetric gauge. Then, the vector potential is writ-
ten as A⃗ = B (−y/2, x/2, 0). We can show that the change in
the gauge gives no change in the quantum Fisher information
when the magnetic field is uniform.

We will consider the motion in x − y plane only, because z
component solution is a plane wave. With a new vector oper-
ator, π⃗ = p⃗ + eA⃗, our Hamiltonian becomes

H =
1

2m
(π2

x + π
2
y).

It is known that the operators πx, πy and px, py are equally
described by the two sets of the creation and annihilation op-
erators, a, a† and b, b† such that [a, a†] = [b, b†] = 1 with all
other commutation relations vanishing [11].

πx =
i
λ

(a† − a), πy =
1
λ

(a† + a),

px =
i

2λ
[(a† − a) + (b† − b)], py =

1
2λ

[(a† + a) − (b† + b)],

x =
λ

2
[(a† + a) + (b† + b)], y =

λ

2i
[(a† − a) − (b† − b)],

where λ =
√

2(eB)−1 has the dimension of length. As shown
in Eq. (7), λ corresponds to the spread of the probability den-
sity of the electron in the LLL.

Hamiltonian H and z component of the angular momentum
L are

H = ω(a†a +
1
2

),

L = xpy − ypx = a†a − b†b.

ω is the cyclotron frequency and ω = eB/m.

5.2 Uncertainty relation by quantum Fisher information
The quantum C-R inequality is

Vθ ≥ (Gθ)−1, (16)

where Gθ is a quantum Fisher information. Let (Gθ)−1 be

(Gθ)−1 = [g i j
θ ], (17)

We can show that g 21
θ = (g 12

θ )∗.
From Gθ > 0, we have g 11

θ , g 22
θ > 0 and g 11

θ g 22
θ − |g 12

θ |2 >
0. The RLD C-R inequality (16) holds if and only if tr [Vθ −
(Gθ)−1] ≥ 0 and det [Vθ − (Gθ)−1] ≥ 0. Therefore, V 11 − g 11

θ ≥
0, V 22 − g 22

θ ≥ 0 and

det
(

V11 − g 1 1
θ V12 − g 1 2

θ

V21 − (g 1 2
θ )∗ V22 − g 2 2

θ

)
≥ 0.

The inequality above gives the following inequality.

(V11 − g 1 1
θ )(V22 − g 2 2

θ ) ≥ |V12 − g 1 2
θ |2.

The right hand side of the inequality above is written as fol-
lows.

|V12 − g 1 2
θ |2 = |V12 − Re g 1 2

θ − i Im g 1 2
θ |2

= |V12 − Re g 1 2
θ |2 + | Im g 1 2

θ |2

≥ | Im g 1 2
θ |2.

Then, we obtain the following inequalities,

V 11 − g 11
θ ≥ 0, V 22 − g 22

θ ≥ 0. (18)

(V11 − g 1 1
θ )(V22 − g 2 2

θ ) ≥ | Im g 1 2
θ |2. (19)

When Im g 1 2
θ = 0, the uncertainty relation is given by Eq. (18)

only.

5.3 Quantum Fisher information matrices: Pure state
5.3.1 Model 1: unitary model generated by px and py

The SLD Fisher information matrix is calculated by the way
given in [13]. The SLD Fisher information matrix is denoted
by Gp

S. Then, its inverse is

(Gp
S)−1 =

λ2

2

(
1 0
0 1

)
,

5.3.2 Model 2: unitary model generated by πx and πy

Let Gπ
S denote the SLD Fisher information matrix of Model

2. Then, the inverse of SLD Fisher information matrix (Gπ
S)−1

is

(Gπ
S)−1 =

λ2

4

(
1 0
0 1

)
.

Let G̃π
R denote the generalized RLD Fisher information ma-

trix. The inverse of the generalized RLD Fisher information
matrix [14] is calculated as

(G̃π
R)−1 =

λ2

4

(
1 i
−i 1

)
.

5.4 Chemical potential µ, expectation value of angular
momentum ⟨L⟩0, and temperature parameters κa and
κb

From Eqs. (3), (4), and (9),

ρβ, µ = Z−1
β, µe−

1
2 βωe−(βω−µ)a†a−µb†b. (20)

ρβ, µ is expressed as

ρβ, µ = ρ0, a ⊗ ρ0, b, (21)

where

ρ0, a =
1

2πκ2
a

∫
e
− |z|2

2κ2a |z⟩a a⟨z | d2z,

ρ0, b =
1

2πκ2
b

∫
e
− |z|2

2κ2b |z⟩b b⟨z | d2z.

2κ2
a and 2κ2

b are
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2κ2
a = (eβω−µ − 1)−1, 2κ2

b = (eµ − 1)−1. (22)

From Eq. (22), we obtain

(eβω − 1)(2κ2
a )2 − [(eβω − 1)⟨L⟩0 + 2]2κ2

a − 1 + ⟨L⟩0 = 0. (23)

⟨L⟩0 is calculated as

⟨L⟩0 = tr [L ρβ, µ] = 2κ2
a − 2κ2

b. (24)

When eβω and ⟨L⟩0 are given, 2κ2
a is the variable of Eq. (23)

and Eq. (23) has two solutions for 2κ2
a . However, we can take

the larger solution as the solution of Eq. (23), because the
smaller one gives the negative 2κ2

b. Then, the relation between
µ and ⟨L⟩0 is calculated as

eµ =
2t

−t⟨L⟩0 + 2 +
√

t2⟨L⟩20 + 4t + 4
+ 1, (25)

where t = e βω − 1. At a special case, ⟨L⟩0 = 0, we can see
µ = βω/2 from Eq. (25).

5.5 Quantum Fisher information matrices: Mixed state
5.5.1 Model 1: unitary model generated by px and py

Let Gp thermal
R and Gp thermal

S be the RLD and the SLD Fisher
information matrices, respectively. The inverse of Gp thermal

R is
calculated as

(Gp thermal
R )−1 =

λ2

1 + 2κ2
a + 2κ2

b(
2κ2

a + 2κ2
b + 8κ2

aκ
2
b i (2κ2

b − 2κ2
a )

−i (2κ2
b − 2κ2

a ) 2κ2
a + 2κ2

b + 8κ2
aκ

2
b

)
.

Next, (Gp thermal
S )−1 is written as

(Gp thermal
S )−1 = λ2

1
2 + 2κ2

a + 2κ2
b + 8κ2

aκ
2
b

1 + 2κ2
a + 2κ2

b

(
1 0
0 1

)
.

5.5.2 Model 2 : unitary model generated by πx and πy

The SLD and RLD Fisher information matrices are denoted
by Gπ thermal

S and Gπ thermal
R , respectively. Their inverse matrices

are calculated as

(Gπ thermal
S )−1 =

λ2

4

(
1 + 4κ2

a 0
0 1 + 4κ2

a

)
, (26)

(Gπ thermal
R )−1 =

λ2

4

(
1 + 4κ2

a i
−i 1 + 4κ2

a

)
. (27)

Since this model is a Gaussian shift model [2, 17], the RLD
C-R bound is achievable.
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Abstract. Quantum fidelity is a measure to quantify the closeness between two quantum states. In the
present work, we find a closed form of the optimal measurement for quantum fidelity between multi-mode
Gaussian states. Based on our general finding, we identify three distinct types of optimal measurements for
single-mode Gaussian states: a number detection, projections onto the eigenbasis of operator x̂p̂+ p̂x̂, and
a quadrature variable detection. We also show the equivalence between optimal measurements for quantum
fidelity and quantum parameter estimation when two arbitrary states are infinitesimally close. It is applied
for simplifying the derivations of quantum Fisher information and the associated optimal measurements,
exemplified by displacement, phase, squeezing, and loss parameter estimation using Gaussian states.

Keywords: Quantum Fidelity, Quantum Fisher Information

1 Introduction

Quantum fidelity is a measure of closeness between two
quantum states. It has been widely used for assessing
quantum information processing protocols such as quan-
tum teleportation, quantum cloning, and quantum error
correction. Quantum fidelity is defined as

F (ρ̂0, ρ̂1) = min
{Êx}

(∫ √
p0(x)p1(x)dx

)2

=

(
Tr

√
ρ̂
1/2
1 ρ̂0ρ̂

1/2
1

)2

,

where pj(x) = Tr[ρ̂jÊx] is the probability distribution

with POVM {Êx} for ρ̂j(j = 0, 1). It has been found that
the optimal measurement for quantum fidelity is given by
the projections on the eigenbasis of an operator [1]

M̂(ρ̂0, ρ̂1) = ρ̂
−1/2
1

√
ρ̂

1/2
1 ρ̂0ρ̂

1/2
1 ρ̂

−1/2
1 . (1)

In the present work, we find the optimal measurement
for quantum fidelity between arbitrary Gaussian states.

2 Results

Let us consider two Gaussian states, characterized by
the Gibbs matrix Gi and the first moment ui. The main
result is that Eq. (1) can be simplified as [2]

M̂ ∝ D̂(u1) exp

[
−1

2
Q̂TGMQ̂− vT

MQ̂

]
D̂†(u1),

where GM satisfies eiΩGMeiΩG1eiΩGM = eiΩG0 . Here,

D̂(u) = e−u
TiΩQ̂ is the displacement operator. The above

expression makes Now, the diagonalization of the opera-
tor M̂ enables one to find optimal POVMs.

Optimal measurements for quantum fidelity between
single-mode Gaussian states can be classified by (Fig. 1)

(i) If the signs of eigenvalues of GM are the same, the
eigenbasis of M̂ is that of the number operator n̂ =
(x̂2 + p̂2 − 1)/2 (up to Gaussian unitary).

∗jeongh@snu.ac.kr
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Type-(i)

Type-(ii)

Type-(i)

T
ype-(iii) Ty

pe
-(
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0

Figure 1: Classification of optimal measurements as a
function of r0 and n̄0 for a given n̄1.

(ii) If the signs of eigenvalues are different, the eigen-
basis of M̂ is that of x̂p̂+ p̂x̂.

(iii) If only one of the eigenvalues is zero, the eigenbasis
of M̂ is that of a quadrature operator.

This classification enables one to find optimal setups for
given Gaussian states.

We also show the equivalence between optimal mea-
surement for quantum fidelity and that for quantum
Fisher information such that the operator M̂ is pro-
portional to the symmetric logarithmic derivative (SLD)
L̂θ which also gives the optimal measurement for quan-
tum parameter estimation of θ. This relation simplifies
the derivation of quantum Fisher information and SLD
operator, which is exemplified by displacement, phase,
squeezing, and loss parameter estimation.
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Abstract. The quantum state exchange is a quantum communication task in which two users exchange
their respective quantum information in the asymptotic setting. In this work, we consider a one-shot
version of the quantum state exchange task, in which the users hold a single copy of the initial state,
and they exchange their parts of the initial state by means of entanglement-assisted local operations and
classical communication. We first derive lower bounds on the least amount of entanglement required for
carrying out this task and provide conditions on the initial state with the zero entanglement cost. Based
on these results, we figure out two counter-intuitive phenomena in this task, which cannot be explained
by the SWAP operation, even though the one-shot quantum state exchange and the SWAP operation
operationally provide the same result. One tells how the users deal with their symmetric information to
reduce the entanglement cost. The other shows that it is possible for the users to share extra entanglement
after this task.

Keywords: quantum communication task, quantum state exchange, optimal entanglement cost

1 One-shot quantum state exchange

The one-shot quantum state exchange is a quantum
information task in which two users, Alice and Bob, hold
parts A and B of the initial state |ψ〉 ≡ |ψ〉A1B1A2B2R

with systems A = A1A2 and B = B1B2, respectively.
Their goal is either to exchange their parts A1 and B1 or
to exchange their whole parts A and B. Specifically, let
ψf1 , and ψf12 be the final states of the the task given by

ψf1 =
(
1A1→A′

1
⊗ 1B1→B′

1
⊗ 1A2B2R

)
(ψ),

ψf12 = (1A→A′ ⊗ 1B→B′ ⊗ 1R) (ψ),

where ψ = |ψ〉 〈ψ|, and the dimension of the system X ′

is identical to that of the system X. Note that B′
1, B′

and A′
1, A′ are Alice’s and Bob’s systems, respectively.

Definition 1 (One-shot quantum state exchange)
Three joint operations

E1ψ,K,L : A1E
in
A ⊗B1E

in
B −→ B′

1E
out
A ⊗A′

1E
out
B ,

E1|2ψ,K,L : AEin
A ⊗BEin

B −→ B′
1A2E

out
A ⊗A′

1B2E
out
B ,

E12ψ,K,L : AEin
A ⊗BEin

B −→ B′Eout
A ⊗A′Eout

B ,

are called the one-shot quantum state exchange protocols
of |ψ〉, if they are performed by local operations and clas-
sical communication between Alice and Bob, and satisfy

ψf1 ⊗ Φ =
(
E1ψ,K,L ⊗ 1A2B2R

)
(ψ ⊗Ψ)

=
(
E1|2ψ,K,L ⊗ 1R

)
(ψ ⊗Ψ) ,

ψf12 ⊗ Φ =
(
E12ψ,K,L ⊗ 1R

)
(ψ ⊗Ψ) ,
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where Ψ and Φ are pure maximally entangled states with
Schmidt rank K and L on systems Ein

AE
in
B and Eout

A Eout
B ,

respectively.

Depending on the types of one-shot quantum state ex-
change protocols, we define their optimal entanglement
costs as follows.

Definition 2 (Optimal entanglement cost) The
following quantities are optimal entanglement costs of
the one-shot quantum state exchange:

eA1↔B1
(ψ) = inf

E1
ψ,K,L

(logK − logL) ,

eA2B2

A1↔B1
(ψ) = inf

E1|2
ψ,K,L

(logK − logL) ,

eA↔B (ψ) = inf
E12
ψ,K,L

(logK − logL) ,

where the quantity logK − logL is called the entangle-
ment cost of the one-shot quantum state exchange proto-
col, and the infimums are taken over all joint protocols

E1ψ,K,L, E1|2ψ,K,L, and E12ψ,K,L.

2 Lower and upper bounds

As in the asymptotic quantum state exchange [1, 2], in
order to find out a lower bound of the one-shot quantum
state exchange of |ψ〉A1B1A2B2R

, we here imagine that the
referee who holds R can assist Alice and Bob to exchange
A1 and B1.

Theorem 3 The optimal entanglement cost eA2B2

A1↔B1
(ψ)

is lower bounded by

l1|2(ψ) = sup
F,N

[F (N (ψ)B1A2RA
)− F (N (ψ)ARA

)] ,

where F is an additive and Schur concave function such
that F (σM ) = logM for any M and N (ρ) is a quantum
channel from R to RA.

51



From Theorem 3, we obtain the following computable
lower bound.

Corollary 4

eA1↔B1 (ψ) ≥ max
α∈[0,∞]

|Sα(ρA1)− Sα(ρB1)| ,

eA2B2

A1↔B1
(ψ) ≥ lc1|2(ψ) = max

α∈[0,∞]
fψ(α),

eA↔B (ψ) ≥ max
α∈[0,∞]

|Sα(ρA)− Sα(ρB)| ,

where Sα is the quantum Rényi entropy of order α, and
fψ(α) is a function of |ψ〉 and α defined by fψ(α) =
max{Sα(ρA1B2

)− Sα(ρB), Sα(ρB1A2
)− Sα(ρA)}.

3 Conditions for the zero entanglement
cost

We present conditions on the initial state with the zero
entanglement cost.

Let (X,Y ) be a pair of two systems, which can be
either (A1, B1) or (A,B), and consider a spectral de-
composition of the reduced state ρXY for |ψ〉, ρXY =∑N
i=1 λi |ξi〉 〈ξi|XY , where λi > 0 with

∑N
i=1 λi = 1. For

each i, we define the matrix ΩiXY (ψ) by

ΩiXY (ψ) =
∑
j,k

(〈j|X ⊗ 〈k|Y ) |ξi〉XY |j〉 〈k| ,

where {|j〉} and {|k〉} indicate the computational bases
on Alice’s and Bob’s systems, respectively. Then we ob-
tain the following sufficient condition.

Theorem 5 Let (X,Y ) be either (A1, B1) or (A,B). If
there exist isometries U and V such that for each i,(

ΩiXY (ψ)
)t

= UΩiXY (ψ)V,

then eX↔Y (ψ) = 0, where W t is the transpose of the
matrix W .

From the lower bounds on the optimal entanglement
costs eA1↔B1

and eA↔B in Corollary 4, observe that if
the spectrum of Alice’s state is different from that of
Bob’s state, then the optimal entanglement cost cannot
be zero. Based on this observation, we obtain the follow-
ing theorem.

Theorem 6 Let (X,Y ) be either (A1, B1) or (A,B). If
eX↔Y (ψ) = 0, then there exists an isometry UX→Y such
that ρY = UX→Y ρX(UX→Y )†.

4 Counter-intuitive phenomena

We are now in the position to present two phenomena
which show the differences between the one-shot quan-
tum state exchange task and the SWAP operation. We
refer the reader to Ref. [4] for more detailed explanations
of this section.

Figure 1: Illustration for the cargo exchange task. The
cargoes A1A2 and B1B2 belong to Alice and Bob, re-
spectively. Assume that the cargoes A2 and B2 are sym-
metric, but A1 and B1 are not symmetric. When Alice
and Bob exchange their whole cargoes A1A2 and B1B2,
it suffices for them to exchange A1 and B1, since A2 is
identical to B2. In the illustration, the truck indicates
the cost needed for exchanging A1 and B1.

4.1 Symmetric information

For the initial state |ψ〉, let us consider a situation that
Alice and Bob exchange their whole information A and
B. Assume that their parts A2 and B2 are symmetric,
while the rest parts A1 and B1 are not symmetric, i.e.,
the initial state |ψ〉 satisfies

(SWAPA1↔B1
) (ψ) 6= ψ and (SWAPA2↔B2

) (ψ) = ψ,

where SWAPX↔Y is the operation swapping quantum
states in systems X and Y .

From a viewpoint of the SWAP operation, if Alice and
Bob want to exchange A and B, then it suffices for them
to exchange A1 and B1, since A2 is identical to B2. This
situation can be more easily understood by using a cargo
exchange as a metaphor for the SWAP operation as de-
picted in Fig. 1. In the cargo exchange, assume that Alice
and Bob want to exchange their whole cargoes, and some
of the cargoes are symmetric. In terms of efficiency, it is
reasonable for them to exchange only A1 and B1 in order
to reduce the cargo exchange cost, because the cargoes
A2 and B2 are the same.

On the other hand, in the one-shot quantum state ex-
change, the proper use of the symmetric parts A2 and
B2 can more efficiently reduce the entanglement cost
compared to exchanging only A1 and B1 without using
A2 and B2. To be specific, there exists an initial state
|ψ〉 such that the parts A2 and B2 are symmetric and
eA↔B (ψ) = 0 while the rest parts A1 and B1 are not
symmetric. Consider the specific initial state

|φ1〉A1B1A2B2R
=

1√
2

(|00000〉+ |01111〉) ,

where A2 and B2 are symmetric but A1 and B1 are not.
Since Ω1

AB(φ1) = |00〉 〈00| and Ω2
AB(φ1) = |01〉 〈11|, we

can show that Ω1
AB(φ1) and Ω2

AB(φ1) satisfy the condi-
tion in Theorem 5, by setting

U = V = |00〉 〈00|+ |01〉 〈11|+ |10〉 〈10|+ |11〉 〈01| .

Thus we obtain that eA↔B (φ1) = 0, which means that
A and B can be exchanged by means of local operations
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Figure 2: Illustration of a one-shot quantum state ex-
change protocol of |φ2〉 in Eq. (1). (a) In order to ex-
change A1 and B1, Alice and Bob locally prepare an ebit,
respectively, and they apply Bell measurements to the
shaded areas. (b) By performing local operations cor-
responding to the measurement outcomes, the parts A1

and B1 can be exchanged. At the same time, Alice and
Bob can share two ebits.

and classical communication without consuming any non-
local resource. As mentioned above, this is somewhat
counter-intuitive, since this phenomenon cannot occur
when using the SWAP operation.

4.2 Negative entanglement cost

As in the asymptotic quantum state exchange task [1,
2], there exists an initial state to show that the entangle-
ment cost of the one-shot quantum state exchange task
can be negative. Assume that Alice and Bob exchange
the parts A1 and B1 of the initial state

|φ2〉A1B1A2B2
=

1

2

1∑
i,j=0

|i〉A1
|j〉B1

|j〉A2
|i〉B2

, (1)

where |φ2〉 consists of two ebits |e〉A1B2
and |e〉B1A2

. To
exchange A1 and B1, both Alice and Bob prepare an
ebit, respectively, and they locally apply the entangle-
ment swapping [3] by performing two Bell measurements
on A2, B2, and the parts of the ebits, as described in
Fig. 2. Then they can exchange A1 and B1, and can
share two ebits at the same time. This means that the
entanglement cost can be negative. In fact, we have
eA2B2

A1↔B1
(φ2) = −2 from Corollary 4. Compared to the

SWAP operation, the negativity of the entanglement cost
is quite interesting, since Alice and Bob cannot share en-
tanglement after the SWAP operation.
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Abstract. The speed-up of Quantum Computers is the current drive of an entire scien-
tific field with several large research programs, both in industry and academia world-wide.
Many of these programmes are intended to build hardware for quantum computers. A
related important goal is to understand the reason for quantum computational speed-
up; to understand what resources are provided by the quantum system used in quantum
computation. Some candidates for such resources include superposition and interfer-
ence, entanglement, nonlocality, contextuality, and the continuity of state-space. The
standard approach to resource studies is to restrict quantum mechanics and characterize
the resources needed to restore the advantage. Our approach instead extend the clas-
sical information carriers with an additional degrees-of-freedom, to mirror the quantum
information carriers. In this contribution, we will have a look at these additional degrees-
of-freedom and how quantum computers make use of them to achieve quantum speedup.
We will also discuss whether the additional degrees-of-freedom can be viewed as a ”side
channel,” a term often seen in cryptography, and whether quantum parallelism rather
should be viewed as computation performed in this additional degree-of-freedom.

Keywords: Computational Resources, Quantum Algorithms, Conditions for Quantum
Computation

For all we know, quantum computers can solve
certain problems faster than classical comput-
ers. This drives several large research programs
in both academia and industry, where one of the
important goals is to understand the reason for
this speed-up; to understand what resources a
quantum system provides that enable the com-
putational advantage. Some candidates for such
resources are interference [1], entanglement [7],
nonlocality [2], contextuality [3, 8, 5], continuity
of the state space [6], and even coherence [9, 10].

Another property that distinguish quantum
systems, from those used in classical informa-
tion processing, is that they have additional
degrees-of-freedom. For instance, a qubit can be
measured in the computational basis or in the
Hadamard basis. These bases are mutually un-
biased, meaning that a projective measurement
along one of the bases gives no information about
a projective measurement along the other. And
indeed, the observables representing these mea-
surements are orthogonal.
∗niklas.johansson@liu.se
†jan-ake.larsson@liu.se

The canonical condition for quantum compu-
tation is that the function is computed according
to the unitary operator

Uf |x〉 |a〉 = |x〉 |a⊕ f(x)〉 , (1)

or a unitarily equivalent operator. We can make
tree important observation from this:

(1) The function is computed reversibly in the
computational basis,

(2) any auxiliary systems should be cleared,

(3) while all relative phases cx,y are preserved,
that is ∑

x,y

cx,y |x〉 |y〉

7→
∑
x,y

cx,y |x〉 |y ⊕ f(x)〉 .
(2)

For a computation to be reversible it needs
to store enough information about its history,
so that it can be reversed [11]. Storing this in-
formation can lead to an undesirable scaling of
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memory usage, but in a special case the input
can serve as the history of the computation,

(x, 0) 7→ (x, f(x)). (3)

This can always be guaranteed by first comput-
ing the function and storing the history, copy out
the result of the computation to another regis-
ter, and then reversing the first computation and
thereby also reverse storing the history [12].(

x, 0, 0
)
7→
(
h, f(x), 0

)
7→
(
h, f(x), f(x)

)
7→
(
x, 0, f(x)

) (4)

This is exactly what we see in the computa-
tional basis of quantum algorithms, but this is
not what happens in the additional degree-of-
freedom from which quantum computation gain
its advantage. The information processing that
takes place in the other degrees-of-freedom is im-
posed by the condition on the relative phases.
By formalizing this explicitly we show how the
speed-up emerges from the information carriers
having additional degrees-of-freedom together
with the requirements of quantum computation.

Our result also has implications to post quan-
tum cryptography. Some cryptographic proto-
cols have been deemed vulnerable to quantum
computers, as there are quantum algorithms that
can efficiently retrieve their secret [6]. But for
some of these protocols [13, 14, 15], employing
the attack requires that the secret is built into
the quantum circuit. In this case, our result
shows that these are so-called side-channel at-
tacks, and should not be deemed vulnerable to
quantum computers (since all protocols are vul-
nerable to side-channel attacks).
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Abstract. In recent years, interest in expressing the success of neural networks to the quantum computing
has increased significantly. Tensor network theory has become increasingly popular and widely used to
simulate strongly entangled correlated systems. Matrix product state (MPS) is the well-designed class
of tensor network states, which plays an important role in processing of quantum information. In this
paper, we have shown that matrix product state as one-dimensional array of tensors can be used to classify
classical and quantum data. We have performed binary classification of classical machine learning dataset
Iris encoded in a quantum state. Further, we have investigated the performance by considering different
parameters on the ibmqx4 quantum computer and proved that MPS circuits can be used to attain better
accuracy. Further, the learning ability of MPS quantum classifier is tested to classify evapotranspiration
(ETo) for Patiala meteorological station located in Northern Punjab (India), using three years of historical
dataset (Agri).

Keywords: Quantum machine learning, classification, tensor network, matrix product state, IBM quan-
tum computer

1 Introduction

In the last decade, the simulation of open and closed
quantum systems has got overwhelming response. The
study of tensor network theory taking a central role in
quantum physics and beyond. It is simply a countable
group of tensors associated by contractions. Tensor net-
work states are a new language, based on entanglement,
for quantum many-body systems [1]. Tensor network
states are classified on the basis of dimensions along
which the tensors are traversed. It is widely used to sim-
ulate strongly entangled correlated systems and to rep-
resent quantum states and circuits [2]. ‘Tensor network
methods’ is the term associated with the tools, which
are widely employed in experimental and quantum the-
oretical applications of machine learning. The matrix
product state (MPS) is the most prominent example of
tensor network states which is maximally unbalanced.

Matrix product states are compelling for their wide
range of practical applications: supervised learning [3],
quantum finite state machines [5], unsupervised learning
[6], simulating MPS on a quantum computer [7], quan-
tum machine learning MPS [8] and many more. Matrix
product states are complete, where low entangled states
are represented efficiently, which is not possible with
large dimensions tensor network states. Recently, MPS
method have been introduced to compress the weights of
neural network layers and classify the images.

Huggins et al. [10] proposed tensor network based
quantum computing approaches for generative and dis-
criminative tasks. The main purpose is to generate sam-
ples from a probability distribution and assign labels to
images. The experimentation is executed on quantum
hardware using optimization procedure for handwritten
classes of images and noise resilience is tested of the train-
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ing model. Grant et al. [4] introduced the concept of hi-
erarchical quantum classifiers and executed binary clas-
sification for classical and quantum data. Two classical
machine learning datasets Iris and MNIST are consid-
ered and deployed the classifiers on quantum computer.
It has shown impressive results and better accuracy by
considering different unitary parameters. In this paper,
following contributions are claimed: (1) We demonstrate
that matrix product state as one-dimensional array of
tensors can be used to classify quantum mechanical data
in addition to classical dataset. (2) We encode classi-
cal dataset (Iris and Agri) into quantum entangled state,
which is given as an input to MPS tensor network quan-
tum circuit. (3) Four and six qubit inputs are taken
for Iris and Agri dataset and measurement is performed
on quantum circuit. (4) To investigate the performance,
MPS classifier on real-time quantum device (ibmqx4) is
deployed.

2 Matrix product state

Matrix product state concedes the extent of entan-
glement in bond dimensions. It is a method of ten-
sor network, where the tensors are connected in a one-
dimensional geometry. Figure 1 shows the MPS as one-
dimensional array of tensors and an instance of finite
system of 5 sites. In MPS, a pure quantum state |φ〉
is represented as:

|φ〉 =
d∑

σ1,σ2,...σL

Tr[Mσ1
1 Mσ2

2 ...MσL

L ] |σ1, σ2, ...σL〉 (1)

where Mσi
i are complex square matrices, d is dimension,

σi represents the indices i.e. {0, 1} for qubits and Tr()
denotes trace of matrices [5].

2.1 Encoding of classical data

In quantum mechanics, the N independent systems can
be combine by performing tensor product operation on
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Figure 1: Representation of MPS with 5 sites

their respective state vectors [3, 10]. Consider a feature
map

φd(x) = φs1(x1)⊗ φs2(x2)⊗ ...⊗ φsN (xN ) (2)

where sj are indices run over the local dimension d such
that d={s1, s2, ..., sN}. Therefore, each state vector xj
is mapped to full feature map φ(x) in a d -dimensional
space. Fig 2 shows the tensor diagram of full feature
map φ(x).

s1 s2 s3 s4 s5 sN

 1  2  3 4 5 N

d
N

=
........

x =  [ x1, x2, x3, . . . , xN ]

Input Vector

Figure 2: Mapping of input vector to order N tensor

Consider a classical dataset S = {(xd, yd)}Dd=1 for bi-
nary classification, where yd ∈ {0, 1} are class labels for
N -dimensional input vectors such that xd ∈ IRN . We
have normalized the input vectors to lie in [−π, π]. Thus,
the qubit φ is represented as

φdn = cos(xdn) |0〉+ sin(xdn) |1〉 (3)

φdn =

[
cos(xd1)
sin(xd1)

]
⊗
[
cos(xd2)
sin(xd2)

]
⊗ ...⊗

[
cos(xdN )
sin(xdN )

]
(4)

We map the N -dimensional input vectors xd ∈ IRN to
a product state on N qubits by using the feature map
Eq. (2). The full quantum data is represented as tensor
product φd = ⊗Nn=1φ

d
n [10, 4]. Thus, the preparation of

quantum state is efficient as it only needs single-qubit
rotations to encode each segment of classical dataset
n = {1, 2, ...N} in the amplitude of a qubit. Simi-
lar to classical dataset for binary classification, quan-
tum data set for binary classification is denoted as a set
Sq = {(φd, yd)}Dd=1, where yd ∈ {0, 1} are class labels

for 2N -dimensional input vectors such that φd ∈ C2N . It
can be easily checked that quantum data as a output of
quantum circuit is in superposition state.

3 Quantum circuit classifier

We now discuss MPS quantum circuit classifier for clas-
sification of quantum data, which is made up of unitaries.
We followed iterative approach by keeping positive trace
values from N -qubit input space to output qubits. We

=

Figure 3: Matrix product state quantum classifier

apply unitaries composed of single qubit rotations around
y-axis and CNOT gate to the input set and discard one
of the qubits (unobserved) from each unitary. Therefore,
we split the qubit into two parts for the next layer of the
circuit. This process continues till the last qubit is left to
be measured. It can be noted that at each stage of the
circuit, we keep one of the qubits resulting from one of the
unitary operations of the earlier stage and at last unitary
transformation occurs on two qubits from another sub-
part of the circuit. The unitary blocks in Fig 3 consists
of input dataset with ancilla qubit which is initialized to
zero. It can be easily traced out. Using ancilla qubit,
we can execute large class of non-linear operations. Fig
4 shows the seven stages of our methodology for model
development.

In order to assess the quality of actual and predicted
values of dataset, we need to calculate the cost function.
It measures the difference between actual and predicted
values of dataset. It is given as:

Jθ =
1

D

D∑
d=1

(Mθ(x
d)− yd)2 (5)

where xd and yd are the input and class labels respec-
tively, M is qubit operator, θ represents the set of pa-
rameters to define the unitaries and D is total number
of data points. It calculates the average amount that the
model’s predictions differ from the actual values. The
goal is to minimizing the cost function i.e. it must be
close to zero.

3.1 Experimental results

Table 1: Performance comparison of MPS for each sam-
ples of Iris dataset

Training
Sample Cost ACC Spec Sens Gini
Iris1 0.11 88.75 0.86 0.90 0.80
Iris2 0.16 83.75 0.82 0.84 0.80
Iris3 0.05 95 0.90 1.0 0.92

Testing
Sample Cost ACC Spec Sens Gini
Iris1 0.15 85 0.85 0.83 0.67
Iris2 0.2 80 0.71 1.0 0.50
Iris3 0.1 90 0.84 1.0 0.77
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Figure 4: Model development phases for classification

Table 2: Performance comparison of MPS for each sam-
ples of Agri dataset

Training
Sample Cost ACC Spec Sens Gini
Agri1 0.20 79.03 0.98 0.72 0.52
Agri2 0.24 75.34 0.68 0.82 0.51
Agri3 0.21 78.73 0.73 0.89 0.61

Testing
Sample Cost ACC Spec Sens Gini
Agri1 0.19 80.65 0.76 0.83 0.53
Agri2 0.26 73.33 0.67 0.79 0.50
Agri3 0.22 77.04 0.77 0.75 0.53

We have tested the ability of MPS quantum classifier
to classify Iris dataset and weather Indian Meteorological
Department (IMD) dataset. In experimentation, we have
given qubit rotations in y-direction to have real values
and parameterized the unitaries using ancilla qubit. The
performance comparison of MPS for each samples of Iris
and Agri datasets is shown in Table 1 and Table 2.

4 Conclusion

In this paper, we have illustrated that matrix product
state quantum classifier can be used to classify quantum
data efficiently. We have focused on MPS quantum cir-
cuit augmented with ancilla qubit that is implemented on
quantum computer with restriction on qubit rotations to
be real only. The key advantage of executing classifica-
tion with MPS quantum circuit is that it can be executed
efficiently with small number of qubits. The MPS quan-
tum classifier has shown great learning capability for Iris
and Agri datasets.

Acknowledgments

Amandeep Singh Bhatia was supported by Maulana
Azad National Fellowship (MANF), funded by Ministry
of Minority Affairs, Government of India. Mandeep Kaur
Saggi was supported by Council of Scientific & Industrial
Research (CSIR), funded by R&D organization, India.

59



References

[1] X. Gao, L.-M. Duan, Efficient representation of
quantum many-body states with deep neural net-
works, Nature communications 8 (1) (2017) 662.

[2] M. Schuld, A. Bocharov, K. Svore,
N. Wiebe, Circuit-centric quantum classifiers,
arXiv:1804.00633.

[3] E. Miles Stoudenmire, D. J. Schwab, Supervised
learning with quantum-inspired tensor networks,
arXiv:1605.05775.

[4] E. Grant, M. Benedetti, S. Cao, A. Hallam, J. Lock-
hart, V. Stojevic, A. G. Green, S. Severini, Hier-
archical quantum classifiers, npj Quantum Informa-
tion 4 (65) (2018).

[5] A. S. Bhatia, A. Kumar, Quantifying matrix prod-
uct state, Quantum Information Processing 17 (3)
(2018) 41.

[6] Z.-Y. Han, J. Wang, H. Fan, L. Wang, P. Zhang, Un-
supervised generative modeling using matrix prod-
uct states, Physical Review X 8 (3) (2018) 031012.

[7] A. S. Bhatia, M. K. Saggi, Implementing entangled
states on a quantum computer, arXiv:1811.09833.

[8] J. Biamonte, Quantum machine learning matrix
product states, arXiv:1804.02398.

[9] B. Gardas, M. M. Rams, J. Dziarmaga, Quantum
neural networks to simulate many-body quantum
systems, Physical Review B 98 (18) (2018) 184304.

[10] W. Huggins, P. Patel, K. B. Whaley, E. M. Stouden-
mire, Towards quantum machine learning with ten-
sor networks, arXiv:1803.11537.

60



Quantum State Smoothing for Linear Gaussian Systems

Kiarn T. Laverick1 ∗ Areeya Chantasri1 † Howard M. Wiseman1 ‡

1Centre for Quantum Computation and Communication Technology (Australian Research Council),
Centre for Quantum Dynamics, Griffith University, Nathan, Queensland 4111, Australia

Abstract. Quantum state smoothing is a technique for assigning a valid quantum state to a partially
observed dynamical system, using measurement records both prior and posterior to an estimation time.
We show that the technique is greatly simplified for Linear Gaussian quantum systems, with wide physical
applicability. We derive a closed-form solution for the quantum smoothed state, which is more pure than
the standard filtered state, whilst still being described by a physical quantum state. We apply the theory
to an on-threshold optical parametric oscillator, exploring optimal conditions for purity recorvery. This
work has recently been published in Physical Review Letters, see Ref. [1].
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Smoothing and filtering are techniques in classical es-
timation of dynamical systems to calculate probability
density functions (PDFs) of quantities of interest at some
time t, based on available data from noisy observation of
such quantities in time. In filtering, the observed data up
to time t is used in the calculation. In smoothing, the ob-
served data both before (past) and after (future) t can be
used. For dynamical systems where real-time estimation
of the unknown parameters is not required, smoothing al-
most always gives more accurate estimates than filtering.
In the quantum realm, numerous formalisms have been
introduced which use past and future information [2–8].
Many of these ideas have been applied, theoretically and
experimentally, to the estimation of unknown classical
parameters affecting quantum systems [9–15], or of hid-
den results of quantum measurements [16–21]. The op-
timal improvement obtained by using future information
in these applications comes from using classical Bayesian
smoothing to obtain the PDF of the variables of interest.

Despite such applications of smoothing to quantum pa-
rameter estimation, a quantum analogue for the classical
smoothed state (i.e. the PDF) was still missing. As quan-
tum operators for a system at time t do not commute with
operators representing the results of later measurements
on that system [22], a näıve generalisation of the clas-
sical smoothing technique would not result in a proper
quantum state [5, 6, 8]. As elucidated by Tsang [5],
such a procedure would result in a “state” that gives the
(typically anomalous) weak-value [3] as its expectation
value for any observable. Thus, we refer to this type of
smoothed “state” for a quantum system as the Smoothed
Weak-Value (SWV) state. In contrast to this, Guevara
and Wiseman [23] recently proposed a theory of quantum
state smoothing which also generalises classical smooth-
ing but which gives a proper smoothed quantum state,
i.e., both Hermitian and positive semi-definite.

The quantum state smoothing theory of Ref. [23] con-
siders an open quantum system coupled to two baths.
An observer, Alice, monitors one bath and thereby ob-
tains an “observed” measurement record O. Another

∗kiarn.laverick@griffithuni.edu.au
†ar.chantasri@gmail.com
‡prof.h.wiseman@gmail.com

observer, Bob (who is hidden from Alice), monitors the
remaining bath, unobserved by Alice, and thereby ob-

tains an “unobserved” record U. If Alice knew
←−
U as well

as
←−
O (the back-arrows indicating records in the past), she

would have maximum knowledge of the quantum system,
i.e., the “true” state ρ←−

O,
←−
U

at that time. Alice’s smoothed

state is then defined as

ρS =
∑
←−
U

℘S(
←−
U)ρ←−

O,
←−
U
, (1)

where the summation is over all possible records unob-

served by Alice and ℘S(
←−
U) = ℘(

←−
U|←→O ) conditioned on

Alice’s past-future record
←→
O . By construction, Eq. (1)

guarantees the positivity of the smoothed quantum state.
Here we present the theory of quantum state smooth-

ing for Linear Gaussian Quantum (LGQ) systems. This
can be applied to a large number of physical systems, e.g.,
multimodal light fields [24, 25], optical and optomechan-
ical systems [14, 21, 22, 26–36], cold atomic ensembles
[37, 38], and Bose-Einstein condensates [39]. Due to the
nice properties of LGQ systems, we are able to obtain
closed-form solutions for the smoothed LGQ state. This
makes them much easier to study even than the two-level
system originally considered in [23], as there is no need
to generate numerically the numerous unobserved records
appearing in the summation of Eq. (1). The simplicity
of our theory will enable easy application to numerous
physical systems, and also allows analytical treatment of
various measurement efficiency regimes.

Classical LG smoothing.— We will briefly review classi-
cal LG state estimation before moving on to the quantum
case. Consider a classical dynamical system described by
a vector of M parameters x = {x1, x2, ..., xM}>. Here >
denotes transpose. This system is regarded as an LG sys-
tem if and only if it satisfies three conditions [22, 40–45].
First, its evolution can be described by a linear Langevin
equation

dx = Axdt+ Edvp . (2)

Here A (the drift matrix) and E are constant matrices
and dvp is the process noise, i.e., a vector of independent
Wiener increments satisfying

E[dvp] = 0 , dvp(dvp)> = Idt . (3)
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Here E[...] represents an ensemble average, and I is the
M ×M identity matrix. Second, knowledge about the
system is conditioned on a measurement record y that
is linear in x, ydt = Cxdt + dvm, where C is a con-
stant matrix and the measurement noise dvm is a vec-
tor of independent Wiener increments satisfying simi-
lar conditions to Eq. (3). It is possible for the pro-
cess noise and the measurement noise to be correlated,
e.g., from measurement back-action, which is described
by the cross-correlation matrix Γ>dt = Edvp(dvm)>.
The third condition is that the initial state of the sys-
tem (i.e., the initial PDF of x, denoted as ℘(x)|t=0) is
Gaussian; then the linearity conditions (first and sec-
ond) guarantee the conditioned state will remain Gaus-
sian: ℘C(x) = g(x; 〈x〉C, VC), which is fully described by
its mean 〈x〉C and variance (strictly, covariance matrix)
VC ≡ 〈xx>〉C − 〈x〉C〈x〉>C , throughout the entire evolu-
tion.

If the above criteria are met, one can compute a fil-
tered LG state conditioned only on the past record. The
filtered mean and variance are given by,

d〈x〉F = A〈x〉Fdt+K+[VF]dwF , (4)

dVF
dt

= AVF + VFA
> +D −K+[VF]K+[VF]> , (5)

where dwF ≡ ydt − C〈x〉Fdt is a vector of innovations,
D = EE> is the diffusion matrix, and we have defined a
“kick” matrix, a function of V , via K±[V ] ≡ V C> ± Γ>.

To solve for a smoothed LG state, one needs to include
conditioning on the future record, which can be obtained
from the backwards-evolving retrofiltering equations

−d〈x〉R =−A〈x〉Rdt+K−[VR]dwR, (6)

−dVR
dt

=−AVR − VRA> +D −K−[VR]K−[VR]> , (7)

where dwR ≡ ydt − C〈x〉Rdt. Combining the filtered
and retrofiltered solutions Eqs. (4)–(7), one obtains a
smoothed LG state conditioned on the entire measure-
ment record,

〈x〉S = VS(V −1F 〈x〉F + V −1R 〈x〉R) , (8)

VS = (V −1F + V −1R )−1 . (9)

LGQ systems.— For a quantum system analogous to
the classical LG one, the system’s observables require
unbounded spectrums, represented by N bosonic modes.
We denote such a system by a vector of M = 2N observ-
able operators x̂ = (q̂1, p̂1, ..., q̂N , p̂N )>, where q̂k and p̂k
are canonically conjugate position and momentum opera-
tors for the kth mode, obeying the commutation relation
[q̂k, p̂l] = i~δkl. The system is called an LGQ system
if its dynamical and measurement equations are isomor-
phic to those of a classical LG system [22, 26, 46–49].
For quantum systems there are additional constraints
on the system’s dynamics [22], such as the initial state
must satisfy the uncertainty relation, V + i~Σ/2 ≥ 0.
Here Σkl = −i[x̂k, x̂l] and V is the covariance matrix
Vkl = 〈x̂kx̂l + x̂lx̂k〉/2 − 〈x̂k〉〈x̂l〉, for x̂k being an ele-
ment of x̂ and 〈·〉 being the usual quantum expectation

Figure 1: Various long-time states of the on-threshold
OPO system in Eq. (15), represented by their 1-SD
Wigner function contours in phase space, centred at the
origin. The homodyne angles used by Alice and Bob (θo,
θu) are at the black dot in Fig. 3. The unconditional state
(solid black) shows infinite and finite variances in q and
p, respectively, as a result of the damping and squeez-
ing. Alice’s filtered and smoothed states, are blue (filled
grey) and dashed-red ellipses, respectively. The dotted-
black and the dot-dashed green ellipse shows the (pure)
true state and the SWV “state”, respectively.

value. These let us represent the quantum state of an
LGQ system by its Gaussian Wigner function [22] de-
fined as W (x̌) = g(x̌; 〈x̂〉, V ), using dummy variable x̌.

LGQ State Smoothing.— We now apply the quantum
state smoothing technique [23] to LGQ systems. Fol-
lowing the Alice-Bob protocol introduced in Eq. (1), a
true state of the LGQ system, denoted by the mean

〈x̂〉T and a variance VT, is obtained given both
←−
O and←−

U records. That is, the filtering equations (4)-(5) ap-
ply, but conditioned both on Alice’s observed record
yodt = Co〈x̂〉Tdt + dwo, and on Bob’s record, unob-
served by Alice, yudt = Cu〈x̂〉Tdt+ dwu, with indepen-
dent Wiener noises. The equations for the true state are

d〈x̂〉T = A〈x̂〉Tdt+K+
o [VT]dwo +K+

u [VT]dwu , (10)

dVT
dt

= AVT + VTA
> +D

−K+
o [VT]K+

o [VT]> −K+
u [VT]K+

u [VT]> , (11)

where K±r [V ] = V C>r + Γ>r , for r ∈ {o,u}.
Since Alice has no access to Bob’s record, her smoothed

state is obtained by summing over all possible true states
of the system, with probability weights conditional on

Alice’s observed record
←→
O , as in Eq. (1). For LGQ

systems, the state depends on
←−
U only via the mean,

Eq. (10). Therefore, we can replace the (symbolic) sum in
Eq. (1) by an integral: ρS =

∫
℘S(〈x̂〉T)ρT(〈x̂〉T)d〈x̂〉T.

By applying the classical notion of smoothing to the PDF
℘C(〈x̂〉T), we are able to derive [1] the LGQ state smooth-
ing equations

〈x̂〉S = (VS − VT)[(VF − VT)−1〈x̂〉F
+ (VR + VT)−1〈x̂〉R] , (12)

VS =
[
(VF − VT)−1 + (VR + VT)−1

]−1
+ VT , (13)

as the main result of this research.
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Figure 2: Purities, and the RPR, Eq. (14), at the starred
point in Fig. 3, for the full range of Alice’s measurement
efficiency ηo, with the lower efficiencies plotted on a log
scale and the higher efficiencies on a linear scale, where
the dashed vertical line at ηo = 0.1 indicates the split. On
both sides, we plot: purities of the filtered (solid blue),
smoothed (dashed red) and the SWV (dotted green)
states, all on a log scale (left-hand-side axis); and the
RPR (R) (dot-dashed magenta), on a linear scale (the
right-hand-side axis). For ηo → 0, PF matches the sim-

ple analytic expression [1]
√

2| cos θo|η1/4o (dashed black

on left), and smoothing gives a factor of
√

2 improve-
ment [1], as shown by the small l symbol. For ηo → 1,
the RPR is ∝ (1− ηo) (dashed black on right).

The advantages LGQ state smoothing offers over filter-
ing are readily seen in Fig. 1, where we note that the pu-
rity for a Gaussian state is defined as P = (~/2)

√
|V |−1

[22] for a variance V . The smoothed state has a smaller
variance (higher purity) than the filtered state, but has a
larger variance than a pure state (purity less than unity).
In contrast, the SWV state for the same system (i.e., us-
ing Eqs. (8)–(9)) is unphysical (its ellipse is smaller than
that of a pure state).

We now investigate some interesting limits in Alice’s
measurement efficiency ηo, the fraction of the system out-
put which is observed by Alice. If, as in the OPO system
we will define later, the unconditioned (ηo = 0) variance
diverges, then Alice’s conditioned (filtered and retrofil-
tered) variances, if finite, must grow as ηo → 0. From
Eqs. (12)–(13), when VF and VR are large, compared to
VT, the smoothed LGQ state reduces to the SWV state
Eqs. (8)–(9). The SWV state has the same form as clas-
sical smoothed states, which often have the same scaling
as filtered states, but with a multiplicative constant im-
provement [9, 15, 50]. Consequently, in the limit ηo → 0,
we expect PSWV = PS ∝ PF as functions of ηo. This is
confirmed in Fig. 2 when considering the OPO system.

In the opposite limit, ηo → 1, we analytically show [1]
that the relative purity recovery (RPR),

R =
PS − PF

1− PF
, (14)

a measure of how much the purity is recovered from
smoothing over filtering relative to the maximum recov-
ery possible, usually scales with the unobserved efficiency.
That is, R ∝ ηu ≡ 1 − ηo. As seen in Fig. 2, this linear

Figure 3: (Top) Contour plots of the RPR, Eq. (14),
for the OPO system for different values of observed and
unobserved homodyne phases using ηo = 0.5. The dashed
line represents θo = θu and the solid line is the maximum
RPR. The circle and the star relate to Figs. 1 and 2,
respectively.

decay in the RPR holds surprisingly well, for the OPO
system, even outside the high efficiency regime.

Example.— We now apply quantum state smoothing
to the on-threshold OPO [22, 26], an LGQ system with
N = 1 described by the master equation

~ρ̇ = −i[(q̂p̂+ p̂q̂)/2, ρ] +D[q̂ + ip̂]ρ . (15)

The first term defines a Hamiltonian giving squeezing
along the p-quadrature, while the second term describes
the oscillator damping. Here, we have A = diag(0,−2)
and D = ~I. Let us assume that Alice observes the
damping channel via homodyne detection. Therefore,
Co = 2

√
ηo/~ (cos θo, sin θo), where θo is the homo-

dyne phase [22, 26]. For simplicity, we assume Bob
also performs a homodyne measurement, with a differ-
ent phase θu, so that Cu = 2

√
ηu/~ (cos θu, sin θu) and

Γr = −~Cr/2, for r ∈ {o,u}.
We now solve for filtered and smoothed states for the

OPO in steady state. We are particularly interested in
the RPR of smoothing over filtering, and in the com-
binations of homodyne phases that result in the largest
RPR. The RPR is always positive (see Fig. 3), meaning
that the smoothed quantum state always has higher pu-
rity than the corresponding filtered one. If Alice’s phase
θo is fixed, one might guess that Bob’s phase giving the
best purity improvement should be the same, θu = θo.
However, that is not at all true (see Fig. 3). The optimal
θoptu is not a trivial function of θo. Rather, θoptu ≈ 0, i.e.,
Bob should measure the q-quadrature, which is presum-
ably related to the fact that, without measurement in,
the variance in q diverges.
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Bell type measurements in the 1D infinite spin-1 chain
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Abstract. The quantities such as the entanglement entropy, the fidelity, and the mutual information are
recently exploited to detect the quantum phase transitions and analyze other various properties of many-
body physics. The Bell correlations has been also studied in one-dimensional(1D) spin-1/2 chain. Here,
we analyze the 1D infinite spin-1 XXZ chain with the on-site anisotropy as applying the Bell correlation
function of CGLMP type for the many-body ground state. Since the ground state of the 1D infinite
spin-1 chain cannot be calculated analytically, we utilized numerical approaches, infinite Matrix Product
States(iMPS) representation and infinite density matrix renormalization group(iDMRG) method.

Keywords: CGLMP, Bell correlation, spin-1 chain, iMPS, iDMRG

1 Introduction

The concepts and theories in Quantum Information has
been recently studied in many-body systems that have
been originally described by the statistical physics and
the condensed matter theory. The quantum phase tran-
sitions in many-body systems are generally modeled by
the (spontaneous) symmetry breaking, the spin-spin cor-
relation function, and the nonanalyticity of the derivative
of the ground energy. It is quite recent that the quantum
entanglement is exploited to detect the quantum phase
transitions[1, 2] and analyze other various properties of
many-body system[3]. Not only the quantum entangle-
ment but also any other concepts such as the fidelity, the
mutual information, and the quantum coherence is uti-
lized to study the correlations in many-body systems[4].
The correlation of Bell operators has been also studied in
many-body system, especially one-dimensional(1D) spin-
1/2 chain such as [5, 6, 7]. In this poster, we are go-
ing to study the Bell measurement of CGLMP type in
the 1D spin-1 chain with the on-site anisotropy It is
renowned that the 1D spin-1 chain demonstrates com-
pletely different physics from 1D spin-1/2 chains(e.g.,
Haldane phase). Since it is restrictive to find the exact
ground state in 1D spin-1 XXZ chain, we are using var-
ious numerical approaches like the MPS representation
and iDMRG method.

2 The CGLMP-type Bell correlation

Bell inequality examines the correlation between two
parties who have each side of the quantum state and
determines which quantum states is nonlocal through-
out the violation of its classical bounds. Especially, it is
CGLMP inequality that each of two parties performs the
two kinds measurements with d possible outcomes. In or-
der to describe the CGLMP correlation not as the form
of probability but in terms of the operators, we use the
notations from SLK paper [14]. The CGLMP correlation

is the expectation value of the Bell operator B̂cglmp for
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any quantum state, where

B̂cglmp =
1

4

d−1∑
n=1

fc
(
Ân

1 + ωn/2B̂n
1

)
⊗
(
Ân

2 + ωn/2B̂n
2

)†
+ h.c.,

(1)

where fc ≡ 2
(d−1)ω

n
4 sec

[
nπ
2d

]
and d is the dimension

of the basis for each party. The measurement operators
Âj and B̂j represent two kinds of measurements for jth
party(i.e., Vj ∈ {Aj , Bj}) and j ∈ {1, 2} can be either
the first or the second party. The definition of the mea-
surement operator V̂ in Eq.(1) is given by

V̂ ≡
d−1∑
α=0

ωα|α〉V 〈α|, (2)

where ω ≡ e
2πi
d and the basis |α〉 comes from the maxi-

mally entangled state |ψ〉 = 1√
d

∑d−1
α=0 |α, α〉. As CGLMP

did in their paper[15], Alice chooses the Fourier transform
basis and Bob does the inverse Fourier basis such that

|α〉Vj =
1√
d

d−1∑
β=0

ω−(α+φVj )β |β〉, (3)

where the phase shifts become φA1
= 0, φB1

= 1/2,
φA2

= −1/4, and φB2
= 1/4 in Fig. 1 and |β〉 is the

spin-z basis. Thereby it is possible to construct the mea-
surement operators for Â1, Â2, B̂1, and B̂2. From Eq.(3),
one can derive the identity such that

1

2
(Ân1 + ωn/2B̂n1 ) = Ĵn (4)

1

2
(Ân2 + ωn/2B̂n2 ) = ωn/4Ĵn (5)

where Ĵn ≡
∑d−1
β=n |β〉〈β−n| is the n-level lowering oper-

ator. It is remarkable that the operator Ĵ is the same
as the spin lowering operator Ŝ−. Consequently, the
CGLMP operator B̂cglmp can be simplified as

B̂cglmp =
d−1∑
n=1

sec
[nπ

6

] (
Ĵn ⊗ (Ĵn)† + (Ĵn)† ⊗ Ĵn

)
,

(6)
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We will use the operator as an entanglement witness of
a d-dimensional many-body system and phase quantifi-
cation.

3 The 1D Spin-1 Antiferromagnetic
Chain

The Hamiltonian of the one-dimensional(1D) spin-1
XXZ chain with on-site anisotropy is described as

Ĥ =
N−1∑
i=1

Ŝxi Ŝ
x
i+1+Ŝyi Ŝ

y
i+1+JzŜ

z
i Ŝ

z
i+1+D

N∑
i=1

(Ŝzi )2, (7)

where Ŝai denotes the spin-1 operators for a = x, y, z
at site i, Jz is the anisotropy of spin-exchange interac-
tion along z direction, and D characterizes the on-site
anisotropy. The role of the last term is to manifest phase
transition between the topologically trivial phase(Large-
D phase) and the topologically nontrivial phase(Haldane
phase). The physical properties for each phase and phase
transition will be discussed in Sec.5

4 The iMPS representation

Figure 1: The graphical notation of iMPS in the canoni-
cal form. Due to the translational symmetry, the rank-3
tensors Γ and the matrices Λ are the same for all sites.

We introduce the infinite matrix product state(iMPS)
representation to describe the ground-energy state in the
thermodynamic limit and use the infinite density-matrix
renormalization group(iDMRG) method to obtain the
ground state as a iMPS form. Translational invariance
plays a pivotal role to represent the infinite 1D systems.
The ground state |ψ〉 in the canonical form of iMPS is
given by

|ψ〉 =
∑

s1,··· ,sN

Tr [Γs1ΛΓs2Λ · · ·ΓsNΛ] |s1 · · · sN 〉, N →∞

(8)

where Γsj is the χ×χ matrices for sj ∈ {1, 2, · · · , d} and
Λ is a real, diagonal, and nonnegative matrix of dimen-
sion χ × χ. As the bond dimension χ goes to infinity,
Eq.(8) gets close to the exact one.

5 Results & Discussion

By using the iDMRG algorithm [16, 17], we are go-
ing to simulate the Hamiltonian Eq.(7) in the thermody-
namic limit to ignore the boundary conditions and the
finite size effect. Here, CGLMP measurement is defined

Figure 2: The CGLMP measurement (a) at D = 0 and
(b) at Jz = 0.

as 〈B̂i,i+rcglmp〉 for the ground states. For d = 3, B̂i,i+rcglmpof
Eq.(6) can be expressed in terms of the spin-1 operator

B̂i,i+rcglmp =
2√
3

[
Ŝ+
i ⊗ Ŝ

−
i+r + Ŝ−i ⊗ Ŝ

+
i+r

]
+ 2

[
(Ŝ+
i )2 ⊗ (Ŝ−i+r)

2 + (Ŝ−i )2 ⊗ (Ŝ+
i+r)

2
]
.

Thus, 〈B̂i,i+rcglmp〉 is the linear combination of transverse

spin-spin correlation like 〈Ŝ+
i Ŝ
−
j 〉 and 〈(Ŝ+

i )2(Ŝ−i+r)
2〉.

In Fig.2(a), the discontinuity occurs at Jz = −1 and
there is an inflection point at around Jz ≈ 1.2. Fig.2(b)
shows the one inflection point between the AFM phase
and the Haldane phase and a minimum point at the
Gaussian phase transition(or the Haldane-Large D phase
transition). The transverse spin-spin correlation decays
algebraically(i.e., 〈Ŝ+

i Ŝ
−
i+r〉 ∼ r−η+−) in the gapless XY

phase, whereas the other phases like the Haldane phase
decay exponentially with respect to the distance between
two parties. It is remarkable that near the Haldane
phase-Large D phase transition the spin correlation func-
tion decays like the one in the gapless phase.
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Abstract. A quantum secret sharing (QSS) protocol which has an improved secret key rate by exploiting
d-dimensional quantum states is presented. The scheme is performed among d authorized parties with-
out generation of an entangled state. The scheme provides the measurement-device-independent security
against a potential eavesdropper since a result of the measurement only reveals a correlation among d-
dimensional quantum states sent from the d parties, not the exact quantum states. We show that our
protocol can be implemented with current state-of-the-art technologies, and it can be more practical and
efficient than an entanglement-based QSS protocol using d-dimensional quantum states. The security of
the proposed protocol is analysed for the cases, when all players are trusted and there is a malicious player,
as well.

Keywords: Quantum cryptography, Quantum secret sharing, High-dimensional quantum system,
Measurement-device-independent security

1 Introduction

Secret sharing is a scheme proposed for distributing
a secret among participants [1, 2]. In the scheme, one
party, called a dealer, gives a part of the secret to par-
ticipants, called players. Each player cannot access full
information on the secret since a player has only a share
of the secret. The secret can be reconstructed only when
the sufficient number of players cooperates by combining
their shares. Quantum secret sharing (QSS) was pro-
posed as a quantum counterpart of classical secret shar-
ing [3, 4]. In QSS, Greenberger-Horne-Zeilinger (GHZ)
state [5] is exploited to share a secret, and it was proven
that QSS provides information-theoretic security based
on the principles of quantum mechanics [6–8].

To improve a key rate of QSS, a high-dimensional
quantum system can be applied [9], since a high-
dimensional quantum state can carry more information
per single photon and has enhanced security against
eavesdropping [10, 11]. However, generation of a high-
dimensional GHZ state needs demanding technologies as
it was reported in the recent paper [12]. Here, we pro-
pose a feasible QSS protocol using d-dimensional quan-
tum states among d parties without generation of an
entangled state. In this protocol, measurement-device-
independent (MDI) security is guaranteed since measure-
ment devices are separated from all the authorized par-
ties [13, 14].

2 Result and Discussion

As an example, a schematic diagram of MDIQSS using
3-dimensional quantum states (3d-MDIQSS), is shown in
Figure 1. Three authorized parties and one untrusted
party participate in this protocol. One authorized party,
called Alice, is the dealer, and the other two authorized
parties, called Bob1 and Bob2, are the players. The au-
thorized parties generate a 3-dimensional number and en-

∗sonwm71@sogang.ac.kr

Figure 1: A schematic diagram of 3d-MDIQSS. There are
three authorized parties, Alice, Bob1, and Bob2, and one
untrusted party, Charlie. Each of the authorized par-
ties generates a single photon state according to their
choice of an encoding basis and 3-dimensional informa-
tion, {0, 1, 2}. They send the quantum states to Charlie
who measures a correlation among the OAM mode of
the three photons by means of tripartite 3-dimensional
entangled state discrimination measurement (3d-ESD).
The three authorized parties can share a secret by using
their encoded information and the result of the 3d-ESD.

code it into an orbital angular momentum (OAM) value
of a single photon, respectively. Subsequently, they send
their photons to an untrusted party, Charlie. Charlie
performs the measurement onto the incoming photons of
which result is a correlation among the OAM value of
the three photons. Subsequently, Charlie announces the
result, and then Alice distributes the encrypted classical
secret by using her encoded number and the measure-
ment result. In this protocol, both Bob1’s and Bob2’s
encoded numbers are necessary to decrypt the secret. We
show the protocol can be extended to d-party MDIQSS
using d-dimensional quantum states (d-MDIQSS) in the
presentation.

This protocol is more feasible compared with the ex-
isting QSS protocol using d-partite d-dimensional GHZ
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Figure 2: A schematic diagram of the 3d-ESD. Three
photons sent from the authorized parties enter into a 3-
port interferometer, called a tritter. After interference in
the tritter, an OAM value and a label of existing outport
of the photons are measured by means of OAM discrimi-
nation elements and single photon detectors. Charlie can
discriminate a part of tripartite 3-dimensional entangled
states from a combination of clicked detectors. DXy : a
detector corresponding the OAM state |y〉 on the path
X; BS1 : 50:50 beam splitter; BS2 : beam splitter of
which transmissivity is 2/3.
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Figure 3: The secret key rates per sifted pulse with exper-
imental factors. The secret key rates of the 2d-MDIQSS
protocol (black dashed line), an entanglement-based 3d-
QSS protocol (blue dotted line), and the 3d-MDIQSS
protocol (red solid line) are plotted. Experimental fac-
tors, transmission loss η and a dark count rate of a single
photon detector, are considered in the plots. The dark
count rate is assumed as 10−5 per pulse.

states [9] since generation of an entangled state is not
necessary. We show that the measurement setup, called
an entangled state discrimination (ESD) setup, can be
implemented with linear optical elements and OAM dis-
crimination setups. An example of the setup is shown in
Figure 2 for the 3-dimensional case.

The security of the d-MDIQSS is analyzed as well. One
of the analyses, secret key rates per sifted pulse against
experimental factors is drawn in Figure 3. In the plot,
transmission loss of a photon and a dark count of a single

photon detector are considered as error factors. As shown
in the plot, 3d-MDIQSS has advantage over a secret key
rate against the experimental factors compared with the
conventional QSS protocol and an entanglement-based
3-dimensional QSS protocol.
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Bipartite System in General Probabilistic Theory
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Abstract. We address perfect discrimination of two separable states. When available states are re-
stricted to separable states, we can theoretically consider a larger class of measurements than the class of
measurements allowed in quantum theory. The framework composed of the class of separable states and
the above extended class of measurements is a typical example of general probabilistic theories. In this
framework, we give a necessary and sufficient condition to discriminate two separable pure states perfectly.
In particular, we derive measurements explicitly to discriminate two separable pure states perfectly, and
find that some non-orthogonal states are perfectly distinguishable. However, the above framework does
not improve the capacity, namely, the maximum number of states that are simultaneously and perfectly
distinguishable.

Keywords: perfect discrimination, separable states, general probabilistic theories

1 Introduction

Entanglement is a resource for miracle performance
of quantum information processing [1, 2]. Even when a
quantum state has no entanglement, entanglement in a
measuring process brings us performance that measuring
processes without quantum correlation cannot realize. In
fact, when we discriminate the n-fold tensor products of
two quantum states, the performance of measurements
with quantum correlation is beyond that of any measure-
ment without quantum correlation, e.g., local operation
and classical communication (LOCC) and separable mea-
surement [3–7]. The difference between the first and sec-
ond performance can be derived from the following two
classes of measurements. One is the class of measure-
ments allowed in quantum theory and the other is the
class of measurements with only separable form. The
first class achieves strictly better performance than the
second class in the above discrimination.
All the above studies of state discrimination consid-

ered classes of measurements allowed in quantum theory,
but there is a theoretical possibility that a larger class
of measurements brings us more miracle performance of
state discrimination than that of quantum theory. In or-
der to consider a larger class of measurements, we need
to restrict available states. Such a framework is discussed
in general probabilistic theories (GPTs) [8–23], which are
a generalization of quantum theory and classical proba-
bility theory. GPTs are the most general framework to
characterize states, measurements, and time evolution.
Although some preceding studies compared GPTs with
quantum theory [11, 13, 15–18], few studies clarified the
difference between quantum theory and other GPTs in
the viewpoint of state discrimination. Hence, to clarify
the difference, we focus on the following typical GPT on a

∗m18003b@math.nagoya-u.ac.jp
†m17043e@math.nagoya-u.ac.jp
‡masahito@math.nagoya-u.ac.jp

bipartite system: we restrict available states to separable
states on the composite system and this restriction allows
us to consider theoretically measurements that are not al-
lowed in quantum theory. The framework composed of
the class of separable states and the class of such mea-
surements is a typical example of GPTs and is denoted
by SEP.

The difference between quantum theory and SEP can
be characterized by the relation between the positive and
dual cones appeared in quantum theory and SEP. A pos-
itive cone defines the set of all states in a GPT so that
a state is given as an element of a positive cone whose
trace is one. For example, the positive cone of quantum
theory is the set of all positive semi-definite matrices and
the positive cone of SEP is the set of all matrices with
separable form. Thus, states in SEP are restricted to
separable states, and the positive cone of SEP is smaller
than that of quantum theory. This restriction makes bit
commitment possible under SEP [14]. Furthermore, the
dual cone of a positive cone defines measurements of a
GPT so that a measurement is given as a decomposition
{Mi}i of the identity matrix I. More precisely, all ele-
mentsMi lie in the dual cone and satisfy

∑
iMi = I. For

example, the dual cone of quantum theory is also the set
of all positive semi-definite matrices and the dual cone of
SEP is the set of all matrices Y that satisfy TrXY ≥ 0 for
all matrices X with separable form. Thus, the dual cone
of SEP is larger than that of quantum theory. Therefore,
measurements of SEP contain not only those of quan-
tum theory but also those that quantum theory cannot
realize.

In this paper, we address perfect discrimination of two
pure states in SEP. A main goal of this paper is to reveal
how much better the performance of perfect discrimina-
tion in SEP is than that in quantum theory. In quantum
theory, it is well-known that orthogonality of two states
is necessity and sufficiency to discriminate two states per-
fectly [24]. This fact is not changed even if we restrect the
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class of measurements to LOCC [25]. However, as shown
in this paper, there exists a non-orthogonal pair of two
separable pure states that can be discriminated in SEP.
Moreover, we derive a necessary and sufficient condition
for state discrimination in SEP. The necessary and suffi-
cient condition implies that 2n-copies ρ⊗2n

1 and ρ⊗2n
2 of

pure states are perfectly distinguishable for a sufficiently
large n if ρ1 ̸= ρ2. In this sense, SEP is completely dif-
ferent from quantum theory.
Since our necessary and sufficient condition reveals

that some non-orthogonal states in SEP can be discrimi-
nated perfectly, one might think that the capacity in SEP
is improved in comparison with the capacity in quantum
theory. Here the capacity in a GPT is the maximum
number of states that are simultaneously and perfectly
distinguishable in the GPT, and expresses the limit of
communication quantity per single use of quantum com-
munication. The capacity in quantum theory is equal to
the dimension of a quantum system, and an interesting
relation for the capacities in GPTs has been derived [10].
Using the relation [10, lemma 24], we find that the ca-
pacity in SEP is equal to that in quantum theory.

2 Perfectly distinguishable pairs of two
pure states in SEP

First, let us describe our framework SEP and no-
tational conventions. Let HA and HB be two finite-
dimensional complex Hilbert spaces. We denote by
T (AB) and T+(AB) the set of all Hermitian matrices
on HA ⊗HB and the set of all positive semi-definite ma-
trices on HA ⊗HB , respectively. The sets T (A), T (B),
T+(A), and T+(B) are defined similarly. In quantum the-
ory, available states are elements of T+(AB) with trace
one. However, in this paper we look at the scenario where
the only available states are separable states. We restrict
available states to separable states, i.e., elements of

SEP(A;B)

:=

{∑
i

XA
i ⊗XB

i

∣∣∣∣∣ XA
i ∈ T+(A), XB

i ∈ T+(B) (∀i)

}

with trace one. In order to address state discrimination,
we must also define measurements of SEP. In quantum
theory, measurements are given as positive-operator val-
ued measures (POVMs). That is, a measurement {Mi}i
satisfies Mi ∈ T+(AB) and

∑
iMi = I for any outcome

i. However, since we restrict available states to separa-
ble states, measurements of SEP form a larger class than
those of quantum theory. A measurement {Mi}i of SEP
is defined by the conditions

Mi ∈ SEP∗(A;B) (∀i),
∑
i

Mi = I,

where SEP∗(A;B) denotes the dual cone of SEP(A;B)
and is defined as

SEP∗(A;B)

= {Y ∈ T (AB) | TrXY ≥ 0 (∀X ∈ SEP(A;B)) } .

Since the inclusion relation SEP∗(A;B) ⊃ T+(AB) holds,
measurements of SEP form a larger class than those of
quantum theory.

Now, let us consider state discrimination in SEP. Let
{ρi}ni=1 be a family of n states. Then we say that {ρi}ni=1

is perfectly distinguishable in SEP (resp. quantum the-
ory) if there exists a measurement {Mj}nj=1 of SEP (resp.
quantum theory) such that TrMjρi = δij , where δij de-
notes the Kronecker delta. It is well-known that {ρi}ni=1

is perfectly distinguishable in quantum theory if and only
if any two distinct states of {ρi}ni=1 are orthogonal, i.e.,
Tr ρiρj = δij for all i ̸= j. In this paper, we address the
case n = 2 mainly.

We give an example that two states are perfectly dis-
tinguishable and not orthogonal. For this purpose, we
consider the case where HA and HB are two-dimensional
(hereinafter, it is called the (2, 2)-dimensional case). In
this case, the dual cone SEP∗(A;B) can be expressed ex-
plicitly by using the partial transpose operation Γ, which
throughout the paper we assume to be on subsystem B.
Since for 2× 2 matrices C = (cij)i,j and D = (dij)i,j the
tensor product matrix C ⊗D is expressed as

C ⊗D =


c11d11 c11d12 c12d11 c12d12
c11d21 c11d22 c12d21 c12d22
c21d11 c21d12 c22d11 c22d12
c21d11 c21d12 c22d11 c22d12

 ,
the partial transpose Γ(X) of a matrix X = (xij)i,j is

Γ(X) =


x11 x21 x13 x23
x12 x22 x14 x24
x31 x41 x33 x43
x32 x42 x34 x44

 .
As stated above, we can express the dual cone
SEP∗(A;B) explicitly. Indeed, the combination of [26]
and [27] implies the following proposition.

Proposition 1. If (dimHA,dimHB) = (2, 2), then

SEP∗(A;B) = {T + Γ(T ′) | T, T ′ ∈ T+(AB) } .

Next, we give an example of two pure states that
are perfectly distinguishable in SEP despite being non-
orthogonal. What follows is also a special case of our
main result.

Example 1 (Perfect discrimination of non-orthogonal
pure states in SEP). Suppose that two pure states
ρ1, ρ2 ∈ SEP(A;B) are given as

ρ1 =

[
1 0
0 0

]
⊗
[
1 0
0 0

]
,

ρ2 =

[
1− α1 β1
β1 α1

]
⊗
[
1− α2 β2
β2 α2

]
,

(1)

where αi ∈ [0, 1], βi ≥ 0, and β2
i = αi(1 − αi) for all

i = 1, 2. Assume α1 + α2 = 1 here. Then we show
that ρ1 and ρ2 are perfectly distinguishable in SEP. Let
us give a measurement {T1 + Γ(T1), T2 + Γ(T2)} with
positive semi-definite matrices T1 and T2. Since T1 and

72



Table 1: Necessary and sufficient (NS) conditions of perfect discrimination of two pure states, and capacities.

GPTs SEP Quantum theory
NS condition Tr ρA1 ρ

A
2 +Tr ρB1 ρ

B
2 ≤ 1 (Tr ρA1 ρ

A
2 )(Tr ρ

B
1 ρ

B
2 ) = 0

Capacity dim(HA ⊗HB) dim(HA ⊗HB)

T2 are positive semi-definite, proposition 1 implies that
Ti+Γ(Ti) ∈ SEP∗(A;B) for all i = 1, 2. Now, we set the
positive semi-definite matrices T1 and T2 as

T1 =
1

2


1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1

 , T2 =
1

2


0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

 .
Then {T1 + Γ(T1), T2 + Γ(T2)} is a measurement of
SEP because (T1 + Γ(T1)) + (T2 + Γ(T2)) = I. The
measurement {T1 + Γ(T1), T2 + Γ(T2)} discriminates ρ1
and ρ2 perfectly. Let us verify it. First, the equa-
tion Tr ρ1(T2 + Γ(T2)) = 0 follows from the definitions.
Next, note that the assumption α1 + α2 = 1 implies
β1 = β2 =

√
α1α2. Since (i) Γ(ρ2) = ρ2 and (ii)

α1 + α2 = 1 (β1 = β2 =
√
α1α2), we have

Tr ρ2(T1 + Γ(T1))
(i)
= 2Tr ρ2T1

= (1− α1)(1− α2) + α1α2 − 2β1β2
(ii)
= 0.

Thus the equation Tr ρ2(T1 + Γ(T1)) = 0 also follows.
Finally, the equation Tr ρi(Ti + Γ(Ti)) = 1 follows from
(T1 +Γ(T1)) + (T2 +Γ(T2)) = I and Tr ρi(Tj +Γ(Tj)) =
0 for all i ̸= j. Therefore, the measurement {T1 +
Γ(T1), T2 + Γ(T2)} discriminates ρ1 and ρ2 perfectly.
Here, note that ρ1 and ρ2 are not orthogonal if α1, α2 ̸= 1.
Thus perfect discrimination of two pure states in SEP is
possible even when the two states are not orthogonal.

Example 1 gives a sufficient condition of perfect dis-
crimination, but it does not give a necessary condition.
Thus we give the following theorem as a necessary and
sufficient condition for two pure states to be discrimi-
nated perfectly.

Theorem 2. Two pure states ρ1 = ρA1 ⊗ ρB1 and ρ2 =
ρA2 ⊗ ρB2 are perfectly distinguishable in SEP if and only
if

Tr ρA1 ρ
A
2 +Tr ρB1 ρ

B
2 ≤ 1.

Here, let us compare the necessary and sufficient con-
dition in SEP with that in quantum theory. In quantum
theory, the condition (Tr ρA1 ρ

A
2 )(Tr ρ

B
1 ρ

B
2 ) = 0 is neces-

sary and sufficient to discriminate the two state in theo-
rem 2 perfectly. Thus we can find that measurements of
SEP improve the performance of state discrimination.
Measurements of SEP improve the performance of

multiple-copy state discrimination more dramatically. To
see this fact, let us consider perfect discrimination of
2n-copies ρ⊗2n

1 and ρ⊗2n
2 of pure states. Then ρ⊗2n

i =
ρ⊗n
i ⊗ρ⊗n

i is a separable pure state on a bipartite system

for i = 1, 2. Thus ρ⊗2n
1 and ρ⊗2n

2 are perfectly distin-
guishable in SEP if

2(Tr ρ1ρ2)
n = Tr ρ⊗n

1 ρ⊗n
2 +Tr ρ⊗n

1 ρ⊗n
2 ≤ 1.

This inequality always holds for a sufficiently large n if
ρ1 ̸= ρ2. Therefore, ρ⊗2n

1 and ρ⊗2n
2 are perfectly dis-

tinguishable in SEP. Of course, such a measurement to
realize the above perfect discrimination is impossible in
quantum theory.

Next, we discuss how many states are simultaneously
and perfectly distinguishable in SEP. That is, our interest
is the capacity NSEP defined as the maximum number
of simultaneously and perfectly distinguishable states in
SEP:

NSEP :=

max {n ∈ N | ∃{ρi}ni=1, ∃{Mj}nj=1 s.t. Tr ρiMj = δij } ,

where {ρi}ni=1 and {Mj}nj=1 are a family of states in SEP
and a measurement of SEP, respectively. As stated in the
previous paragraph, the performance of state discrimina-
tion in SEP is higher than that in quantum theory. Hence
one might guess that the capacity in SEP is greater than
that in quantum theory. However, the following proposi-
tion shows that this is not the case.

Proposition 3. The capacity NSEP is dim(HA ⊗HB).

Since the capacity in quantum theory is equal to the di-
mension of a quantum system, Proposition 3 means that
SEP has the same capacity as quantum theory. Actually,
Proposition 3 follows from [10, Lemma 24 (iii)] which is
a more general statement on capacities. However, us-
ing [10, Lemma 24 (iii)] needs to be careful. For details,
see the full version [28].

Table 1 summarizes the necessary and sufficient condi-
tions of perfect discrimination and the capacities in quan-
tum theory and SEP. The performance of perfect discrim-
ination in SEP is better than that in quantum theory but
the capacity in SEP is equal to that in quantum theory.
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Abstract. The GHZ state is an ideal resource state for quantum metrology as it can achieve the Heisen-
berg limit. However, upon the loss of a single qubit the GHZ state becomes useless for quantum metrology.
We provide a method to construct graph states which attains a quantum Fisher information of at least
n2−logn k, we call these states bundled graph states. We demonstrate that bundled graph states yield a
quantum advantage after being subjected to dephasing or a small number of erasures, making them more
robust than the GHZ state.

Keywords: Metrology, Graph States, Stabilizer States, Quantum Fisher Information, Robustness

1 Introduction

Quantum metrology describes the framework for es-
timation strategies which surpass the precision limit of
classical strategies [1, 2]. Classically, a system with n
probes used to estimate an unknown parameter θ, can
achieve a precision where the variance scales inversely
to the number of probes: ∆θ2 = 1/n. In a quantum
system, where the probes can be entangled, the highest
achievable precision scales quadratically to the number of
qubits: ∆θ2 = 1/n2, otherwise known as the Heisenberg
limit (HL).

Entanglement is a requirement to yield a quantum ad-
vantage, however it is not sufficient [3]. Oszmaniec et
al. showed that most quantum states are not useful for
metrology, despite having a large amount of entangle-
ment. Given a quantum resource, ρ, the highest achiev-
able precision attainable is bounded by Q(ρ), the quan-
tum Fisher information (QFI): ∆θ2 ≥ 1/Q(ρ).

We investigate the usefulness of graph states for quan-
tum metrology and construct a family of graph states
which achieve a QFI of at least Q ≥ n2−logn k ∀k ≥ 2;
we call these states bundled graph states. Additionally,
we show that bundled graph states retain a quantum ad-
vantage when subjected to independent and identically
distributed (iid) dephasing and a small number of era-
sures.

2 Stabilizer States

Definition 1 An n-qubit stabilizer state is the simulta-
neous +1-eigenstate of n independent operators in the
Pauli-n group: g1, . . . , gn [8]. The corresponding stabi-
lizer group S is generated from these operators and the
stabilizer state, ρ, can be expressed as a sum of all oper-
ators in the stabilizer group:

S = 〈g1, . . . , gn〉 (1)

ρ =
1

2n

n∏
i=1

(I + gi) =
1

2n

∑
S∈S

S (2)

We begin by computing Nn,ε: the number of stabi-
lizer states which have a QFI of at least Q ≥ n2−ε. In

∗nathan.shettell@lip6.fr
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this study we only consider the canonical case of phase
estimation:

ρ→ ρθ = e−iθHρeiθH (3)

H =
1

2

n∑
j=1

Xj (4)

Fact 1 The QFI of a pure state |ψ〉 which the encoding
is described by equation 3 can be computed via: [1]:

Q(|ψ〉) = 4∆H2 = 4 〈ψ|H2|ψ〉 − 4 〈ψ|H|ψ〉2 (5)

Fact 2 By choosing generators which maximize equation
5 we show that:

Ñn,ε ≥
n−1∑
j=k−1

2j+1

(
n− 1

j

)
Nn−j+1 ≥ 2n (6)

Where k = n1−ε/2 and Nm is the the number of m qubit
stabilizer states defined in [7].

3 Graph States

In this section we quantify the usefulness of graph
states (a subclass of stabilizer states) for quantum
metrology based off of the corresponding simple graph.

Definition 2 An n qubit graph state G = (V,E) is de-
fined in one to one correspondence with a simple graph
with |V | = n vertices and edges E. The corresponding
generators are:

gi = Xi

⊗
j∈N(i)

Zj (7)

Where N(i) is the neighbourhood of the ith vertex.

Fact 3 The QFI of a graph G with no isolated vertices
(|N(i)| ≥ 1 ∀i) is equal to the number of pairs of vertices
(i, j) with N(i) = N(j).

Proof. For any stabilizer state ρ and pauli P :

Tr(ρP ) =

{
±1 if ± P ∈ S
0 otherwise

(8)
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Qubit
Quantity n1 n2 n3

Figure 1: Bundle graph state constructed from a 3-qubit
cyclic graph, Q(Gbundle) = n21 + n22 + n23 ≥ n2−logn3.

Combining the above with equation 5. The only non-
vanishing terms are of the form Tr(GXiXj) such that
N(i) = N(j). Thus, the QFI of a graph state is equal to
the number of pairs (i, j) such that N(i) = N(j):

Q(G) =
n∑

i,j=1

δN(i),N(j) (9)

�

4 Bundled Graph States

In this section we provide a method to construct graph
states with a QFI of at least n2−logn k ∀k ≥ 2. We call
these states bundled graph states. We also explore how
robust these states are against iid dephasing and a small
number of erasures.

4.1 Construction

To construct a bundle graph Gbundle = (V ′, E′):

1. Begin with any connected graph G = (V,E) with
|V | = k < n.

2. The jth vertex, vj , is replaced with nj qubits, la-

belled v1j , . . . , v
nj
j , such that

∑k
j=1 nj = n.

3. If (vi, vj) ∈ E then (vxi , v
y
j ) ∈ E′ ∀x, y.

V ′ = {v11 , . . . , v
n1
1 , . . . , v1k, . . . v

nk
k } (10)

E′ = {(vxi , v
y
j ) ∀x, y | (vi, vj) ∈ E} (11)

We say vertices v1j , . . . , v
nj
j are bundled together since

they all share the same neighbourhood; the necessary
condition to attain a high QFI. Using equation 9:

Q(Gbundle) ≥
k∑
j=1

n2j ≥
n2

k
= n2−logn k (12)

Figure 2: Robustness of n = 100 qubit bundled cyclic
graphs subjected to iid dephasing with dephasing proba-
bility p. The graphs are divided into k bundles of j = n/k
qubits. For small p we observe that lognQ decreases lin-
early, which is expected from equation 13.

Figure 3: Robustness of n = 100 qubit bundled cyclic
graphs subjected e erasures. The graphs are divided into
k bundles of j = n/k qubits. As k increases, the more era-
sures a bundled cyclic graph can withstand whilst keep-
ing a quantum advantage (on average); which is expected
from equation 14.

4.2 Robustness Against Dephasing

We first investigate if bundled graph states are robust
against iid dephasing. A closed form expression for a
general graph subjected to iid dephasing is computed in
the main study. Assuming that the dephasing probability
p is small and the size of all neighbourhoods are large,
we make the following approximation:

Q(Gdephasing
bundle ) ≈ (1− 2p)2Q(Gbundle) + 4np(1− p)

≥ (1− 2p)2
n2

k

= n2−logn k−
4

lnnp+O(p2)

(13)

4.3 Robustness Against Erasures

Next we explore if bundled graph states yield a quan-
tum advantage after a small number of erasures e. For
comparision, the GHZ state becomes useless for quantum
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metrology after losing a single qubit [1]. The general ex-
pression for the QFI of a graph state after e erasures is
dependent on the shape of the graph and which qubits
are lost. To quantify the robustness of a graph state after
experiencing e erasures, we compute Q̄; the average QFI
of the system over all

(
n
e

)
permutations of losing e qubits.

We compute the closed form expression of Q̄ for a bun-
dled cyclic graph divided into k nodes of j = n/k. The
equation holds for 1 ≤ e < 2j:

Q̄cycle =
2
(
n−4j
e

)
−
(
n−5j
e

)(
n
e

) n2

k
+

2
(
n−2j
e

)
−
(
n−3j
e

)(
n
e

) n (14)

5 Single Qubit Measurements

In practise, achieving a precision of ∆θ2 = 1/Q can
only be achieved by measuring in the basis of the sym-
metric logarithmic derivative [1, 10]. This measurement
may not be realistic.

Fact 4 If the following two conditions are satisfied, we
can achieve a precision of ∆θ2 = 1/Q using graph states:

1. The phase we are trying to estimate is small.

2. There exists a stabilizer, SM , for the graph which
consists entirely of Y and Z operators.

The desired precision can be attained by measuring in
the SM basis.
Proof.

〈SM 〉 = 〈G|ei θ2
∑n
i=0XiSMe

−i θ2
∑n
i=0Xi |G〉

= 〈G|eiθ
∑n
i=0Xi |G〉

=
∞∑
m=0

(iθ)m

m!
〈G|
( n∑
i=0

Xi

)m|G〉
= 1− θ2

2
Q+O(θ3)

(15)

Using the error propagation formula:

∆θ2 =
∆S2

M

|∂θ 〈SM 〉 |2

=
θ2Q+O(θ3)

θ2Q2 +O(θ3)

≈ θ2Q
θ2Q2

=
1

Q

(16)

�

For a bundled cyclic graph the above conditions can
only be satisfied if the number of bundles is a multiple of
4. There are many other graph states where the second
condition cannot be satisfied. We show that by using a
graph state with one additional qubit we can still achieve
a precision of ∆θ2 = 1/Q.

6 Conclusion and Remarks

In this study we have quantified which graph states
can achieve a high QFI based off of their topology. We
provide a simple construction method to create graph
states with a QFI of at least Q ≥ n2−logn k. We call
these states bundled graph states, as they have a large
number of qubits with identical neighborhoods; the re-
quired property for a graph state to have a high QFI.
We also show that bundled cyclic graphs retain a quan-
tum advantage after being subjected to iid dephasing or
a small number of erasures. Lastly, we devise a measure-
ment startegy for graph states to achieve a precision of
∆θ = 1/Q. All of the aforementioned properties in com-
bination with the fact that graph states can be efficiently
generated [6] make them an ideal candidate for quantum
metrology.
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Abstract: Quantum dots are considered to be one of the most important quantum 

emitters due to their ability of emitting entangled single photons, which have not yet 

been practically used for large-scale quantum communication. In this work, we 

integrated a semiconductor quantum dot (QD) device in the Cambridge Fiber Network 

and realized the transmission of emitted polarization-encoded entangled single photons 

at the telecommunication O-band. A polarization maintaining system is in operation to 

compensate for changes in birefringence naturally occurring in installed fiber networks. 

Stable transmission of high-fidelity (91.3%) entanglement has been maintained over 

one week, which is a significant step toward the real-life application of quantum dots. 
 
Key Words: Entanglement, Quantum Dot, Field Trial. 

 

1.1. Introduction 

Entanglement provides means to transfer quantum 

information between distant nodes of a network and 

serves as the key resource for scalable quantum 

networks. Its practical use requires the integration of 

robust entangled photon sources, making the 

semiconductor-based QD light sources a promising 

candidate system. In this work [1], we have 

integrated an entangled QD device with the 

Cambridge Fiber Network. Such installed fiber 

typically suffers the variation of fiber birefringence 

over time, putting a negative impact on the 

transmission of entanglement. To compensate for 

these drifts, we have introduced a polarization 

maintaining sub-system, enabling stable long-term 

transmission of entangled photon pairs over 18km of 

installed fiber from a sub-Poissonian entangled 

photon pair source 

1.2. Entangled photon generation and polarization 

stabilization system 

To enable high-fidelity entanglement transmission 

over an urban fiber network, we have built a 

transmission system consisting of a photon emission 

and detection sub-system and a polarization 

maintenance sub-system, as is shown in Figure 1. 

The quantum dot photon source is located in a 

cryostat and optically excited with a laser at 1064nm. 

It emits entangled photons at telecom O-band via the 

so-called biexciton (XX) – exciton (X) cascade. XX 

and X photons are separated using a spectral filter. 

One of the entangled photons is detected directly in 

the lab, whereas the partner photon is sent over an 

installed loop-back fiber before being measured.  

We have implemented a polarization stabilization 

scheme using a polarization reference feedback 

system. Reference light generated from a laser at the 

same wavelength (1320nm) as the transmitted 

photons is split into two modes and the outputs of 

both arms are aligned to have orthogonal directions 

on Poincaré sphere before being sent over the same 

fiber. The polarization state after the transmission is 

detected using two power meters after a polarizing 

beam splitter and a polarization controller. By 

stabilizing both references using an electronic 

polarization controller (EPC 5) and a fiber wave plate 

(FWP), we effectively lock arbitrary polarization 

rotation to a minimum on Poincaré sphere. The 

classical references are time-multiplexed with the 

quantum channel, controlled by optical switches 

(OSW 1 and 2). 
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1.3. Measurement of Entanglement  

The entanglement is evaluated by measuring 

correlations 𝑐𝑃𝑄 between X and XX photons for co- 

and cross-polarized states P and Q in three detection 

bases HV, DA and RL and by using the following 

equation [2]: 

𝐹 = (1 + 𝐶𝐻𝑉 + 𝐶𝐷𝐴 − 𝐶𝑅𝐿) 4⁄  

In which CMN denotes the correlation contrast. The 

detection bases are switched every 10 minutes. We 

apply a post selection scheme with a 48ps window 

around the zero-delay of the arriving photons to 

extract the entanglement data.  

 

1.4. Conclusion 

We have recorded correlation data for 7 days and 

observe a stable transmission of entanglement with a 

high fidelity of 91.3%. This corresponds to a drop by 

3.4% compared to the measurements taken without 

photon transmission over the field fiber. The main 

factor contributing to the drop is the high 11.70dB 

loss of the 18km loop-back fiber at 1320nm, which 

reduces the signal-to-noise ratio by 27 times. The 

polarisation maintenance system has a low loss of 

3.49dB and operates with a high duty cycle of 98%, 

enabling a high transmission efficiency of the 

photons. These results indicate a great potential for 

the practical use of QD entangled photon pair sources 

over existing telecommunication networks. 

 
 

[1] Xiang, Zi-Heng, et al. "Long-term transmission of entangled 

photons from a single quantum dot over deployed fiber." Scientific 

reports 9.1 (2019): 4111. 

[2] Ward, M. B., et al. "Coherent dynamics of a telecom-

wavelength entangled photon source." Nature communications 5 

(2014): 3316. 

 

Figure 1 Experimental setup for entangled photon transmission over installed fiber: The whole setup consists of 4 parts, 

entangled photon generation, correlation measurement, classical polarization reference generation and polarization reference 

measurement. The entangled photons are generated from an optically excited quantum dot in (a), whose entanglement fidelity 

is evaluated by correlation measurements in (b). Two classical polarization references are created using a 1320nm laser in (c), 

whose polarization state is detected in (d). Optical switches 1 and 2 are used for time-multiplexing the quantum and reference 

signal. EPC 5 and FWP are used for compensating the polarization drift of the field fiber that is installed across the Cambridge 

city center. The result of the entanglement measurement over one-week time as well as the drift of the time-of-flight of the 

photons over the field fiber are shown in (e). 
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Abstract. We address asymptotic decoupling in the context of Markovian quantum dynamics. Asymp-
totic decoupling is an asymptotic property on a bipartite quantum system, and asserts that the correlation
between two quantum systems is broken after a sufficiently long time passes. In this paper, we show that
asymptotic decoupling is equivalent to local mixing which asserts the convergence to a unique stationary
state on at least one quantum system. In our previous study [18th AQIS, 8–12 September 2018, Nagoya],
we defined and discussed asymptotic decoupling, but considered it only for special Markovian quantum
dynamics with discrete-time. To compensate for this weak point, we address general Markovian quantum
dynamics with discrete/continuous-time. The full version of this paper is available at arXiv:1801.03988

Keywords: Markovian quantum dynamics, asymptotic decoupling, mixing, C0 semigroup

1 Introduction

Decoupling asserts that a quantum channel breaks the
correlation between two quantum systems, and attracts
attention in open quantum systems [1] and quantum in-
formation [2–4]. For example, Dupuis et al. [3] proved a
decoupling theorem and clarified a relation between the
accuracy of decoupling and conditional entropies. Since
the correlation between two quantum systems should be
small for instance in evaluating information leakage [5,6],
it is an interesting topic to investigate decoupling in the
context of quantum dynamics. In this paper, we intro-
duce asymptotic decoupling in the context of Markovian
quantum dynamics, and clarify a necessary and sufficient
condition of asymptotic decoupling. By our necessary
and sufficient condition, asymptotic decoupling is closely
related to another fundamental property in the study of
Markovian dynamics.
Markovian dynamics has been often discussed in the

context of statistical mechanics [7–9]. In such studies,
it is important how an initial state changes after a suf-
ficiently long time passes. In particular, the conver-
gence (called mixing) and the convergence of the long-
time average (called ergodicity) interest many researchers
[10, 11]. Hence mixing has been discussed in the con-
text of relaxation to thermal equilibrium [7–9]. However,
beyond the study of relaxation processes, these proper-
ties have found important applications in several fields of
quantum information theory. In particular, in quantum
control [12], quantum estimation [13], quantum commu-
nication [14], and the study of efficient tensorial represen-
tations of critical many-body quantum systems [15]. Ac-
tually, mixing is closely related to asymptotic decoupling,
and we show that asymptotic decoupling is equivalent to
local mixing which asserts the convergence to a unique
stationary state on at least one quantum system. As far
as we know, preceding studies except for our previous
study [16] have not associated decoupling with mixing.

∗m17043e@math.nagoya-u.ac.jp
†masahito@math.nagoya-u.ac.jp

Figure 1: Markovian quantum dynamics with discrete-
time.

Therefore, a contribution of this paper is to associate de-
coupling with mixing closely. Moreover, addressing the
discrete and continuous cases is a feature of this paper.

The remaining of this paper is organized as follows.
Section 2 gives our main result, i.e., a necessary and suf-
ficient condition of asymptotic decoupling. Section 3 ad-
dresses continuous-time evolution.

2 Main result

As Figure 1, consider dynamics given by n applica-
tions of a quantum channel Γ to an initial quantum state
ρ. Then we are interested in the asymptotic behavior
of the n-th state Γn(ρ) as n → ∞. In particular, when
Γ (resp. ρ) is a bipartite quantum channel (resp. state),
we are interested in vanishing the correlation between
two quantum systems asymptotically. If the correlation
vanishes asymptotically, we say that Γ is asymptotically
decoupling.

In order to define asymptotic decoupling mathemat-
ically, let us introduce some notations. Consider two
finite-dimensional quantum systems H1 and H2 of our
interest. For a number i ∈ {1, 2} and a quantum state
ρ̃ on H1 ⊗ H2, the reduced state on Hi of ρ̃ is denoted
by πi(ρ̃) to emphasize a remaining system instead of a
deleted system. That is, by using the partial traces Tr1
and Tr2, we have π1(ρ̃) = Tr2 ρ̃ and π2(ρ̃) = Tr1 ρ̃. From
now on, we use tilde to express to be bipartite. For in-
stance, a bipartite quantum state is denoted by ρ̃, and a
bipartite quantum channel is denoted by Γ̃.
Now, the mathematical definition of asymptotic decou-

pling is below:

Definition 1 (Asymptotic decoupling [16]). A quantum
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channel Γ̃ is asymptotically decoupling if any state ρ̃ sat-
isfies

Γ̃n(ρ̃) = π1(Γ̃
n(ρ̃))⊗ π2(Γ̃

n(ρ̃)) + o(1) (n→ ∞).

Since the above right-hand side is a product state, it
means to be no correlation. Next, to clarify a necessary
and sufficient condition of asymptotic decoupling, we in-
troduce another asymptotic property, namely, mixing:

Definition 2 (Mixing [10, 11, 16]). A quantum channel
Γ is mixing if there exists a state ρ0 such that any state
ρ satisfies

lim
n→∞

Γn(ρ) = ρ0.

The state ρ0 is called the stationary state.

Note that a quantum channel is given as a trace-
preserving and completely positive linear map (TP-CP
map). Thus asymptotic decoupling and mixing are
asymptotic properties for TP-CP maps. Now, we give
a necessary and sufficient condition of asymptotic decou-
pling. For simplicity, first, we give it for a tensor product
quantum channel Γ1 ⊗ Γ2:

Theorem 3. For any two quantum channels Γ1 and Γ2,
the following conditions are equivalent.

1. Γ1 ⊗ Γ2 is asymptotically decoupling.

2. Γ1 or Γ2 at least one is mixing.

Condition 2 can be represented as a simple phrase lo-
cal mixing. Hence, simply speaking, asymptotic decou-
pling is equivalent to local mixing. Since spectral cri-
terion [10, Theorem 7] and another criterion [16, The-
orem 1] are known as criteria of mixing, these criteria
determine whether a tensor product quantum channel is
asymptotically decoupling or not. These are why The-
orem 3 is simple and meaningful. Moreover, the above
equivalence also holds for a general quantum channel:

Theorem 4. For any quantum channel Γ̃, the following
conditions are equivalent.

1. Γ̃ is asymptotically decoupling.

2. There exist a number i1 ∈ {1, 2} and a state ρ0,i1
on Hi1 such that any state ρ̃ satisfies

Γ̃n(ρ̃) = ρ0,i1 ⊗ πi2(Γ̃
n(ρ̃)) + o(1) (n→ ∞),

where i2 is an element of {1, 2} except for i1.

Condition (2) can be explicitly written as

Case (i1, i2) = (1, 2) Γ̃n(ρ̃) = ρ0,1⊗π2(Γ̃n(ρ̃))+ o(1),

Case (i1, i2) = (2, 1) Γ̃n(ρ̃) = π1(Γ̃
n(ρ̃))⊗ρ0,2+ o(1).

Since the state ρ0,1 or ρ0,2 is something like a stationary
state, condition (2) can also be regarded as local mixing.
Hence, for a general quantum channel, the same simple
equivalence also holds: asymptotic decoupling is equiva-
lent to local mixing.

Figure 2: Markovian quantum dynamics with
continuous-time.

3 Continuous-time evolution

Next, we address continuous-time evolution. In the
discrete case, Γn(ρ) has denoted the state at time n ∈ N.
Since we address continuous-time evolution in this sec-
tion, we denote by Γ(t)(ρ) the state at time t > 0. More-
over, it is natural that the family {Γ(t)}t>0 of quantum
channels should satisfy

• Γ(t) ◦ Γ(s) = Γ(t+s) for all t, s > 0,

• Γ(t) → idT (H) as t ↓ 0.

where idT (H) denotes the identity map on the set T (H)
of all Hermitian matrices on H. The above first condi-
tion is illustrated by Figure 2. It asserts that the state
at time t+ s equals the state after a time s passes from
the state at time t. A family {Γ(t)}t>0 satisfying the
above two conditions is called a C0 semigroup. It can be
easily checked that any C0 semigroup {Γ(t)}t>0 is right-
continuous everywhere. The definition of a C0 semigroup
is simple and intuitive in the finite-dimensional case, but
the infinite-dimensional case needs a few technical con-
ditions. Although there are many studies on C0 semi-
groups of finite/infinite-dimensions, we use no existing
results on C0 semigroups and only use the above two con-
ditions. In the context of Markovian quantum dynamics,
C0 semigroups are also called quantum dynamical semi-
groups [17].

In order to state our results in the continuous case, we
need to define the continuous versions of asymptotic de-
coupling and mixing. Fortunately, once replacing Γn and
n → ∞ with Γ(t) and t → ∞ respectively, the contin-
uous versions of asymptotic decoupling and mixing are
defined. In this setting, the continuous versions of Theo-
rems 3 and 4 are below:

Theorem 5. For any two C0 semigroups {Γ(t)
1 }t>0 and

{Γ(t)
2 }t>0, the following conditions are equivalent.

1. {Γ(t)
1 ⊗ Γ

(t)
2 }t>0 is asymptotically decoupling.

2. {Γ(t)
1 }t>0 or {Γ(t)

2 }t>0 at least one is mixing.

Theorem 6. For any C0 semigroup {Γ̃(t)}t>0, the fol-
lowing conditions are equivalent.

1. {Γ̃(t)}t>0 is asymptotically decoupling.

2. There exist a number i1 ∈ {1, 2} and a state ρ0,i1
on Hi1 such that any state ρ̃ satisfies

Γ̃(t)(ρ̃) = ρ0,i1 ⊗ πi2(Γ̃
(t)(ρ̃)) + o(1) (t→ ∞),

where i2 is an element of {1, 2} except for i1.
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Table 1: Difference from our previous result.

Dynamical map Time evolution

Previous result Γ⊗2

Discrete
[16] Γ⊗ idT (H)

This paper
Γ1 ⊗ Γ2 Discrete

General Γ̃ Continuous

Similarly to the discrete case, asymptotic decoupling
is equivalent to local mixing. Theorem 6 is derived from
Theorem 4 at the end of this section. Table 1 summarizes
the difference between this paper and our previous result
[16, Theorem 1], with respect to asymptotic decoupling.
Some readers might consider that Theorems 5 and 6

are more general than Theorems 3 and 4. However, it
is not true due to the following reason. Any C0 semi-
group {Γ(t)}t>0 can be represented as an exponential
function [18, Theorem I.3.7]: there exists a linear map
L such that Γ(t) = etL for all t > 0. Thus Γ(t) does not
have the eigenvalue zero. However, the discrete case al-
lows that Γ has the eigenvalue zero. Moreover, {Γ(t)}t>0

is a C0 semigroup of CP maps if and only if {(Γ(t))⊗2}t>0

is a C0 semigroup of positive maps [19, Theorem 1]. This
fact is completely different from the case with CP maps:
positivity for Γ⊗2 does not imply complete positivity for
Γ. These are why the continuous case is somewhat re-
stricted. The above generator L is called a Lindbladian
and was characterized by Lindblad [17].

Proof of Theorem 6 assuming Theorem 4. 2⇒1. This
implication follows from the definition.
1⇒2. Assume condition 1. Since (Γ̃(1))n = Γ̃(n) for

all n ∈ N, the quantum channel Γ̃(1) is asymptotically
decoupling. Thus Theorem 4 implies that Γ̃(1) satisfies
condition 2 in Theorem 4. Without loss of generality, we
may assume (i1, i2) = (1, 2). Thus any state ρ̃ satisfies

Γ̃(n)(ρ̃) = ρ0,1 ⊗ π2(Γ̃
(n)(ρ̃)) + o(1),

π1(Γ̃
(n)(ρ̃)) = ρ0,1 + o(1). (1)

Now, let Γ0,1 be the quantum channel defined as
Γ0,1(ρ) = ρ0,1 for any state ρ on H1. Also, let n =
n(t) := ⌊t⌋ and δ = δ(t) := t − n(t) for all t > 0. Then
any state ρ̃ satisfies

π1(Γ̃
(t)(ρ̃)) = π1 ◦ Γ̃(n)(Γ̃(δ)(ρ̃)− ρ̃) + π1 ◦ Γ̃(n)(ρ̃)

= π1 ◦ Γ̃(n)(Γ̃(δ)(ρ̃)− ρ̃) + ρ0,1 + o(1), (2)

where the last equality follows from (1). Moreover, since
(1) implies that π1 ◦ Γ̃(n) converges to Γ0,1 as n→ ∞, we
obtain

∥π1 ◦ Γ̃(n)(Γ̃(δ)(ρ̃)− ρ̃)∥1
= ∥π1 ◦ Γ̃(n)(Γ̃(δ)(ρ̃)− ρ̃)− Γ0,1(Γ̃

(δ)(ρ̃)− ρ̃)∥1
= ∥(π1 ◦ Γ̃(n) − Γ0,1)(Γ̃

(δ)(ρ̃)− ρ̃)∥1
≤ ∥π1 ◦ Γ̃(n) − Γ0,1∥1,1 · ∥Γ̃(δ)(ρ̃)− ρ̃∥1
≤ 2 ∥π1 ◦ Γ̃(n) − Γ0,1∥1,1

t→∞−−−→ 0, (3)

where ∥ · ∥1 denotes the trace norm, and ∥ · ∥1,1 denotes
the operator norm based on the trace norm: ∥Θ∥1,1 =
sup∥X∥1≤1 ∥Θ(X)∥1 for a linear map Θ on T (H). There-

fore, (2) and (3) yield π1(Γ̃
(t)(ρ̃)) = ρ0,1 + o(1). This

equation and condition 1 imply condition 2.
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Incompatibility robustness of quantum measurements: a unified
framework
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Abstract. Several measures have been proposed to quantify the incompatibility of quantum measure-
ments, however their properties are not well-understood. We develop a general framework that encompasses
all robustness-based measures of incompatibility. We study five commonly used measures and find that
some of them do not fulfil some basic requirements, and that what constitutes the most incompatible
measurement pair depends on the specific measure. We prove that for one of the measures, measurements
corresponding to mutually unbiased bases are among the most incompatible pairs in every dimension, but
also that this is not the case for some of the remaining measures.

Keywords: joint measurability, incompatibility robustness, mutually unbiased bases

1 Introduction

In quantum theory, measurements possess certain
counter-intuitive features. In classical theories they
merely amount to reading out pre-existing properties of
the physical system. Quantum measurements, however,
disturb the system and their outcomes are fundamen-
tally impossible to predict with certainty. This gives rise
to a plethora of non-classical phenomena, one of which
is known as incompatibility of measurements, manifested
for example in the inability to simultaneously measure
the position and momentum of a quantum mechanical
particle.

Conversely, we say that two measurements are com-
patible, or jointly measurable, if they can be simultane-
ously measured by performing a so-called parent mea-
surement [1]. Compatible measurements do not pro-
vide any quantum advantage in nonlocality and steer-
ing [2, 3, 4], and therefore characterising incompatible
measurements is a fundamentally important task.

One such characterisation method is to quantify to
what extent a pair of measurements is incompatible. A
natural way is to introduce robustness-based measures of
incompatibility, which quantify how much noise the mea-
surements can tolerate before becoming compatible. Sev-
eral measures of this type have already been proposed [1],
but their properties and the relations between them are
not well-understood.

In particular, it is not understood whether some of
these measures satisfy certain natural monotonicity prop-
erties motivated by resource theories [5, 6]. Such mea-
sures are meaningful quantifiers of incompatibility, and
therefore the question “what are the most incompatible
measurement pairs?” is justified with respect to them.

In this work, we take the following steps towards filling
the gap in the general understanding of robustness-based
measures of incompatibility:

∗sebastien.designolle@unige.ch
†mate.farkas@phdstud.ug.edu.pl
‡jkaniewski@cft.edu.pl

• We introduce a unified framework for analysing
robustness-based measures with respect to an arbi-
trary noise model. We provide explicit connections
between the desired properties of the measures and
certain properties of the noise models.

• We analyse five measures widely used in the liter-
ature and show that some of them do not satisfy
certain natural properties.

• We show that what constitutes the most incom-
patible measurement pair in general depends on
the specific measure. For one measure we show
that mutually unbiased bases (MUBs) are among
the most incompatible measurement pairs in ev-
ery dimension. However, we also show that this is
not the case for some other measures by providing
explicit measurements that are more incompatible
than MUBs.

2 Concepts and tools

We utilise the positive operator-valued measure
(POVM) model for finite d dimensional measurements.
Given a pair of POVMs {Aa}nAa=1 and {Bb}nBb=1, we
say that they are compatible (or jointly measurable),
(A,B) ∈ JMnA,nB

d , if there exists a parent POVM
{Gab}nA,nB

a=1,b=1 such that
∑

bGab = Aa for all a and∑
aGab = Bb for all b. Such a parent POVM provides an

operational way of simultaneously measuring A and B,
while if a parent POVM does not exist, we say that A and
B are incompatible (not jointly measurable). Note that
the set of jointly measurable pairs JMnA,nB

d is a convex
subset of all POVM pairs POVMnA,nB

d .
Given a POVM pair (A,B), we define a noisy version

of it by the pair η·(A,B)+(1−η)·(M,N), where η ∈ [0, 1]
is the visibility and (M,N) ∈ NA,B ⊆ POVMnA,nB

d is
a POVM pair from the noise set NA,B . For any noise
model defined by NA,B that is closed and contains at
least one jointly measurable pair, we can define a corre-
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sponding incompatibility robustness measure

η∗A,B = max
η∈[0,1]

(M,N)∈NA,B

{
η
∣∣∣ η·(A,B)+(1−η)·(M,N) ∈ JM

}
,

which is the highest visibility allowed within this noise
model such that the noisy version of (A,B) is still com-
patible. For any noise model, η∗A,B = 1 if and only if
(A,B) ∈ JM, and the more incompatible the measure-
ments are, the lower η∗A,B is. These measures can be
visualised using the sets JM and NA,B :

To obtain unitarily invariant measures, it is sufficient
that the corresponding noise set is covariant with respect
to unitaries. Motivated by resource theories, measure-
ments should not become more incompatible under oper-
ations Φ that preserve joint measurability. We are then
looking for noise models that give rise to measures that
do not decrease under some natural operations. We con-
sider two joint measurability-preserving operations act-
ing on the outputs and the inputs of the measurements,
respectively. Post-processings apply a response function
to the measurement outcomes, while pre-processings ap-
ply a quantum channel to the input state, see the figures
below.

We show that whenever the image of the noise set un-
der such an operation is contained in the noise set of the
image, that is, Φ(NA,B) ⊆ NΦ(A,B) for all (A,B), the
corresponding measure is non-decreasing under the op-
eration, η∗Φ(A,B) ≥ η∗A,B for all (A,B). Taking convex
combinations also preserves joint measurability, and we
identify a simple constraint on the noise set which to-
gether with its convexity implies that the corresponding
measure is non-decreasing under convex combinations.
However, we show using explicit counterexamples that
none of the measures that we study are concave.

Identifying operations under which a measure is non-
decreasing is crucial for finding the most incompatible
pairs with respect to this measure. As an example, if we
want to find the most incompatible pairs for a fixed di-
mension, and the measure is non-decreasing under post-
processings, it is enough to look at pairs from which any

other pair can be obtained via post-processing, that is,
pairs of rank-one POVMs. We use this technique to find
the most incompatible pairs under some measures.

For finding the most incompatible measurement pairs
under a measure, it is also important to derive bounds
on its value. We make use of the semidefinite program-
ming (SDP) formulation of incompatibility robustness
measures. From the primal and dual SDPs, we obtain
lower and upper bounds, respectively, on the measures
by finding feasible points using ansatz solutions.

3 Results

3.1 Five relevant measures

In our work we analyse five widely used measures by
applying our unified framework.

Incompatibility depolarising robustness – ηd

The noise set is

Nd
A,B =

{({
tr(Aa)

Id
d

}nA

a=1
,
{

tr(Bb)
Id
d

}nB

b=1

)}
,

the one-element set containing the trivial measurements
weighted with the traces. We show that this measure is
not non-decreasing under pre-processings, and it is not
concave, contrary to what is stated in Refs. [7] and [8],
respectively. Using its SDP formulation, we derive the
tightest lower bound on ηd known so far.
Incompatibility random robustness – ηr

The noise set is

Nr
A,B =

{({ Id
nA

}nA

a=1
,
{ Id
nB

}nB

b=1

)}
,

the one-element set containing the trivial measurements.
We show that this measure is not non-decreasing under
post-processings, which makes it difficult to derive good
universal bounds on it.

The following three measures satisfy all the natural
properties that we discuss, and using their SDP formu-
lation, we derive new bounds on them.

Incompatibility probabilistic robustness – ηp

The noise set is

Np
A,B =

{(
{pa Id}nAa=1 , {qb Id}

nB
b=1

)}
,

the trivial measurements weighted with probabilities p
and q.

Incompatibility jointly measurable rob. – ηjm

The noise set is

Njm
A,B = JMnA,nB

d ,

the set of all jointly measurable pairs.
Incompatibility generalised robustness – ηg

The noise set is

Ng
A,B = POVMnA,nB

d ,

the set of all POVMs. In this case, we derive a universal
lower bound on ηg and show that measurements corre-
sponding to a pair of MUBs saturate this bound, and
therefore they are among the most incompatible pairs in
any dimension with respect to this measure.
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3.2 Relations between the measures, example

The inclusions between the noise sets

(Nd
A,B ∪Nr

A,B) ⊆ Np
A,B ⊆ Njm

A,B ⊆ Ng
A,B

imply the ordering of the corresponding measures

max{ηd
A,B , η

r
A,B} ≤ η

p
A,B ≤ η

jm
A,B ≤ η

g
A,B .

We demonstrate this order, and the applicability of our
techniques by plotting the exact value of all the measures
for a pair of rank-one projective qubit measurements with
angle 2θ between their Bloch vectors on the figure below.

3.3 Mutually unbiased bases

We are also able to calculate the exact value of the
measures η∗MUB(d) for a pair of MUBs in any dimension d.
In dimension 2, we obtain

ηd
MUB(2) = ηr

MUB(2) = ηp
MUB(2) =

1√
2
,

ηjm
MUB(2) = 2(

√
2− 1), ηg

MUB(2) =
1

2

(
1 +

1√
2

)
,

whereas in higher dimensions we get

ηd
MUB(d) = ηr

MUB(d) = ηp
MUB(d) =

1

2

(
1 +

1√
d+ 1

)
,

ηjm
MUB(d) = ηg

MUB(d) =
1

2

(
1 +

1√
d

)
.

While it is not obvious that in higher dimensions these
values do not depend on the specific choice of MUB pair,
it turns out to be the case for these measures.

3.4 The most incompatible measurements

In dimension 2, pairs of MUBs turn out to saturate
the universal bounds that we derive for ηd, ηp, ηjm and
ηg, and therefore they are among the most incompatible
pairs with respect to these measures.

In dimension 3, the picture changes dramatically, and
for some measures we find explicit rank-one projective
measurements that are more incompatible than MUBs.

To demonstrate this, we plot the value of four measures
on a particular path of rank-one projective measure-
ments. For ηd, a pair of MUBs on a two dimensional sub-
space (AqMUB, BqMUB) outperforms qutrit MUBs and is
our candidate for the most incompatible pair. For ηp, we
find another rank-one projective pair (Adev, Bdev) that
outperforms both qutrit and qubit MUBs. This shows
that the most incompatible measurement pair in general
depends on the specific measure of incompatibility.

In dimensions higher than 3, our conjectures for the
most incompatible pairs for ηd and ηp are direct sums of
the optimal pairs in dimensions 2 and 3. Below we plot
the value of the measures ηd and ηp in dimensions 2 to
16 for a pair of MUBs (blue circles), for our conjectured
optimal pairs (purple and yellow downward pointing tri-
angles), and our analytical lower bounds (orange upward
pointing triangles). Note that our new constructions are
the currently known most incompatible pairs under these
measures. Regarding the other measures, we show that
ηr = 1/2 can be achieved in any dimension by adding zero
outcomes to the measurements. Therefore, the question
of the most incompatible pairs for fixed dimension is triv-
ial for this measure. For ηjm our numerical search did not
lead to any improvement on the MUB value, and for ηg

we have analytically proven that MUBs are among the
most incompatible pairs in every dimension.
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“One-to-one mapping between steering and joint
measurability problems,” Phys. Rev. Lett., vol. 115,
p. 230402, 2015.

[5] B. Coecke, T. Fritz, and R. W. Spekkens, “A mathe-
matical theory of resources,” Information and Com-
putation, vol. 250, pp. 59–86, 2016.

[6] T. Fritz, “Resource convertibility and ordered com-
mutative monoids,” Mathematical Structures in Com-
puter Science, vol. 27, no. 6, pp. 850–938, 2017.

[7] T. Heinosaari, J. Kiukas, and D. Reitzner, “Noise ro-
bustness of the incompatibility of quantum measure-
ments,” Phys. Rev. A, vol. 92, p. 022115, 2015.

[8] M. Oszmaniec, L. Guerini, P. Wittek, and A. Aćın,
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Coherence distribution and depletion in training quantum classifier
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Abstract. What is a quantum resource in quantum machine learning? This question is not clearly
understood yet. In this study, we attack the question. For the purpose of the study, we consider a quantum
classifier as a tool of quantum machine learning. First of all, we show that in training quantum classifier the
coherence plays a major role in training quantum classifier. We display that parametric quantum circuit of
trained quantum classifier increases coherence of index register state but decreases accessible coherence of
index register. Further, we show that Grover algorithm of trained quantum classifier diminishes coherence
of index register state and the success probability of quantum classifier is related with the depletion of
coherence of index register state. Therefore, they imply that coherence distribution and depletion are the
important quantum resources in training quantum classifier. Because quantum classifier can be exploited
to solve supervised learning, coherence can be considered ultimately as a quantum resource in supervised
learning.

Keywords: quantum supremacy, coherence, accessible coherence, coherence distribution, coherence de-
pletion, quantum machine learning, quantum perceptron

Introduction

It is well known that quantum computers can solve cer-
tain problems more efficient than classical counterparts[1,
2]. This phenomena are so called quantum supremacy[3].
Many researchers have investigated quantum resources
that contributes to supremacy. Entanglement was con-
sidered as one of the quantum resource[4, 5]. However,
it was shown that every quantum algorithm does not
uses entanglement. Deterministic quantum computation
with one-qubit(DQC1)[6] is the well-known example that
has quantum speed-up without entanglement. A. Datta
et al.[7] proposed that non-zero quantum discord[8] can
be related with speed-up of DQC1. Because entangle-
ment is affected by quantum discord[9, 10], discord was
considered as a valuable resource rather than entangle-
ment. However, quantum discord does contributes to
speed-up for every quantum algorithms, involving Grover
algorithm[11].

Recently, quantum coherence has been widely focused
by researchers as a unified quantum resource[13, 14]. Co-
herence was firstly proposed by T. Baumgratz et al.[12]
to define superposition[15] in a strict manner. They pro-
posed mathematical conditions that coherence measures
should obey. They also showed that l1−norm coherence
and relative entropy of coherence can satisfy these con-
ditions. Until now, many researchers have proposed var-
ious coherence measures[16, 17, 18, 19, 20, 21] consider-
ing conditions from Ref.[12]. Coherence can be defined in
multipartite systems as well as single systems[22]. Espe-
cially, bipartite coherence can unify entanglement, quan-
tum discord and nonlocality[23, 24, 25, 26, 27, 28]. Fur-
ther, coherence can contribute to speed-up in DQC1,[29],
Deutsch-Josza algorithm[30], Grover algorithm and Shor
algorithm[31].

Among quantum algorithms, Grover algorithm can be
applied to construct various quantum machine learning

∗mslab.nk@gmail.com
†yyhkwon@hanyang.ac.kr

Figure 1: Coherence distribution and depletion in quan-
tum classifier. Here, PQC is parametric quantum circuit
and Gi is Grover algorithm.

tasks[32]. And Coherence have potential to be related
with supremacy for quantum AI. In this study, we pro-
pose that coherence is an important quantum resource
for quantum machine learning. We use quantum classifier
proposed by Y. Du et al.[33] as a tool of quantum machine
learning. We note that the quantum classifier includes
Grover algorithm in order to perform perceptron[34]. In
the view of coherence distribution[35] and coherence de-
pletion[11], we argue that coherence can contribute to
training quantum classifier(see Fig.1). In the view of co-
herence distribution, we display that parametric quan-
tum circuit of trained quantum classifier increases coher-
ence of index register states but decreases accessible co-
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herence of index register. In the view of coherence deple-
tion, we show that Grover algorithm of quantum classifier
diminishes coherence of index register state. It implies
that coherence distribution and depletion are the impor-
tant quantum resources in training quantum classifier.
Because quantum classifier can be exploited to solve su-
pervised learning, this result tells ultimately that coher-
ence can contribute to constructing quantum computers
solving supervised learning.

Coherence distribution in bipartite system

The total coherence C(ρAB) of bipartite system AB is
expressed as[35].

C(ρAB) = C(ρA) + Cacc
A + C(ρB) + Cacc

B + Crem
AB (1)

Here, C(ρX) is a coherence of system X ∈ {A,B} state.
and Cacc

X is accessible coherence of system X. The lo-
cal coherence of system X is expressed as C(ρX) + Cacc

X

and Crem
AB is not localized coherence which is called a re-

maining coherence. If coherence measure C(·) is l1−norm
coherence or relative entropy of coherence, Crem

AB is non-
negative[35]. Therefore,when l1−norm coherence or rela-
tive entropy of coherence is used as coherence measure,
we can use the structure of Eq.(1).

Structure of quantum classifier

In this work, we study the quantum resouce for quan-
tum machine learning. Because there are many methods
for quantum machine learning, we use quantum classifier,
which is discussed in the work of Y. Du et al.[33], as a tool
of quantum machine learning. And we show that coher-
ence is used for training quantum classifier. The quan-
tum classifier of Ref.[33] consists of feature register(F )
and index register(I). The purpose of quantum classifier
is to find a data vector ~xi which is mislabeled in dataset
{~xi, yi}Ni=1(~xi ∈ RM , yi ∈ {−1,+1}), with a maximum
probability.

Coherence in quantum classifier

In this study, we show that coherence provides a major
role in training quantum classifier. Specially, the role of
coherence in quantum classifier is investigated in terms
of coherence distribution and coherence depletion.

Coherence depletion: According to previous work by
H.-L. Shi et al.[11], coherence depletion can contribute to
speed-up in Grover algorithm. Therefore, we show that
coherence depletion contributes to training quantum clas-
sifier. In order to show this, we compare success probabil-
ity with coherence depletion in index register state. Here,
we use l1−norm coherence[12] as a coherence measure.
Coherence depletion can be related with success prob-
ability of quantum classifier. It implies that coherence
depletion is a quantum resource of speed-up in quantum
classifier.

Coherence distribution: As we argued before,
Grover algorithm of trained quantum classifier diminishes
coherence of index register state. Therefore, parametric
quantum circuit of quantum classifier increase coherence
of index register state. Exploiting the structure of Eq.(1),
we obtain the following results related with coherence dis-
tribution.

• parametric quantum circuit in trained quantum
classifier increases coherence of index register state.

• parametric quantum circuit in trained quantum
classifier decreases accessible coherence of index
register.

Conclusion

We show that coherence is an important resource for
training quantum classifier. We investigate this argument
in the view of coherence distribution and coherence de-
pletion. In the view of coherence distribution, parametric
quantum circult of trained quantum classifier increases
coherence of index register state but decreases accessi-
ble coherence of index register. In the view of coherence
depletion, Grover algorithm of trained quantum classi-
fier diminishes coherence of index register. These facts
imply that coherence distribution and depletion are re-
sources for quantum classifier. Therefore, we can see that
quantum classifier can be exploited to solve supervised
learning and coherence has a potential to be a quantum
resource to attack supervised learning.
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Optimal Discrimination of Four Qubit States
when Postmeasurement information on subsystem is available

Jaehee Shin1 ∗ Donghoon Ha1 † Younghun Kwon1 ‡

1 Department of Applied Physics, Hanyang University (ERICA), Ansan, Republic of Korea

Abstract. In quantum state discrimination of some cases, postmeasurement information may lead a
perfect discrimination of nonorthogonal quantum states. However, in general case of nonorthogonal qubit
states, even with the help of postmeasurement information, perfect discrimination is impossible. Therefore,
it is interesting to investigate the structure for discrimination of nonorthogonal qubit states when postmea-
surement information exists. Along the line, we consider an optimal discrimination of qubit state ensemble
with the help of postmeasurement information, in which the ensemble consists of two subensembles con-
taining two qubit states. We show thar the problem of optimal discrimination with postmeasurement
information can be understood as that of a minimum error discrimination to provide the geometric opti-
mality conditions. In addition, using our appoach we provide the way to find optimal measurement of the
problem.

Keywords: postmeasurement information, subensemble, minimum error discrimination, qubit states

In quantum physics, nonorthogonal quantum states
cannot be discriminated perfectly. The indistinguisha-
bility is directly related to the security of quantum key
distribution protocols [1]. In the optimal eavesdrop-
ping strategy, quantum state discrimination [2–4] is a
significant task, which has various strategies including
minimum-error discrimination(ME) [5–11], unambiguous
discrimination(UD) [12–16], maximum-confidence dis-
crimination(MC) [17].

ME is a discrimination scheme to minimize errors on
average, where measurements provide only conclusive re-
sults. UD and MC are strategies that allow inconclusive
results. In UD, measurements discriminate states with-
out any error. And, in MC, measurements provide con-
clusive results with maximum confidence. UD requires
linear independence of quantum states, but MC does not.
MC is equal to UD when the confidences of conclusive
results are equal to unity. In addition to ME, there is a
discrimination scheme(FRIR) to minimizes the average
error probability, in which case the rate of inconclusive
results is fixed [18–25]. FRIR corresponds to ME when
the fixed rate of inconclusive results is zero.

When quantum state ensemble consists of subensem-
bles, one may discriminate nonorthogonal states perfectly
with the help of postmeasurement information [26]. To
be precisely, nonorthogonal quantum states may be per-
fectly discriminated by postprocessing measurement re-
sults and postmeasurement information about the pre-
pared subensemble. This perfect discrimination scheme
cannot be applied to every ensemble having nonorthog-
onal quantum states as UD. Specifically, nonorthogonal
qubit states cannot be perfectly discriminated even with
postmeasurement information [26]. Therefore, to mini-
mize the average error probability with the help of post-
measurement information (MEPI) is as important as ME.
Note that, as FRIR has a modified FRIR problem with
ME, MEPI also has a modified problem [27].

∗mslab.shin@gmail.com
†mslab.h@gmail.com
‡yyhkwon@hanyang.ac.kr

In this paper, we consider MEPI of ensemble com-
posed of four qubit states. The ensemble consists of two
subensembles containing two quantum states. We con-
sider a modified problem of MEPI to employ the geomet-
ric approach developed in [8–11] and provide geometric
optimality conditions.

Theorem 1 shows a concrete relation between the max-
imum success probability Pmax

succ and optimal measure-
ments {Mab}ab for MEPI.

Theorem 1 Suppose E is a qubit state ensemble,

E = {qx, Ex}x∈{0,1} = {qxa, ρxa}x,a∈{0,1}. (1)

E means that subensemble Ex is prepared with probability
qx. There exists I ⊆ A = {00, 01, 10, 11} satisfying

1. {q0av0a + q1bv1b}ab∈I forms a (|I| − 1)-simplex,

2. H4I is a set with exactly one element k,

3. Pmax
succ = q0a + q1b + ‖k − q0av0a − q1bv1b‖2 ∀ab ∈ I,

where vxa is the Bloch vector of ρxa,

H4I = {t ∈ 4I | for all ab, a′b′ ∈ I with ab 6= a′b′,

‖q0av0a + q1bv1b − t‖2 − ‖q0a′v0a′ + q1b′v1b′ − t‖2

= q0a′ + q1b′ − q0a − q1b } for I ⊆ A,

and

4I = {
∑

ab∈I θab(q0av0a + q1bv0b) |

θab > 0 ∀ab ∈ I and
∑

ab∈I θab = 1 }.

Then, every POVM {Mab}ab satisfying the following con-
straints is a MEPI measurement for E.

Mab ∝ I +
(

q0av0a+q1bv1b−k
‖q0av0a+q1bv1b−k‖2

)
· λ ∀ab ∈ I,

Mab = 0 ∀ab 6∈ I.
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Figure 1: Overview of example with q0 = q1, q0|x 6= q1|x(x = 0, 1). (Left) {vxa}x,a(black points) forms a square and
{qxavxa}x,a(yellow points) a parallelogram. Meanwhile, {2pabwab}ab(red points) forms a square again contrary to the
poor symmetry of {wab}ab(blue points). (Right) k(grean point), determining an optimal measurement for MEPI, is
situated in a relative interior of right-triangle {2pabwab}ab∈I(I = {00, 01, 10}).

Theorem 2 shows necessary and sufficient condition for
the existence of MEPI measurement with zero operators.

Theorem 2 When k is included in H4A , we have

Pmax
succ = q0a + q1b + ‖k − q0av0a − q1bv1b‖2 ∀ab ∈ A.

Then, every POVM {Mab}ab∈A satisfying the following
constraints is a MEPI measurement for E.

Mab ∝ I +
(

q0av0a+q1bv1b−k
‖q0av0a+q1bv1b−k‖2

)
· λ ∀ab ∈ A. (2)

If {q0av0a + q1bv1b}ab∈A forms a tetrahedron(3-simplex),

k is the only element in H4A and MEPI measurement
consists of four nonzero operators satisfying (2). That
is, there is no MEPI measurement with zero operators.
However, if H4A is empty or {q0av0a+q1bv1b}ab∈A fails to
form a 3-simplex, there exists MEPI measurement con-
taining zero operators.

Theorem 3 shows necessary and sufficient condition for
ensemble E to yield MEPI measurement containing four
nonzero elements.

Theorem 3 When Pmax
succ is larger than maxab∈A(q0a +

q1b), there exists a MEPI measurement with four nonzero

operators if and only if H4A is nonempty.

Pmax
succ = q0a+q1b means that a MEPI is to guess the given

state is ρ0a or ρ0b according to the subensemble E0 or E1.
We consider an example satisfying q0 = q1 and q0|x 6=

q1|x(x = 0, 1)

q00 = 1
4 (1 + p), ρ00 = |0〉〈0| = 1

2 (I + ẑ · λ),

q01 = 1
4 (1− p), ρ01 = |1〉〈1| = 1

2 (I − ẑ · λ),

q10 = 1
4 (1 + p), ρ10 = |+〉〈+| = 1

2 (I + x̂ · λ),

q11 = 1
4 (1− p), ρ11 = |−〉〈−| = 1

2 (I − x̂ · λ).

The maximal success probability Pmax
succ is as follows.

Pmax
succ =

1 + p

2
+

1− p2

2
√

2 + 4p
. (3)

Next, we consider another example satisfying q0 6= q1
and q0|x = q1|x(x = 0, 1)

q00 = 1+p
4 , ρ00 = |0〉〈0| = 1

2 (I + ẑ · λ),

q01 = 1+p
4 , ρ01 = |1〉〈1| = 1

2 (I − ẑ · λ),

q10 = 1−p
4 , ρ10 = |+〉〈+| = 1

2 (I + x̂ · λ),

q11 = 1−p
4 , ρ11 = |−〉〈−| = 1

2 (I − x̂ · λ).

The maximal success probability Pmax
succ is as follows.

Pmax
succ =

1

2
+

1

2

√
1 + p2

2
. (4)
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Figure 2: Overview of example with q0 6= q1, q0|x = q1|x(x = 0, 1). (Left) {vxa}x,a(black points) forms a square and
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Quantum information transmission of a multiphoton qubit using optical
hybrid entanglement

Seongjeon Choi1 Seokhyung Lee1 Hyunseok Jeong1 ∗

1 Department of Physics and Astronomy, Seoul National University, Seoul 151-742, Korea

Abstract. Multiphoton qubit is a promising optical qubit in linear optics, which has a nearly deter-
ministic scheme for the Bell-state measurement. However, the multiphoton qubit is fragile under a lossy
environment. In this research, we propose a scheme for quantum information transmission via quantum
teleportation using the hybrid entanglement with loss-resilient qubits. We mainly consider a single-photon
polarization qubit and a coherent-state qubit with a few photons as the loss-resilient qubits. We show
our scheme improves the transmission in terms of quantum fidelity and success probability of Bell-state
measurement. Also, we propose practically possible schemes to generate the required hybrid entangled
states.

Keywords: quantum communication, hybrid entanglement, quantum teleportation

1 Introduction

Recently, a multi-photon polarization qubit(MPQ),

|ψm〉 = a |H〉⊗N + b |V 〉⊗N

, encoded in N -photon optical polarization state is pro-
posed by Lee, Park, Ralph, and Jeong[4] to overcome
the limitation of Bell-state measurement in linear optics.
In linear optics, the success probability of Bell measure-
ment is usually limited by 1/2. Notably, MPQ encoding
achieves an average success probability 1− 2−N for Bell
measurement.

MPQ is generally in the form of the Greenberger-
Horne-Zeilinger(GHZ)-type state, a |H〉⊗N + b |V 〉⊗N .
Unfortunately, it is well known that GHZ-type state is
fragile under a lossy environment. To overcome the weak-
ness, we examine teleportation for long-distance trans-
mission and exploit hybrid entanglement between MPQ
and other qubit encodings which serve as loss-resilient
information carrier under the lossy environment. In this
research, we utilize a coherent-state qubit(CSQ), |ψc〉,
and single-photon polarization qubit(SPQ), |ψp〉, as the
information carriers:

|ψc〉 = N (|α〉+ |−α〉)

|ψp〉 =
1√
2

(|H〉+ |V 〉)

Our strategy is basically to send a loss-resilient qubit to
the environment while reducing loss effect on a MPQ. We
show that such hybrid approach shows higher fidelity and
success probability.

While the hybrid approaches have many merits in
quantum information processing [6, 1, 3], generating the
hybrid entanglement is generally not trivial. Though, we
also suggest a generation scheme for the hybrid entan-
glement between MPQ and CSQ and between MPQ and
SPQ.

∗jeongh@snu.ac.kr

2 Time-evolution under a lossy environ-
ment

We describe the lossy environment with the photon-
loss model by the master equation under the Born-
Markov approximation with a zero-temperature:

∂ρ

∂τ
=

N∑
i=1

γi

(
aiρa

†
i −

1

2
a†iaiρ−

1

2
ρa†iai

)
(1)

where ai(or, a†i ) represents the annihilation(or, creation)
operator of mode i and γi is the decay constant of i mode.
The evolution of a density operator is equivalently de-
scribed by a beam-splitter model with setting the trans-
mittance ti = e−γiτ/2 and the reflectance ri =

√
1− t2i

[5].
Suppose we directly transmit the information of an un-

known qubit |ψin〉 = a
∣∣HN

〉
+ b
∣∣V N〉 over lossy environ-

ment. Assuming that all transmissivities are equal to t,
the evolution in the direct transmission is described by
solving Eq.[1] with an initial condition ρ(0) = |ψin〉〈ψin|:

ρ(t) = t2N |ψ〉〈ψ|+ (1− t2N )ρloss (2)

where ρloss represent a event when more than one photon
is lost. ρloss is orthogonal to |ψ〉 and has no off-diagonal
element. In this case, we obtain quantum fidelity F (t) =
〈ψ|ρ(t)|ψ〉 = t2N . This means the decoherence of MPQ is
exponentially increasing with N . Therefore, although the
failure probability of Bell-measurement in MPQ expo-
nentially decreases with the photon number of one qubit,
the decoherence effect for given t also increases expoen-
tially.

Now, we investigate the time evolution of hybrid entan-
gled states between MPQ and CSQ and between MPQ
and SPQ under photon-loss environment. We denote m,
c, and p for MPQ, CSQ, and SPQ. We use the following
entangled states:

|ψmc〉 =
1√
2

(∣∣HN
〉
|α〉+

∣∣V N〉 |−α〉)
|ψmp〉 =

1√
2

(∣∣HN
〉
|H〉+

∣∣V N〉 |V 〉) . (3)
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Figure 1: Averaged quantum fidelity between the output
states and the corresponding target states against the
reflectance r = r2. CSQ is chosen with α = 0.5, 1.2
and 2. We average the fidelity over all possible input
states. The classical bound 2/3 for SPQ is obtained by
teleportation without entanglement.

Without loss of generality, we assume α > 0.
Loss occurs when we distribute the entangled states.

Since we want to preserve the MPQ as intact as we can,
we assume an asymmetric environment that the trans-
mittance of each mode of MPQ part is t1 and that of
CSQ or SPQ part is t2. By solving Eq.(1) with the initial
state |ψmc〉 and |ψmp〉, we get entangled states ρmc(t1, t2)
and ρmp(t1, t2) as following:

ρmc(t1, t2)

=
t2N1
2

[ ∣∣HN , t2α
〉〈
HN , t2α

∣∣+
∣∣V N ,−t2α〉〈V N ,−t2α∣∣

+ e−2|α|
2(1−t22)

(∣∣HN , t2α
〉〈
V N ,−t2α

∣∣+ H.c
)]

+ ρmc
loss

(4)

ρmp(t1, t2)

= t2N1
[
t22 |ψmp〉〈ψmp|+ r22

(∣∣HN
〉〈
HN

∣∣+
∣∣V N〉〈V N ∣∣)

⊗ |0〉〈0|+ ρmp
loss

(5)

where ri =
√

1− t2i is reflectance for i = 1, 2. ρmc,mp
loss

terms are orthogonal to the Bell states in MPQ basis
with N photons and have nothing to do with the results
of the teleportation.

3 Transmission via quantum teleporta-
tion

Now, we explore quantum teleportation using the hy-
brid entangled states. We employ the multi-photon Bell-
state measurement scheme proposed by S.-W. Lee, et
al.[4]. Assuming that

∣∣BN1 〉 ∝ ∣∣HNHN
〉

+
∣∣V NV N〉 is

detected, we express the output qubit by

ρout =

〈
BN1
∣∣ (|ψin〉〈ψin| ⊗ ρhybrid)

∣∣BN1 〉
tr
[∣∣BN1 〉〈BN1 ∣∣ (|ψin〉〈ψin| ⊗ ρmc)

]
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Figure 2: Success probabilities of teleportation against
the reflectance r = r1 with different photon number
N =1, 2, 3, and 4

where ρhybrid = ρmc or ρmp. When the other Bell states
are detected, we do proper unitary operations on the out-
put qubit.

The failure occurs when (i) the photons in MPQ are
lost so the MPQ part of the entangled state is orthogonal
to the Bell states, or (ii) the multi-photon Bell-state mea-
surement scheme fails with probability 1/2N . Therefore,
the success probability of the Bell-state measurement de-
pends on t1 and N . If the Bell-state measurement is suc-
ceeded, the effect of loss on the MPQ side is filtered so
that the output qubits only depend on t2. After obtain-
ing the output qubits, we can calculate quantum fidelity
between the output qubit ρout and the target state |ψc〉
or |ψp〉 where, in the case of CSQ, we use a qubit basis
{|±tα〉} in order to reflect decrease of the amplitude. To
summarize the results, we draw a plot demonstrating the
performance of our schemes (Fig. 1 and 2).

4 Schemes for the generation of the hy-
brid entangled states

We discuss schemes for the generation of the hy-
brid entangled states |ψmc〉 and |ψmp〉 in Eq. (3).
First, we consider |ψmc〉. Note that |ψmp〉 =
1√
2

(∣∣HN
〉
|H〉+

∣∣V N〉 |V 〉) is GHZ state of SPQ with

N + 1 photons. Therefore, it is enough to generate
GHZ state in which we can at least access one single
photon among N + 1 photons to utilize for SPQ. Note
that four-photon GHZ state with a high fidelity of 98%
is reported[8].

To generate |ψmc〉 = 1√
2
(
∣∣HN

〉
|α〉 +

∣∣V N〉 |−α〉), we

can utilize a theoretical scheme for generating a hybrid
entangled state between SPQ and CSQ, proposed by H.
Kwon and H. Jeong [2]. In their scheme, they use lin-
ear optics, photo-detector, and a ancillary resource state
|SCSφ(α)〉 = Aφ

(
|α〉+ eiφ |−α〉

)
to essentially devise a

operation Ô(φ) = |tα〉〈V | + eiφ |−tα〉〈H| with a suc-

cess probability P (t, α) = A2
φ(1− t2)α2e−2(1−t

2)α2

where

0 ≤ t ≤ 1 is transmittance. If we perform Ô(0) on GHZ
state with N + 1 photons and phase-gate: |±α〉 → |∓α〉,
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then we can obtain the desired hybrid entangled state
|ψmc〉 where the number of photon of MSQ is N . Within
our knowledge, the recent record of amplitude of SCS is
α = 1.6 [7]. Therefore, we, in principle, can obtain a hy-
brid entangled state between MPQ with 3 photons and
CSQ with α < 1.6 from 4 photon GHZ state

5 Conclusion

Our schemes suggest to utilize quantum teleportation
using hybrid entangled states in order to get higher quan-
tum fidelity and success probability.

From Fig. 1, Eq. 4, and 5, the dependence of the fi-
delity on t1 =

√
1− r21 is O(t21), which is considerably

improved compared to O(t2N ) of the direct transmis-
sion. Moreover, since there is no dependence on the pho-
ton number N , we confirm that N can be chosen only
by maximizing the Bell-state measurement. Also, CSQ
shows higher fidelity than SPQ if α is small enough.

In Fig. 2, we note that the larger number of photons
N in MPQ actually make the success probability worse.
Hence, to choose N properly is important to do maximize
the Bell-state measurement. Again, N and t1 does not
affect the fidity of the output states.

We suggest the schemes for the generation of hybrid
entangled states, and our schemes require GHZ-state
with N + 1 photons to transmit quantum information
of N − photon MPQ. The state of the art technology
shows such entanglement with 3-photon MPQ is possi-
ble. Therefore, our schemes show the usefulness of hybrid
entangled state in a realistic situation.
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Abstract. Quantum algorithms usually runs and are enabled with embedding large classical information
into quantum states engaging the quantum parallelism. To circumvent this requirement, we propose a
new classical-quantum hybrid architecture where the classical input data are unchanged but relatively
small (single-qubit only, in our case) quantum system is employed for speed-ups. This idea is applied to a
Boolean oracle identification problem, that is to identify an unknown black-box operation, i.e., oracle, by
minimizing the queries. We show that in our scheme the success rates of the query can be improved and
it leads to reduction of the sample complexity in machine learning. The proposed architecture is, indeed,
realizable with the noisy intermediate-scale quantum (NISQ) devices.

Keywords: Quantum computing, Quantum machine learning, Oracle identification

1 Introduction

Quantum computation would promise the computa-
tional speed-ups. However, such speed-ups appear dif-
ficult to achieve with the NISQ machine, which runs
on only a few hundred noisy qubits [1]. One of the
main reasons is that many useful algorithms demand very
high costs in embedding ‘big’ classical data into quantum
states, e.g., by implementing so-called quantum random-
access memory (QRAM). Thus, here we touch on this
issue by considering the following question: Is it possible
to achieve a quantum computational advantage, avoiding
the aforementioned QRAM costs?

One approach is to cast a classical-quantum hybrid
strategy. Recently, studies exploring the useful inter-
play between “classical” and “quantum” have received
increasing attention. Consistent with this trend, we
also consider a classical-quantum hybrid architecture, in
which (i) the large input data remains classical and (ii)
achieving the quantum advantage is enabled by small-
scale quantum system.

We apply our idea to a “Boolean oracle identifica-
tion” problem, which aims to identify the correct ora-
cle amongst a list of candidates. To solve this problem,
we employ a classical-quantum hybrid oracle, designed
based on (i) and (ii). Here, we assume that this hy-
brid oracle can also generate incorrect outputs with er-
rors arising from noisy (internal) quantum devices. This
is often casted in realistic models, referred to as noisy
query model [2]. In this setting, we demonstrate, both
analytically and numerically, that our hybrid oracle can
exhibit higher success rates of query if the amount and

∗hyoung@hanyang.ac.kr
†jaewan@kias.re.kr
‡jbang@kias.re.kr

variance in the errors are not at some gross level. It thus
enhances our ability to explore a much larger candidate-
solution space and enables us to deal with larger prob-
lems. The quantum advantage in Boolean oracle identi-
fication leads to a reduction in the sample complexity
bound in the “probably-approximately-correct (PAC)”
learning model [3].

2 Problem and our approach

Boolean oracle identification is a fundamental com-
putational problem and is defined as follows: Given a
Boolean oracle h? which maps an n-bit binary string
x = x1x2 . . . xn (xj ∈ {0, 1} ∀j = 1, . . . , n) to a binary
value h?(x) ∈ {0, 1}, the task is to identify h?, while
minimizing the number of queries to the oracle.

In our classical-quantum hybrid scheme, we con-
sider an oracle Ox that consists of n-bit classical “in-
put/output (I/O)” channels and single-qubit system for
process [See Fig. 1(a)]. Then, our oracle Ox implements

the operation, such that (x, |α〉) Ox−−→ (x, |ψout(x)〉). Here,
the query-output state |ψout(x)〉 is defined, without loss
of generality, as

|ψout(x)〉 =
√
P (x) |h?(x)〉+

√
1− P (x) |h?(x)⊕ 1〉 (1)

where P (x) is the probability of getting the correct query
output [2]. After the process of Ox, a measurement is
performed on |ψout(x)〉 to identify the oracle’s answer.

This oracle is assumed to be realized by a circuit illus-
trated in Fig. 1(b). The circuit contains 2n gates acting
on the ancilla qubit: the single-qubit gate â0 and 2n−1 of
gates âk (k = 1, 2, . . . , 2n−1) conditioned on the classical
bit values x1, x2, . . . , xn in x. Here the gates âk are

âk ∈ {σ̂z, iσ̂y} , for all k = 0, 1, . . . , 2n − 1, (2)
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Figure 1: (a) A schematic picture of our hybrid oracle
and (b) of the realization of our hybrid oracle (see the
main text or Ref. [4]).

where σ̂x, σ̂y, and σ̂z are the Pauli operators. This cir-
cuit realization of the oracle is inspired by the binary-
classification formula

h?(x) = a0 ⊕ a1x1 ⊕ a2x2 ⊕ a3x1x2

⊕ · · · ⊕ a2n−1x1x2 . . . xn, (3)

where ak ∈ {0, 1} (k = 0, 1, . . . , 2n − 1) are known as the
Reed-Muller coefficients. Each ak has a corresponding
gate operation âk, where ak = 0 means that âk leaves
the bit-signal unchanged (identity) and ak = 1 means
that âk flips the bit-signal (logical-not). Thus, the oracle
is characterized by a fixed set of âk operators for a given
h?. Note that since the oracle is treated as a black-box,
the gates âk are predetermined.

We then consider systematic error that can occur in
the circuit, which arises from errors in the âk gates and
no errors are presented for the classical signal x. In a
fully-classical model, these errors are usually modeled in
the following way: the bit-signal is flipped (i.e., 0 
 1)
with a certain probability ηk ≥ 1

2 before or after applying
k-th gate âk. Then the corresponding quantum error can
be described by |ψk(x)〉 → |ψ′k(x)〉 = ε̂k |ψk(x)〉, where
|ψk(x)〉 is the state passing through the gate âk. Here ε̂k
is a bit-flip operation defined by ε̂k =

√
1− ηk1̂±i√ηkσ̂x.

3 Analysis and results

We now analyze the query-success probability PC,Q,
defined in Eq. (1). Here, the subscripts “Q” and “C”
refer to when the ancilla state in our oracle is respec-
tively quantum or classical. First, let us define a set
Ωx = {0, l1, l2, . . . , lκ−1} whose elements are taken to be
the indices of the gates âk which are ‘activated’ (i.e.,
when the corresponding classical control bit xk = 1). The
number of these activating gates is given by κ = 2ω(x),
where the factor ω(x) denotes the Hamming-weight of
x. Then, PC,Q can be written in terms of ω. When the

ancilla state is classical, PC(ω) can be estimated as

PC(ω) '
κ/2∑
j

(
κ

2j

)
(1− η)

2j
ηκ−2j ' 1

2

(
1 + e−

2ω

c

)
, (4)

where η is defined as the average error probability. The
factor c—named “characteristic constant”—is given as

c = − 1

ln (1− 2η)
' (2η)−1

(
for O(η2)→ 0

)
. (5)

However, when the ancilla state is quantum, the corre-
sponding success probability PQ(ω) is given by

PQ(ω) =
∣∣〈h?(x)| ε̂lκ−1 âlκ−1 · · · ε̂l1 âl1 ε̂0â0 |α〉

∣∣2 . (6)

Then, by using the following condition

{σ̂x, âk}+ = σ̂xâk + âkσ̂x = 0, (7)

we can show that PQ(ω) becomes unity in the limit of
∆η → 0. Thus, so long as the gate errors are regular ηk =
η (∀k ∈ Ωx) [2], we can always have PQ(ω) = 1. We can
see that our gates âk in Eq. (2) clearly satisfies the anti-
commutation relation in Eq. (7). This anti-commutation
relation enables the amplitudes associated with the errors
to be ‘canceled out’ by destructive interference.

However, it is impractical to achieve such a perfect
errorlessness, since in a realistic situation we will have
∆η > 0. Then, PQ(ω) has a form analogous to that in
Eq. (4). Here the characteristic constant c is replaced
with an ‘effective’ characteristic constant ceff ' (2ηeff)−1

where again O(η2) → 0. Here ηeff is defined in terms
of an effective average error that âk’s experience. ηeff is
much smaller than η, because ηeff comes from remain-
ing errors only after destructive interference. Interest-
ingly, this feature does not depends on η, but rather
on the variance ∆η. From this feature, i.e., ηeff ≤ η
or equivalently ceff ≥ c, we can show a quantum advan-
tage with our scheme. In particular, it is shown that,
on average, our hybrid oracle is useful up to the length
n = 2 log2 ceff of input-bit strings, whereas n = 2 log2 c is
the upper limit in the purely classical case. So if ceff ≥ c,
our hybrid oracle can be useful for larger bit-string in-
puts. It also implies expansion of the search space which
can be explored by the given noisy oracle, approximately
from O(e(2η)−2 ln 2) to O(eγ

2(2η)−2 ln 2), where the factor
γ = ceff

c ≥ 1 (for details, see our ArXiv paper [4]).
The quantum advantage described above can also be

applied to quantum machine learning. It leads to a re-
duction of the sample complexity bound in the context
of the computational learning theory [3]. To see this,
consider a learning algorithm with access to our hybrid
oracle. Then, we can find the bound of the learning sam-
ple complexity; namely, if the learning is completed with
the samples satisfying

M ≥ 2AQ ln

(
2 |H|
δ

) 1
ε2

, (8)

we can define a legitimate learner—a so-called (ε, δ)
probably-approximately-correct (PAC) learner—which

98



n

(Sim.)PC

PC (Theor.)

(Sim.)

(Theor.)

PQ

PQ

(Sim.)

(Theor.)

AQ

AQ

n

(Sim.)AC

AC (Theor.)

Figure 2: Numerical plot of P̄C,Q (left) and AC,Q
(right) against n. Here we use η = 10−3 with ∆η =
0.05η. The theoretical values are also presented for com-
parison.

identifys h? in the hypothesis space H. Here, ε and δ
are defined as the inaccuracy and learning-failure proba-
bility, respectively. However, it is nontrivial to evaluate
AQ, particularly when the oracle is erroneous [5]. In our
study, AQ can be found as

AQ =
(
2PQ(n)− 1

)−2
, (9)

where PQ(n) is the average query-success probability,
given by PQ(n) = 1

2n

∑n
ω=0

(
n
ω

)
PQ(ω). Noting that the

classical counterpart to AQ, say AC , is characterized by
c instead of ceff, the reduction of the sample complexity,
i.e., AQ ≤ AC , is achieved. Here, what is remarkable
is that the quantum learning advantage is achieved with
classical input data directly without need of embedding
the classical data into quantum states at all.

In addition to our theoretical analysis, we include ac-
companying numerical simulations, in which PC,Q(ω) are
evaluated by counting a large number (' 105) of queries
for each given number of ω(x) and they are averaged
over the trials (' 103). The results are given in Fig. 2.
Indeed, the obtained simulation results confirm our the-
oretical analysis, allowing us to identify ceff and γ for a
given noise level; when η = 10−3 with ∆η = 5% of η,
our hybrid oracle would be applicable up to n ' 27.23
even in the presence of χ = 10−2 of phase-flip, whereas
n ' 17.93 would be the limit of the purely classical
case. Equivalently, the hybrid oracle can cover up to
size ' e1.09×108

of the candidate space, which is much
larger than ' e1.73×105

allowed in the classical case (for
detailed method and analysis, see our ArXiv paper [4]).

4 Summary

We have studied how a quantum advantage would be
achieved by the NISQ devices. Our basic idea was to con-
sider a classical-quantum hybrid scheme of computation.
The key feature of our proposal was to remain the (‘big’)
input data classical so that we do not need to use (‘big’)
quantum data constructed, e.g., by the QRAM. Instead,
we tried to achieve the quantum advantage by employing
a relatively small (a single qubit, in our case) quantum

system. We applied the presented idea to a Boolean ora-
cle identification problem. On the basis of the theoretical
and numerical analysis, it was shown that not only can
this new hybrid framework reduce the query complexity
of the problem, exploring much larger search space, but
it is also effective in the presence of realistic noise. Fur-
thermore, we can establish a link to the speed-up of the
quantum machine learning.

References

[1] J. Preskill, Quantum 2, 79 (2018).

[2] A. W. Cross, G. Smith, and J. A. Smolin, Phys. Rev.
A 92, 012327 (2015).

[3] L. G. Valiant, Communications of the ACM 27, 1134
(1984).

[4] W. Song, M. Wiesniak, N. Liu, M. Pawlowski,
J. Lee, J. Kim, and J. Bang, arXiv preprint
arXiv:1905.05751v1 (2019).

[5] D. Angluin, and D. K. Slonim, Machine Learning 14,
7 (1994).

99



Detection of multipartite Einstein-Podolsky-Rosen steering in
Greenberger-Horne-Zeilinger-like states

Do Kien Tri1 2 ∗ Yu Xiang1 3 4 † Qiongyi He1 3 4

1 State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of
Physics, Peking University, Beijing 100871, China

2Humboldt-Universität zu Berlin, Institut für Physik, Germany
3 Beijing Academy of Quantum Information Sciences, Haidian District, Beijing 100193, China

4 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China

Abstract. Einstein-Podolsky-Rosen (EPR) steering can be realized as a multiparty EPR paradox, and
is an intermediate type of quantum correlation between entanglement and Bell nonlocality. A linear
optical network built up from several off-line squeezed states and beamsplitters is a common platform to
generate multipartite steerable states. Here, we propose criteria to detect the N−partite EPR steering
for two typical structures of linear optical networks to prepare continuous-variable Greenberger-Horne-
Zeilinger-like states. We examine the influence of inefficiency during the modes transmissions, and the
robustness against thermal noise on the input states. We find that the properties of multipartite steering
are independent on the structure of optical network as long as their inferred variances are optimized. The
present multipartite steering correlation may have potential applications in certain quantum information
tasks where the issue of trust is important, such as one-sided device-independent quantum secret sharing.

Keywords: multipartite EPR steering, CV GHZ-like state, linear optical network

Introduction- Einstein-Podolsky-Rosen (EPR) para-
dox [1] established a link between entanglement and non-
locality in quantum mechanics, by showing that there are
correlated quantum states which demonstrate an incon-
sistency between the completeness of quantum mechan-
ics and the concept of local realism. In the same year,
Schrödinger introduced the term steering [2] to describe
this apparent correlation where measurements made by
one observer at a location A can immediately “steer”
the state of another observer, at location B. Until 2007,
works of Wiseman [3, 4] formalized the meaning of steer-
ing in terms of violations of local hidden state models,
and revealed that EPR steering is a realization of EPR
paradox, which can be viewed as a strong form of entan-
glement.
Despite that, EPR steering has a special usefulness to
quantum information tasks, such as one-sided device in-
dependent cryptography [5, 6, 7, 8] and secure telepor-
tation [9, 10, 11]. For these reasons, there has been an
escalation in the amount of both theoretical and experi-
mental interests.
Here, we investigate properties of multipartite steering in
continuous-variable (CV) Greenberger-Horne-Zeilinger
(GHZ)like states, which can be prepared by two typical
structures of linear optical network, one is a structure
where all squeezed states are arranged on one arm [12],
and the other one is a structure where all squeezed modes
are half-to-half distributed in two arms [13] (see Fig. 2).
By introducing the amplitude x̂ and phase p̂ quadra-
ture of the output modes, we measure their inferred vari-
ance of EPR steering [14], where one given mode can be
steered by the remaining N −1 parties. We further show
the robustness against imperfect transmission as well as
thermal noise involved in the input states. We find that
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the properties of multipartite steering are independent
on the structure of optical networks as long as their in-
ferred variances are optimized.
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X2out

X3out

XN-1out

X1in X2in
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X4in

XNin

1:N-1
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XNout

Figure 1: Experimental set up for the linear optical net-
works with one arm.
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X6in
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X3in
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Figure 2: Experimental set up for the linear optical net-
works with two arms. Note that for the two arms case,
when N is odd, replace the bottom beamsplitter with
N − 1 : N + 1 and the left arm starts with 1 : k − 2
instead of 1 : (k − 1), where k = (N + 1)/2.

Preliminary- The CV GHZ-like state of the optical field
is prepared by coupling one phase-squeezed and one
amplitude-squeezed states of light on an optical beam-
splitter network, which consists of N − 1 optical beam-
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splitters. As shown in Fig. 2, the output states of two
different structures are fully symmetric by adjusting the
transmittance of beamsplitters, respectively. To charac-
terize the output states, the amplitude and phase quadra-
tures of each mode are defined as x̂ = â + â† and
p̂ = (â − â†)/i, where â and â† are bosonic annihila-
tion and creation operators of a quantized optical field,
respectively. (In the following we will drop the hat nota-
tion.) To introduce the imperfect transmission, we dis-
tribute every output mode in a lossy channel. The output
mode at i is given by

ai,η =
√
ηiai +

√
1− ηiavaci , (1)

where ηi and avaci represent the transmission efficiency
of the quantum channel and the vacuum mode induced
by loss into the quantum channel, respectively. Besides
that, extra thermal noises barrier are considered, which
acts on each input mode. The influence of thermal noises
can be read as

∆2xi,n = (2n+ 1)∆2xi, (2)

where n represent the initial thermal photon number of
the noises barrier.
Method- The criterion for multipartite steering is based
on an accuracy of the inferred variances of a linear com-
bination of the quadrature components measured locally
on each party. To verify whether one given mode can
be steered by the remaining N − 1 parties or not, we
assume that only the subsystem being steered is con-
strained to be a quantum state, i.e., whose x1 and p1
satisfy the Heisenberg uncertainty relation, while all the
remainingN−1 subsystems are not assumed to arise from
a local quantum state so that there is no constraint for
the variances of their local states [15]. By collaborating
all outputs from their local measurements, the remain-
ing N − 1 parties try to infer the values of the steered
mode’s quadratures, which can be written as a linear
combination of their measurement outcomes

∑N−1
j=1 gjxj

and
∑N−1
j=1 hjpj . The inferred variance of the steered

mode are given by

∆2
infx1|N−1 = ∆2

x1 − N−1∑
j=1

gjxj

 ,

∆2
infp1|N−1 = ∆2

p1 − N−1∑
j=1

hjpj

 . (3)

Here, the subscriptN−1 means the total number of steer-
ing modes. Then we can conclude that the first mode can
be steered by the group of N − 1 modes, if

EPR1|N−1 = ∆2
infx1|N−1∆2

infp1|N−1 ≥ 1 (4)

can be violated. The inferred variance can be optimized
by the gain factors gj and hj .
Results- First, we give the general expression of the in-
ferred variance ∆2

infx1|N−1 for the one arm structure.
Here we set the variances of the input states from the
third to last equal with the second mode, and the trans-
mission efficiency of the first output state is η1, while
other modes are η2.

∆2
infx

one
1|N−1 =

1

N
(
√
η1 −

√
η2gN +

√
η2g)

2
(2n+ 1)e2 r1

+
N − 1

N
(
√
η1 + g

√
η2)

2
(2n+ 1)e−2 r1

− η1 + g2(N − 1)(1− η2) + 1,

when setting the squeezing level of all input states equal.
We were able to use the same gain factors for each steer-
ing mode, as all the output modes are equivalent. The
inferred error can then be optimized by

g = −
4
√
η1η2 sinh (2 r) (2n+ 1) (N − 1)

N
[
2 (N − 1) (η2 − 1)− 2 η2 e−2 r (2n+1) (N−1) (N e4 r−e4 r+1)

N

] .
Similarly, we can get the expression of ∆2

infp
one
1|N−1.

For the two arm structure, the expressions of in-
ferred variance have two cases, which depend on
the total number of modes is even or odd. When
the total number of modes N is even, we have

∆2
infx

two,even
1|N−1 = (2n+ 1) /N

{
e2 r1

[
√
η2 g1

(
N

2
− 1

)
−√η1 +

N
√
η2 g2

2

]2
+ e2 r2 (N − 2) (

√
η2 g1 +

√
η1)

2
]

+ e−2 r1

[
√
η1 −

√
η2 g1 (N − 2)

2
+
N
√
η2 g2

2

]2}
−
(
N g1

2

2
+

(
N

2
− 1

)
g2

2

)
(η2 − 1)− η1 + 1 (5)

and for the odd case, we have

∆2
infx

two,odd
1|N−1 = (2n+ 1) (N + 1)−1

{
e2 r2 (N − 1) (

√
η2 g1 +

√
η1)

2

+ e2 r1 N−1(N − 1)−1
[√

η2 g1 (N − 1)
2
/2−√η1 (N − 1) +

√
η2 g2 (N − 1) (N + 1) /2

]2}
+ (2n+ 1) e−2 r1(2N)−1

[
2
√
η1 −

√
η2 g1 (N − 1) +

√
η2 g2 (N − 1)

]2
− η1 −

(N − 1) (η2 − 1)
(
g1

2 + g2
2
)

2
+ 1. (6)
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Figure 3: (a)EPR steering parameter versus the trans-
mission efficiency. In this case, the squeezing level is set
to r = 0.8 and no thermal noise. (b) EPR steering pa-
rameter versus the thermal noise. Now the transmission
efficiency is assumed to be ideal.

Similarly, we can get the expression of ∆2
infp

two
1|N−1. The

expressions for g1 and g2 are too long and are therefore
not being displayed here. For simplification it is further
assumed that η1 = η2 = η and r1 = r2 = r. We find that
the properties of multipartite steering are independent on
the structure of optical networks as long as their inferred
variances are optimized (also independent from wether N
is even or odd), which means EPRone

1|N−1 = EPRtwo
1|N−1.

We further show the robustness against imperfect trans-
mission as well as thermal noise involved in the input
states, as shown in Fig. 3. Given perfect efficiency, we
find the thresholds of thermal noise to lose EPR steering
to be:

ntr =
e−2 r

[√
(N e4 r − e4 r + 1) (N + e4 r − 1)−N e2 r

]
2N

.

(7)
Analytical solutions for thresholds of efficiencies can also
be obtained. The expressions for both systems are the
same. However, the terms are too long to show simply.
QSS application- A (l,m) quantum secret sharing (QSS)
scheme enables a dealer to split a secret into m secrets,
distributing it to m players. Then at least l < m players
are required to cooperate together to recover the secret
of the dealer. The monogamy of EPR steering [16] states
that if a party A can steer party B, then no other dis-
tinctive party C can steer B. This is a nice framework for

Secret Sharing. A secured keyrate for such a scheme can
be calculated by the Devetak-Winter-formula. In [17, 18],
the authors showed that a secured keyrate is related to
collective steerability of the system. We are currently
investigating up to which number of participants collec-
tive steering is possible based on the above linear optical
network.
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Abstract. Modelling stochastic processes is a crucial element in the study and understand-
ing of the quantitative sciences. Quantum models have shown to compress the amount of
information contained in these processes beyond classical limits. They are constructed based
on prior knowledge of their optimal classical counterparts. We introduce an inference pro-
tocol that bypasses the requirement of knowing the optimal classical models to estimate the
memory required for modelling of stochastic processes. Structural complexity is discontinuous
with statistical fluctuations. Unlike optimal classical models, the inference protocol is robust
to these statistical fluctuations.

Keywords: Quantum modelling, stochastic processes, model inference, quantum advantage,
structural complexity, quantum information, quantum memory.

Complex, stochastic processes underpin quanti-
tative science. It is therefore of paramount im-
portance to study and understand the behaviour
of such processes for the crucial twin purposes of
modelling and prediction. These tasks are typ-
ically resource-intensive, motivating the need for
methods that ameliorate these requirements. A
promising recent development to this end [1–3, 7–
12] , using a cross-disciplinary blend of tools from
quantum and complexity science, has highlighted
that quantum simulators can operate with much
smaller memories than the minimal possible clas-
sical models [13–15] , while providing equally ac-
curate predictions.

This information compression bears both funda-
mental and applied consequences. On the applied
side the benefits are immediately apparent – we
can use quantum technologies to construct simula-
tors of complex stochastic processes that function
with (in some cases drastically [2, 4, 7, 8, 10, 11])
reduced memory requirements relative to optimal
classical counterparts. Within complexity science,
the minimal amount of information that must be
stored about the past of a process to replicate its
future is considered to be a measure of structure in
the process, called the statistical complexity [13–
15] . When one considers this minimisation to
also encompass quantum models the reduction has
a profound effect on our perception of structure,
fundamentally altering whether or not a process
should be considered complex [5, 6].

In this work [16], we show that the quan-
tum analogue of statistical complexity is robust
to perturbations to the process, and is hence a
more stable measure of structure than the clas-

∗hosh0021@e.ntu.edu.sg
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sical measure, which can change discontinuously
under infinitesimal variations to a process’ under-
lying probability distribution. This allows us to
introduce a protocol for estimating the quantum
measure of structure in a stochastic process di-
rectly from a time-series formed from observations
of the process. Previously, this same task was
performed by first inferring the minimal classical
model and then quantising, thus inheriting errors
introduced by certain measures needed to miti-
gate the issues associated with a non-smoothly-
varying classical statistical complexity – our pro-
tocol avoids the need to suffer such drawbacks.
This forms a key step in the application of these
quantum-enhanced models to understand complex
stochastic processes, and further, is a crucial first
step towards inferring such models from raw data.
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Abstract. In this paper, we consider the minimum error discrimination of two quantum states, where the
optimal strategy is tolerant to errors in the prior probability. In general, optimal measurements and guessing
probability in minimum error discrimination depend on prior probabilities and different prior probabilities
for the quantum states may require the change of optimal measurement. However, an ensemble composed of
certain quantum states preserves optimal measurement even if minor errors occur in the prior probability.
In this work, we study the conditions that the prior probability error tolerant ensembles satisfy. In addition,
we investigate which kind of quantum state satisfy the condition.

Keywords: prior probability, error tolerant, minimum error discrimination

1 Introduction

Quantum state discrimination is an essential process in
quantum information processing and quantum computa-
tion. It is a process, where by measurement one decodes
classical information encoded in quantum states[1–5]. In
quantum theory, perfect distinguishability of states de-
pends on orthogonality between quantum states and the
information encoded in non-orthogonal quantum states
can not always be perfectly decoded. Therefore, vari-
ous strategies are used[2–5], depending on whether in-
conclusive results are allowed or not. Minimum error
discrimination[1] is a strategy which can not gurantee
the correctness of the measurement results, but maxi-
mizes the probability of satisfying the correctness on av-
erage. This strategy does not allow inconclusive results.
Unambiguous discrimination[6–10], on the other hand,
has a result that can gurantee correctness, and its opti-
mal strategy is maximizing the probability of results that
can ensure correctness. This strategy allows inconclusive
results, in order to produce results that gurantee cor-
rectness. As another strategy, there are various strategies
such as maximum confidence[11] or discrimination with
fixed rate of inconclusive results[12–15].

Quantum state discrimination[1–5] is described as fol-
lows. The quantum state in which a sender called Alice
encodes the classical information x ∈ {1, 2, · · · , N} is
described by density operator ρx. The measurement of
the receiver called Bob, which is a decoder performing
the decoding, is given by POVM {My}Ny=1. Bob knows
the frequency of quantum state that Alice sends, which
is called prior probability. In quantum state discrimina-
tion, Bob discriminates the quantum states of the en-
semble {qx, ρx}Nx=1 using his strategy. Here, the subspace
of Hilbert space used to describe the density operator or
POVM satisfies the condition that the statistical mixture
of the ensemble is full rank. This eliminates the trivial
degree of freedom of the optimal solution.

∗mslab.k@gmail.com
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In the minimum error discrimination(MD), Bob per-
forms a measurement strategy that maximizes the correct
probability. The maximum value of the correct probabil-
ity that can be reached by Bob’s measurement is called
the guessing probability[5, 16, 17]. And, in general, the
optimal measurement that provides a guessing probabil-
ity is not unique. The general conditions under which op-
timal measurements are unique are not known. However,
optimal measurement is known in the case of two states
MD[1] or three or four qubits[16, 17]. For two quantum
states, the difference between the prior probabilities mul-
tiplied by the density operator must be a full rank. Be-
cause the operator’s kernel is a subspace that provides de-
grees of freedom in optimal measurements. The optimal
measurement in three or four qubits is also determined by
the geometry of the weighed vector corresponding to the
product of the prior probability and the quantum states.
The number of possible measurements is also determined
by the geometry. It should be noted that the geometry
is easily modified to a change in the prior probability, so
that the optimal measurement is sensitive to prior prob-
abilities. Because the optimal measurement easily loses
optimality even for a small change of the prior probabil-
ity, one needs to understand the correct probability as
a function of the prior probability. And one should un-
derstand the behavior of the measurement when an error
occurs in the prior probability.

We consider the MD as a two-person, zero-sum game
in which the correct probability is determined by prior
probability and measurement[18–20]. The optimal strat-
egy of this game is always a minimax strategy[19]. The
Minimax strategy is an ordered pair consisting of Al-
ice and Bob’s optimal strategy[21]. Here, Alice’s optimal
strategy is to choose the prior probability which min-
imizes the guessing probability obtained from the MD
performed by Bob, and Bob’s optimal strategy is to select
the measurement which can obtain the guessing probabil-
ity regardless of Alice’s choice of the prior probability[19].
In particular, according to the necessary and sufficient
conditions[18, 19] that the minimax strategy should sat-
isfy, the prior probabilities that minimize the guessing
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probability share the same optimal measurement and
guessing probability.

The distribution of the prior probability, which is the
probability distribution of the population, determines the
frequency with which the quantum states are prepared.
However, the frequency of the quantum states actually
prepared in finite number of experiments assuming i.i.d
may not agree with the prior probability. When the sam-
ple size N is large enough, its frequency is ε-convergent
in the distribution of prior probabilities. However, the
prior probability is only a theoretical frequency of occur-
rence assuming infinite experiments. Therefore, even if N
is large enough, the correct probability obtained by the
optimal measurement corresponding to the prior proba-
bility differs from the optimal value. This is because the
frequency of occurrence is close to ε in the prior proba-
bility distribution, but not the prior probability.

In this paper, we investigate the quantum states in
which the optimal measurement and the guessing prob-
ability ofε -convergent prior probability are identical to
those of the prior probability when the occurrence fre-
quency is ε -convergent in the prior probability. Because
the trivial example of these quantum states occurs when
the states of the ensemble are orthogonal to each other,
we can see that those quantum states exist in all dimen-
sions. So the states we are interested in are the quantum
states which are not orthogonal but satisfy this condi-
tion. A necessary condition of these quantum states is
to have the same guessing probability at different prior
probabilities of the quantum states. We show that in
a two-state MD which can be considered as two-person
zero-sum game, a pair of prior probabilities and optimal
measurement is a quantum minimax strategy if differ-
ent prior probabilities can have the same optimal mea-
surement while providing the same guessing probability.
The condition to have the same optimal measurement
and guessing probability in ε-convergent probability of
occurrence is expressed using quantum minimax strat-
egy. This allows us to determine whether the ensemble is
a prior probability error tolerant ensemble when we find
one minimax strategy in 2 quantum states MDs.

2 Results

First, we provide necessary and sufficient conditions
that a probability distribution that is ε-convergent in
a prior probability exists while sharing the same opti-
mal measurement and guessing probability with the prior
probability. Further, we can find the following lemma
1 from quantum minimax theorem and the necessary
and sufficient conditions for minimax strategy. Here, the
quantum minimax theorem and the condition provide the
existence of the measurement.

Lemma 1 When MD is performed in given prior prob-
ability, iff an optimal measurement {Mx}2x=1 satisfies
tr(ρM) = tr(ρM), one gets minimum guessing prob-
ability.

Let us note that lemma 1 tells us that the prior proba-
bilities that provide the minimum value of guessing prob-

ability share the same optimal strategy with the same
guessing probability, but do not tell the opposite. There-
fore, we can not be sure that all points sharing the same
guessing probability and optimal measurement provide
the minimum value of guessing probability. However, the
lemma below shows that the inverse is hold for MD of
two quantum states.

Lemma 2 The quantum ensembles of S1 and S2 are
given as {px, ρx}2x=1 and {qx, ρx}2x=1, respectively, where
p1 6= q1. Suppose that in minimum error discrimination

of quantum ensemble Sx the guessing probability is p
(x)
guess

and the minimum value of guessing probability is p?guess.

Then, when p
(1)
guess = p

(2)
guess, if there exists an measure-

ment that can perform minimum error discrimination on
two quantum ensembles S1 and S2 simultaneously, one

can obtain p
(1)
guess = p?guess.

On the other hand, the set of prior probability that
provide the minimum value of guessing probability is a
convex set. It is because the guessing probability is a
convex function in the prior probability domain and the
sublevel set is a convex set. Thus, if (q,M) is a minimax
strategy, then the conditions for existence of ε-convergent
prior probabilities sharing the optimal measurement and
the same guessing probability are given as:

Proposition 3 The prior probability providing mini-
mum of guessing probability is not unique if and only if
{Mx}2x=1 satisfies following conditions:

1. [ρx,M1] = 0 ∀x ∈ {1, 2},

2. For some x ∈ {1, 2}, every |v〉 ∈ Supp(Mx) satisfies
〈v| ρ1 |v〉 : 〈v| ρ2 |v〉 6= 1− q : q.

where [A,B] = AB −BA.

One of the requirements is that quantum states and
measurements can be simultaneously diagonalized. How-
ever, since commutation relations are not generally tran-
sitive, we can not be sure that the two quantum states can
be simultaneously diagonalized. In the case of a qubit,
however, the two states are simultaneously diagonalized
because the commutation relations of the two operators
imply that the Bloch vector is parallel.

Here, we studied quantum ensembles which is error tol-
erant in prior probability to MD of two quantum states.
An optimal strategy in a prior probability can not be
optimal in different occurrence probability and guessing
probability can be seen as a convex function in prior prob-
ability domain. We showed that the error-tolerant ensem-
bles have ε-convergent occurrence distributions in prior
probability distribution while sharing the optimal strat-
egy and vice versa. Further, we expressed the condition,
using a minimax strategy. In addition, we investigated
which kind of quantum state can satisfy the condition.
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Understanding Entanglement Survival in Hybrid Quantum System
composed of Two-level Atom and Superconducting Circuit

in Noisy Environment
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Abstract. In this work, we investigate the dynamics of hybrid system in noisy environment. The hybrid
system consists of two-level atom and charge qubit of superconducting circuit, When the charge qubit is
under a noisy environment such as relaxation and dephasing noise, we study the entanglement behavior
of the hybrid system. We show that when the decoherence rate is slower than the sweeping rate, the
entanglement of hybrid state is conserved. Further, we can see that if the decoherence rate is faster than
the sweeping rate, the entanglement of hybrid state is diminished. Our result implies that by controling
the noise rate one can construct CNOT gate, from the hybrid system in noisy environment.

Keywords: Hybrid, Qubit, Superconducting circuit, Entanglement, Open quantum system

1 Introduction

Superconducting qubits not only perform quantum
computing efficiently, but also have good scalability.
Therefore, superconducting qubits is very useful for im-
plementing quantum computers in the real world[1].
However, relaxation and dephasing time of superconduct-
ing qubits are too short[2, 3]. It means that qubits con-
sist of superconducting circuits cannot be guaranteed for
their longevity. Many researchers have done research for
devising hybrid systems composed of superconducting
circuits and two-level atoms[4, 5, 6, 7, 8, 9, 10, 11, 12, 13].
That is because two-level atom has been believed to
strengthen superconducting circuit against noise.

Recently, D. Yu et al.[14] proposed a hybrid system
composed of a two-level atom and a charge qubit, where
an alkali atom and a capacitor of charge qubit interact to
each other through electric field. D. Yu. et. al.[14] showed
that this system can perform CNOT operation. Further-
more, this system can generate entanglement. However,
Ref.[14] considered charge qubit in ideal case only.

In this research, we investigate dynamics of a noisy
hybrid system composed of a charge qubit and a two-
level atom. Especially, we investigate entanglement in
this noisy hybrid system(see Fig.1). If entanglement be-
tween two qubits is conserved, this system may perform
CNOT operation very well. We assume that both relax-
ation and dephasing noise simultaneously occur in the
charge qubit. We propose a numerical condition that hy-
brid system can preserves entanglement under two noises.
If relaxation and dephasing rate is slower than sweeping
rate, entanglement is conserved. If relaxation and dephas-
ing rate is faster than sweeping rate, However, entangle-
ment is diminished. Especially, if two rates are too fast,
hybrid system experiences entanglement sudden death.
This result implies that this hybrid system can perform
CNOT operation under two noises. Since the ability to
perform CNOT operation is included in DiVincenzo’s cri-
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Figure 1: Two-qubit system consists of a noisy charge
qubit and an atom qubit. Here, γrelax is relaxation rate
and γφ is dephasing rate. If two decoherence rates are
slower than 107s−1, this system is robust under this two
noises. Since γrelax = 2π×0.03MHz, γφ = 2π×0.05MHz
in the real world[20], this hybrid system can be performed
in realistic situation.

teria, This result is important for realistic quantum com-
puting.

This extended abstract consists of the following sec-
tions. In Section 2, we introduce a charge qubit atom hy-
brid system. In Section 3, we consider a Lindblad master
equation of relaxation and dephasing noise. In Section
4, we analyze entanglement dynamics of hybrid system
under dephasing and relaxation noise. In Section 5, we
conclude this extended abstract.

2 Ideal Hybrid system

Ref.[14] proposed a two-qubit system composed of a
superconducting circuit and a two-level atom(see Fig.1).
Here, 87Rb atom is considered as a two-level atom. The
Hamiltonian Ĥ of this hybrid system is expressed as

Ĥ = Ĥc + Ĥa. (1)
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Here, Ĥc is a charge qubit Hamiltonian and Ĥa is an atom
Hamiltonian. Since a two-level atom in inside of a gate
capacitor, two-level atom and charge qubit interact to
each other through electric field of gate capacitor. There-
fore, Ĥc(Ĥa) from Eq.(1) affect to two-level atom(charge
qubit).

Quantum state of this system is composed of prod-
uct bases {|n〉⊗ |u〉 |n = 0, 1 u = g, e}. Here, |g〉(|e〉) is a
ground state(excited state) of two-level atom and n is the
number of Cooper-pairs in the island. Since two-qubit is
considered, n = 0, 1 are permitted only. An eigenstate of
Eq.(1) can be controlled by adiabatically changing gate
voltage(Vg). Especially, when Raman process is properly
performed, this hybrid model can perform CNOT opera-
tion efficiently. Therefore, this hybrid model can satisfies
DiVincenzo’s criteria[15] in ideal case.

3 Noise in Charge Qubit

Since a Josephson junction in charge qubit experiences
various noise, we should consider a charge qubit under the
noise[16, 17, 18]. We assume that relaxation and dephas-
ing noise occurs in a charge qubit[19]. On the other hand,
we assume that noise does not occur in a two-level atom.
Since atom qubit is much robuster than charge qubit,
this assumption is valid in realistic condition. Approxi-
mating macroscopic environment interacting with charge
qubit as Markovian, time evolution of entire system is de-
scribed as a following Lindblad master equation[20, 21]:

∂ρ̂

∂t
= − i

~

[
Ĥ, ρ̂

]
+ γrelaxD

[
σ̂
(c)
−

]
ρ̂+ γφD

[
σ̂(c)
z

]
ρ̂. (2)

Here, ρ̂ is a density operator of composite state between
charge qubit and two-level atom, γrelax is relaxation rate,
γφ is dephasing rate. In Eq.(2), D is Lindblad superop-
erator:

D
[
K̂
]
ρ̂ = K̂ρ̂K̂† − 1

2
K̂†K̂ρ̂− 1

2
ρ̂K̂†K̂. (3)

In general, noise in charge qubit may decreases en-
tanglement. Since entanglement is a resource of various
quantum computers, we should investigate whether the
hybrid system preserves entanglement under the noise.

4 Entanglement Survival

We analyze entanglement of hybrid system composed
of noisy charge qubit and two-level atom. We consider
concurrence[22] as an entanglement measure. In order to
controll the quantum stste of hybrid system, we sweep
offset charge number Ng0(∝ Vg0) of charge qubit from
0 to 1, where sweeping rate is considered as 1 ns−1(Fig.
2)[22]. This sweeping rate is suitable for performing two-
qubit gate operation[14].

Here, we investigate concurrence under the relaxation
and dephasing noise. If two decoherence rates are slower
than 107 s−1, concurrence is conserved(Fig.2a). If deco-
herence rate is faster than 107, However, concurrence is
diminished. Especially, if decoherence rate is too fast,
concurrence becomes zero in certain region of time. This

phenomenon is so called entanglement sudden death(Fig.
2b)[23]. Two decoherence rates of charge qubit is known
as γrelax = 2π × 0.03 MHz and γφ = 2π × 0.05 MHz.
This sweeping rate is almost 10,000 times slower than
107. Therefore, the hybrid system is robust under two
noises.

5 Conclusion and Future Work

We investigated a hybrid system composed of a noisy
charge qubit and 87Rb atom. Here, we consider relax-
ation and dephasing noise. We calculate concurrence to
measure entanglement between two qubits. As a result,
we display that entanglement is conserved if decoherence
and sweeping rates are very slow. This implies that the
hybrid system in robust under relaxation and dephasing
noise.

In future, we investigate how much noisy hybrid system
can perform CNOT operation. Furthermore, we consider
the case that 1/f noise occurs in superconducting circult.
Since 1/f noise is negatively critical for charge qubit[24,
25], investigation under the 1/f noise is necessary.

Acknowledgement

We thank Hyunseong Jang for his insightful discus-
sion. This work is supported by the Basic Science Re-
search Program through the National Research Foun-
dation of Korea funded by the Ministry of Education,
Science and Technology (NRF2015R1D1A1A01060795 &
NRF2018R1D1A1B07049420).

References

[1] D. Castelvecchi. Quantum computers ready to leap
out of the lab in 2017. Nature. p. 9-10, 2017.

[2] Y. Makhlin, G. Schön, and A. Shnirman. Quantum-
state engineering with Josephson-junction devices
Rev. Mod. Phys. 73, 357, 2001.

[3] Z.-L. Xiang, S. Ashhab, J. Q. You, and F. Nori. Hy-
brid quantum circuits: Superconducting circuits in-
teracting with other quantum systems Rev. Mod.
Phys. 85, 623, 2013.

[4] T. Nirrengarten, A. Qarry, C. Roux, A. Em-
mert, G. Nogues, M. Brune, J.-M. Raimond, and
S. Haroche. Realization of a Superconducting Atom
Chip Phys. Rev. Lett. 97, 200405, 2006.

[5] Y. Colombe, T. Steinmetz, G. Dubois, F. Linke,
D. Hunger, and J. Reichel. Strong atom–field cou-
pling for Bose–Einstein condensates in an optical cav-
ity on a chip Nature(London) 450, 272, 2007.

[6] F. Shimizu, C. Hufnagel, and T. Mukai. Stable Neu-
tral Atom Trap with a Thin Superconducting Disc
Phys. Rev. Lett. 103, 253002, 2009.

[7] Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques,
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Comparison of quantum reading in non-symmetric loss
using maximum and non-maximum quasi-Bell states
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Abstract. Quantum reading is one of application protocols of entanglement. This protocol uses en-
tanglement for reading of a digital memory such as a CD or DVD. In our previous study, we assumed
real settings and investigated the effect of non-symmetric loss on this protocol using a quasi-Bell state.
However, we did not investigate the effect only when using a maximum quasi-Bell state. In this work, we
compare the effects using maximum and non-maximum quasi-Bell states.

Keywords: entanglement, quantum reading, quasi-Bell state

1 Introduction

Entanglement is an important resource used and ex-
ploited in various quantum protocols[1]. There are pro-
tocols such as quantum teleportation[2], quantum phase
estimation[3], and quantum reading[4]. In these pro-
tocols, one attempts to use the entangled state that
has maximum entanglement (the strongest correlation).
Among the entangled states, one may consider quasi-
Bell states. Even though these states are constructed
using nonorthogonal states, it is known that a quasi-Bell
state with maximum entanglement (maximum quasi-Bell
state) exists[5, 6].
Quantum reading is the protocol that uses entangle-

ment for reading a bit stored in digital memory. By
using entanglement, it was shown that the data rate
improves[4]. Moreover, in noiseless environments, error-
free reading is possible by using a maximum quasi-Bell
state[7]. In [8], Kato and Hirota considered a situation
where mode B was sent to memory whereas mode A was
inputted to a receiver, and both were equally attenuated.
Furthermore, we considered a situation where mode B
was only attenuated[9].
In quantum teleportation and quantum phase estima-

tion, quasi-Bell states that have non-maximum entan-
glement (non-maximum quasi-Bell states) exhibit better
performance than maximum quasi-Bell states[10, 11]. It
is expected that performances of these quasi-Bell states
differ for each quantum protocol[12]. In our work[9], we
investigated an effect of non-symmetric loss on quantum
reading using a maximum quasi-Bell state. However, we
did not investigate the effect using a non-maximum quasi-
Bell state. In this work, we compare the effects using
maximum and non-maximum quasi-Bell states.

2 Quasi-bell state by coherent states

An entangled state constructed using a nonorthogonal
set of quantum states is called a quasi-Bell state[5]. Con-
sider two modes labeled A and B, described by coherent

∗im181001@cis.aichi-pu.ac.jp
†id191002@cis.aichi-pu.ac.jp
‡usuda@ist.aichi-pu.ac.jp

states denoted |α⟩ and |β⟩, respectively. In this paper,
using these states, the quasi-Bell states are

|Ψ1⟩AB = h1(|α⟩A |β⟩B + |−α⟩A |−β⟩B), (1)

|Ψ2⟩AB = h2(|α⟩A |β⟩B − |−α⟩A |−β⟩B), (2)

|Ψ3⟩AB = h3(|α⟩A |−β⟩B + |−α⟩A |β⟩B), (3)

|Ψ4⟩AB = h4(|α⟩A |−β⟩B − |−α⟩A |β⟩B), (4)

where

h1 = h3 = 1/
√
2(1 + κAκB), (5)

h2 = h4 = 1/
√
2(1− κAκB), (6)

κA = ⟨α| − α⟩ = ⟨−α|α⟩ = exp(−2 |α|2), (7)

κB = ⟨β| − β⟩ = ⟨−β|β⟩ = exp(−2 |β|2), (8)

and α and β are amplitudes of the coherent states of
modes A and B, respectively. The amplitudes are as-
sumed to be non-negative real numbers. If α = β,
then |Ψ2⟩ and |Ψ4⟩ have maximum entanglement and are
orthogonal[5].

3 Model of quantum reading with non-
symmetric loss

3.1 Quantum reading using quasi-Bell states

Quantum reading using quasi-Bell states[7] is per-
formed as follows. We assume that “0” or “1” is recorded
on a memory cell. Here, we explain this protocol using
|Ψ2⟩AB in Eq. (2).

1. Mode A of |Ψ2⟩AB is sent to a receiver.

2. Mode B is sent to the memory cell. If “0” is reg-
istered on the cell, the light is reflected with the
same phase. Alternatively, if “1” is registered on
the cell, the phase of the light is shifted by π. At
the receiver, the modes A and B are inputs. When
“0”(“1”) is registered on the cell, |Ψ2⟩AB (|Ψ4⟩AB)
is inputted to the receiver.

3. An optimum quantum measurement is performed
at the receiver. It is possible to read bits using the
orthogonality between |Ψ2⟩AB and |Ψ4⟩AB.
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We consider the model with non-symmetric loss.
Specifically, only mode B of the quasi-Bell state |Ψ2⟩AB is
attenuated. In quantum reading, modes A and B reach
the receiver via different paths. In particular, mode B
reaches the receiver via a longer path and is reflected on
the cell. Thus, mode B is exposed to a stricter environ-
ment than that of mode A.

3.2 Received quantum state using quasi-Bell
states

Let us consider the received quantum state using the
quasi-Bell state |Ψi⟩AB (i = 1, 2) when the information
recorded on a memory cell is “0”. In sending to the cell,
mode B is inputted in an attenuated channel. The loss
incurred by this channel is expressed by the interaction
with a vacuum field as an environment mode. Let η(0 ≤
η ≤ 1) be its energy transmissivity. Then the interaction
between mode B and the environment mode E is

ÛBE |β⟩B |0⟩E = |√ηβ⟩B |
√
1− ηβ⟩E , (9)

where ÛBE is a unitary operator corresponding to the in-
teraction. Therefore, when we consider the entanglement
between modes A and B, the composite system of modes
A, B, and E is

|Ψi⟩ABE = (ÎA ⊗ ÛBE)(|Ψi⟩AB ⊗ |0⟩E), (10)

where ÎA is the identity operator of mode A. The received

quantum state ρ
(A⊗B)
0 is obtained performing the partial

trace over mode E for |Ψi⟩ABE ⟨Ψi|.

ρ
(A⊗B)
0 = Tr E |Ψi⟩ABE ⟨Ψi| . (11)

Consider the received quantum state when the infor-
mation recorded on the cell is “1”. The light of mode B
is attenuated and reflected and is phase shifted by π.
The phase shift for mode B is

U(θ) |β⟩ = |βe−iθ⟩ , (12)

where U(θ) = e−iθâ†â, â is the photon annihilation op-
erator, and i =

√
−1 is the imaginary unit. When the

phase of mode B of |Ψi⟩AB shifts by π, |Ψi⟩AB changes
into |Ψi+2⟩AB. For example, when i = 2,

(ÎA ⊗ U(π)B) |Ψ2⟩AB = h2(|α⟩A |−β⟩B − |−α⟩A |β⟩B)
= |Ψ4⟩AB . (13)

The energy loss for mode B is expressed in the
same way as if the information recorded on the cell is
“0”. Therefore, when we consider entanglement between
modes A and B, the composite system among modes A,
B, and E is

|Ψi+2⟩ABE = (ÎA ⊗ ÛBE)(|Ψi+2⟩AB ⊗ |0⟩E). (14)

The received quantum state ρ
(A⊗B)
1 is obtained

by performing the partial trace over mode E for
|Ψi+2⟩ABE ⟨Ψi+2| and described by

ρ
(A⊗B)
1 = Tr E |Ψi+2⟩ABE ⟨Ψi+2| . (15)

4 Property of error probability

4.1 Analytical expression of error probability

The error probability of an optimum quantum
measurement[13] for quantum reading is calculated us-

ing the positive eigenvalues λ’s of ρ
(A⊗B)
0 − ρ

(A⊗B)
1 . The

error probability is

Pe =
1

2

(
1−

∑
λ>0

λ

)
. (16)

We express quasi-Bell states by matrices to calcu-

late eigenvalues of ρ
(A⊗B)
0 − ρ

(A⊗B)
1 . To express

quasi-Bell states by matrices, we use the orthonor-
mal basis {|ω0⟩ , |ω1⟩} shown in [14]. Here, |ω0⟩
and |ω1⟩ are measurement states for the square-root
measurement(SRM)[15]. Since SRM for |α⟩ and |−α⟩
is the optimum quantum measurement that minimizes
the average error probability, using the measurement
states, |α⟩ and |−α⟩ are written as two-dimensional
vectors[16, 17]. |√ηβ⟩ and |−√

ηβ⟩ are expressed by two-
dimensional vectors in the same way. Using these vectors,

we can easily obtain eigenvalues of ρ
(A⊗B)
0 − ρ

(A⊗B)
1 .

From these eigenvalues, the error probability Pmax
e us-

ing the maximum quasi-Bell state is

Pmax
e =

1− κAκB −
√
(1− κ2A)(1− κ′2B )

2(1− κAκB)
, (17)

and the error probability P non−max
e using the non-

maximum quasi-Bell state is

P non−max
e =

1 + κAκB −
√
(1− κ2A)(1− κ′2B )

2(1 + κAκB)
. (18)

4.2 Comparison of properties using maximum
and non-maximum quasi-Bell states

Figure. 1 shows the error probability when the ampli-
tude of mode B is one and the transmissivity is 0.9; let
the amplitude of mode A change from 0 to 2. The blue
and red lines show the error probabilities using the non-
maximum quasi-Bell state |Ψ1⟩AB and using the max-
imum quasi-Bell state |Ψ2⟩AB, respectively. From this
figure, in quantum reading with non-symmetric loss, the
error probability using the maximum quasi-Bell state is
lower than that using the non-maximum quasi-Bell state.
Moreover, the more the amplitude of mode A increase,
the more difference of two error probabilities decrease.

We confirm these things analytically. First, we in-
vestigate that P non−max

e is greater than Pmax
e . From

0 ≤ κA, κB, κ
′
B ≤ 1, P non−max

e − Pmax
e is

P non−max
e − Pmax

e =
κAκB

√
(1− κ2A)(1− κ′2B )

2(1− κ2Aκ
2
B)

> 0. (19)

Thus, P non−max
e is greater than Pmax

e .
Next, we calculate limα→∞ P non−max

e and
limα→∞ Pmax

e . Because κA goes to 0 when α goes
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Figure 1: Error probabilities with respect to the ampli-
tude α using |ψ1⟩ and |ψ2⟩ where the amplitude β = 1
and transmissivity η = 0.9.

to infinity, limα→∞ P non−max
e and limα→∞ Pmax

e are

lim
α→∞

Pmax
e = lim

α→∞
P non−max
e =

1

2

(
1−

√
1− κ′2B

)
.

(20)

Therefore, the more the amplitude of mode A increase,
the more the difference decrease.

5 Conclusion

For quantum reading with non-symmetric loss, we
compared the error probabilities using the maximum
quasi-Bell state and using the non-maximum quasi-Bell
state. As a consequence, the error probability using the
maximum quasi-Bell state is lower than that using the
non-maximum quasi-Bell state, and the more the ampli-
tude of mode A increase, the more the difference of two
error probabilities decrease.
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Abstract. Traveling Salesman Problem(TSP) is problem that find the optimum cycle for visiting every
city and returning to starting city. In order to find the solution for TSP, there have been many approaches.
Recently, Srinivasan et al. (2018) discussed a quantum algorithm for TSP, using Qunatum Phase Estima-
tion(QPE). Their approach uses TSP database corresponding to every cycle and its cycle length. Even
though the optimum cycle should be found in TSP database, they could not provide the systemtic way
to construct Grover operator for it. Futhermore, they considered only a eigenvector for one cycle. In this
paper, we provide a method of finding the optimum cycle state in the superposition by running quantum
algorithm. Specially, by applying Quantum Counting Algorithm(QCA) we determine whether there is a
cycle shorter than the given length L. If a cycle shorter than L exists, by performing a Grover Search
Algorithm(GSA), we find the cycle. By considering the Symmetric 4 City TSP, we show the effectiveness
of our proposal.

Keywords: Traveling Salesman Problem,Quantum Algorithm, Quantum Counting Algorithm, Grover
Search Algorithm

1 Introduction

Traveling Salesman Problem(TSP) is a famous prob-
lem in computer science. TSP is to find a optimum cycle
where salesman travels from a starting city, visits every
city and returns to the starting city. TSP is known as a
NP-hard problem in combinatorial optimization, which
takes exponential time order for solving it. There are
many variations of TSP and solving TSP can be widely
applied to many fields. Therefore, solving TSP is impor-
tant.

The classical approach for solving TSP is divided into
two categories. The first is an approach to find an ex-
act solution such as branched and bound method[2-4].
The exact solution approach can find an optimal solu-
tion, but it needs enormous time for calculation. The
second approach is an approximate one such as heuristic
method[5-7]. The approximate approach requires a short
calculation time, but one cannot guarantee that the ob-
tained solution is optimal.

On the other hand, there have been researches for
finding a solution of TSP by using quantum physics.
Martonak et al. (2004) [8] applied quantum annealing
to solving TSP. They showed that quantum anneal-
ing may be better than simulated annealing. Bang et
al. (2012) [9] proposed quantum heuristic algorithm by
Grover Search Algorithm(GSA). However, as mentioned
earlier, one cannot guarantee that the solution obtained
by the Heuristic algorithm is optimal. Therefore, it is
important to decide whether a cycle with a given length
shorter than L exists. This is called a TSP decision prob-
lem.

Recently, Srinivasan et al. (2018) [10] discussed a
method of encoding distance between cities in a phase
corresponding to the eigenvector of the unitary matrix.
In their method one can build TSP database correspond-
ing to every cycle and its cycle length, by performing

∗mslab.jang@gmail.com
†mslab.k@gmail.com
‡yyhkwon@hotmail.com

Quantum Phase Evaluation(QPE). The quantum state
to optimum cycle can be found by Quantum Algorithm
for finding minimum. In order to perform Quantum Al-
gorithm for finding minimum, Grover operator should be
constructed, but they did not discuss the method to find
Grover operator. Further, even though one should con-
sider superposed states for every cycle, they considered
only an eigenvector for one city and evaluated a cycle
length corresponding to the cycle.

In this paper, we explain the method to construct
Grover operator and propose the way to find optimum
cycle in TSP database, by considering Quantum Count-
ing Algorithm(QCA). Even though Quantum Algorithm
for finding minimum depends on GSA which does not
know the rotation angle of Grover operator, by QCA we
can find the rotation angle of Grover operator. Because
the rotation angle is related with the number of cycle
which is shorter than the given length, finding the rota-
tion angle is important in solving TSP decision problem.

As an example, we consider symmetric 4 City TSP.
By preparing superposed quantum states, we build TSP
database. By GSA, we can find the optimum cycle for
symmetric 4 City TSP. It should be noted that our pro-
posal can be applied not only to the case of asymmetric
distance between cities but also to the case of many cities.

2 Method

Let us construct the Grover operator G for a target
state corresponding to a cycle shorter than given length
L. If the rotation angle of the Grover operator G is zero,
there exists a cycle shorter than L. If the rotation angle
of the Grover operator G is not zero, there is no cycle
shorter than L. Quantum counting algorithm tells the
rotation angle θ of Grover operator G.

Here, we propose the method to solve TSP optimiza-
tion. we consider a situation where the rotation angle θ
obtained by a QCA is not zero. In other words, there
exists a cycle shorter than a given L. Because we know
the rotation angle θ of Grover operator G, we can prop-
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Table 1: The table of cycle, cycle length and eigenvector.
QPE for each eigenvector can be performed to obtain the
state corresponding to cycle length.

NO. Cycle Cycle length Eigenvector
1 0→ 1→ 2→ 3→ 0 9

8π |3012〉
2 0→ 3→ 2→ 1→ 0 9

8π |1230〉
3 0→ 1→ 3→ 2→ 0 π |2031〉
4 0→ 2→ 3→ 1→ 0 π |3012〉
5 0→ 2→ 1→ 3→ 0 7

8π |3201〉
6 0→ 3→ 1→ 2→ 0 7

8π |2310〉

erly repeat Grover operator G to maximize the weight of
the state corresponding to a cycle shorter than L. There-
for, Grover search algorithms can find a state that corre-
sponds to a cycle shorter than L.

Next, we evaluate the cycle length of the newly found
cycle with the GSA. The calculated cycle length can be
regarded as the new L. To obtain a rotation angle of θ,
we perform GSA considering new length L. If θ = is zero,
the new cycle is the optimum cycle. Otherwise, with the
GSA we find a cycle shorter than new L. We can find the
optimum cycle by repeating this process.

3 Simulation : Symmetric 4 City TSP

Let us consider symmetric 4 City TSP. We denote the
city numbers as 0, 1, 2 and 3, respectively. φxy means a
distance from city x to city y. Let us consider the follow-
ing Unitary matrix U :

U = U0 ⊗ U1 ⊗ U2 ⊗ U3

Um = eiφ0m |0〉 〈0|+ eiφ1m |1〉 〈1|+ eiφ2m |2〉 〈2|+ eiφ3m |3〉 〈3|

The phase corresponding to the eigenvector of U is the
sum of the distances between cities and some of these
phases can be cycle lengths. That is, some eigenvector of
U corresponds to a specific cycle. Further, the phase of
some eigenvector corresponds to a specific cycle length.

There are six possible cycles in the 4 city TSP. There-
fore, the number of eigenvectors becomes six. We con-
sider a situation in which the distances between cities
are symmetric to simplify the problem. In detail, the
distances between cities are given as φ01 = φ10 = π/2,
φ02 = φ20 = π/8, φ03 = φ30 = π/4, φ12 = φ21 = π/4,
φ13 = φ31 = π/4, φ23 = φ32 = π/8.

Because distances between cities are symmetric, cycle
1 and 2, cycle 3 and 4, and cycle 5 and 6 have the same
cycle length as shown in Table 1. In other words, there
are three cycles to be considered. Our simulation pre-
pares superposition state of cycle 1, cycle 3, cycle 4 and
cycle 6. This superposition include all the cycles of 4 city
symmetric TSP.

First, let us consider the following decision problem,
”Is there a cycle that is shorter than L = π?” Because
there are four total cycles and one cycle shorter than π
(cycle 6), the rotation angle θ estimated by QCA is 60◦.

Figure 1: Algorithm for finding a cycle that is shorter
than a given length of L. Through QPE, one constructs
superposition corresponding to every cycle and its cycle
length. Afterwards, the multiple controlled Z gate is ap-
plied to the cycle length state to change the sign. Then,
Inverse QPE and Diffusion operator D are applied se-
quentially. This series of processes can be considered as
Grover operator G applied to cycle state.

This means that the GSA, which performs the Grover
operator G one time as shown in Figure 1, can find the
opitmum cycle.

Even though we provide a simple example of symmetric
4 city TSP, we can see how effective our method is. The
method we propose can be consistently applied even to
asymetric TSP. Further, our proposal can be used for
solving TSP of many cities. In addition, the proposed
method may minimize costs for obtaining the optimum
solution of optimization problem that can be replaced by
a TSP.
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Abstract. Entangled states constructed from non-orthogonal quantum states have exhibited superior
performance for several application protocols. Nevertheless, the performance for each application protocol
using these states differs. However, with regard to non-orthogonal states, the performance of quantum
ghost imaging has not been considered. Quantum ghost imaging is an imaging technique that exploits
entangled states. In this work, we compare the performances when using orthogonal quantum states and
when using non-orthogonal quantum states.
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1 Introduction

As an important resource in quantum protocols[1],
entanglement is a nonlocal correlation among multiple
quantum systems; quantum states with such correlations
are called entangled states. Examples of protocols us-
ing entanglement are quantum teleportation[2], quantum
dense coding[3], and quantum ghost imaging[4]. The
Bell state, which is constructed from orthogonal quan-
tum states, is the most famous and fundamental of the
entangled states. However, there are other unique entan-
gled states; some are constructed using non-orthogonal
quantum states, and are called quasi-Bell states. Some
quasi-Bell states are comparable to Bell states under ideal
circumstances. For examples, some states achieve max-
imum entanglement although they are constructed from
non-orthogonal states[5]. Furthermore, in non-ideal cir-
cumstances such as energy attenuation, some quasi-Bell
states show more superior performance than Bell states.
For these reasons, we focus in this work on quantum

ghost imaging as the use of non-orthogonal quantum
states has yet to be considered. Moreover, we reveal the
characteristics of ghost imaging using both orthogonal
and non-orthogonal quantum states subject to attenu-
ation. In addition, we reveal the characteristics when
changing the average number of photons. Therefore, we
analyzed the fundamental characteristics using product
states to account in particular for the differences in the
orthogonal and non-orthogonal states.

2 Quantum ghost imaging

2.1 Our model of quantum ghost imaging

Ghost imaging is an imaging technique using a detector
without spatial resolution and another with spatial res-
olution. Originating with the experiment by Pittman et

∗193426007@ccmailg.meijo-u.ac.jp
†im181001@cis.aichi-pu.ac.jp
‡susami@meijo-u.ac.jp
§usuda@ist.aichi-pu.ac.jp

al.[4], various experiments and theories concerning ghost
imaging have been published.

In this work, we consider binary imaging in the form
of a slit set up on the object or in the shadow of an il-
luminated object. In a simplified setup of ghost imaging
(Fig. 1), DA represents the detector having no spatial
resolution, DB represents the detector that has spatial
resolution, S represents the object that has a slit (or just
an object), and C represents a correlator. In addition, DB

can be substituted for a detector without spatial resolu-
tion having an extremely small hole for the light-receiving
part and detecting light only in that part. For an exam-
ple of an object, Fig. 2 shows a filled M-letter, which is
an ideal imaging output.

We use DA to detect the light that transits the slit in
the object (or not obstructed when in shadow-viewing
mode; hereinafter, we assume an object with slit). How-
ever, we cannot obtain an image using only DA because
DA does not have spatial resolution and we are unable to
determine the position of the light. Similarly, we cannot
obtain an image using only DB because DB is illumi-
nated directly and the light does not transit the object.
Nevertheless, if the light illuminating the two detectors
is spatially correlated, we can determine the position of
the light using DB when the light transits the slit in the
corresponding position using DA. Hence, correlating the
output from the two detectors creates the ghost image
of the slit. Because we consider only binary imaging in
this work, the correlation means that if both of the de-
tectors are illuminated, we record a ‘1’ in that position,
otherwise, we record a ‘0’. Moreover, we consider that
there is a d × d-point lattice within the frame of Fig. 2
and a corresponding plane on DB, and we are using an
optimum quantum receiver. The specific procedure is to
repeat the following steps for all lattice points.

1. illuminating two light beams correlated spatially to
only those parts of the object with the slit and using
the detector that has spatial resolution

2. detecting the light transiting the slit on DA
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Figure 1: Schematic setup for the ghost imaging, where
DA represents the detector having no spatial resolution,
DB represents the detector that has spatial resolution, S
represents the object, and C represents a correlator.

Figure 2: Object with M-shaped hole.

3. detecting the light illuminated from the source di-
rectly at each lattice point

4. correlating the outputs from the two detectors and
recording the result for each lattice point of DB

In addition, we assume there is only an attenuation for
the imperfect factor of the system. Hereinafter, let η be
the energy transmissivity for all systems.

3 Quantum states used in this work

Let the system illuminate the lattice point (i, j) with
i, j are natural numbers, as detailed in section 2, Ai,j

Bi,j (1 ≤ i, j ≤ d). Moreover, we consider for spatially
correlated quantum states the product states

|Ψi,j⟩ = |0L⟩A1,1
|0L⟩B1,1

· · · |1L⟩Ai,j
|1L⟩Bi,j

· · · |0L⟩Ad,d
|0L⟩Bd,d

, (1)

where |0L⟩, |1L⟩ are basic quantum bits corresponding to
logical bits ‘0’ and ‘1’.
Taking the photon number state |0⟩ for which the num-

ber of photons is 0 as the logic state |0L⟩ and the photon
number state |n⟩ for which the number of photons is n
as logic state |1L⟩, we obtain the product states from the
state in Eq. (1). In this work, we utilize these states as
the orthogonal quantum states in quantum ghost imag-
ing.
On the other hand, taking the coherent state |0⟩ for

which the amplitude is 0 for |0L⟩ and coherent state
|α⟩ for which the amplitude is α for |1L⟩, we obtain the
product states from the state in Eq. (1). In this work,
we apply this quantum state as non-orthogonal quantum
states in quantum ghost imaging. In addition, it is known
that these quantum states when constructed by a non-
orthogonal quantum bit show better performance such

as resistance against attenuation than those constructed
from the orthogonal quantum states[6].

3.1 Attenuation for quantum states

We next consider instances where all systems Ai,j and
Bi,j are attenuated. However, the model for attenuation
in a single system is fundamental. For this reason, we
describe this single-system instance first. Let ρ(in) be the
quantum state before attenuation and ρ(out) be the state
attenuated with an energy transmissivity of η. We obtain

ρ(out) =
∞∑
k=0

Ek(η)ρ
(in)Ek(η)

†, (2)

where Ek(η) is the Kraus operator[8] for an energy trans-
missivity η. The right-hand side of the Eq. (2) is called
the Kraus representation[7]. The Kraus operator has ex-
pansion

Ek(η) =
∞∑

n=0

√(
n

k

)√
ηn−k(1− η)k |n− k⟩ ⟨n| . (3)

Because the quantum states used in this work are product
states of multiple systems, the quantum state that has
attenuated ρ(out) is described in an extension of Eq. (2)
by

ρ(out) =
∞∑

k1,1=0

· · ·
∞∑

kd,d=0

(Ek1,1
· · ·Ekd,d

)ρ(in)(Ek1,1
· · ·Ekd,d

)†. (4)

4 Result

We use two detectors for different purpose and it is
necessary to obtain correct output from both detectors
for ghost imaging. Therefore, if an error occurs on ei-
ther DA or DB, imaging fails. Moreover, we consider
the average error rate of ghost imaging using orthogonal
and non-orthogonal quantum states. Now, let the area
fractions of the slit part and the remainder of the whole
object be denoted ξ0 and ξ1, respectively. In this case,
we use the optimum quantum receiver constructed with
a priori probabilities |0L⟩ and |1L⟩ on DA, ξ0 and ξ1, at
the minimum error rate. Likewise, we use the optimum
quantum receiver constructed with a priori probabilities,
(d2 − 1)/d2 and 1/d2, on DB at the minimum error rate.
When using a binary quantum state signal with a pri-

ori probabilities ξ0 and ξ1, the error rate P
(opt)
e is calcu-

lated using

Pe−(opt) = ξ0 −
∑
λ+

λ+, (5)

where ρ
(out)
0 and ρ

(out)
1 are received quantum states, and

λ+ is a positive eigenvalue of ξ0ρ
(out)
0 − ξ1ρ

(out)
1 . When

using orthogonal quantum states, the error from |0⟩ to
|n⟩ does not occur because we only consider attenua-
tion. Therefore, when light illuminates the remaining
part rather than the slit part of the object, errors do not
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Figure 3: Error probability of ghost imaging by using the
orthogonal and non-orthogonal quantum states, where
NS = 5, ξA1 = 0.8.
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Figure 4: Ratio of error probabilities with the orthogonal
to non-orthogonal quantum states, where NS = 5.

occur. For this reason, using Eq. (5), the error rate at
the optimum quantum receiver becomes

P
(orth)
e−(opt) = min {ξ1(1− η)n, ξ0} . (6)

Otherwise, when using non-orthogonal quantum states,
using Eq. (5), the error rate at the optimum quantum
receiver becomes

P
(non−orth)
e−(opt) =

1

2

(
1−

√
1− 4ξ0ξ1e−ηα2

)
. (7)

Using these error rate at receivers, we consider the av-
erage error probability of ghost imaging Pe. Because we
should consider the probability when error does not occur
at either DA or DB, we obtain

Pe = 1− (1− PA)(1− PB), (8)

where PA and PB are the error rates at detectors DA and
DB, respectively. For these error rates, we use Eqs. (6)
and (7) when using orthogonal and non-orthogonal quan-
tum states, respectively.
The error probabilities, Eqs. (6) and (7), as functions

of transmissivity η ranging from 0 to 1 where the average
number of photons is NS = 5 and the area fraction for
the slit part is ξA1 = 0.8 is shown in Fig. 3. In these
plots, in the region where η is small, that is, the amount
of attenuation is large, the error rate for ghost imaging
using non-orthogonal quantum state is less than the error
rate using orthogonal quantum state.
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Figure 5: Ratio of error probabilities with the orthogonal
to non-orthogonal quantum states, where ξA1 = 0.8.

In addition, the ratio of the error probability with the
orthogonal quantum state to the error probability with
non-orthogonal quantum state, where NS = 5 is shown in
Fig. 4. Similarly, the ratio, where ξA1 = 0.8 is shown in
Fig. 5. Also in these plots, in the region where η is small,
the ratio is greater than 1, that is non-orthogonal quan-
tum state offers better performance. Moreover, the larger
slit area is and the smaller NS is, the wider the range
that non-orthogonal quantum state offers better perfor-
mance is. On the other hand, when the NS is large, the
range is narrow, but the maximum of the ratio of error
probabilities is large. We believe that the difference be-
tween results when using orthogonal and non-orthogonal
quantum states is caused depending on how the errors oc-
cur. Specifically, the error when using the non-orthogonal
quantum state occurs in all part of the object, but the
error when using the orthogonal quantum state occurs in
only slit part of the object.

5 Conclusion

We have applied non-orthogonal quantum states in
quantum ghost imaging showing its superior robustness
against attenuation. As a result, if the amount of at-
tenuation is large, quantum ghost imaging using non-
orthogonal quantum states offers a better performance.
Moreover, the larger slit area or the smaller average
number of photons is, the wider the range that non-
orthogonal quantum state offers better performance is.

Our future work is assessing if transmissivity is differ-
ent in other systems and whether optimization for quan-
tum ghost imaging is possible by means other than the
minimum error rate.
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Masking Quantum Information and Hyperdisks
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Abstract. Masking information protocol is a protocol that encode (mask) quantum information into
bipartite entanglement while the information is completely unknown to local system. This work explicitly
studies the structure of the set of maskable states and its relation to hyperdisks. We prove that maskable
qubit states locate on single hyperdisk, though it is not true for higher dimension case. Our results may
shed light on several research fields of quantum information theory, such as the structure of entangled
states and local discrimination of bipartite states.
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1 Introduction

Recently, Ref. [1] proposed a masking quantum in-
formation protocol, which encodes quantum information
into non-local correlation completely. They derived a new
no-go theorem called no-masking theorem, which claims
that although one can encode classical information into
entanglement, masking arbitrary quantum states is im-
possible. Still, one can go beyond classical world and
mask a set of non-orthogonal quantum states into bipar-
tite system. Furthermore, Ref. [2] generalized the pro-
tocol and prove that is possible to mask full quantum
information into multipartite systems.

Although no-masking theorem has been proved, the
structure of set of maskable states is still unknown. Ref.
[1] proposed a masker using generalized control-NOT
gate. Based on that masker, Ref. [1] conjeced that any
set of maskable states must live on some disk.

In this work, we prove that the conjecture holds for
qubit case, while it fails for general higher dimensional
case. First, we give a clear definition of hyperdisk and in-
troduce some related concepts. Then we study the classi-
fication of masking protocol, depending on the dimension
of input space n, the Schmidt number of target states d
and the degeneracy of marginal states. General methods
are provided to derive the structure of maskable states in
different cases. Based on those methods, we show that
the maskable states may live on two or more different
hyperdisks if n ≥ 3, and we give a full characterization
of maskable states for n = 2, d ≥ 2 and n = 3, d = 3.

2 Hyperdisk and related concepts

Let H be an n-dimensional Hilbert space and B :=
{|φj〉}m−1j=0 be an orthonormal basis for some m-
dimensional subspace of H, define a real vector for a pure
state |ψ〉 ∈ H:

rB(|ψ〉) := (|〈φ0|ψ〉| , ..., |〈φm−1|ψ〉|)T . (1)

Notice that rB(|Ψ〉) is normalized iff |ψ〉 ∈ span{B}.

Definition 1 (hyperdisk) Let S be a set of pure states
within an n-dimensional Hilbert space H. Then S forms

∗xyhu@sdu.edu.cn

a hyperdisk if there is a complete orthonormal basis B for
m-dimensional subspace V := span{S} which satisifies

rB(|ψ〉) ≡ r, ∀ |ψ〉 ∈ S, (2)

rB (|ξ〉) 6= r, ∀ |ξ〉 ∈ H \ S. (3)

Here B is called the hyperdisk basis and m :=
dim(V) is called the dimension of hyperdisk. In the
simplest case m = 1, S consists of only one pure
state. For the case m = 2, S can be expressed as{
|ψ(θ)〉 = a |φ0〉+ beiθ |φ1〉 |θ ∈ R

}
, where {|φ0〉,|φ1〉} is

an orthonormal basis for H2. In Bloch representation, S
can be visualized as an intersection between the sphere
and some plane, which is orthogonal to crossing line of
two antipodal points |φ0〉 and |φ1〉. In general case, any
pure state |ψ〉 in a given m-dimensional hyperdisk S can
be expressed as:

|ψ (θ)〉 =
m−1∑
j=0

rj exp (iθj) |φj〉 , (4)

where θj ∈ [0, 2π).

Definition 2 (Schmidt hyperdisk) For bipartite sys-
tem HAB, hyperdisk SAB ⊂ HAB is a Schmidt hyperdisk
if B is the Schmidt basis of |Ψ〉 ∈ SAB.

As an example, S = {|Ψ(θ)〉 := |00〉 + eiθ0 |11〉 +
eiθ1 |22〉} is a Schmidt hyperdisk, while S ′ = {|Ψ(θ)〉 :=
|00〉+eiθ(|11〉+ |22〉)} is not since |11〉+ |22〉 is entangled.
However, S ′ is vaild hyperdisk and S ′ ⊆ S, which leads
to another concept called sub-hyperdisk.

Definition 3 (sub-hyperdisk) Subset S ′ ⊆ S is a sub-
hyperdisk of hyperdisk S if S ′ is also a hyperdisk.

The sub-hyperdisk is not only class of sub-structure
that exists in hyperdisk. Weaker condition can be added
to derive a more general structure called regular subset
of hyperdisk.

Definition 4 (regular subset of hyperdisk) A sub-
set C ⊆ S is a regular subset of hyperdisk S if VC∩S = C,
where VC := span{C}.
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The statement VC ∩ S = C is equivalent to that for
any linear combination |η〉 of states in C, the condition
|η〉 ∈ S leads to |η〉 ∈ C. Every sub-hyperdisk is a regu-
lar subset. We define the the dimension of C as dim(VC).
Notice that dim(C) = dim(S) leads to C = S. To char-
acterize the structure of regular subset C, we define the
minimal number of sub-hyperdisks that fully cover C as
the optimal cover number. For the case dim(C) = 2, we
have a lemma below:

Lemma 5 The optimal cover number for 2-dimensional
regular subset is at most 2.

3 Masking information protocol

A masking information protocol involves three partici-
pants: a referee R and two players A and B. Each of them
holds a space denoted as HR, HA or HB . We define HR
as the input space. For every round of the protocol, the
referee randomly chooses a pure state |ψ〉 in the set of
maskable states R in HR, and referee puts the state |ψ〉
into a masking machine.

Definition 6 (masking machine) The linear isome-
try

Vmask : HR → HA ⊗HB (5)

is a masking machine for a set of maskable states R
in HR, if for any |ψ〉 in R, the marginal states of
|Ψ〉 = Vmask |ψ〉 are constant, i.e. TrB(|Ψ〉 〈Ψ|) ≡ ρA
and TrA(|Ψ〉 〈Ψ|) ≡ ρB are independent of |ψ〉.

In this way, referee can distribute |ψ〉 ∈ R to players
without losing any quantum information. Notice that
no communication is allowed between two players, so by
local operation, they can not gain any information about
which state referee has chosen.

The bipartite pure state |Ψ〉 is denoted by the target
state. T is the set of target states and VT = span{T }.
The marginal states ρA and ρB are mixed states if R
contains more than one state, so |Ψ〉 must be entangled.

The dimension of span{R} is denoted by n. States
that do not live in span{R} can not be masked, so we
set HR = span{R} without loss of generality. And Vmask

restricts that HR ' VT , it follows that dim (VT ) = n.
The rank of marginal states (or the Schmidt num-

ber of target states) is denoted by d. The spectral de-
composition form of two marginal states are written as
ρA =

∑d−1
j=0 λj

∣∣φAj 〉 〈φAj ∣∣ and ρB =
∑d−1
j=0 λj

∣∣φBj 〉 〈φBj ∣∣.
These marginal states may have some degrees of degen-
eracy, so the eigenstates usually are not fixed. By the
purification process, it is neccessary for the target states
to be expressed as

|Ψ (θ)〉 =
d−1∑
j=0

√
λj exp (iθj)

∣∣φAj φBj 〉 , (6)

where θj ∈ [0, 2π). However it is not a sufficient condi-
tion as these states may not live in VT , so we call them
the legal states. The set of legal states is denoted by L
and VL := span{L}. Without loss of generality, we set
dim (HAB) = d2.

By definition, the tuple (Vmask, ρA, ρB) fully charac-
torize a masking information protocol. The set of legal
target states L is determined by (ρA, ρB). The linear
isometry Vmask implies HR and VT . The set of all target
states can now be expressed as

T = VT ∩ L. (7)

In order to characterize the structure of maskable states,
we mainly focus on the structure of target states since T
is isomorphic to R.

4 Structure of the set of maskable states

The set of maskable states R for qubit space have sim-
ple structures without assumption on marginal states:

Theorem 7 For n = 2, d ≥ 2, R lives on a hyperdisk.

The proof of above theorem follows both Lemma.5 and
Lemma.9. Though things become more complicated for
qutrit space, still we give the following theorem to char-
acterize the set of target states T when n = d = 3:

Theorem 8 Assuming the set of target states T con-
tains at least one 2-dimensional sub-hyperdisk of some
Schmidt hyperdisk, T has 3 possible types of structure
when n = d = 3:

• Type-I: T is a 3-dimensional Schmidt hyperdisk.

• Type-II: T consists of two 2-dimensional sub-
hyperdisk locate on different Schmidt hyperdisks.

• Type-III: T contains a 2-dimensional sub-hyperdisk
plus a single state locates on different Schmidt hy-
perdisks.

Because the degeneracy of the marginal states can ef-
fect the set of target state L, not all kinds of pairs
(ρA, ρB) can achieve 3 types of structure: the non-
degenerate case can achieve type-I structure; the par-
tially degenerate case can achieve type-II structure; the
completely degenerate case can achieve all types of struc-
ture. So in following we divide the discussion into three
parts according to the degeneracy of marginal states, in
order to develop a general theory for the structure of
maskable states.

4.1 non-degenerate case

In this case, ρA and ρB have fixed eigenstates. Hence
the set of legal target states Lnd is a Schmidt hyperdisk
SAB as shown in Eq.(6), which leads to dim (VLnd) = d.
The set of target states for non-degenerate case is denoted
by Tnd and VTnd := span{Tnd}. Because Tnd ⊆ Lnd, the
target states live on the d-dimensional hyperdisk SAB .
From Eq.(7), we can see Tnd forms a regular subset of
SAB . Then dim (VTnd) is bounded as

dim (VTnd) = n ≤ d = dim (VLnd) . (8)

The equality holds iff Tnd = SAB , in other words, Tnd
itself forms a hyperdisk.
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However, there are situations when Tnd does not
forms a hyperdisk, an example is given below for non-
degenerate masking protocol (n = 3, d = 4). Here, Tnd
consists of following states (unnormalized):

|Ψ0(α)〉 = |00〉+
√

2 |11〉+ eiα
(√

3 |22〉+ 2 |33〉
)
,

|Ψ1(β)〉 = |00〉+
√

3 |22〉+ eiβ
(√

2 |11〉+ 2 |33〉
)
.

(9)

It follows that VT is a 3-dimensional subspace in HAB .
Here we define the masking machine Vmask as |1〉 →
|00〉 +

√
2 |11〉, |1〉 →

√
3 |22〉 + 2 |33〉 and |2〉 →

|Φ′〉. Even though Tnd is a regular subset that be-
longs to a 4-dimensional hyperdisk, we can not find
that hyperdisk for Rnd (unnormalized): |ψ0(α)〉 =√

3 |0〉+eiα
√

7 |1〉, |ψ1(β)〉 =
√

7 |0〉+3
√

3 |1〉−
√

50 |2〉+
eiβ
(
2
√

7 |0〉+ 4
√

3 |1〉+
√

50 |2〉
)
. So the maskable states

does not required to live on same hyperdisk, which can
be achieved even for non-degerate masking protocol.

4.2 completely degenerate case

In this case, ρA = ρB = I/d, and the set of legal states
Lcd is the set of all maximally entangled states in HAB .
A maximally entangled state can be expressed as

|Ψ(U)〉 =
1√
d

d−1∑
j=0

U |jj〉 = U ⊗ I |ΦI〉 , (10)

where |ΦI〉 = 1√
d

∑
j |jj〉 and U is a unitary matrix with

elements (U)ij = 〈ij|Ψ(U)〉. {|j〉} is defined as the
computational basis for HA (or HB). The completely
degenerate set of target states is denoted by Tcd and
VT cd = span{Tcd}. A property of completely degener-
ate masking protocol is that VLcd = span{Lcd} = HAB .
Hence dim (VT cd) is bounded as:

dim (VT cd) = n ≤ d2 = dim (VLcd) (11)

Unlike the non-degenerate case, Lcd is no longer a hy-
perdisk. Hence Tcd may not belong to a hyperdisk any-
more. The following example shows that Tcd can consist
of infinite number of hyperdisks. Here we set n = 3, d = 2
and Tcd =

⋃
ξη Sξη, where states in Sξη are written as:

|Ψξη(θ)〉 =
∣∣∣φ+ξηφ+ξη〉+ eiθ

∣∣∣φ−ξηφ−ξη〉 , (12)

where
{∣∣∣φ+ξη〉 , ∣∣∣φ−ξη〉} is one of orthonormal basis for

2-dimensional space, defined as
∣∣∣φ+ξη〉 = cos ξ2 |0〉 +

sin ξ
2e
iη |1〉 and

∣∣∣φ−ξη〉 = sin ξ
2 |0〉 − cos ξ2e

−iη |1〉. It fol-

lows that VT cd = span{|00〉 , |11〉 , |01〉 + |10〉}. No-
tice that ξ and η are continuously chosen in [0, 2π).
Here we define masking machine Vmask as |0〉 → |00〉,
|1〉 → |11〉 and |2〉 → |01〉 + |10〉, then one of hyper-

disk V †maskSξη in Rcd can be expressed as |ψξη(θ)〉 =

cos2 ξ2 |0〉+sin2 ξ
2e
i2η |1〉+ 1√

2
sin ξeiη |2〉+eiθ(sin2 ξ

2 |0〉+
cos2 ξ2e

−i2η |1〉 − 1√
2

sin ξe−iη |2〉). It is an example that

the set of maskable states contains unlimited amount of
hyperdisks. Hence there is a sign that degeneracy of
masking protocol can enhance the masking power.

4.3 partially degenerate case

In this case, the marginal state ρA (or ρB) is partially
degenerate. The jth degenerate eigenvalue for marginal
state is denoted by λj . The dimension of jth eigenspace
is g(j), and the computational basis in that subspace is

{|j, k〉}g(j)−1k=0 . The total number of eigenspaces is t. Then
the legal states can be expressed as:

|Ψ(U)〉 =
t−1∑
j=0

√
λj

g(j)−1∑
k=0

Uj ⊗ I |j, k〉 |j, k〉 (13)

The unitary matrix for |Ψ(U)〉 = U ⊗ I |ΨI〉 can be writ-

ten as U =
⊕t−1

j=0 Uj , where Uj is g(j)-dimensional uni-
tary matrix act on jth degenerate subspace and |ΨI〉 =∑t−1
j=0

√
λj
∑g(j)−1
k=0 |j, k〉 |j, k〉. The dim(VT ) now is lim-

ited by g(j):

dim (VT ) = n ≤
t−1∑
j=0

g2(j) = dim (VL) , (14)

where
∑t−1
j=0 g(j) = d. We have already known that T

may not live on a fixed Schmidt hyperdisk, but the nec-
essary and sufficient condition for target states live on
same Schmidt hyperdisk is still interesting:

Lemma 9 A set of target states {|Ψ(U)〉}U∈U lives on
same Schmidt hyperdisk iff there exists a unitary matrix
UT that satifisfies [UUT , U

′UT ] = 0 for all of U,U ′ ∈ U .

5 Conclusion

We have studied the relation between hyperdisk and
masking information protocol. In this work, a clear defi-
nition of the unspeakable concept hyperdisk is introduced
with related concepts called sub-hyperdisk and regular
subsets of hyperdisk. Methods are given to deal with
the classification of masking protocol. By using the con-
cept hyperdisk, we fully charactorize the set of maskable
states for qubit and qutrit case. Two examples are given
to show that the non-degenerate masker can mask sev-
eral distinct hyperdisks even for qutrit information, and
the completely degenerate masker can mask unlimited
amount of hyperdisks. The hyperdisk structure of target
states may provide us another perspective to characterize
the structure of entangled states.
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Abstract. The subentropy is defined as a lower bound on the maximum mutual information for a fixed
quantum ensemble. By F. Mintert and K. Życzkowski, the subentropy was generalized to the quantity that
is called the α-order Rényi subentropy. However, they did not state a relation between the quantity and
the α-order mutual Rényi information. In this paper, we show a close relation between them. Furthermore,
using the relation, we derive an alternative expression for the α-order Rényi subentropy.
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1 Introduction

In quantum information theory, the information that
may be extracted from a quantum ensemble is called the
accessible information, i.e., the maximum mutual infor-
mation. R. Jozsa, D. Robb, and W. K. Wootters de-
fined the subentropy as a lower bound on the accessible
information [1]. The lower bound is the best that de-
pends only on the density operator. F. Mintert and K.
Życzkowski generalized the subentropy by redefining it
as the excess of the Wehrl entropy [2]. The quantity is
called the α-order Rényi subentropy. They showed that
this quantity is an entanglement monotone. However,
they did not state a relation between the quantity and a
corresponding generalization of the ordinary mutual in-
formation.
In this paper, for any integer α > 1, we show a close

relation between the α-order Rényi subentropy and the
α-order mutual Rényi information [3], which is one of
generalizations of the ordinary mutual information. The
α-order mutual Rényi information is defined by C. H.
Bennett, G. Brassard, C. Crépeau, and U. M. Maurer
in information-theoretical context [3]. Hence, our result
implies that the α-order Rényi subentropy is natural gen-
eralization also in information-theoretical context. Fur-
thermore, using our relation, we derive an alternative
expression for the α-order Rényi subentropy.

2 α-order Mutual Rényi Information Iα

Here, we recall the ordinary mutual information and
the α-order mutual Rényi information in quantum infor-
mation theory.
First of all, we consider a quantum ensemble, a quan-

tum measurement, and probabilities that are obtained
from them. A quantum ensemble is a set ofm pure quan-
tum states {|ψi⟩}m−1

i=0 in a d-dimensional Hilbert space
Hd and their a priori probabilities {pi}m−1

i=0 that satisfy

∗im182006@cis.aichi-pu.ac.jp
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∑m−1
i=0 pi = 1; it is denoted by

E :=

(
|ψ0⟩ · · · |ψm−1⟩
p0 · · · pm−1

)
. (1)

For the quantum ensemble E , the density operator ρ =∑m−1
i=0 pi|ψi⟩⟨ψi|. We obtain information by measuring a

quantum state using a quantum measurement that is de-
scribed by a positive operator-valued measure (POVM).
A POVM Π is a set of positive semidefinite operators
Π := {Πj}n−1

j=0 satisfying
∑n−1

j=0 Πj = I, where I is the
identity operator. The conditional probability P (j|i)
that the outcome is j when a quantum state |ψi⟩ is given
as P (j|i) := Tr [|ψi⟩⟨ψi|Πj ]. Further, the probability
P (j) that we obtain the outcome j is P (j) := Tr [ρΠj ].
We now introduce the mutual information.

Definition 1 (mutual information) The mutual in-
formation I(Π, E) between the POVM Π and the quantum
ensemble E is defined as

I(Π, E) := H(Π)−H(Π|E), (2)

where

H(Π) := −
n−1∑
j=0

P (j) lnP (j), (3)

H(Π|E) := −
m−1∑
i=0

n−1∑
j=0

piP (j|i) lnP (j|i) (4)

are the entropy and the conditional entropy, respectively.

The accessible information I(E) of the quantum ensemble
E is defined as the maximum mutual information over all
possible POVMs:

I(E) := max
Π

I(Π, E). (5)

Next, we introduce the α-order mutual Rényi informa-
tion [3] for any positive constant α ̸= 1.
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Definition 2 (α-order mutual Rényi information)
The α-order mutual Rényi information Iα(Π, E) between
the POVM Π and the quantum ensemble E is defined as

Iα(Π, E) := Rα(Π)−Rα(Π|E), (6)

where

Rα(Π) :=
1

1− α
ln

n−1∑
j=0

P (j)α

, (7)

Rα(Π|E) :=
1

1− α

m−1∑
i=0

pi ln

n−1∑
j=0

P (j|i)α
 (8)

are the α-order Rényi entropy and the α-order condi-
tional Rényi entropy, respectively.

Eqs. (6), (7), and (8) coincide with Eqs. (2), (3), and
(4) when α → 1. Note that, the α-order mutual Rényi
information can be negative [3].
For the ordinary mutual information, a generalization

using the α-order Rényi entropy is not unique. The gen-
eralizations are called the α-mutual information (see [4]).
The α-order accessible Rényi information is the maxi-

mum α-order mutual Rényi information over all possible
POVMs:

Iα(E) := max
Π

Iα(Π, E). (9)

3 α-order Rényi Subentropy Qα

Here, we introduce the ordinary subentropy and the α-
order Rényi subentropy for any positive constant α ̸= 1.
We first introduce the definition of the subentropy [1].

Definition 3 (subentropy) Let ρ be a density opera-
tor on a d-dimensional Hilbert space Hd and let λk’s be
eigenvalues of ρ. The subentropy Q(ρ) of the density op-
erator ρ is defined as

Q(ρ) := −
d−1∑
k=0

∏
l ̸=k

λk
λk − λl

λk lnλk. (10)

The subentropy is known as the best lower bound that
depends only on the density operator on the ordinary ac-
cessible information. Second, we introduce the definition
of the α-order Rényi subentropy [2].

Definition 4 (α-order Rényi subentropy) Let ρ be
a density operator on a d-dimensional Hilbert space Hd

and let λk’s be eigenvalues of ρ. The α-order Rényi
subentropy Qα(ρ) of the density operator ρ is defined as

Qα(ρ) :=
1

1− α
ln


d−1∑
k=0

λα+d−1
k

d−1∏
l=0,l ̸=k

(λk − λl)

. (11)

Applying L’Hopital’s rule, one demonstrates that
Eq. (11) coincides with Eq. (10) when α → 1. It is not
known whether the α-order Rényi subentropy is a lower
bound on the α-order accessible Rényi information.
From the definitions, one finds that these quantities

are hard to calculate when ρ is degenerate.

4 Relation Between Qα and Iα

Here, we restrict that α is any integer such that α > 1.
We now show a close relation between the α-order Rényi
subentropy and the α-order mutual Rényi information.

Proposition 5 Let ρ be a density operator of the quan-
tum ensemble E and let λk’s be eigenvalues of ρ. Let
A = {|aj⟩⟨aj |}d−1

j=0 be a complete orthogonal measure-
ment. Then, the following equation holds:

Qα(ρ) =
1

1− α
ln

d−1∑
j=0

⟨
PA(j)

α
⟩

− 1

1− α

m−1∑
i=0

pi ln

d−1∑
j=0

⟨
PA(j|i)α

⟩, (12)

where PA describes the probability that obtains from the
complete orthogonal measurement A and the quantum en-
semble E with the density operator ρ and ⟨·⟩ is the average
over all complete orthogonal measurements.

We can prove this proposition by using a technique
shown in [1].
Since the RHS of Eq. (12) is the expression that is ob-

tained by averaging the arguments to the logarithms in
the α-order mutual Renyi information, this result sug-
gests that there is the close relation between the α-order
Rényi subentropy and the α-order mutual Rényi infor-
mation.

5 Alternative Expression of Qα

Again, we restrict that α is any integer such that α > 1.
We derive an alternative expression for the α-order Rényi
subentropy.

Proposition 6 Let ρ be a density operator on a d-
dimensional Hilbert space Hd and let λk’s be eigenvalues
of ρ. Then, the following equation holds:

Qα(ρ) =
1

1− α
ln


α∑

k0,...,kd−1=0|∑d−1
l=0 kl=α

λk0
0 · · ·λkd−1

d−1

. (13)

We can prove this proposition by using Proposition 5.
One finds that Eq. (13) is calculated easily even if the

density operator is degenerate. Moreover, we may lead
to a simpler expression for fixed α. As the example, we
provide a simpler expression for the second-order Rényi
subentropy.

Example 1 Let ρ be a density operator on a d-
dimensional Hilbert space Hd and let λk’s be eigenvalues
of ρ. Then, the second-order Rényi subentropy Q2(ρ) is

Q2(ρ) = ln

(
2

1 +
∑d−1

k=0 λ
2
k

)
. (14)
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In [5], using Eq. (14), it was shown the second-order
Rényi subentropy is a lower bound for the minimum en-
tropy. This fact suggests that the alternative expression
is helpful expression in order to study properties of the
α-order Rényi subentropy.

6 Conclusion

For any integer α > 1, we showed the close relation be-
tween the α-order Rényi subentropy and the α-order mu-
tual Rényi information (Proposition 5). From this rela-
tion, we think that the ordinary definition of the α-order
Rényi subentropy is natural also in quantum information
theory. Furthermore, using Proposition 5, we derived the
simpler expression for the α-order Rényi subentropy.
Our future works are that we clarify properties of the

α-order Rényi subentropy and whether the α-order Rényi
subentropy is a lower bound on the α-order accessible
Rényi information.
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Abstract. The elliptic curve discrete logarithm problem (ECDLP) is an important problem as the base
of the security of elliptic curve cryptography. When solving the ECDLP in quantum computation, modular
inverse is the bottleneck in terms of circuit size. In our research, two new quantum algorithms for computing
modular inverse are proposed requiring 7n + blog2 nc+ 5 qubits and 32n2 log2 n + O(n2) Toffoli gates. By
applying these to Shor’s algorithm solving the ECDLP, more efficient quantum circuits can be implemented
with smaller amount of quantum resources.
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1 Introduction

Cryptography has played a fundamental roll in the de-
velopment of technology. It helps keeping secrets pro-
tected from malicious attacks. Some cryptosystems use
elliptic curves as their buikdingblock. They are used
for public key instantiation in various cryptosystems like
key exchange [2] and digital signatures [3][4]. They have
many application such as transport layer security and the
Bitcoin digital currency system.

Elliptic curve cryptography (ECC) is superior to other
cryptosystems in that it requires relatively small key
sizes. For example, integer factorization cryptography
like RSA [7] needs key size of 3072bits to aquire the same
security strength as ECC with key size of 256− 383 bits
according to [1]. This is because the Elliptic Curve Dis-
crete Logarithm Problem (ECDLP), which is the base of
the security of ECC, is hard to solve classically. There
is a sub-exponential time classsical algorithm for integer
factorization, while the best classical algorithm currently
known for the ECDLP is exponential.

However, the invention of quantum computation has
endangered the security of ECC. Shor proposed two
quantum algorithms in [10], one of which solves inte-
ger factorization and the other solves discrete logarithm
problem in a Galois field. The latter can also be applyed
to the ECDLP. This means ECC will be easily broken if a
large enough general purpose computer is created. Roet-
teler et al. gave a concrete circuit of Shor’s algorithm that
solves the ECDLP, and estimated its precise quantum re-
sources [8]. The most costly operation in their algorithm
is modular inverse. Thus we propose more efficient al-
gorithms for modular inverse with which the circuit of
Shor’s algorithm requires less quantum resources.

2 Algorithms for modular inverse

Our algorithms for modular inverse are based on
Kaliski’s algorithm [5] as in [8]. Kaliski’s algorithm uses
Montgomery representation [6] to represent integers to

∗r kurama@is.s.u-tokyo.ac.jp
†kunihiro@cs.tsukuba.ac.jp

compute modular arithmetic efficiently. Let p a prime
modulus and n be the length of p. An integer a is repre-
sented as aR mod p under the Montgomery representa-
tion of a radix R > p. The representation is often used
in classical computation for its efficiency, too. We use 2n

as the radix in this paper.
Kaliski’s algorithm takes an integer x mod p as an in-

put, and outputs an integer x−12n mod p in the Mont-
gomery representation. Kaliski’s algorithm works fine
alone, but if it is applied to Shor’s algorithm, one should
convert convert the input from Montgomery represen-
tation to normal representation beforehand to keep the
representation consistent in the whole calculation. Un-
fortunately the algorithm had a problem for it failed to
do this.

To resolve this problem, we use another definition of
modular inverse introduces by Savas and Koç [9]. In
this new definition, the input is x mod p and the output
is x22n mod p. Taking these things into consideration,
we propose two algorithms of modular inverse, modular
exponentiation type and step-by-step modular doubling
type.

The pseudocodes for our algorithms are shown in Al-
gorithm 1 and Algorithm 2. The base of logarithm 2
is omitted in this paper. Though the pseudocodes are
written in a classical computation style, the quantum al-
gorithms basically do the same computation. Our main
contribution is the part from Line. 21 in both algo-
rithms. Different from Kaliski’s original algorithm and
Roetteler’s algorithm, given a pair of integers (r, l) such
that r = −x−12n−l mod p, 0 ≤ l ≤ n, this part calcu-
lates x−122n mod p by doubling r modulo p for l times.
Our two algorithms calculate this in different ways.

The modular exponentiation type uses the fact that 2l

can be broken down into a product of blog nc + 1 inte-

gers as
∏blognc

i=0 22
i

. The multiplication by 22
i

modulo p
is done in a similar way as modular multiplication, but
more efficiently as the multiplier is a constant of a power
of 2. The step-by-step modular doubling type is some-
what less intuitive than the previous one. The main idea
of the step-by-step modular doubling type is to repeat
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Algorithm 1 Modular exponentiation type algorithm
to calculate Savas and Koç’s modular inverse x−1 ·
22n mod p. li represents the ith bit of the variable l.

1: u← p, v ← x, r ← 0, s← 1
2: l← 0
3: for i = 0 to 2n− 1 do
4: if v > 0 then
5: if u is even then
6: u← u/2, s← 2s
7: else if v is even then
8: v ← v/2, r ← 2r
9: else if u > v then

10: u← (u− v)/2, r ← r + s, s← 2s
11: else
12: v ← (v − u)/2, s← r + s, r ← 2r
13: end if
14: else
15: l← l + 1
16: end if
17: end for
18: if r ≥ p then
19: r ← r − p
20: end if
21: for i = 0 to blog nc do
22: if li = 1 then
23: r ← 22

i

r mod p
24: end if
25: end for
26: r ← −r mod p
27: return r

a certain subroutine l times, where if the register |l〉 is
positive, the register |r〉 is multiplied by 2 and the regis-
ter |l〉 is decreased by 1. Though construction of such a
subroutine with reversibility may not seem obvious, it is
possible by introducing another register as a counter.

3 Quantum Resource estimation for
modular inverse and Shor’s algorithm

We assessed the sizes of circuits by the number of
qubits and Toffoli gates. We used the number of Tof-
foli gates as one of the measures to compare our results
with [8]. Let n be the length of a modulus p of elliptic
curves. Table.1, 2 show the quantum resources needed
for our algorithms and the one in [8] for modular inverse
and Shor’s algorithm solving the ECDLP, respectively.
To compare our algorithms correctly with Roetteler’s,
we used estimates for a modified version of their circuit
to resolve their problem.

The number of qubits for modular inverse in our both
algorithms was 7n + blog nc + 6. This is better than
that of [8], but the difference is asymptotically insignifi-
cant. The number of Toffoli gates for our modular inverse
was 32n2 log n+O(n2) while Roetteler’s was 48n2 log n+
O(n2). This is asymptotically about 33.3% better than
that of theirs. By applying our modular inverse algo-
rithms, Shor’s eintire algorithm can be implemented with
9n + blog nc + 7 qubits and 832n3 log n + O(n3) Toffoli

Algorithm 2 Step-by-step modular doubling type al-
gorithm to calculate Savas and Koç’s modular inverse
x−1 · 22n mod p. The symbols ! and ⊕ represent “not”
and “exclusive or”, respectively.

1: u← p, v ← x, r ← 0, s← 1
2: l← 0, f ← false, c← 0
3: for i = 0 to 2n− 1 do
4: if v > 0 then
5: if u is even then
6: u← u/2, s← 2s
7: else if v is even then
8: v ← v/2, r ← 2r
9: else if u > v then

10: u← (u− v)/2, r ← r + s, s← 2s
11: else
12: v ← (v − u)/2, s← r + s, r ← 2r
13: end if
14: else
15: l← l + 1
16: end if
17: end for
18: if r ≥ p then
19: r ← r − p
20: end if
21: for i = 0 to n do
22: f ←!(c = 0)⊕ (l = 0)⊕ f
23: if f then
24: c← c + 1
25: else
26: r ← 2r mod p
27: l← l − 1
28: end if
29: end for
30: r ← −r mod p
31: return r

gates. When compared in Shor’s algorithm, ours are
asymptotically 13.3% better than [8].

In conclusion, by using our modular inverse algorithms,
Shor’s algorithm solving the ECDLP can be implemented
efficiently with less quantum resources.
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Abstract. Lin and Lin [LL16] have recently shown how starting with a classical query algorithm (decision
tree) for a function, we may find upper bounds on its quantum query complexity. More precisely, they
have shown that given a decision tree for a function f : {0, 1}n ! [m] whose input can be accessed via
queries to its bits, and a guessing algorithm that predicts answers to the queries, there is a quantum query
algorithm for f which makes at most O(

p
GT ) quantum queries where T is the depth of the decision tree

and G is the maximum number of mistakes of the guessing algorithm. In this paper we give a simple proof
of and generalize this result for functions f : [`]n ! [m] with non-binary input as well as output alphabets.
Our main tool for this generalization is non-binary span program which has recently been developed for
non-binary functions, as well as the dual adversary bound. As applications of our main result we present
several quantum query upper bounds, some of which are new. In particular, we show that topological
sorting of vertices of a directed graph G can be done with O(n3/2) quantum queries in the adjacency
matrix model. Also, we show that the quantum query complexity of the maximum bipartite matching is
upper bounded by O(n3/4p

m+ n) in the adjacency list model.

Keywords: Quantum query complexity, decision trees, span program, dual adversary bound

1 Introduction

Query complexity of a function f : [`]n ! [m] is the
minimum number of adaptive queries to its input bits
required to compute the output of the function. In a
quantum query algorithm we allow to make queries in
superposition, which sometimes improves the query com-
plexity, e.g., in Grover’s search algorithm [Gro96].
Lin and Lin [LL16] have recently shown that surpris-

ingly sometimes classical query algorithms may result
in quantum query algorithms. They showed that hav-
ing a classical query algorithm with query complexity T

for some function f : {0, 1}n ! [m], together with a
guessing algorithm that at each step predicts the value
of the queried bit and makes no more than G mis-
takes, the quantum query complexity of f is at most
Q(f) = O(

p
GT ). For instance, the trivial classical al-

gorithm for the search problem which queries the input
bits one by one have query complexity T = n, and the
guessing algorithm which always predicts the output 0
makes at most G = 1 mistakes (because making a mis-
take is equivalent to finding an input bit 1 which solves
the search problem). Thus the quantum query complex-
ity of the search problem is O(

p
GT ) = O(

p
n) recovering

Grover’s result.
There are two proofs of the above result in [LL16]. One

of the proofs is based on the notion of bomb query com-

plexity B(f). Lin and Lin show that there exists a bomb
query algorithm that computes f using O(GT ) queries,
and that the bomb query complexity equals the square of
the quantum query complexity, i.e., B(f) = ⇥(Q(f)2),
which together give Q(f) = O(

p
GT ). In the second

proof, they build an explicit quantum query algorithm
with query complexity O(

p
TG) for f using Grover’s

search; in computing the function they use the values

⇤salman.beigi@gmail.com
†ltaghavi@ipm.ir

of predicted queries instead of the real values and use a
modified version of Grover’s search to find mistakes of
the guessing algorithm.

Our results: In this paper we give a simple proof of
the above result based on the method of non-binary span

program that has recently been development by the au-
thors [BT18]. Then inspired by this proof, we generalize
Lin and Lin’s result for functions f : [`]n ! [m] with non-
binary input as well as non-binary output alphabets. Our
proof of this generalization is based on the dual adver-
sary bound which is another equivalent characterization
of the quantum query complexity [LMR+11].
As an application of our main result we show that given

query access to edges of a directed and acyclic graph G
in the adjacency matrix model, the vertices of G can be
sorted with O(n3/2) quantum queries to its edges. More-
over, we show that some existing results on the quantum
query complexity of graph theoretic problems such as di-
rected st-connectivity, detecting bipartite graphs, finding
strongly connected components, and deciding forests can
easily be derived from our results.
Our main result is also useful when dealing with graph

problems in the adjacency list model. In this regard, we
show that given query access to the adjacency list of an
unweighted bipartite graph G, the quantum query com-
plexity of finding a maximum bipartite matching in G
is O(n3/4p

m + n), where m is the number of edges of
the graph. To the authors’ knowledge this is the first
non-trivial upper bound for this problem.

2 From decision trees to span programs

In this section, after developing some notations we
state the main result of [LL16]. In the next section we
show how this result can be generalized for functions with
non-binary input alphabet.
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Recall that a classical query algorithm for a function
f : Df ! [m] with Df ✓ {0, 1}n can be modeled by a bi-
nary decision tree T with internal vertices being indexed
by elements of {1, . . . , n}, edges being indexed by {0, 1},
and leaves being index by elements of [m]. The depth of
the decision tree, which we denote by T , is the classical
query complexity of this decision tree. In [LL16] it is
assumed that there is a further algorithm that predicts
the values of the queried bits. That is, at each internal
vertex of T makes a guess for the answer of the associ-
ated query. We can visualize the guessing algorithm in
the decision tree by coloring its edges. For each internal
vertex of the decision tree, there are two outgoing edges
indexed by 0 and 1, one of which is chosen by the guess-
ing algorithm. We color the chosen one black, and the
other one red. We call such a coloring of the edges of the
decision tree a guessing-coloring (hereafter, G-coloring).
Therefore, the number of mistakes of the guessing algo-
rithm for every x 2 Df equals the number of red edges in
the path from the root to the leaf of the tree associated
to x. We now state the result of [LL16] based on decision
trees and G-colorings.1

Theorem 1 (Lin and Lin [LL16]) Assume that we

have a decision tree T for a function f : Df ! [m] with
Df ✓ {0, 1}n whose depth is T . Furthermore, assume

that for a G-coloring of the edges of T , the number of

red edges in each path from the root to the leaves of T
is at most G. Then there exists a quantum query al-

gorithm computing the function f with query complexity

O(
p
GT ).

As mentioned before, this theorem can be proven using
non-binary span programs developed in [BT18]. This
proof can be found in the full paper.

3 Main result: generalization to the non-
binary case

In this section we assume that the input alphabet of
the function f : Df ! [m] is non-binary, i.e., Df ✓ [`]n.
In this case, a classical query algorithm corresponds to
a decision tree whose internal vertices have out-degree
` (instead of 2). Moreover, a G-coloring can be defined
similarly based on a guessing algorithm. Yet, we are
interested in a further generalization of the notion of de-
cision tree which we explain by an example.
Consider the following trivial algorithm for finding the

minimum of a list of numbers in [`]: we keep a candidate
minimum, and as we query the numbers in the list one
by one, we update it once we reach a smaller number.
In this algorithm, the possible numbers as answers to a
query are of two types: numbers that are greater than
or equal to the current candidate minimum, and those
that are smaller. Now assuming that the answer to that
query is of the first type, what we do next is independent
of its exact value (since we simply ignore it and query the
next index). Considering the associated decision tree T ,

1We remark that the result of [LL16] also works for randomized
algorithms.

for each vertex v we have a candidate minimum, and the
outgoing edges of v are labeled by di↵erent numbers in [`].
Then by the above discussion, the subtrees of T hanging
below the outgoing edges whose labels are greater than
or equal to the current candidate minimum are identical.
Thus we can identify those edges and their associated
subtrees. In this case the outgoing edges of v are not
labeled by elements of [`], but by its certain subsets that
form a partition. Indeed, there is an outgoing edge whose
label is the subset of numbers greater than or equal to
the current candidate minimum, and an outgoing edge
for any smaller number.
Motivated by the above example of minimum finding,

we generalize the notion of decision tree T for a function
f : Df ! [m] with non-binary input alphabet (Df ✓
[`]n). As before each internal vertex v of T corresponds
to a query index 1  J(v)  n. Each outgoing edge of
this vertex is labeled by a subset of [`], and we assume
that these subsets form a partition of [`]. We denote this
partition by

`�1[

q=0

Qv(q) = [`],

where here Qv(q) is the subset in the partition that con-
tains q 2 [`]. Thus Qv(q) ✓ [`] contains q, and for
q, q

0 2 [`] either Qv(q), Qv(q0) are disjoint or are equal.
Moreover, the out-degree of v equals |{Qv(q) : q 2 [`]}|,
the number of di↵erent Qv(q)’s. We also denote the
neighbor vertex of v connected to the edge with label
Qv(q) by N(v,Qv(q)).

Now given a decision tree T as above, the corre-
sponding classical algorithm works as follows. We start
with the root r of the tree and query J(r). Then
xJ(r) 2 [`] corresponds to the outgoing edge of v with
label Qv(xJ(r)). We take that edge and move to the next
vertex N(v,Qv(xJ(r))). We continue until we reach a leaf
of the tree which determines the value of f(x).
The notation of G-coloring can also be generalized sim-

ilarly. Recall that a G-coloring comes from a guessing
algorithm that in each step predicts the answer to the
queried index. In our generalized decision tree whose
edges are labeled by subsets of [`], we assume that the
guessing algorithm chooses one of these subsets as its
guess. Rephrasing this in terms of colors, we assume that
for each internal vertex v of T , one of its outgoing edges
is colored in black (meaning that its label is the predicted
answer) and its other outgoing edges are colored in red.
We also consider randomized classical query algo-

rithms. In this case, for each value ⇣ of the outcomes
of some coin tosses, we have a (deterministic) general-
ized decision tree T⇣ as above. We also assume that each
of these decision trees T⇣ is equipped with a guessing al-
gorithm which itself may be randomized. Nevertheless,
we may assume with no loss of generality that ⇣ includes
the randomness of the guessing algorithm as well. There-
fore, for any ⇣ we have a generalized decision tree with a
G-coloring as before. We assume that the classical ran-
domized query algorithm outputs the correct answer f(x)
with high probability. The complexity of such a random-
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ized query algorithm is given by the expectation of the
number of queries over the random choice of ⇣.
We can now state our generalization of Theorem 1.

Theorem 2 In the following let f : Df ! [m] be a func-

tion with Df ✓ [`]n.

(i) Let T be a generalized decision tree for f equipped

with a G-coloring. Let T be the depth of T and

let G be the the maximum number of red edges in

any path from the root to leaves of T . Then the

quantum query complexity of f is upper bounded by

O(
p
TG).

(ii) Let {T⇣ : ⇣} be a set of generalized decision trees

corresponding to a randomized classical query algo-

rithm evaluating f with bounded error. Moreover,

suppose that each T⇣ is equipped with a G-coloring.

Let P
⇣
x be the path from the root to the leaf of T⇣

associated to x 2 Df . Let T
⇣
x be the length of the

path P
⇣
x , and let G

⇣
x be the number of red edges in

this path. Define

T = max
x

E⇣ [T
⇣
x ],

G = max
x

E⇣ [G
⇣
x],

where the expectation is over the random choice

of ⇣. Then the quantum query complexity of f is

O(
p
TG).

The span program in the proof of Theorem 1 can eas-
ily be adapted for a proof of the above theorem, yet in
the complexity of the resulting span program we see an
extra factor of

p
`� 1, i.e., we get the upper bound of

O(
p
(`� 1)GT ) on the quantum query complexity. To

remove this undesirable factor, getting ideas from the
span program in the proof of Theorem 1, we directly con-
struct a feasible solution of the dual adversary SDP. To
prove the second part of this theorem we indeed need the
dual adversary bound for the state generation problem.

4 Applications

We can use Theorem 2, to simplify the proof of some
known quantum query complexity bounds as well as to
derive new bounds. We state some of them here.

Proposition 3 Let x = (x1, . . . , xn) be a list of n num-

bers.

(i) [min] The quantum query complexity of finding

minj xj is bounded by O(
p
n log n).

(ii) [k-min] The problem of finding a subset S ✓
{1, . . . , n} of size |S| = k such that for all j /2 S we

have xj � maxi2S xi has quantum query complexity

O(
p
kn log n).

Our bounds here are tight only up to a a factor ofp
log n [DH96, DHHM04]. Here we state the proof of the

first part of this theorem just to present how Theorem 2
can be used in applications.

Proof. (i) Consider the randomized classical algorithm
that queries all indices one by one in a random order.
The algorithm keeps a candidate for minimum at each
step, and updates it once it reaches a smaller number.
Observe that this algorithm is ignorant of the exact an-
swer to a query once it makes sure that it is not smaller
than the current candidate for minimum. Thus in the as-
sociated decision tree (for any choice of random order ⇣),
at any internal vertex v we can unify outgoing edges with
label in {q : q � mv} where mv is the candidate for min-
imum at node v. Thus in T⇣ any internal vertex v has an
outgoing edge with label {q : q � mv} and an outgoing
edge for any other q < mv. The former edge is colored
black and the latter edges are colored red. The depth of
T⇣ equals T = n for any ⇣. However, for a given x, G⇣

x

depends on ⇣, so we should compute G = maxx E⇣ [G⇣
x].

Since in the beginning of the algorithm we apply a ran-
dom permutation, we can assume that x1  · · ·  xn.
Then let y

(m) = (x1, . . . , xm) and G
⇣
m = G

⇣
y(m) . If in

the random permutation ⇣ = (⇣(1), . . . , ⇣(n)) the first

element is n, i.e., ⇣(1) = n, then G
⇣
n = G

⇣0

n�1 + 1
where ⇣

0 = (⇣(2), . . . , ⇣(n)). Otherwise, if ⇣(1) 6= n then

G
⇣
n = G

⇣00

n�1 where ⇣
00 is the same order as ⇣ from which

n is removed. We conclude that

E[G⇣
n] =

1

n

�
E
⇥
G

⇣0

n�1

⇤
+ 1

�
+

n� 1

n
E
⇥
G

⇣00

n�1

⇤
.

Therefore, letting Gn = E[G⇣
n] we have Gn = Gn�1 +

1
n .

Using G1 = 1 we obtain

Gn =
nX

t=1

1

t
= O(log n).

As a result, G = O(log n) and by Theorem 2 the quan-
tum query complexity of finding the minimum is bounded
by O(

p
n log n). ⇤

In the following examples we use the fact that our gen-
eralization to Lin and Lin’s result works for functions
with non-binary input.

Proposition 4 (topological sort) Suppose that the

directed acyclic graph G with n vertices and m edges is

given via the adjacency list model. Then the quantum

query complexity of finding a vertex ordering of G such

that for all (u, v) 2 E, u appears before v is O(
p
mn).

To the author’s knowledge the above theorem gives the
first non-trivial quantum query complexity upper bound
for the topological sort problem.

Proposition 5 (maximum bipartite matching)

Suppose that the graph G with n vertices and m edges

is given via the adjacency list model. Then assuming

that G is unweighted and bipartite, the quantum query

complexity of finding a maximum bipartite matching in

G is O(n3/4p
m+ n).
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The decomposition of an MPMCT gate in consideration of NNA
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1 Introduction

In order to realize quantum computers, a quantum al-
gorithm needs to be implemented. In general, a quan-
tum algorithm includes a part to calculate logic func-
tions. Major methods utilize ESOPs (Exclusive Sum of
Products) to generate a quantum circuit calculating logic
functions. A quantum circuit which is generated based
on ESOPs consists of Mixed Polarity Multiple-Control
Toffoli (MPMCT) gates. Due to the physical limitation,
it is necessary to transform a quantum circuit consist-
ing of MPMCT gates to the one on a Nearest Neighbor
Architecture (NNA) [1]. In the following, we refer to a
quantum circuit on an NNA as NNA-compliant. There
have been intensive researches to transform a circuit to
be NNA-compliant efficiently.
To transform a circuit consisting of MPMCT gates

to be NNA-compliant, two tasks are necessary. In the
first task, MPMCT gates are decomposed into elemen-
tary gates, and then, SWAP gates are inserted. Previ-
ous works address these two tasks separately. Therefore,
they choose the control bits and the ancillary bits of gates
when they decompose MPMCT gates without consider-
ation of inserting SWAP gates after the decomposition.
This paper proposes a totally new approach to address
these two tasks simultaneously; our method can realize
NNA-compliant efficiently compared with previous meth-
ods.

2 Nearest Neighbor Architecture

Currently, quantum circuits which can be realized
physically such as IBM-Q and Rigetti Computing need
to satisfy the following two conditions.

1. A circuit consists of only one-qubit gates and two-
qubits gates.

2. Operations of all gates are performed only on ad-
jacent qubits

In order to satisfy Condition 1, MPMCT gates need to
be decomposed into elementary gates. Figure. 1 shows
an example such that a four-control-bits MPMCT gate
is decomposed into elementary gates. In addition, SWAP
gates are inserted to swap quantum states to satisfy Con-
dition 2. For these processes, an MPMCT gate on the
left side of Figure. 1 is transformed to be NNA-compliant
as show in Figure. 2.

∗doyle@ngc.is.ritsumei.ac.jp
†ger@cs.ritsumei.ac.jp
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Figure 1: An example such that a four-control-bits
MPMCT gate is decomposed into elementary gates.

��

��

�

��

��

�� �

�   �
�

�

  �
�

�   �
�

�

�

  �
�

�   �
�

  �
�

  �
�

�   �
�

�� � ��

�� �� ��

�� � ��

�� �� ��

�� � ��

�� �� ��

�� � ��

�� �� ��

�� � ��

�� �� ��

Figure 2: An NNA-compliant quantum circuit generated
from the circuit in Figure. 1 by inserting SWAP gates.

3 Previous work

The previous method decomposes each MPMCT gate
in a circuit into MPMCT gates with fewer control bits
and two-qubits gates as shown in Figure. 3 [2]. We re-
peatedly apply this method to MPMCT gates until they
are decomposed into only two-qubits or one-qubit gates.
After the decomposition, SWAP gates are inserted so
that the two qubits related to each two-qubits gate be-
come adjacent [3]. Previous methods address these pro-
cesses separately. They try to decrease the number of
gates after the decomposition, but at that time they do
not consider inserting SWAP gates. Therefore, the cost of
a circuit may increase significantly after inserting SWAP
gates.

Figure 3: An example of the decomposition of an
MPMCT gate by the previous method.
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Figure 4: An example of a four-control-bits MPMCT gate
and a qubit placement.

Figure 5: An example of transforming Figure. 4 to be
NNA-compliant with 11 SWAP gates by the previous
method.

4 The proposed method

In our proposed method, we choose a combination of
control bits and an ancillary bit to decrease the number of
necessary inserted SWAP gates after the decomposition.
We show an example of transforming an MPMCT gate on
the left side of Figure. 4 to be NNA-compliant with the
qubit placement on the right side of Figure. 4. As shown
in Figure. 5, the number of inserted SWAP gates is 11
if we choose a combination of the control bits and the
ancillary bit without considering of the qubit placement.
On the other hand, our proposed method chooses an

ancillary bit in consideration of a qubit placement. In
Figure. 4, qubit q1, q2, q5 and q7 are available as an an-
cillary bit. As shown in Figure. 3, all gates in a circuit
after the decomposition use an ancillary bit. Therefore,
we should choose a qubit close to control bits as an an-
cillary bit in order to insert SWAP gates efficiently. qi
means a control bit of an MPMCT gate, and qj is a qubit
which is available as an ancillary bit. We choose a qubit
qj which minimizes Eq. 1 as an ancillary bit.∑

i

dist|qi − qj | (1)

Thus, qubit q2 is chosen as an ancillary bit by our
method in the above example. Then, we divide the con-
trol bits into two groups to minimize the sum of the man-
hattan distance between the control bits in the group. In
the qubit placement in Figure. 4, we divide control bits
into {q0, q4} and {q3, q6}. As a result, an MPMCT gate
in Figure. 4 is decomposed into MPMCT gates with fewer
control bits and two-qubits gates as shown in Figure. 6;
after inserting SWAP gates, it is transformed to be NNA-
compliant as shown in Figure. 7. Our method needs to
insert only four SWAP gates, which is much fewer than
the case as shown in Figure. 5. We apply this method to

Figure 6: An example of the decomposition of Figure. 4
by our proposed method.

Figure 7: An example of transforming Figure. 4 to be
NNA-compliant with four SWAP gates by our proposed
method.

MPMCT gates repeatedly and realize a quantum circuit
on an NNA efficiently.

5 Conclusion

In this paper, we proposed a new approach to de-
compose an MPMCT gate in consideration of inserting
SWAP gates at the same time. Our proposed method
chooses a combination of control bits and an ancillary bit
to decrease the number of inserted SWAP gates. There-
fore, we can transform a quantum circuit consisting of
MPMCT gates to the one on an NNA more efficiently
compared with previous methods.
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A BDD-based approach to the Ising partition function
via Eulerian subgraphs
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Abstract. Counting Eulerian subgraphs, which have an Eulerian circuit, has a strong relationship with
the partition function in the Ising model, which is known as a #P-hard problem and necessary to evaluate
the probability of spin configuration in the Gibbs distribution. From the aspect of graph theory, we give an
algorithm counting Eulerian subgraphs using Binary Decision Diagram (BDD), which represents boolean
function. Using path decomposition of a graph to decide the ordering of edges enabled us to give the
BDD width bound of 2O(pw(G) log (pw(G)), where pw(G) denotes the pathwidth of graph G. Furthermore,
implications for quantum computation are also touched upon.
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1 Introduction

Ising model, which is applied to Quantum Annealing
[1, 2], is eagerly studied since it is coming into reality
and beginning to be used to solve real optimization prob-
lems. Yet there are many ”hard” problems concerning
Ising model, such as calculating the Ising partition func-
tion, which we tackle in this paper. The Ising partition
function, which has its origin in statistical mechanics [3],
appears when we calculate the probability of spin configu-
ration in the Gibbs distribution. This function is defined
as follows [4];
Let G = (V,E) be a weighted graph and Jij be a weight
of the edge {i, j}. The Hamiltonian for a particular state
configuration σ = (σ1, . . . , σ|V |) is

H(σ) = −
∑
{i,j}∈E

Jijδσi,σj
(1)

where σi ∈ {−1, 1} and δσi,σj = 1 and 0 otherwise. The
probability of the spin configuration σ in the Gibbs dis-
tribution is P (σ) = 1

Z(β)e
−βH(σ), where β = 1/kBT , the

inverse of the product of the Boltzmann constant and
temperature, and Z(β) is the partition function defined
as follows.

Z(β) =
∑
{σ}

e−βH(σ) (2)

where {σ} means the full set of all possible state config-
urations.
From the aspect from computational complexity, this
problem is known as #P-hard, so it is intractable even
for a small instance. Furthermore, the difficulty of this
problem in quantum device is discussed in [5].
Interestingly, also from the aspect of graph theory, van
der Waerden showed this partition function is represented
by the generating function of Eulerian subgraphs [5]. In
general, an Eulerian subgraph of G is a subgraph of G
which has an Eulerian circuit (a circuit which visits ev-
ery edge exactly once). However, note that an Eulerian

∗r.yonekura@is.s.u-tokyo.ac.jp
†hiraishi1729@is.s.u-tokyo.ac.jp
‡imai@is.s.u-tokyo.ac.jp

subgraph in generating function is defined as a subgraph
the degree of whose all vertices is even, and it is not nec-
essarily connected. In this paper, we adopt the former
definition, so we consider connected subgraphs the de-
gree of whose vertices is even, since it is easy to relax the
problem using the latter definition and we expect consid-
ering this harder problem would open a new perspective
on the partition function from the graphical aspect.
Let wt(a) be a number of edges in the subgraph a, the
generating function is

E(G, x) =
∑
a

xwt(a) (3)

Via this generating function, the partition function is
given by

Z(β) = 2|V |
∏

{i,j}∈E

cosh(βJij)E(G, tanh(βJij)) (4)

So counting Eulerian subgraphs is strongly related to cal-
culating the value of partition function. We propose an
algorithm to count Eulerian subgraphs of a given graph
using a binary decision diagram (BDD). BDD is a data
structure which represents a boolean function. As known,
a graph has an Euler circuit if and only if the degree of all
vertices is even. We construct a BDD which determines
whether the graph is an Eulerian graph when every edge
assigned to use or not. After BDD constructed, we count
Eulerian subgraphs by applying dynamic programming
on BDD.
In addition, we apply path decomposition to the graph
and devise the edge deciding ordering, so that we give a
time complexity analysis using pathwidth of the graph.

2 Method

In this section, we show our method to count Eulerian
subgraphs. We construct a BDD data structure which
represents a boolean function. Assuming the edge order-
ing, we should judge whether a subgraph is Eulerian or
not when we decide to use each edge.
Let G = (V,E) be a graph and H = (V ′, E′) be a sub-
graph of G, there are two requirements that H should
hold.
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Fig 1. Comparison between BDT and BDD

1. ∀v ∈ V ′ degree(v) = 0 mod 2

2. H is connected

For the first condition, we consider a binary deci-
sion tree (BDT) whose node is Odd(H) = {v ∈
V |degree(v) = 1 mod 2}. The left side of the Fig
1 is binary decision tree on the condition of G =
({1, 2, 3, 4}, {{1, 2}, {2, 3}, {1, 3}, {3, 4}}). For simplicity,
we look an empty set (the last node on the level 5 of BDT
in Fig 1) as an Eulerian subgraph in this paper. Observ-
ing this BDT, you may notice that some intermediate
nodes never become Eulerian, such as the second node
on the level 3 since vertex 1 in this node never becomes
even degree. By connecting such node to false (never be-
comes Eulerian), and we construct BDD such as the right
side.
Formally, we should consider such Odd(H) ∩ Tk on level
k ≥ 1, where level k is the k-th layer of BDT and BDD,
Sk =

⋃
1≤i≤k ei is the a set of vertices which are adjacent

to at least one edge of e1, .., ek, and Tk ⊆ Sk is a set
of vertices such that are adjacent to at least one unde-
cided edge and one decided edge. If there exists vertex
v ∈ Odd(H) ∩ (Sk \ Tk), the degree of v never becomes
Eulerian and we don’t have to consider a subgraph H
such that Odd(H) ∩ (Sk \ Tk) 6= ∅.

Furthermore, to satisfy the second condition, we want
to know which vertex in Tk is connected for each node in
BDD.

Every time when we decide whether we use ek or not,
and make a subgraph H = (V ′, E′) from a subgraph
which (k− 1)-th level node represents, if there exists v ∈
V ′ ∩ (Tk−1 \Tk) (a vertex whose last undecided edge was
decided on level k), we check following two conditions.

1. Is degree(v) = 0 mod 2 satisfied?

2. Is v connected to any u ∈ Tk?

If the first condition is not satisfied, we connect this
node to false since the subgraph this node represents
never becomes Eulerian. Otherwise, and if the second
condition doesn’t hold, we can choose no more edges
since no edge is adjacent to the connected component
which includes v. Then we check whether H is a Eulerian
subgraph, and connect this node to true or false due to
this result. If these two condition are held, the necessity
is satisfied and contienue searching.
If we finished deciding all edges, we check whether H

is an Eulerian subgraph as the above case(1:true and
0:false).

Furthermore, we give the following lemma about the
bound of the BDD width (the number of nodes of the
BDD).

Lemma 1 The BDD width on level k of the BDD is
bounded by 2|Tk|Bell(|Tk|), where Bell(x) is x-th Bell
number.

Proof. The number of which vertex in Tk is connected
on level k is bounded by the size of partition of Tk, and
this equals to Bell(|Tk|). If two nodes are same in both
the connected components and the parity of vertices,
we can merge this nodes, and the node size is bounded
2|Tk|Bell(|Tk|). �

Then we want find a good ordering to minimize the
BDD width. To do that, we introduce a path decompos-
tion of G.

Definition 2 A path decomposition of a graph G =
(V,E) is a pair ({Bp : p ∈ I}, P ), where P is a path,
I is the node set of P and the subsets Bp ⊆ V satisfies
(Bp is called a bag of p)

1.
⋃
p∈I Bp = V

2. For each edge {u, v} ∈ E, there is at least one p ∈ I
with {u, v} ⊆ Bp

3. For each vertex v ∈ V , a subgraph induced by {i ∈
I : v ∈ Bi} is connected

pw(G) denotes the pathwidth of G, the minimum value
of (maxv∈VP

|Bv|)− 1 for all its path decompositions. A
path decomposition is called optimal when it achieves
pw(G).

Theorem 3 (Theorem 2 in [6]) The pathwidth of a
graph can be computed and a corresponding path decom-
position can be found in time 2O(k2)n for graphs of path-
width k.

From the above theorem, we can get an optimal path de-
compostion ({Bp : p ∈ I}, P ) of G and assume p1, .., pt ∈
I forms a path in this order where t = |I|. Then we
define Wi as follows.

Wi =

{
Bi \Bi+1 (i ∈ [1, t− 1])
V \

⋃
j∈[1,t−1]Wj (otherwise)

{Wi}i∈[1,t] is a partition of V and for all i, and each
Wi is not an empty set since this path decomposition is
optimal. We get an ordering of vertices select all ver-
tices in W1 at any order, and vertices in W2, and so on.
From this vertex ordering, we get an edge ordering up to
lexicographical ordering of the end of edges. Then the
following lemma holds.

Lemma 4 For any edge ordering got from an optimal
path decomposition of G, the following inequality holds
for all levels a of the BDD.

|Ta| ≤ pw(G) + 1
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Proof. Without loss of generality, define V = [1, |V |]
which is ordered as the above vertex ordering. Assume
we are going to decide edges adjacent to v ∈ Wj , which
include the a-th edge, ea = {v, x} on the level a of the
BDD. Clearly, v ∈ Ta holds.
For all w ∈ Ta other than v, there exist u ∈ Wi and
{u,w} ∈ E such that u ≤ v < w and i ≤ j ≤ k where
w ∈ Wk due to the definition of {W}. (At least there
is one edge decided to use, which should be adjacent to
a vertex u less than or equal to v, and the other end w
should be undecided.)
From u ∈ Wi and its definition, u is included only
less than or equal to i-th bag. Furthermore, due to
{u,w} ∈ E, there exists a bag includes both vertices,
so there exists Bl such that {u, v} ⊆ Bl, l ≤ i. w is in-
cluded by both Bl and Bk, which is a superset of Wk, and
we obtain for all l ≤ m ≤ k, w ∈ Bm from the property
3 of Definition 1.
Then, any w ∈ Ta is included by the bag Bj , which
includes v. (Note that j is included by [l, k], since
l ≤ i ≤ j ≤ k.) This leads Ta ⊆ Bj , which proves
the claim. �

As a result, we get following bound.

Theorem 5 The BDD width on each level is bounded by
2O(pw log pw) where pw denotes the path width of G.

Proof. From lemma 1, lemma 4, and Bell(x) ≤ xx,

2|Tk|Bell(|Tk|) ≤ 2pw+1Bell(pw + 1)

≤ 2pw+1(pw + 1)pw+1

≤ 2pw+12(pw+1) log (pw+1)

≤ 2O(pw log pw)

�

After constructed BDD, we can apply dynamic pro-
gramming to the BDD so that each node has the number
of Eulerian subgraphs. Simply adding each node num-
ber to the child node one enables us to obtain the total
number of Eulerian subgraphs and the complexity of this
algorithm is also 2O(pw log pw).
If we relax this counting problem and allow a counted
subgraph H = (V ′, E′) disconnected, this algorithm
becomes easier. We construct BDD which nodes are
Odd(H) ∩ Tk and we should check that for all v ∈
V ′ ∩ (Tk−1 \ Tk), degree(v) = 0 mod 2 on each level
k and for all v ∈ V ′ ∩ T|E|, degree(v) = 0 mod 2 on the
last level. After BDD constructed, we apply dynamic
programming as the same way. This BDD width and
time complexity is 2O(pw). From the above discussion,
we obtain the following proposition.

Proposition 6 Given an optimal path decomposition of
a graph, we have two algorithms.

1. If nodes of the BDD are odd-degree vertices and
connected components of the elimination front, we
get a 2O(pw log pw) algorithm to count connected sub-
graphs the degree of whose vertices is even.

2. If nodes of the BDD are odd-degree vertices of the
elimination front only, we get 2O(pw) algorithm to
count subgraphs the degree of whose vertices is not
necessarily even.

where the elimination front means Tk of each level k of
the BDD.

3 Concluding Remarks

We showed algorithms constructing BDD to count Eu-
lerian subgraphs, whose motivation is calculating the par-
tition function via the generating function of Eulerian
subgraphs. Whether a subgraph forms Eulerian circuit
or not after deciding to use each edge was regarded as a
boolean function and it enabled us simple dynamic pro-
gramming solution to count Eulerian subgraphs. By ap-
plying path decomposition to the edge ordering, we gave
a bound of BDD width due to the path width.
In addition, approximation algorithms for the Ising parti-
tion function, including quantum algorithms, are energet-
ically studied these days. So our exact algorithms would
be useful to evaluate such approximation algorithms and
make a comparison.
Graphical properties of the partition function related to
the Ising model will be considered as a future work.
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Abstract. Lattice surgery performs logical operations using the error correcting code without destroy-
ing 2-dimensional nearest neighbor architecture. In lattice surgery, we use two logical operations called
”merge” and ”split”. The representation of quantum computation called the ZX calculus can describe
these operations more efficiently than quantum circuits. In this paper, we propose a method to map a
procedure in the ZX calculus to a procedure in lattice surgery.
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1 Introduction

To realize fault-tolerant quantum computation, many
efforts have been done in the research community for
quantum computation. Among them, the surface code [1]
has been attracting much attention recently as error cor-
recting code performing fault-tolerant quantum compu-
tation. The surface code has a high fault-tolerant thresh-
old [2] and it can be realized by only two-qubit quan-
tum gates on adjacent qubits. A technique called lat-
tice surgery can perform logical operations between two
or more logical qubits encoded by the surface code [3].
In lattice surgery, we use two logical operations called
”merge” and ”split”. These operations are non-unitary
operations on the logical states, and it is difficult to de-
scribe all these operations in a quantum circuit. There-
fore, it has been proposed to use the diagrammatic lan-
guage called ZX calculus to describe operations in lattice
surgery efficiently [4]. Thus, in this paper, we propose
a method to map a procedure in the ZX calculus to a
one in lattice surgery efficiently. Our method considers
to parallelize the ZX calculus as much as possible, and
optimize the qubit placement as well.

2 ZX calculus for lattice surgery

Lattice surgery performs operations on the planar
code. The planar code encodes one logical qubit by ar-
ranging physical qubits on a two-dimensional lattice with
periodic boundary conditions [5]. Figure 1 (a) shows an
example such that the planar code encodes one logical
qubit. The red faces in Figure 1 (a) define the two or
four Z stabilizer operators. The blue faces in Figure 1 (a)
define the two or four X stabilizer operators. The planar
code has two types of boundaries, the X boundaries and
the Z boundaries.
In lattice surgery, there are two types of operations,

”split” and ”merge” to perform multi-qubit operations
between encoded logical qubits. Figure 1 (b) shows these
operations between X boundaries. The ”merge” opera-
tion generates one logical qubit from two logical qubits.
The ”split” operation generates two logical qubits from
one logical qubit.

∗eight@ngc.is.ritsumei.ac.jp
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Figure 1: (a) The planar code encodes one logical qubit.
The red faces define the two or four Z stabilizer opera-
tors. The blue faces define the two or four X stabilizer
operators. The left and the right boundaries are called
Z boundary, and the upper and the lower boundaries are
called X boundary. (b) The ”merge” and the ”split” op-
erations between X boundaries.

The ZX calculus is a diagrammatic language for rea-
soning quantum computation, similarly to quantum cir-
cuits [6]. It is consist of red nodes, green nodes and
edges which connect nodes. The difference in color is
associated with a choice of basis. The ZX calculus can
represent initialization, measurement, single qubit gate,
CNOT gate using nodes and edges as well as quantum
circuits. All nodes except the initialization and mea-
surement nodes have m (≥ 1) inputs and n (≥ 1) out-
puts. In particular, a red node with two inputs and an
output correspond to K = |+⟩ ⟨++| + |−⟩ ⟨−−|, and
it represents merge operations between Z boundaries.
Then, a red node with an input and two outputs cor-
respond to K = |++⟩ ⟨+| + |−−⟩ ⟨−|, and it repre-
sents split operations between Z boundaries. Similarly, a
green node with two inputs and an output correspond to
K = |0⟩ ⟨00|+|1⟩ ⟨11|, and it represents merge operations
between X boundaries. Then, a green node with an in-
put and two outputs correspond toK = |00⟩ ⟨0|+|11⟩ ⟨1|,
and it represents split operations between X boundaries.
Therefore, the ZX calculus can describe procedures in
lattice surgery more naturally than quantum circuits.

3 Mapping of ZX calculus

In our method, first, we parallelize nodes in the ZX
calculus diagram before mapping a procedure in the ZX
calculus to a one in lattice surgery. Next, we optimize the
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Figure 2: (a) The ZX calculus diagram converted from a
quantum circuit containing only CNOT gates. (b) The
ZX calculus diagram parallelized from Figure 2 (b).
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Figure 3: (a) The qubit placement used in our method.
The gray qubits are ancilla qubits to perform CNOT op-
erations. (b) An example where we cannot move qubits
simultaneously.

qubit placement to increase the number of nodes that can
be parallelized.

3.1 Parallelization in ZX calculus

Figure 2 (a) is the ZX calculus diagram converted
from a quantum circuit containing only CNOT gates.
The time axis is from left to right. The red and green
nodes correspond to ”merge” and ”split” operations. The
black edge indicates dependencies of the operations cor-
responding to each node. The blue edge indicates depen-
dencies to perform error correction. When we map edges
that connect a red node and a green node to a procedure
of lattice surgery, we need to move qubits generated by
split operations.
We can parallelize a graph converted from a quan-

tum circuit maintaining dependency between nodes. Fig-
ure 2 (b) shows the result parallelized from Figure 2 (a).
We can reduce the computational time by parallelization
in the ZX calculus diagram.

3.2 Optimization of the qubit placement

To increase the number of operations that can be per-
formed in parallel, we optimize the qubit placement. In
our method, we use the qubit placement as shown in Fig-
ure 3 (a). The gray qubits are ancilla qubits to perform
CNOT operations.
Figure 3 (b) shows the qubits move. The orange

and green qubits are generated by splitting qubit 1 and
qubit 3. The orange qubit needs to move to be adjacent
to qubit 2 in order to be merged with the qubit 2. Sim-

ilarly, the green qubit needs to move to be adjacent to
qubit 4 in order to be merged with the qubit 4. In our
method, we move qubits with only L-shaped move. Fig-
ure 3 (b) shows an example where we cannot move two
qubits simultaneously. However, we can perform these
move operations simultaneously by placing qubit 1 and
qubit 3 appropriately. When we parallelize graphs men-
tioned in Section 3.1, we can consider that multiple dupli-
cations of qubit paths. Therefore, we optimize the qubit
placement to minimize duplications of paths.
In our method, we formulate the problem of optimiza-

tion of the qubit placement to Integer Linear Program-
ming (ILP). We will explain the specific formulation in
Appendix.

4 Conclusion

In this paper, we have proposed a method to map a
procedure in the ZX calculus to a one in lattice surgery
with parallelization in ZX calculus and optimization of
the qubit placement. In our future work, we should per-
form some benchmark experiments and verify its effec-
tiveness. In our method, we do not consider the freedom
of position of each node and the complicated move of
qubits. Thus, in our another future work, we need to
consider these such issues to optimize circuits further.
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Appendix A Formulation procedure

In our method, we formulate the problem of optimiza-
tion of the qubit placement to Integer Linear Program-
ming (ILP). Let i, j, k, l are the number of locations that
qubit place. Thus, let xi(j,k,l)n(o,p,q) is a boolean variable
that indicates whether qubit i(j, k, l) is assigned to loca-
tion n(o, p, q) or not. Let ymno is a boolean variable that
indicates whether qubit n needs to move to neighbor po-
sitions of qubit o in m step or not. Let zijkl is a boolean
variable that indicates whether qubit can move between
location i, j and between location k, l simultaneously or
not. Then, we formulate the optimization problem with
the above variables in the following.

minimize
s∑

m=1

r∑
i=1

r∑
j=1

r∑
k=1

r∑
l=1

t∑
n=1

t∑
o=1

t∑
p=1

t∑
q=1

zijklymnoympqxinxjoxkpxlq

subject to
u∑

i=1

xin = 1 (n = 1, . . . , t)

v∑
n=1

xin = 1 (i = 1, . . . , r)

xin ∈ {0, 1} (i = 1, . . . r, n = 1, . . . , t)

In our method, we use ILP solver to search a optimal
solution that satisfies above constraint expression.
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Tiancheng Wang1 ∗ Kenji Nakahira2 † Tsuyoshi Sasaki Usuda1 ‡

1 School of Information Science and Technology, Aichi Prefectural University,
1522-3, Ibaragabasama, Nagakute, Aichi, 480-1198, Japan.

2 Quantum Information Science Research Center, Quantum ICT Research Institute, Tamagawa University,
6-1-1, Tamagawagakuen, Machida, Tokyo, 194-8610, Japan.

Abstract. In long-distance wireless communications, the performance of quantum receiver dealing with
phase noise has not been widely discussed. In this paper, we discuss the performance and design criteria
of a robust quantum receiver that addresses the uncertain estimation of phase noise.
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1 Introduction

The coherent-state has been subjected to extensive re-
search on quantum communications and information the-
ory. For example, the coherent-state is known for its can
achieve the ultimate channel capacity for a lossy bosonic
channel or free-space[1, 2]. The use of coherent states
encoding information in the phase angle, which we call
MPSK(M -ary phase-shift keying) coherent-state signals,
can increase the spectral efficiency as a typical digital
modulation scheme.
Since the characteristic of MPSK signals, the trans-

mitted signals influenced by phase noise may be hard to
distinguish from the nearby signals, resulting that the
performance of communication systems is affected. In a
long-distance wireless quantum channel, sometimes the
optimum quantum receiver is incapable of following the
phase fluctuation θ caused by turbulence, atmospheric re-
fraction, and unstable adjustment of the receiver. There-
fore, θ has to be regarded as random variables Θ in gen-
eral. As an example of such treatment, a study [3] fo-
cused on Θ caused by the phase diffusion, which occurs
on fiber quantum channel, and assumed that Θ follows
normal distribution N(0, σ2). In this paper, we consider
that a similar phase noise caused by different cause, in
the wireless quantum channel.
In fact, an optimum classical receiver, including homo-

dyne measurement and heterodyne measurement, does
not depend on the estimation in terms of phase noise.
On the other hand, an optimum quantum receiver that
achieves the Helstrom bound requires estimating exactly
the variance of the phase noise, σ2. Unfortunately,
in long-distance communications, such as satellite-based
global quantum communications, a variety of incomplete
factors generate the sudden fluctuation of σ2, resulting
that σ2 is hard to be estimated exactly. The quantum
measurements that deal with such problem have not been
clarified.
In our previous study[4, 5], we have focused on the

performance of a quantum receiver when the estimated

∗id191002@cis.aichi-pu.ac.jp
†nakahira@lab.tamagawa.ac.jp
‡usuda@ist.aichi-pu.ac.jp

phase noise for an optimum quantum measurement was
inconsistent with the true phase noise in the received
quantum states. The analysis demonstrated that esti-
mating an incorrect phase noise may degrade dramati-
cally the performance of quantum receiver. In this pa-
per, we intend to find the quantum measurements that
improve the performance of quantum receiver as much as
possible, in case that the performance closer to that of
an optimum classical receiver within the range R(∋ σ2)—
quantum receiver estimates σ2 including uncertainty. In
addition, although we focus mainly on M = 2, namely
BPSK(binary phase-shift keying), in this paper, we pro-
vide briefly the basics of M > 2 for extensibility.

2 Basics of quantum communication

Suppose the quantum density operator of a transmit-

ted quantum state, ρ
(in)
i (i = 0, 1, · · · ,M − 1), is a coher-

ent state |α⟩ with MPSK,

ρ
(in)
i =

∣∣∣αej 2iπM ⟩⟨αej 2iπM

∣∣∣ , (1)

where j =
√
−1 and α is the coherent amplitude. We

assume that information is transmitted from the trans-
mitter to the receiver through the quantum channel de-
scribed by a map L : S(HA) → S(HB), where S(H) is
the set of quantum density operators over the Hilbert
space H. We make the classical input alphabet X =
{x0, . . . , xM−1} correspond to the set of quantum states

{ρ(in)0 , . . . , ρ
(in)
M−1}(∈ S(HA)), and introduce a map of x to

the received quantum states (∈ S(HB)), Φ : x → Φx :=

L(ρ(in)x ), which we call classical-quantum channel[6].
The quantum density operator of a received quantum

state, ρ
(out)
i , is represented as

ρ
(out)
i =

∫
P (θ)|αej( 2iπ

M +θ)⟩⟨αej( 2iπ
M +θ)|dθ, (2)

where P (θ) is normal distribution, Θ ∼ N(0, σ2). Then

we consider an ensemble Emixed
M consisting of ρ

(out)
i taken

with equal a priori probabilities ξi = 1
M . Applying

a positive operator-valued measure(POVM) {Πi} that∑
i Πi = I (i.e. identity operator) and Πi ≥ 0 to ρ

(out)
i

corresponding to value i, we can calculate a conditional
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Fig. 1: The error probabilities of BPSK by the homodyne
measurement and the quantum measurements optimized
for σ2

2 when |α|2 = 1.

probability p(j|i) = Trρ
(out)
i Πj of detecting the value j.

Thus, the error probability for the POVM to distinguish
the Emixed

M is obtained by

Pe = 1−
∑
i

Trξiρ
(out)
i Πi. (3)

For deriving the minimum error probabilities POpt
e

(i.e., Helstrom bound) for measuring BPSK signals and
MPSK signals (M > 2), which achieved by applying op-
timum quantum receiver, we used a treatment given by
[7] and an algorithm given by [8], respectively, to find the
optimum detection operators Πi (e.g. [5]).
The minimum error probabilities POptCla

e (∋
PHom
e , PHet

e ) of optimum classical receiver, which
achieved by the homodyne measurement for BPSK
signals and the heterodyne measurement for MPSK
signals(e.g., [9, 7]), are obtained by

PHom
e =

√
2

π

∫ 0

−∞

∫
P (θ)e−2(y−|α| cos θ)2dθdy, (4)

PHet
e =

1

π

∫ ∫ π(2M−1)
M

π
M

∫ ∞

0

P (θ)

× r e−r2−α2+2r|α| cos(ϕ−θ)drdϕdθ, (5)

respectively[5].

3 Error performance

An optimum quantum receiver is required to apply

Π := {Πi} optimized for ρ(out) := {ρ(out)i }. In other
words, the optimum quantum receiver needs estimat-
ing ρ(out) exactly for finding the optimum Π. Because
of ρ(out) that is subject to σ2 except M and the aver-
age number of photons |α|2, we can rewrite ρ(out) and

Π to function ρ(out)(σ2) := {ρ(out)i (σ2)} and Π(σ2) :=
{Πi(σ

2)}, respectively, while the optimum classical re-
ceiver does not depend on the estimation of σ2. Estimat-
ing σ2 for the optimum quantum receiver is not always
exactly. We assume that σ2

1 is the variance of the true
phase noise and σ2

2 is that of the estimated phase noise,
instead of σ2. As an undesirable example, [4] showed
that the quantum receiver applying Π(σ2

2)—the POVM
optimized for ρ(out)(σ2

2) measures ρ(out)(σ2
1)—has worse

performance than an optimum classical receiver. Here,

Fig. 2: The graph of S corresponding to the error prob-
abilities of BPSK in Fig. 1 when |α|2 = 1.

the error probability Pe exploited Π(σ2
2) is obtained by

Pe(σ
2
1 ,Π(σ2

2)) = 1−
∑
i

Tr ξiρ
(out)
i (σ2

1)Πi(σ
2
2), (6)

where Pe = POpt
e only for σ2

1 = σ2
2 . Fig. 1 from [5]

shows the error probabilities against σ2
1 with the settings

of |α|2 = 1 and M = 2. Dashed and solid black lines
correspond to the optimum classical measurement and
the quantum measurement; red, blue, pink, green, and
cyan correspond to the estimated σ2

2 = 0, 0.01, 0.05, 0.1,
and 0.5. σ2

2 = 0 implies the exploitation in terms of “an
optimum quantum measurement only for coherent-state
signals,” and leads to the possibility of quantum non-
superiority.

To evaluate the performance of a quantum receiver es-
timated σ2

1 incorrectly, we consider a quantity S repre-
senting “how far is it from the performance of a quantum
receiver to that of the optimum classical receiver,” and
introduce S defined in [4]:

S(σ2
1 ,Π(σ2

2)) :=
Pe(σ

2
1 ,Π(σ2

2))− POpt
e (σ2

1)

POptCla
e (σ2

1)− POpt
e (σ2

1)
, (7)

where POptCla
e (σ2

1) and P
Opt
e (σ2

1) are functions of σ
2
1 . Be-

cause of Pe(σ
2
1 ,Π(σ2

2)) ≥ POpt
e (σ2

1) and POptCla
e (σ2

1) >
POpt
e (σ2

1), we know that 0 ≤ S and S = 0 only for
σ2
1 = σ2

2 . S ≥ 1 implies that the performance of opti-
mum classical receiver is equal to or better than that of
the quantum receiver. Fig. 2 from [5] shows S corre-
sponding to the error probabilities in Fig. 1.

4 Robust quantum measurements

We consider the range R(∋ σ2
1) estimated roughly in-

stead of an unknown σ2
1 for achieving higher performance,

and introduce minimax criteria to address the problem
that finds the appropriate quantum measurements de-
scribed in chapter 1, in |α|2 = 1 and M = 2 settings.

4.1 Robustness

The performance of a quantum receiver which exploits
Π′(∈ Π(σ2

2)), closest to that of the optimum classical
receiver, is obtained by

Smax(Π
′) := max

σ2∈R
S(σ2,Π′). (8)

In order to optimize the worst case, Smax(Π
′) → min(=:

SMinimax) (i.e., minimax value), an appropriate Π′ is re-
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Fig. 3: The graph of robustness SMinimax that applied
the most robust quantum measurements when |α|2 = 1.

quired to find.
In this paper, we define robustness as “quantum supe-

riority will be kept over a certain limit even if uncertainty
exists in the estimation of σ2

1 .” Let Rave be the average
of R, the amount in terms of the uncertainty is repre-
sented by a parameter β—it is taken from the width of
R, W = β · Rave, where β satisfies 0 ≤ β ≤ 2. Then we
fix Rave and S

Minimax, and consider that the larger β, the
higher the robustness. Naturally, if Rave and β are fixed,
it can be said that the smaller SMinimax, the higher the
robustness. We determine SMinimax as the amount eval-
uated the robustness, and introduce minimax criteria to
find the most robust quantum measurements under three
cases.

4.2 Case A

A theorem establishes that any POVM can be realized
on an extended Hilbert space[10], yet the method of re-
alizing any quantum measurement corresponding POVM
cannot necessarily be found. We assume a constraint im-
posed on the number n of quantum measurements we can
prepare, and consider which one is the most robust, based
on minimax criteria. If a set of optimum quantum mea-
surements X = {Π(σ2

2)|σ2
2 ∈ σ′2

1 }—these measure the
signals including phase noise σ′2

1 = {ς21 , ς22 , . . . , ς2n} with
Helstrom bound—is already realized, we can determine
the most robust ΠA that satisfies

min
ΠA∈X

max
σ2∈R

S(σ2,ΠA). (9)

4.3 Case B

The robustness exploited X is limited within each of
X in Case A, because the method is that it switches
between X depending on R. In order to surpass that,
we consider a stochastic method that mixes the quantum
measurements. We prepare X as well as Case A, and then
exploit Πmin(∈ X ) optimized for Rmin := min R with
probability c1 and Πmax(∈ X ) optimized for Rmax :=
max R with probability c2, where c1 and c2 satisfy c1 +
c2 = 1. The new quantum measurement is represented
as

ΠB(Πmin,Πmax, c1) := c1Πmin + c2Πmax. (10)

Now, we can determine the most robust ΠB that satisfies

min
0≤c1≤1

max
σ2∈R

S(σ2,ΠB(Πmin,Πmax, c1)). (11)

The robustness of new quantum measurement will sur-
pass or equal that of Case A, and the latter implies
Πmin = Πmax. Note that since this case is on the basis
of a stochastic method, the higher robustness is achieved
with a large number of measuring times.

4.4 Case C

We provide an ideal case that if the constraint de-
scribed in Case A is lifted in spite of uncertainty exists in
the estimation of σ2

1 yet, then a set of optimum quantum
measurements Y = {Π(σ2

2)|σ2
2 ∈ R}—these measure the

signals including any σ2
1(∈ R) with Helstrom bound—can

be prepared. The most robust ΠC is determined by

min
ΠC∈Y

max
σ2∈R

S(σ2,ΠC). (12)

We also reduce the condition (12) to

S(Rmin,ΠC) = S(Rmax,ΠC), ΠC ∈ Y. (13)

In addition, this case implies a solution that how an opti-
mum quantum receiver deals with the uncertain estima-
tion of σ2

1 as a robust quantum receiver.

5 Conclusion

In this paper, we derived the most robust measure-
ments that respectively correspond to three cases, based
on the minimax criteria. The numerical results are
shown in Fig. 3, which plot SMinimax against Rave in
σ′2
1 = {0.01, 0.05, 0.10, 0.50, 1.00} setting. Dashed, dot-

ted, and solid lines correspond to Case A, Case B, and
Case C; red, blue, and green correspond to β = 0.5, 1,
and 1.5. The dotted purple line is an exception which
means a limit to the robustness.

Fig. 1 suggests the possibility that the optimum
quantum receiver measuring BPSK coherent-state signals
with Helstrom bound, such as Dolinar receiver[11], is not
geared towards applying to the wireless quantum com-
munications where the phase noise occurs. However, an
optimum quantum receiver dealing with the phase noise
has not been realized yet, as well as it is not clear whether
that can be realized. This paper suggests that even if an
optimum quantum receiver dealing with any σ2

1 can not
be realized, we can design a practical, robust quantum
receiver by means of realizing quantum measurements
optimized for some of σ2

1 on the basis of Case A and B.
Finally, we provide a supplement in terms of when to

use Case B instead of Case A. In Case B, we suppose that
the use of Πmin and Πmax can be seen as a random vari-
able followed Bernoulli distribution with parameter c1.
If we set confidence level at 95%, the confidence interval
concerning the mean c1 is c1±1.96×

√
c1(1− c1)/t, where

t is the number of measuring times. As an example, if the
error of confidence interval is required within (c1)± 1%,
the necessary t is tB ≈ 1.962×c1(1−c1)/0.012 = 9218, in
β = 1 and Rave = 0.28 settings, where the most robust
ΠB(Π(0.5),Π(0.1), 60%) is exploited. Case A is used in
the case that the estimated t << tB.
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Abstract. Keyed communication in quantum noise (KCQ) is a quantum cryptographic principle that
was invented by H. P. Yuen in 2000. The security of KCQ protocols is originated from different performance
of optimum classical and quantum receivers, which corresponds to so-called quantum gain. In this paper,
we evaluate KCQ protocols using binary codes that are the best in terms of reliable communications. We
consider quantum and classical reliability functions for the evaluation. As a result, it is clarified that the
best codes in reliable communications are not good for KCQ protocols.

Keywords: quantum cryptography, KCQ protocol, quantum gain, reliability function, zero rate, classical
channels, classical-quantum channels.

1 Introduction

Keyed communication in quantum noise (KCQ) in-
vented by Yuen is a quantum cryptographic principle,
based on the idea of using the difference in performance
of an optimum measurement by the presence of a key for
security[1]. A legitimate receiver with a key can use op-
timum quantum measurement, whereas an eavesdropper
with nothing can use only an optimum classical mea-
surement at best. This construction is the origin of the
security in KCQ protocols.
In this way, security in KCQ protocols concerns the

superiority of an optimum quantum receiver compared
with an optimum classical receiver, namely, the so-called
“quantum gain”. However, it is difficult to estimate the
capabilities of a legitimate receiver and an eavesdropper.
Hence, Yuen proposed surprisingly an evaluation method
that virtually disclosed the key to an eavesdropper after
measurement[1]. Quantum gain is by an “upper bound
evaluation” the smallest difference between the capabili-
ties of a legitimate receiver and an eavesdropper. It de-
termines the rate that an average number of photons sat-
isfied the same error probability in an optimum receiver
of classical or quantum type.
There are two classes of KCQ protocols according to

types of quantum states used: single-mode and multi-
mode. The quantum gain limit is 6[dB] for the single-
mode[1]. Yuen demonstrated that the quantum gain
limit for the multi-mode is nothing while proposing his
own cryptosystem, coherent pulse position modulation
(CPPM). Kadoya et al. suggested using binary codes,
as it is a generalization of CPPM in a certain sense[2].
However, there are problems in selecting the appropriate
code or establishing an evaluation method.
We consider the best codes that give the smallest error

probability in this study. Hence, we focus on the relia-
bility function, which is defined as the exponential of the
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best error probability. We assess the quantum gain in
the KCQ protocol using the difference between the clas-
sical and the quantum reliability functions by applying
Kurokawa’s idea[3] to quantum cryptography.
　　　

2 Reliability function

2.1 Overview of reliability function

The reliability function is defined as the exponential
of the decoding error probability of a very long code of
block length n and coding rate R using the best code with
the smallest decoding error probability (here, we call it
the best error probability). Let P opt

e (n,R) be the best
error probability for n and R. Then it is expressed by
the so-called reliability function E(R) as

P opt
e (n,R) = e−nE(R). (1)

E(R) is also called an error exponent. Therefore, E(R)
is formally expressed as

E(R) =
1

n
ln

[
1

P opt
e (n,R)

]
. (2)

In the theory of reliability functions, E(R) is defined by
considering the limit n→ ∞ (see [4, 5] for more details).
In general, it is difficult to compute the actual minimum
decoding error probability with the best code. However,
because the upper and lower bounds of E(R) are known,
an exact value for E(R) may be obtained in special cases
when the upper and lower bounds coincide. When the
rate R is extremely high or low, i.e., it is close to the
channel capacity or almost zero, tight upper and lower
bounds are known in the sense that they are close to the
true values.

2.2 Quantum reliability function

Let H be the Hilbert space of a quantum system.
We consider a classical-quantum communication that
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sends M pure-state signals |ψi⟩ ∈ H indexed by i(i =
1, 2, . . . ,M). Let ξi be the a priori probability of each
classical information i. Then

ρ =
M∑
i=1

ξi |ψi⟩ ⟨ψi| (3)

is called the density operator of the quantum information
source {|ψi⟩}.

2.2.1 Tight bounds in high rate

Tight bounds of quantum reliability function in high
rate are known as the sphere packing bound[6] and the
random coding bound[5], respectively. Let EQU(R) and
EQL(R) be the upper and lower bounds. Then,

EQU(R) = max
0≤s

max
ξ

[µ(s, ξ)− sR] , (4)

EQL(R) = max
0≤s≤1

max
ξ

[µ(s, ξ)− sR] , (5)

where

µ(s, ξ) = − ln Tr ρ1+s, (6)

and ρ is given by Eq.(3). Kato proved that the uniform
{ξi} maximizes µ(s, ξ)− sR in both bounds when signals
are symmetric[7, 8]. Therefore, for symmetric signals, we
have

EQU(R) = max
0≤s

[
µ

(
s,

{
1

M

})
− sR

]
, (7)

EQL(R) = max
0≤s≤1

[
µ

(
s,

{
1

M

})
− sR

]
. (8)

2.2.2 Quantum reliability function at zero rate

As for tight bounds of quantum reliability function in
low rate, the exact value of the quantum reliability func-
tion is known at zero rate (R = 0)[5]. This zero-rate
quantum reliability function is expressed as

EQ(+0) = −min
{ξ}

∑
i,k

ξiξk ln |⟨ψi|ψk⟩|2. (9)

In the case of binary quantum signals,

EQ(+0) = − ln |⟨ψ0|ψ1⟩|. (10)

2.3 Classical reliability function

Let i (i = 1, 2, . . . ,M) and j (j = 1, 2, . . . ,M ′) be the
input and output of the classical channel. The classical
channel is represented by a conditional probability P (j|i)
of outputting j by inputting i.

2.3.1 Tight bounds in high rate

Tight bounds of classical reliability function in high
rate are also known and called the sphere packing and
random coding bounds[4]. Let ECU(R) and ECL(R) be
the upper and lower bounds. Then,

ECU(R) = max
0≤s

max
ξ

[ν(s, ξ)− sR] , (11)

ECL(R) = max
0≤s≤1

max
ξ

[ν(s, ξ)− sR] , (12)

where

ν(s, ξ) = − ln
M ′∑
j=1

(
M∑
i=1

ξiP (j|i)
1

1+s

)1+s

. (13)

As same as for the quantum reliability function, the cor-
responding channel matrix becomes symmetric by the
symmetry of the signals, so that the optimum probability
distribution is uniform. It is then sufficient to perform
only the optimization on s. For the classical reliability
function, if the optimal s is less than or equal to 1, then
ECL(R) = ECU(R), which is the value of the classical
reliability function itself.

2.4 Classical reliability function at zero rate

In classical theory, a tight lower bound in low rate is
known as the so-called expurgated bound and is defined
as[4]

EC−ex(R) = sup
σ≥1

[−σR+ σ log 2− σ log(1 + a1/σ)]. (14)

Moreover, it was proved that EC−ex(R = 0) is the exact
classical reliability function at zero rate. Therefore, the
zero-rate classical reliability function is

EC(+0) = EC−ex(R = 0). (15)

2.5 The best error probability and its bounds

For sufficiently long codes of block length n and coding
rate R, the quantum version of the best error probabil-
ity is written as P opt

Q (n,R), and the classical version as

P opt
C (n,R). When R = 0,

P opt
Q (n,R = 0) = e−nEQ(+0), (16)

P opt
C (n,R = 0) = e−nEC(+0). (17)

Moreover, for any R,

e−nEQU(R) ≤ P opt
Q (n,R) ≤ 2e−nEQL(R), (18)

e−nECU(R) ≤ P opt
C (n,R) ≤ e−nECL(R), (19)

and the above inequalities are tight when R is close to
the capacity. Note that the upper bound of the error
probability in the quantum version takes a factor of two
(see [5] for more detail).

3 Properties of quantum gain

In this study, we consider KCQ protocols using binary
codes, so that we assume the BPSK (binary phase shift
keying) coherent-state signals {|α⟩ , |−α⟩}. The signals
are characterized by their coherent amplitude α or the
average number of photons Ns = |α|2.
The quantum gain can be expressed using the average

number of photons in the quantum and classical cases
when their probabilities of error P have the same value:

Gain = 10 log10
NC

s (When PC = P )

NQ
s (When PQ = P )

[dB], (20)
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Figure 1: Upper and lower bounds of error probabilities
for optimum quantum and classical measurements when
R = 0.4, n = 20000.

where NC
s represents the average number of photons

when the error probability PC becomes P in the clas-
sical instance and NQ

s represents the average number of
photons when the error probability PQ becomes P in the
quantum instance.
Figure 1 shows upper and lower bounds of the error

probability with respect to the average number of pho-
tons when R = 0.4 and n = 20000. In this case, the
bounds are tight, so that the black and green lines co-
incides and the red and blue lines are almost coincides.
The gap between the green and blue lines represents the
upper bound of the quantum gain and that between the
green and red lines represents the lower bound. Table 1
shows the quantum gains [dB] for error probabilities of
10−12 or close to unity. In both cases, the upper and
lower bounds of NC

s match the classical case, whereas
NQ

s differs for the quantum case, as mentioned above.
Hence, Table 1 lists Gain(Lower) as the lower bound and
Gain(Upper) as the upper bound of the quantum gain.
Both values were found to be about 7.5[dB] and there is
no difference larger than 0.1[dB] even if the code of block
length is doubled.
In addition, we observe the quantum gain when n is

fixed and R is changed. The lower the rate is, the larger
the quantum gain is. Table 2 shows the quantum gain
when R = 0. From Table 1, 2, it seems that the smaller
the rate is, the larger the quantum gain is. However, the
difference is slight.

Table 1: Quantum gain [dB] when R = 0.4.
n P Gain(Lower) Gain(Upper)

10000 7.574 7.583
15000 10−12 7.581 7.583
20000 7.585 7.595
10000 7.499 7.645
15000 1 7.499 7.645
20000 7.544 7.645

Table 2: Quantum gain [dB] when R = 0.
n P Gain

20000 7.9825
105 10−20 7.9799
106 7.9796

20000 7.9818
105 10−12 7.9780
106 7.9780

4 Conclusion

In this paper, we use the upper and lower bounds of
classical and quantum reliability functions for binary sig-
nals to evaluate the security of the KCQ protocol us-
ing binary codes. This corresponds that we consider the
KCQ protocol using the best codes in reliable commu-
nications. The result of our evaluation is as the fol-
lowing: The quantum gain using the best codes exceeds
6[dB] which is the limit of the single-mode KCQ proto-
col. However, the gain seems to be almost independent
of the length of codes. Therefore, we conjecture that
there is limitation of the quantum gain when using the
best codes. This property is completely different from
the case of CPPM signals.

As a future subject, we will consider the quantum gain
when using the best code for cryptographic system.
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Protecting the state of a qubit against decoherence is an essential task in realistic quantum
techniques. Recent work [Physical Review A 95(3): 032313 (2017)] shows that quantum composite
control can efficiently escape from the dilemma of high fidelity and low success probability for the
state protection task. Regretfully, this work just work for qubit that in special states where the
priori probabilities are equal. In this paper, we consider general case where the states are in an
arbitrary priori probability and present a generalized scheme. We derive its performance by both
analytical and numerical optimization over parameters therein. The generalized one has advantage
in two aspects. On the one hand, when priori probability is equal, this scheme outperforms than
previous schemes. On the other hand, when inequal priori probability is considered, we show that
the priori probability provide information for protecting and thus the performance is better than
that in equal priori probability case.

Keywords: Decoherence,Quantum control, Quantum state protection

I. EXTEND ABSTRACT

Quantum information is fragile to decoherence, which
heavily drags the step of Quantum technologies to prac-
tical realization. Classical control techniques shows great
tolerance of noise. However, the extension from classical
control technique to quantum realm is not trivial.
Unlike classical control techniques, quantum control

meets two mountains. Firstly, Heisenberg’s inequality
limits the amount of information that measurement can
obtain – information gain. Secondly, there will be an un-
desired phenomenon, “back-action”, when quantum mea-
surements are applied. These properties limit the perfor-
mance of quantum control and make us to design control
schemes with delicate.
Recent work shows that weak measurement can solve

the dilemma between information gain and back-action
[1] and propose a quantum feedback control (QFBC)
scheme. There a weak measurement is applies after the
noise and its result is fed back to a correction operator ac-
cordingly. Thereafter, Wang et al. presented a quantum
feedforward (QFFC) control scheme[2], which improves
the fidelity between output state and input state to ar-
bitrarily close to unit. The idea therein is to drive the
input state to some state almost immune to the noise
before the target qubit enter the noise and then undoes
the noise by partial weak measurement. However, the
high fidelity can be achieved only at the price of low
success probability. To solve this, Ya et al. nontrivial-
ly combines QFBC and QFFC, which is called quantum
composite control(QCC)[3]. The authors has shown that
QCC finds a better balance between fidelity and success

∗ caoshinee@126.com
†

probability by feeding the second measurement result in
QFFC process to a correction unitary.

All the presented control schemes are depend on prior
information, or called side information, such as the over-
lap, the prior probability and so on. Thus side informa-
tion is essential for protection. However, the side infor-
mation included in those schemes is not complete even in
equal prior probability case. An optimal control scheme
should taking full consideration of all given side informa-
tion. In this paper, we design such kind a scheme under
QCC structure. The measures or corrections therein are
chosen from a family of weak measures or unitaries, re-
spectively, which consists all given information including
the overlap, the phase, the prior probability and the noise
strength. By analytical and numerical optimization over
all related parameters, an optimal scheme is presented.

Analysis comes from two aspects. Firstly, when equal
priori probability is considered, we find the presented
control schemes lacks some quantum side information.
In order to show the advantage clearly, we plot figure
1.Secondly, when inequal prior probability is included,
existing control schemes lack some classical side infor-
mation. To find the effect bringing by classical side in-
formation, we fix the quantum side information can be
included, and plot figure 2,3 and 4. Figure 2 shows the
fidelity improvement, corresponding fidelity and nontriv-
ial parameter that describing prior probability. Figure 3
gives an example to show the parameter is nontrivial in
the sense that it different from that in the Helstrom basis
or zero, trivially. Figure 4 plots the relation between fi-
delity and success probability. There we show our scheme
(the triangle dots) reveals an apparent improvement in
success probability when requiring the unit fidelity.

We expect our results will be helpful for suppressing
decoherence in quantum computing and quantum infor-
mation processing. Besides, the measurements we used
here may provide a lot of candidates for developing weak
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measurements in balancing information gain and distur-
bance. At last, a more general family of measurements
and corrections in our scheme may makes state protec-
tion less sensitive to noise and initial state, which may
lead to a more realistic scheme.

FIG. 1. Advantage of fidelity as a function of the initial angle
θ and phase ϕ for different noise strength (a) r=0.25, (b)
r=0.5, (c) r=0.75 and (d) r=1.

FIG. 2. Fidelity improvement, fidelity for our scheme and
parameter α as a function of the initial angle θ and prior
probability s when fixing ϕ=0 (fix quantum side information)
for selected noise strength (1)r=0.5 and (2) r=1.
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FIG. 3. Infidelity f̄ as a function of the parameter alpha when
s+=1/3, θ = π/3, ϕ = 0 and r = 0.8 for schemes without fully
characterization of classical side information, our scheme and
Helstrom scheme(left-¿right).
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FIG. 4. Fidelity f VS. Log of success probability log(s) when
θ = π/3 r=0.9 and s+=1/3. Here dot and triangle for the
scheme without and with classical side information, respec-
tively.
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Towards a quantum-inspired proof for IP = PSPACE

Ayal Green1 ∗ Yupan Liu1 † Guy Kindler1 ‡
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Abstract. We explore quantum-inspired interactive proof systems where the prover is limited. Namely,
we improve on a result by [5] showing a quantum-inspired interactive protocol (IP) for PreciseBQP where
the prover is only assumed to be a PreciseBQP machine, and show that the result can be strengthened to
show an IP for NPPP with a prover which is only assumed to be an NPPP machine - which was not known
before. We also show how the protocol can be used to directly verify QMA computations, thus connecting
the sum-check protocol by [2] with the result of [5]. Our results shed lights on a quantum-inspired proof
for PSPACE = IP, since PreciseQMA captures the full PSPACE power.

Keywords: interactive proofs, verification of quantum computation

1 Introduction

The study of interactive proof systems began in the
1980’s, and while initially only a few non-trivial proof
systems were known [8,20], at the beginning of the 1990’s
it was discovered that interactive proof systems are ac-
tually extremely powerful.

In broad terms, in an interactive proof for a language
L, a computationally weak verifier interacts with one or
more provers which are stronger computationally. For
a given input x, the provers claim that x ∈ L, but the
verifier would not just take their word for it. Instead,
an interactive protocol is commenced, followed by the
verifier either ’accepting’ the claim, or ’rejecting’ it. The
protocol has perfect completeness if, when x is indeed
in L and the provers honestly follow the protocol, the
verifier eventually accepts. The protocol has soundness-
parameter s, if when x is not in L then the verifier rejects
with probability at least 1− s, independently of whether
the provers follow the protocol or not. If a protocol for L
exists that has perfect completeness and soundness 1/2,
we say that it is an interactive protocol for L.

The celebrated IP = PSPACE [24, 33] result showed
that any language in PSPACE has an interactive protocol
with a (randomized) polynomial-time Turing machine as
a verifier, and with a single prover that is computation-
ally unbounded. The result MIP = NEXP [10] that soon
followed, showed that if two provers are allowed instead
of one, interactive protocols exist for any language in
non-deterministic exponential space. For the languages
in the smaller class NP, the celebrated PCP theorem [6,7]
showed that they can be verified by a multi-prover inter-
active protocol with a single round: When proving that
x ∈ L, the verifier sends each of two provers a ’question’
string of O(log |x|) length, and gets a constant number
of bits from each prover. It is important to note that in
all multi-prover protocols, the provers may not commu-
nicate at all while the protocol is taking place.

Computation delegation. The PCP theorem had a
huge impact for showing hardness-of-approximation for
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optimization problems. However the PCP theorem, as
well as other interactive proofs and the techniques used
to obtain them seem very relevant for another very prac-
tical application, namely computation delegation. The
goal in computation delegation, introduced in [19], is for
the verifier to commission the provers to perform a com-
putational task. The provers must then supply a result
of the computation, but then to also prove to the verifier,
via an interactive protocol, that the result that they sent
is indeed correct. Of course, this would be pointless if the
proof protocol would require more resources than what
the verifier needs to perform the computation herself.

For delegation, the aforementioned line of results are
not useful in their original form, as they usually assume
provers that are computationally unbounded. For prac-
tical applications we would like even a relatively weak
honest prover to be able to follow the protocol. This
brings up a natural and practical question: which classes
of problems can we verify using provers that are not as-
sumed to be all powerful?

Note that a similar question, namely of interactive ar-
guments is studied in cryptography. However in argu-
ments, it is ok if the provers can convince the verifier of
a false statement, if this requires the provers to be very
strong computationally. Here we want the protocol to
be secure even if the provers are very strong, but we re-
quire additionally that honest provers do not need to be
as strong.

Quantum delegation. The motivation of delegation
of quantum computing is quite clear. Suppose we are
given a box that we can feed with inputs, and then ob-
tain from it outputs that are claimed to be the result
of a quantum computation. How can we tell if the box
actually performs the desired computation?

The holy grail of quantum computation-delegation
would therefore be a protocol that verifies a polynomial-
time quantum computation, by letting a classical
polynomial-time randomized machine interact with an
efficient quantum maching, namely one which is only as-
sumed to be have the power of BQP.

There has been significant progress on interactive
quantum proofs and quantum computation delegation
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in the last decade. For instance, it was shown
that a polynomial-time classical machine can verify a
polynomial-time quantum computation, if she is al-
lowed to interact with a constant number of entangled
polynomial-time quantum provers [13, 29–32]. Likewise,
if we consider a single very restricted quantum device,
namely one with a constant number of qubits, then
it can verify polynomially long quantum computations
[3, 4, 9, 16,17].

Mahadev’s celebrated result [25] (see also [11, 12, 21]
provides a protocol by which a strictly classical ver-
ifier can verify quantum computation using a single
quantum prover. However Mahadev’s protocol relies on
a computational-hardness assumption for soundness (a
standard post-quantum cryptographic assumption). A
protocol that is unconditionally sound is still unknown.

Towards unconditional quantum delegation.
As an intermediate step in the search for information-
theoretic soundness for verifying polynomial quantum
computation with only classical interactions, a more gen-
eral question arises: which classes of problems can be
verified using a single prover which is only assumed to
have the computational power of the same class?

Definition 1 (In-class IP - informal) Let IP[P,V] be
the set of all languages L for which there exists an effi-
cient interactive proof protocol between a V-power verifier
and a prover, such that a prover in class P can follow
the protocol for an input in L, and the protocol is sound
against any prover when the input is not in L.

A recent attempt by Aharonov and Green [5] pro-
vides an interactive proof protocol verifying precise
polynomial-time quantum computations (PreciseBQP),
showing that PreciseBQP ⊆ IP[PreciseBQP,BPP]. Let us
remind the reader of the definition of PreciseBQP: Re-
call that in normal polynomial-time quantum computa-
tion (BQP), the gap between the acceptance probabil-
ity of yes-cases and no-cases is inverse-polynomial1. In
the precise case, however, this gap is inverse exponen-
tial. This change in the precision gives a much stronger
class – in fact it captures the full power of PP [1, 18,23].
We note that it immediately follows from [5], that the
same protocol can be extended to work for languages in
PPreciseBQP = PPP = P#P. Thus it gives a quantum ana-
logue of [24], which showed an interactive protocol for
P#P .

We eventually would like a protocol with a BQP prover,
but it is also natural to try to extend the protocol of [5] to
larger complexity classes – we do know that such a pro-
tocol exists for PSPACE = BQPSPACE, but even getting
direct quantum-inspired protocol for BQPSPACE would
be interesting. A potential way to answer this question
is by considering PreciseQMA (informally, a variant of
QMA where the gap between the acceptance probabili-
ties of yes and no cases is inverse exponential), which
has been shown to be equal to PSPACE [14, 15].

1This gap can be amplified to a constant using standard gap
amplification techniques.

2 Main Results

An in-class interactive proof for PreciseQCMA.
We make a step towards a direct BQPSPACE ⊆ IP result:
we show that PreciseQCMA, a sub-class of PreciseQMA =
BQPSPACE in which the witness is restricted to being
classical , can be verified by a classical interaction with
a PreciseQCMA prover. This is stated in the following:

Theorem 2 PreciseQCMA ⊆ IP[PreciseQCMA,BPP].

Noting that PreciseQCMA is equivalent to the classi-
cal complexity class NPPP [18,27], we get the immediate
corollary.

Corollary 3 NPPP ⊆ IP[NPPP,BPP].

This result is an improvement on [5, 24], and was not
known before.

3 Proof Techniques

In our proof we make crucial use of the following pro-
tocol from [5] (see Theorem 2 and 4).

The AG protocol: An in-class interactive proof
for PreciseBQP. Using the terminology of Definition
1), the protocol in [5] shows that as

PreciseBQP ⊆ IP[PreciseBQP,BPP].

Namely, they show a protocol by which a polynomial
probabilistic classical machine can verify the accep-
tance probability of a polynomial quantum circuit2, to
within inverse-exponential accuracy, by interacting with
a PreciseBQP prover.

A naive attempt of an in-class interactive proof
for PreciseQCMA. In order to verify a language
L ∈ PreciseQCMA, given an instance x one’s first at-
tempt would be to have the verifier ask the prover for
a witness w for x, and then use an in-class interactive
proof for PreciseBQP, such as AG protocol, to verify the
acceptance probability of w. Since L ∈ PreciseQCMA we
indeed know that if x ∈ L there really is a classical wit-
ness that could be sent to the verifier, and that given the
witness, the process of verifying it is a computation in the
class PreciseBQP, which can be verified via that AG pro-
tocol. However there is a caveat in this approach: while
we allow the prover to be a PreciseQCMA machine, this
only means that for a language L ∈ PreciseQCMA and
an instance x of L, the prover can distinguish whether x
is a yes or a no instance. However this does not a-priori
mean that the prover can actually find the witness, even
if it knows that x ∈ L.

2i.e. a quantum circuit consisting of a polynomial number of
sequential local gates on n qubits
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Adaptive Search. For languages in NP, we know how
to adapt an NP oracle into a witness-finding algorithm:
We use consecutive accesses to the oracle, to adaptively
find one bit of the witness at a time. For example, to find
the first bit of the witness the verifier asks the prover if
the following NP claim, denoted S0, is true ”there exists
a witness for the instance x where the first bit is 0”. If the
answer is ”no”, the verifier can ask about the statement
S0, where the value of the bit is flipped. Once the first
bit b of the witness is found in this way, the verifier can
continue by asking about the statements Sb0 and Sb1,
etc. .

The previous process indeed works for any instances
of any language in NP ⊆ PreciseQCMA, but does it ex-
tend to all of PreciseQCMA? Let L be a language in
PreciseQCMA and x ∈ L be a yes input. Consider the
statement S0 for x as described above. Is this really a
PreciseQCMA statement, namely can a PreciseQCMA or-
acle answer it? Recall that such an oracle can verify the
acceptance probability up to an inverse-exponential ad-
ditive factor. However, if x is a yes instance but there is
no witness that begins with the zero bit, we do not know
that the best witness that begins with 0 has acceptance
probability that is inverse exponentially separated from
the actual best witness: it could perhaps be that the sep-
aration is much smaller – there is no upper bound on the
acceptance probability of x given a wrong witness! So it
is not clear that a PreciseQCMA machine can decide if the
statement S0 is true, as we are not guaranteed an inverse-
exponential separation between the acceptance probabil-
ity in the yes case and in the no case. We solve this issue
by observing that we can assume, without loss of gen-
erality, a certain structure of the PreciseQCMA verifica-
tion circuit, which ensures that its acceptance probability
for any witness lies on an inverse-exponentially-separated
grid.

4 Discussion and Open Problems

Below we observe that combining the AG protocol with
the result in [26], which showed that QMA ⊆ PP, we ob-
tain an interactive protocol for QMA with a PreciseBQP
prover.

An interactive proof for QMA. Using the witness-
preserving gap amplification for QMA [26, 28], we can
compute the acceptance probability of a correct QMA
witness using precise efficient quantum computations.
Specifically, invoking the AG protocol with gap-amplified
circuits and the circuit for preparing random-guess wit-
ness, we conclude the following.

Theorem 4 QMA ⊆ IP[PreciseBQP,BPP].

The main idea in the proof of Theorem 4 is that once
one amplifies enough the gap between the acceptance
probability in the no case, and the acceptance probability
in the yes case with a correct witness, a PreciseBQP algo-
rithm can distinguish between the yes and no case simply
by choosing a ’random’ witness. We leave the details for
the full version of the paper.

The protocol of 4 improves the previous result in [2],
which provides an interactive proof protocol for QMA by
computing the polynomial power of the local Hamilto-
nian, since the computational power of the prover in their
protocol is not explicitly bounded from above (although
it is clearly bounded by PSPACE).

Towards an interactive proof for PreciseQMA. It
is natural to ask if the protocols from Theorem 2 or from
Theorem 4 can be extended to PreciseQMA. Indeed, such
quantum-inspired interactive protocols might provide a
direct proof for BQPSPACE ⊆ IP, which could provide a
interesting quantum analogue of the sum-check primitive
from the original proof of PSPACE ⊆ IP.

However, if we try to apply the protocol from Theo-
rem 2, even allowing quantum messages, it is not clear
how a BQP verifier would be able to obtain exponential
accuracy without needing exponentially many copies of
the witness.

Likewise, applying the protocol from Theorem 4 does
not work for PreciseQMA in an obvious way, as amplifying
an exponentially-small gap using the witness-preserving
gap amplification technique used in Theorem 4 requires
exponentially many rounds.

PostQMA. We note that PostQMA = PSPACE (see [27]
for definition) seemingly does not have the problems men-
tioned above for PreciseQMA, as the gap between the
yes and no case accept probabilities is constant. How-
ever, due to the use of conditioned probability, we do not
know of witness-preserving amplification techniques for
PostQMA.
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[16] T. Morimae, M. Hajdušek and J. F Fitzsimons. Post
hoc verification of quantum computation. Phys. Rev.
Lett., 120(4):040501, 2018.

[17] J. F Fitzsimons and E. Kashefi. Unconditionally
verifiable blind quantum computation. Phys. Rev.
A, 96(1):012303, 2017.

[18] S. Gharibian, M. Santha, J. Sikora, A. Sundaram,
and J. Yirka. Quantum generalizations of the poly-
nomial hierarchy with applications to QMA(2). In
43rd MFCS, 2018.

[19] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum.
Delegating computation: interactive proofs for mug-
gles. In Proc. of 40th STOC, pages 113–122. ACM,
2008.

[20] S. Goldwasser, S. Micali, C. Rackoff. The knowledge
complexity of interactive proof systems. SIAM J. on
Comp., 18(1):186–208, 1989.

[21] A. Gheorghiu and T. Vidick. Computationally-
secure and composable remote state preparation.
arXiv:1904.06320.

[22] A. Y. Kitaev, A. Shen, and M. N. Vyalyi. Classical
and quantum computation. Number 47. American
Mathematical Soc., 2002.

[23] G. Kuperberg. How hard is it to approximate the
jones polynomial? Theory of Comput., 11(6):183–
219, 2015.

[24] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Al-
gebraic methods for interactive proof systems. In
Proc. of the 31st FOCS, pages 2–10. IEEE, 1990.

[25] U. Mahadev. Classical verification of quantum com-
putations. In Proc. of the 59th FOCS, pages 259–
267. IEEE, 2018.

[26] C. Marriott and J. Watrous. Quantum Arthur-
Merlin games. Comput. Complexity, 14(2):122–152,
2005.

[27] T. Morimae and H. Nishimura. Merlinization of
complexity classes above BQP. Quantum Inf. &
Comput., 17(11-12):959–972, 2017.

[28] D. Nagaj, P. Wocjan, and Y. Zhang. Fast amplifica-
tion of QMA. Quantum Inf. & Comput., 9(11):1053–
1068, 2009.

[29] Z. Ji. Classical verification of quantum proofs In
Proc. of 48th STOC, pages 885–898, ACM, 2016.

[30] A. Natarajan, T. Vidick. A quantum linearity test
for robustly verifying entanglement In Proc. of 49th
STOC, pages 1003–1015, ACM, 2017.

[31] A. Natarajan, T. Vidick. Low-degree testing for
quantum states, and a quantum entangled games
PCP for QMA In Proc. of 59th FOCS, pages 731–
742, ACM, 2018.

[32] B. W Reichardt, F. Unger, and U. Vazirani.
Classical command of quantum systems. Nature,
496(7446):456, 2013.

[33] A. Shamir. IP=PSPACE. In Proc. of the 31st IEEE
FOCS, pages 11–15, 1990.

155



Optimizing quantum heuristics with machine learning

Max Wilson1 2 6 ∗ Sam Stromswold1 Filip Wudarski1 5 Thomas Vandal3

Walter Vinci1 Norm Tubman1 Alejandro Perdomo-Ortiz3 4 Eleanor Rieffel1

1 Quantum Artificial Intelligence Lab., NASA Ames Research Center, Moffett Field, CA 94035, USA
2 Bristol University, Quantum Engineering Center for Doctoral Training, Centre for Nanoscience and Quantum

Information, 4 Tyndall Avenue, BS8 1DF, United Kingdom
2 NASA Ames Research Center / Bay Area Environmental Research Institute, Moffett Field, CA 94035, USA

3 Zapata Computing Inc., 439 University Avenue, Office 535, Toronto, ON, M5G 1Y8, Canada
4 Department of Computer Science, University College London, WC1E 6BT London, United Kingdom
5USRA Research Institute for Advanced Computer Science (RIACS), Mountain View,CA 94035, USA

6Stinger Ghaffarian Technologies Inc., Greenbelt, MD 20770, USA

Abstract. We compare a broad set of optimization algorithms for parameter setting in quantum heuris-
tics, where the parameters define gate operations. The work will provide evidence to whether machine
learning approaches to optimization will be integral to useful quantum heuristics implemented on NISQ
devices. THIS PAPER IS ELIGIBLE FOR BEST STUDENT POSTER AWARD

1 Introduction

It is unclear what will be the first useful application
of quantum computers. Computations beyond what can
be run on even the world’s largest supercomputers will
likely be successfully performed on next generation quan-
tum hardware. However, these computations do not solve
a problem of practical interest. Examples with theoret-
ically proven advantages for quantum computation can-
not be run on problems with practical application in the
near-term. A recently developed class of algorithms, vari-
ational quantum algorithms [1,2], show some promise for
advancing our understanding of where near-term quan-
tum computers might be useful. With applications in
combinatorial optimization and quantum simulation they
provide a sandbox for testing quantum devices, as they do
not require error-correction and can be applied to small
(and interesting) problems.

Variational algorithms involve a quantum and a clas-
sical subroutine, where the classical step optimizes the
parameters of the quantum circuit to improve the solu-
tion found by the quantum subroutine, guided by some
cost function. Here, we focus on benchmarking different
methods for the classical optimization of parameters in
quantum circuits for variational quantum algorithms on
specific families of problems. The field of optimization
methods is rich and diverse; many methods are available
to choose from when building techniques to optimize pa-
rameters of quantum heuristics.

In this work, we explore a set of optimization meth-
ods coming from Bayesian, gradient-based, gradient-free,
machine learning, genetic and reinforcement learning ap-
proaches. We compare their performance Quantum Al-
ternating Operator Ansatz (QAOA) on MAX-2-SAT and
Graph Bisection optimization problems, and Variational
Quantum Eigensolver (VQE) for estimating the ground
state of Fermi Hubbard models.

∗aw16952@bristol.ac.uk

This investigation provides a base to understand how
parameter setting of these quantum heuristics respond to
a broad range of methods. Initially, we investigate the
performance on classical simulations of quantum circuits
with comparatively little uncertainty in the evaluation
of the cost function (limited only by the standard error
on the expectation), and then on simulations with noise
models representative of hardware.

We expect that recent advances in optimizer design
from machine learning will continue to improve optimizer
performance [3–7], and that machine learning techniques
will eventually become a standard tool for optimizing
quantum circuits. To realize the potential of machine
learning based optimizers for parameter setting in quan-
tum heuristics, a critical step is the early adaption and
adoption of these tools and the evaluation of their effec-
tiveness.

Figure 1: Recurrent neural network of LSTMs (blue) op-
timizing and learning from a quantum circuit (green) via
the loss function (pink).

A number of researchers have investigated reinforce-
ment learning for the control of quantum gates [9–11],
and in some cases found orders of magnitude improve-
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Figure 2: Example QAOA quantum circuit, for finding optimal configuration of variables in the max-2-sat problm
with 2 clauses, where p, the number of phases, is 2. Image generated with Qiskit [8]

ment in performance over stochastic gradient descent
methods. These successes inspire us to apply machine
learning to the parameter setting problem.

2 Parameter setting of quantum heuristics

We evaluate these methods on two types of problem
classes, QAOA and VQE.

2.1 Quantum Alternating Operator Ansätz

Prior work on parameter setting in QAOA includes
comparison of analytical and finite difference methods
[12], a method for learning a model for a good schedule
[13], and comparison of standard methods over problem
classes [14].

We evaluate parameter setting approaches for QAOA
on MAX-2-SAT and Graph Partitioning problems [15],
both NP-complete combinatorial optimization problems.
We use standard [2] and extended QAOA methods [16],
respectively.

2.2 Variational Quantum Eigensolver

The initial demonstration of VQE used Nelder-Mead, a
standard derivative-free approach, for parameter setting
after observing that gradient descent methods did not
converge. Since then, examples include the use of Simul-
taneous Perturbation Stochastic Approximation (SPSA)
in [17], where they argue that while simultaneous pertur-
bation methods can be very useful in the optimization of
fermionic problems, for classical problems, such as in-
stances of MaxCut, the ease of evaluating the cost func-
tion may favor standard gradient-descent or derivative-
free routines”. Other routines used include COBLYA, L-
BFGS-B, Nelder-Mead and Powell in [18]. Finally, in [19]
they explore the use of Bayesian optimisation in VQE op-
timisation.

2.3 Gradients

Analytical expressions for the gradient of a cost func-
tion with respect to the parameters in variational quan-
tum algorithms allow computation of the gradient effi-
ciently on a quantum computer, and finite differences is
an acceptable method for computing the gradient when
this is unavailable. If we are working with devices that
are outside our ability to simulate, however, as may hap-
pen within the next 5 years, and given the complica-

tions due to noise on quantum hardware, optimization
procedures from noisy black-box optimization, or models
trained with reinforcement learning algorithms, may be
a better choice: The optimizer developed for a noisy sim-
ulation may not be appropriate for useful application of
early quantum devices. Finally, initialization strategies
developed to avoid the barren plateau [20] and work into
the effect of circuit depth on the gradient evaluations [21]
provide more evidence that gradient computation for op-
timization of these circuits is a non-trivial task.

2.4 Designing an optimiser

In the last few years, machine learning researchers
have developed techniques in ‘learning to learn’, a model
makes decisions about how to optimize parameters given
a problem. Early research explored Guided Policy Search
[3], which has been superceded by Recurrent Neural Net-
works (RNN)s of LSTM cells [4–7]. They achieve better
performance than ADAM, a common optimizer used in
machine learning. In a black-box setting, where we do
not have access to the gradient, these models will have
to be trained with reinforcement learning. Though these
techniques are not yet mainstream, optimized models of
optimization will be an important tool in the develop-
ment of useful quantum heuristics.

3 Outlook

While optimizing quantum heuristics is recognized as
an important problem, best practises have not yet been
established for parameter setting in quantum algorithms.
The method chosen depends in part on the metric used to
evaluate its performance and the type of problem. In this
work, we evaluate both time to solution and optimality
of solution.

This comparison will serve as a reference whenever peo-
ple need to choose an optimizer for parameter setting
of quantum heuristics. Further, it introduces machine
learning based methods for optimization to the field, and
provides evidence that these approaches are promising
enough to merit further research. It is likely that the
first useful application of quantum computers will be aug-
mented by machine learning methods, whether that be
in parameter setting or gate control. Demonstrating how
these methods perform in practice is an important task.

There are other areas that naturally follow from this
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Figure 3: Mean of posterior distribution from Gaussian
process after training with 20 random points of the noisy
objective function of QAOA applied to an example MAX-
2-SAT problem with 6 variables and 2 clauses.

Figure 4: Top: A random initialization used by a genetic
algorithm. Bottom: The resulting population after 100
iterations of the genetic algorithm. The fitness function
(negative cost function) depicted is a modified version
of the 2D-Rastrigin function with more gentle peaks for
visual clarity.

work. Given systematic biases in near-term quantum
devices that are not captured by calibration, machine
learning based approached to optimization could improve
device-specific optimization by learning systematic errors
as features in the model. For this reason, it will be impor-
tant to compare these methods on quantum hardware.

There are limits to precision of parameter setting on
near-term quantum processors. Some research questions
include how much precision is need to solve the quantum
optimization problem, and how this available precision
will influence the performance of the parameter setting
optimizer.

A machine learning driven approach to optimization
of these algorithms improves with exposure to training
examples. We investigate whether this learning trans-
fers across problem classes. Additionally, there will be
differences in optimization procedure performance across
problem classes, dependent on the structure of the prob-
lem. These investigations will point to good problem spe-
cific procedures. It is also unclear how the structure of
the parameter space will affect the choice of optimizer; for
each problem tested, the parameter space will have dif-
ferent properties such as ruggedness and varying depths
of local minima. The properties will also determine the
choice of optimizer, though we believe machine learn-
ing approaches here will learn to exploit parameter space
structure within a problem class.

To summarize, in this work we benchmark a set of
classical optimizers for the parameter setting subroutine
in variational quantum algorithms. We expect machine
learning based approaches to be competitive and to con-
tinue to improve in the near-term, such that useful near-
term implementations of quantum heuristics on noisy de-
vices will use these methods going forward.
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Abstract. This paper presents a novel measurement-device-independent quantum key distribution (MDI-
QKD) protocol based on phase encoding. Our protocol uses a di↵erential-phase-shifted (DPS) keying
scheme wherein a single photon is realized as a linear superposition of three orthogonal paths. We carry
out the asymptotic key rate analysis of the proposed protocol and demonstrate its superior performance
compared to the existing protocols. We also show that our DPS-MDI-QKD protocol is unconditionally
secure by mapping it to an entanglement-based scheme. Finally, we also perform finite-key analysis for the
proposed scheme and estimate the secure key rate.
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1 Introduction

Quantum key distribution (QKD) allows secure com-
munication between two parties with absolute secrecy [1,
2]. However, this theoretical security does not translate
to practical security due to the non-ideal nature of de-
vices used in the practical implementations. This has led
to the emergence of various side-channel attacks [3, 4, 5],
most of which target the detectors used in the implemen-
tation. Measurement-device-independent (MDI) QKD
was proposed as a means to counteract these detector
side-channel attacks [6].
While the original MDI-QKD proposals involved

polarization-based encodings, more recently, phase-based
MDI-QKD protocols have been discussed in the litera-
ture [7, 8, 9, 10]. The MDI protocol presented in [8]
uses a path and phase encoding technique, starting with
a single-photon source. The scheme uses four di↵erent
phase values (0, ⇡

2 ,⇡,
3⇡
2 ) to generate two pairs of orthog-

onal states needed to implement BB84. The other phase-
based MDI schemes discussed in [9, 7, 10] propose to im-
plement BB84 or B92 protocol (using two phase values,
namely, 0 and ⇡), using a weak coherent source (WCS)
for key generation. The use of WCS makes such an im-
plementation vulnerable to attacks which target multi-
photon pulses.
In a departure from existing work, we present a

di↵erential-phase-shifted (DPS) MDI protocol using only
two phases (0,⇡) and employing single-photon sources for
key generation. The proposed scheme combines the best
of both di↵erential-phase-shifted (DPS) QKD and MDI-
QKD. It is more robust to phase fluctuations, and also
ensures protection against detector side-channel attacks.
Use of single-photon source makes the proposed protocol
immune against eavesdropping attacks that make use of
multi-photon pulses for gaining key information.

⇤ee16s300@ee.iitm.ac.in
†anilpr@ee.iitm.ac.in
‡prabhamd@physics.iitm.ac.in

2 DPS-MDI-QKD protocol

Fig. 1 gives a schematic description of the pro-
posed protocol. Our protocol is broadly based on
the di↵erential-phase-based QKD scheme using a single-
photon source, proposed in [11].
Alice and Bob use single-photon sources. They both

employ identical delay lines with three di↵erent path
lengths each, and thus realise their single photons in su-
perpositions of three distinct time-bins corresponding to
the three distinct paths. They encode their random key
bits {0, 1} as a random phase {0,⇡} between successive
pulses in their respective 3-pulse trains. Alice and Bob
thus generate encoded single-photon states correspond-
ing to one of the four non-orthogonal quantum states
given below, depending on their random key bits.

| (±,±)i =
1p
3
( |1i1|0i2|0i3 ± |0i1|1i2|0i3 ± |0i1|0i2|1i3 ) .

Here, |1i and |0i indicate the presence and absence of a
photon respectively, in each of the paths labeled 1, 2, 3.
The photons have an equal probability of traversing each
of the paths in each setup. Alice and Bob send their
encoded signals to the untrusted third party, Charles.
The key information is now encoded in the relative

phase between corresponding paths in Alice and Bob’s
setup. Charles simply uses a beam-splitter and two
single-photon detectors, labeled c and d respectively in
Fig. 1). Let ti denote the time at which the photon
traversing through path i of either source set-up reaches
Charles. Then, for every signal received by Charles, he
publicly announces as to which detector clicked (Dc or
Dd), as well as the associated time, namely, t1, t2, or, t3.
The complete two-photon state after the action of the

beam splitter is written down in the appendix. We first
note that when Charles announces a detection in only one
of the three times (t1, t2 or t3), Alice and Bob discard the
corresponding key bit. Detection in a single time-slot im-
plies that either the photons coming from Alice and Bob
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Figure 1: Schematic of 3-pulse di↵erential-phase-shifted QKD.

bunched together because of Hong-Ou-Mandel interfer-
ence or that one of the photons got lost in the channel.
Such a detection does not convey any information about
the relative phase between the pair of arriving photons.
Whenever Charles announces detection at two di↵erent

time instances, Alice and Bob may treat the detection as
a valid one, and extract the corresponding raw key infor-
mation. Table I shows the key reconciliation scheme in
detail, where, ��1 (��2) is the phase di↵erence between
the photons traversing through the second (third) arm of
Alice and Bob’s interferometers respectively. Notice that
even when Charles announces two valid time-instances,
there are cases where Alice and Bob may have to dis-
card their key-bits; this follows from a detailed analysis
of the final two-photon state presented in the technical
appendix.
We see that a third of the incoming photons have to

be discarded due to Hong-Ou Mandel interference. This
leads to the first factor of 2

3 . Next, we observe from
the key-reconciliation table that two-thirds of Charles’
measurements contribute to the raw key, thus leading to
a sifted key rate of 4

9 :

Rsift =
2

3
⇥ 2

3
=

4

9
. (1)

Alice and Bob perform classical post-processing, in-
cluding classical error correction and privacy amplifica-
tion, on the sifted key to extract the final secure key from
it. We may now follow the standard analysis in [12] to
obtain the asymptotic secure key rate for our DPS-MDI
protocol. The plot shown in Fig. 2 compares the secure
key rate obtained for our DPS-MDI-QKD with that ob-
tained for the standard 3-pulse DPS and the BB84 pro-
tocols.

We see that the DPS-MDI protocol yields a non-zero se-
cure key rate for much longer channel lengths, in com-
parison with the standard 3-pulse DPS protocol. This
enhanced security can be achieved due to the fact that
the MDI protocols are immune to individual attacks such
as intercept and resend attack. Hence, Eve has lesser in-
formation about the key bits, which in turn translates
to longer distances over which secure key transmission is
possible.

3 Finite-key analysis

Finally, we establish the security of our protocol in
a finite-key regime, against general attacks. As the re-

Figure 2: Secure key rate as a function of channel length
in the asymptotic case.

Figure 3: Key rate r as a function of the number of
exchanged quantum signals for di↵erent values of error
rate (Q).

sources of Alice and Bob are limited in practice, it be-
comes important to show that a QKD protocol is secure
in the finite-key regime. We use the method outlined
in [13] to calculate the finite-key rate corresponding to
our scheme, as a function of the number of signals gener-
ated at the source. This analysis first requires mapping of
the QKD protocol to an equivalent entanglement-based
protocol. As explained in the appendix, it is possible
to rewrite our DPS-MDI protocol such that after sifting
and reconciliation, Alice and Bob are left with a pair of
entangled qubits.
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Table I : Key reconciliation scheme for the proposed protocol.
Measurement outcome of Charles Action of Alice and Bob Requirement of bit flip

Det c clicks at both t1 and t2 Extract key using ��1 No

Det c clicks at both t2 and t3 Discard the bits -

Det c clicks at both t1 and t3 Extract key using ��2 No

Det d clicks at both t1 and t2 Extract key using ��1 No

Det d clicks at both t2 and t3 Discard the bits -

Det d clicks at both t1 and t3 Extract key using ��2 No

Det c clicks at t1 and det d at t2 Extract key using ��1 Yes

Det c clicks at t2 and det d at t1 Extract key using ��1 Yes

Det c clicks at t1 and det d at t3 Extract key using ��2 Yes

Det c clicks at t3 and det d at t1 Extract key using ��2 Yes

Det c clicks at t2 and det d at t3 Discard the bits -

Det c clicks at t3 and det d at t2 Discard the bits -

Finally, we make use of the modified Devetak-Winter
formula based on the smooth min-entropy [13] to numer-
ically estimate the secure key-rates obtained using our
protocol (see Fig. 3). We refer to the appendix for a de-
tailed analysis. The key rate per signal (r) tends to the
sifted key rate of 4

9 in the asymptotic limit, as expected.
This is a reflection of the fact that only 4

9 of the raw key
bits can be used for key generation and rest is used for
parameter estimation.

4 Conclusion

In summary, we have demonstrated a di↵erential-
phase-encoded measurement-device independent QKD
protocol, which is robust against phase fluctuations and
o↵ers a high asymptotic key rate at long distances. We
have establish unconditional security using an equiva-
lent, entanglement-based protocol. Finally, we provide
a finite-key analysis, thus bridging the gap between the-
ory and practice.
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Ground state entanglement in an extended Hubbard model with
Ising-like interactions
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Abstract. We probe the half-block von Neumann entanglement entropy along with the ground state
properties of a 1D extended Hubbard model as its intrasite and intersite interaction parameters are var-
ied. The half-block entanglement entropy was calculated using the density matrix renormalization group
(DMRG) for a periodic chain. We demonstrate that the half-block entanglement entropy provides a sketch
of the changes in the ground state of the system and that it can be used to locate the quantum critical
lines in the model.
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1 Introduction

It is hoped that quantum information theory may lead
to novel ways to characterize many-body ground state
properties of a condensed matter system. One such
approach is to probe the entanglement behavior of the
ground state as the driving parameters of the model sys-
tem are varied across quantum phase transitions (QPTs)
[1, 2]. QPTs are qualitative changes in the ground state
properties of the system at zero temperature [3], and en-
tanglement is said to be connected to the long-range cor-
relations that develop at the quantum critical point [4, 5].
It is proposed that for QPTs resulting from analyticities
in the energy, ordering is signalled by a discontinuity in
the ground state concurrence [6]. However, it was shown
that for some spin models, a discontinuity of the concur-
rence appears in the absence of QPT [7]. It is a possi-
bility that other entanglement measures might bridge a
connection between QPTs and entanglement.

The Hubbard model simplifies the physics of strongly
correlated fermions into an itinerant model with hopping
and intrasite interactions. Experimentally, manipulable
Hubbard dimers at half-filling have been realized using
two ultracold fermionic atoms that are optically trapped
in a double well [8]. Furthermore, entanglement measure-
ments on Hubbard dimer states have been demonstrated
in localized impurities in silicon [9]. This model may also
be generalized to include additional interactions in what
are called extended Hubbard models [10].

We consider a particular extended Hubbard Hamilto-
nian by introducing Ising-like interactions at half-filling
(i.e. number of fermions is the same as the number of
lattice sites L)

H = −t
∑
〈i,j〉

∑
σ

(c†iσcjσ + c†jσciσ) + U
∑
i

ni↑ni↓

+V
∑
〈i,j〉

∑
σ

niσnjσ − V
∑
〈i,j〉

∑
σ

niσnj(−σ), (1)

where ciσ (c†iσ) is the fermionic annihilation (creation)
operator for a fermion at site i with spin σ =↑ or ↓,
∗rcesperanza@up.edu.ph
†fparaan@nip.upd.edu.ph

and niσ = c†iσciσ is the number operator. The angu-
lar brackets in the summation indicates that we only
look into nearest-neighbor interactions. The first term
in the Hamiltonian (1) accounts for the fermion hop-
ping to adjacent sites. The second term describes the
Coulombic interaction between two fermions occupying
the same lattice site. The last two terms introduce a
nearest-neighbor intersite interaction between fermions
having the same (opposite) spins, with energy V (−V ).
This model has no known exact solution—except for the
case of one-dimensional chain of length L = 2.

In this work, we carried out numerical calculations of
the ground state entanglement for an extended Hubbard
model on a periodic chain of length L = 100 at half-
filling. We used the half-block von Neumann entropy
(detailed in Sec. 2) as the entanglement measure since
it is readily obtainable in density matrix renormaliza-
tion group (DMRG) [11] calculations. When compared
to a phase diagram constructed from order parameters–
such as local operator expectation values and two-point
correlators of fermionic density and magnetization–the
half-block entropy qualitatively captures the ground state
properties of the system.

2 Density matrix renormalization group

One of the common numerical methods used for low-
dimensional quantum systems is DMRG. However, a
physical hurdle is the exponential increase in the Hilbert
space dimension as the system size increases.

DMRG employs a truncation of the Hilbert space
by selecting the most probable states–described by the
eigenvalues of the reduced density matrix–as the system
gradually grows. Since the least probable states are dis-
carded, the size of the matrices we work on is constrained
as the system grows. It is known that the ground states
of one-dimensional lattice models—near or away from
criticality—satisfy the condition that the entanglement of
a subsystem with respect to the whole system is bounded,
which makes a simulation of the system using DMRG
possible [12].

Using this numerical technique, we can calculate oper-
ator expectation values and also the block entanglement
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Figure 1: The schematic phase diagram for the Hamiltonian (1) is obtained by superimposing the ground state
variations of various order parameters–local expectation values and two-point correlators involving fermionic density
and magnetization (Left). The main features of the ground state phase diagram for large |U | and |V | are also mirrored
in the half-block entanglement entropy (Right).

entropy. Suppose we divide a linear chain of length L into
two blocks–one with length l and another with length
(L− l). For a pure ground state |GS〉, we can define the
block von Neumann entanglement entropy as

SvN(l) = −Tr ρl ln ρl, (2)

where ρl = Trl+1,...,L |GS〉 〈GS| is the reduced density
matrix describing the block of length l. Specifically, we
calculated the half–block entanglement entropy where
l = L/2.

Numerical calculations in this work are performed us-
ing a DMRG implementation [13, 14] based on matrix
product states from the Algorithms and Libraries for
Physics Simulations (ALPS) project [15].

3 Ground state entanglement and QPTs

A crude phase diagram in the parameter space of the
extended Hubbard Hamiltonian (1) is shown on the left
of Figure 1, and it is strikingly similar to the features of
the entanglement entropy profile shown on the right pf
Figure 1. The most prominent aspect of the half-block
entropy surface is its sudden discontinuity from zero to a
non-zero value as the ground state undergoes transition
from ferromagnetic (FM) to non-ferromagnetic state. For
the case of L = 2 the ground state of Eq. (1) is exactly
solvable, in which a level crossing exists such that there is
a discontinuity in the ground state energy as the ground
state transition from FM to a non-FM state—which pos-
sibly extends for longer chains.

While the FM state configuration involves alignment
of spins along the lattice (since at V < 0, the third term
of Eq. (1) that favors spin alignment is dominant), the
Néel phase has antiferromagnetic ordering characterized
by spatial alternation of spins along the lattice (since at
V > 0, the fourth term of Eq. (1) that favors spin anti-
alignment dominates). These are known to be product
states hence they are unentangled and have zero half-
block entropy, consistent with the DMRG results shown
on the right of Figure 1.

For a charge density wave (CDW), the ground state
has spatial modulation of fermionic occupation along the
lattice (since for U < 0, double occupancy of a site is
favored), described by an integrated density-density cor-
relator. While in the spin density wave (SDW) phase, the
ground state has alternation of magnetic moment along
the lattice, described by an integrated spin-spin correla-
tor. Both of these ground state properties are not high-
lighted by the half-block entropy–as there is continuous
change in the entanglement measure on the region in the
parameter space corresponding to these states. It should
also be noted that while we qualitatively identified some
ground state properties of this particular extended Hub-
bard model in terms of the half-block entropy, they are
mostly in the limit of strong interactions.

Since QPTs are defined in the thermodynamic limit,
a finite-size scaling analysis could be done to extrapo-
late the ground state behavior at criticality (and obtain
the critical points and critical exponents), which is the
subject of a future work.

4 Conclusion

Upon addition of an Ising-like nearest-neighbor inter-
action to the 1D Hubbard model, the ground state at
half-filling exhibits ferromagnetic/antiferromagnetic or-
dering, and spatial modulation of either fermionic den-
sity or net magnetic moment along the lattice. These are
reflected in the half-block von Neumann entanglement
entropy at large |U | and |V |. Other entanglement mea-
sures might be able to highlight the ground state prop-
erties for small |U | and |V |. While there is no estab-
lished fundamental relationship between quantum phase
transitions and entanglement, entanglement entropy—
calculated using DMRG—provides a qualitative descrip-
tion of the ground state for a non-integrable 1D model
with no exact solution.
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Abstract. Support Vector Machine (SVM) is a powerful method for classification or regression. Recently,
the SVM-type classifier implemented on a quantum computer was proposed, which successfully obtains high
accuracy for binary classification problems. However, the performance of that proposed method depends
on the form of functions that encode the data onto a quantum computer. In this paper, we give a new
encoding function that shows better classification result over the existing method, for a special type of
data. Also, we provide a reasonable visualization method that gives a characterization of the classifying
ability of the encoding function.
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1 Introduction

Thanks to the drastic progress in computing speed as
well as the cost-effectiveness ratio, machine learning is
now widely applied in a variety of field. In particular,
Support Vector Machine (SVM) is a powerful method
used for classification or regression; the key technique
involved in SVM is the Kernel method, which is typi-
cally useful for pattern analysis [2]. To further extend
the scope of their applicability, quantum computation
is expected to be a promising tool that could enhance
the performance of machine learning by exploiting the
intrinsic characteristics of quantum mechanics. In fact,
recently, Havĺıček et al. [1] proposed two SVM-type clas-
sifiers implemented on a real quantum computer, which
demonstrated the potential to make machine learning
further capable to deal with bigger size of data. The
proposed quantum SVM methods, however, have a dif-
ficulty in finding the encoding function, i.e., a function
that encodes the input data into the quantum device.
In this paper, we actually show that the classification
performance of a quantum kernel estimator, one of the
SVM methods proposed in [1], depends on the choice of
encoding functions. More precisely, we give a new encod-
ing function such that, for four types of example data, it
classifies all those datasets very well while the (quadratic
type) encoding function taken in [1] does not. Also, we
provide a reasonable visualization method that gives a
characterization of the classifying ability of the encoding
function, which in fact explains why the chosen encoding
function work well.

∗baseball1212@keio.jp
†hiroshi.yano.gongon@keio.jp
‡sho sasaki@keio.jp
§yamamoto@appi.keio.ac.jp
¶caoch@user.keio.ac.jp

2 Method

The success of SVM lies in the use of kernel trick, which
enables us to classify even highly complicated dataset
with high accuracy; more precisely the kernel is a func-
tion that involves a transformation of the input dataset
to a linearly separable dataset in a higher dimensional
space. The quantum kernel estimator proposed in [1] is a
quantum device that computes an estimate of the kernel,
with the use of quantum intrinsic properties such as a su-
perposition. A similar work has been done by Schuld et
al. [3]. Through the approach, one has to define a set of
encoding functions, which transforms the input classical
data x to the quantum state |Φ(x)⟩; for more details, see
Appendix A.

In this paper we study the four types of dataset
shown in Fig.1. Each dataset is composed of 100 two-
dimensional data, which are classified to two subgroups
with blue or orange colors. All the elements range from
−1 to 1; note that the data range studied in [1] is [0, 2π].
To encode those classical dataset onto the quantum

state |Φ(x)⟩, here we take the following set of encoding
functions:

ϕ{1} = x1, ϕ{2} = x2, ϕ{1,2} =
π

3 cosx1 cosx2
, (1)

where xi is the element of the input data. For compari-
son, we also perform the same numerical simulation using
the following encoding functions:

ϕ{1} = x1, ϕ{2} = x2, ϕ{1,2} = πx1x2. (2)

These are a modified version of the encoding functions
used in [1], where the range of variables is changed to
[−1, 1] from the original one [0, 2π].
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Figure 1: Classification datasets, (a) Circle, (b) Exp, (c)
Moon, and (d) XOR.

Table 1: Accuracy of training and test sets for four
datasets through 5-fold cross validation.

XOR Circle Moon Exp
(1) Training 0.97 0.99 0.97 0.97

Test 0.95 0.97 0.95 0.95
(2) Training 0.98 0.96 0.81 0.85

Test 0.96 0.96 0.77 0.85

3 Result

To carry out the classification task, each dataset is di-
vided into 5 groups (i.e., each group has 20 data), 4 out of
which are used for the training and the remaining for the
test. Then we performed the classification for all combi-
nation of training and test sets, i.e., the 5-cross validation
[2]. In this work we use the QASM simulator provided
by IBM to execute the quantum kernel estimator. The
decision boundaries for the classification are obtained by
examining the training dataset; Fig.2 depicts the bound-
aries for the proposed encoding function (1), and Fig.3
for the function (2). Moreover, the classification accu-
racy is shown in Table.1. The decision boundaries for
each dataset with the encoding functions (1) appear to
be drawn so that two labels are appropriately classified.
As for the classification accuracy, the score is bigger than
0.95 for every dataset. On the other hand, the decision
boundaries made with the use of the encoding functions
(2) also works well, except for the dataset ’Moon’ and
’Exp’ in Fig.3. In fact, Table.1 shows that the classifica-
tion accuracy for the dataset ’Moon’ and ’Exp’, for the
case of the encoding function (2), are clearly less than
that for the case (1).

4 A characterization for the encoding
function

We implemented a classification task with aforemen-
tioned two sets of encoding functions to see and compare
the classification accuracies for four datasets; as a result,
we observe that the accuracy depends on the encoding
functions. Hence an important question is as follows;

Figure 2: Decision boundaries for the dataset (a) Circle,
(b) Exp, (c) Moon, and (d) XOR drawn by learning the
training set using the encoding functions (1).

Figure 3: Decision boundaries for the dataset (a) Circle,
(b) Exp, (c) Moon, and (d) XOR drawn by learning the
training set using the encoding functions (2).

why the functions (1) achieves a much better classifi-
cation performance particularly for the dataset ’Moon’,
compared to (2)? Here we focus on a higher dimensional
space associated with the quantum state |Φ(x)⟩ to which
the input data x is mapped through the encoding func-
tion and in which SVM is actually working. That is, we
consider the space corresponding to the coefficients of the
Pauli decomposition of the density matrix |Φ(x)⟩ ⟨Φ(x)|;
if a n qubits quantum computer is used, the coefficients
constitute a 4n-dimensional real vector a(x) whose ele-
ment ai(x) is the function of the input data x; see Ap-
pendix B for details.

Here we use a n = 2 qubits machine with specific
structured quantum circuit. Figure 4 illustrates ai(x) for
i = 1, . . . 16 as a function of the two-dimensional input
data x, for each encoding function (1) and (2). The strik-
ing point of this visualization is that there seems to exist
one or more vector(s) that is (are) similar to each dataset
for encoding functions (1). For example, ZZ, ZI and ZZ
components have similar tendency of dataset Circle. Sim-
ilarly, IY and YI resemble dataset Moon, whereas XI and
IX have a partial tendency of dataset XOR. In the case

168



Figure 4: Colormap representation of the vector elements
{ai(x)}, for the case of encoding functions (1).

Figure 5: Colormap representation of the vector elements
{ai(x)}, for the case of encoding functions (2).

of encoding functions (2), the information of the dataset
Moon appears to be lacking in the vectors. Namely, there
is a possibility that a quantum kernel estimator with the
encoding functions (1) succeed in separating two labels,
because the encoding functions (1) can generate vectors
that contains the characteristics of all datasets, while the
encoding functions (2) cannot.

5 Conclusion

We demonstrated that the quantum kernel estimator
proposed by Havĺıček et al. [1] is able to classify several
type of nonlinearly separable datasets. In this method,
we have to customize the encoding functions that are es-
sential for properly mapping the input data to a quantum
space, so that SVM can linearly separate the two labels.
To understand the classification accuracy in terms of the
encoding functions, we investigate the vectors obtained
by Pauli decomposition of the quantum state. Conse-
quently, we observed that the vectors derived by this vi-
sualization procedure seem to have the feature of pre-
pared input datasets, that might contribute to successful
separations. However, it is difficult to properly set the
encoding functions that has a desirable feature map in
the quantum space and eventually enables us to get a
linearly separable higher dimensional space. We hope

Figure 6: Quantum circuit realizing UΦ(x).

that the analysis of the vectors will help to understand
the relationship between the encoding functions and the
transformed higher dimensional space, and will also give
an insight into development of quantum machine learn-
ing.

This work was supported by MEXT, Q-LEAP.
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A The quantum kernel estimator

In the quantum kernel estimator [1], only a kernel is
estimated on a quantum computer, while the remaining
SVM parts are performed on a classical one. The kernel
K(x, z) = | ⟨Φ(x)|Φ(z)⟩ |2 for the input data x and z,
is calculated on a quantum computer in the following
way. Firstly, the unitary UΦ(x) is applied to the initial

state |0⟩n, followed by the unitary U†
Φ(z), where n is the

dimension of the input data. Afterwards, the final state
in the Z-basis is measured repeatedly to get the number
of zero strings 0n. In this way, the procedure transforms
the input data to a quantum state |Φ(x)⟩ and |Φ(z)⟩, and
calculate the inner product of them. The unitary UΦ(x)

is composed of two layers of Hadamard gate Hn and the
unitary UΦ(x), which means

UΦ(x) = UΦ(x)H
nUΦ(x)H

n, (3)

where

UΦ(x) = exp

(
i
∑
S⊆[n]

ϕ{S}(x)
∏
i∈S

Zi

)
. (4)

In the case n = 2, the detail of UΦ(x) is represented as
a quantum circuit in Fig. 6. Here, the unitary UΦ(x) con-
tains three user-defined functions ϕ{S}, what we call en-
coding functions, that nonlinearly transform input data.
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B Pauli Decomposition

As explained in Appendix A, the kernel obtained by a
quantum kernel estimator is the inner product between
two quantum states ⟨Φ(x)|Φ(z)⟩ |2. This can be under-
stood in terms of a density operator as follows. Let
ρ(x) = |Φ(x)⟩ ⟨Φ(x)| be a density operator of the quan-
tum state |Φ(x)⟩. Then, the kernel can be expressed as

K(x, z) = trρ(x)ρ(z). (5)

Furthermore, a density operator ρ(x) can be expanded
by a set of a Pauli operators, that is,

ρ(x) =
4n∑
i=1

ai(x)σi, (6)

where,
σi ∈ {I,X, Y, Z}n. (7)

Here, note that ai(x) ∈ R. Then, by substituting Eq. 6
into Eq. 5, we get

K(x, z) =
4n∑
i=1

ai(x)ai(z), (8)

where the trace relation tr[σiσj ] = 2nδi,j has been used.
Since the kernel is a linear combination of product of
Pauli decomposition coefficients according to the Eq.8,
the coefficients a(x) can be considered as the vectors of
the transformed real space by the kernel.
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Abstract. Quantum Annealing (QA), a framework of finding the ground state of Ising model with
using quantum fluctuation, has attracted much attention from researchers. Today, QA machine which has
thousands of variables is developed by D-wave Systems. But it is still difficult to solve Ising model whose
size is over hundreds because of the engineering constraints of D-wave machine. For the constraints, we
need to determine the graph of Ising model is graph minor of the hardware graph implemented in QA
machine.

In this paper, we propesed to use Breakout Local Search (BLS), one of the-state-of-the-art classical
metaheuristics, for finding graph minor and experimented for measuring its computing power. We ran
BLS in the following setting; The hardware graph is a Chimera graph, implemented in D-wave machine,
and the input graphs is (a) random graphs, (b) random cubic graphs or (c) random scale-free graphs.
Our experimental results imply BLS is better than previous heuristics in embedding random graphs to a
Chimera graph. But the results also indicate our implementation could stand improvement in embedding
random cubic graphs.

Keywords: Quantum Annealing, graph minor, metaheuristics, Breakout Local Search

1 Introduction

Quantum Computing has attracted attention from
many researchers since Peter Shor showed exponentially
speedup for integer factoring algorithm by leveraging
quantum mechanics [1]. One of the well-researched quan-
tum algorithm is Quantum Annealing (QA), introduced
by Nishimori and Kadowaki [2]. QA is approximate algo-
rithm specialized in finding ground state of Ising model
and also regarded as a metaheuristic for combinatorial
optimization problems. Finding ground state of Ising
model minimize the below energy function subject to
σ ∈ {−1, 1}N when given h ∈ RN and J ∈ RN×N .

E(σ) = h⊤σ + σ⊤Jσ

Today, the QA machine is realized by D-wave Systems
and we are able to handle thousands of variables in the
machine. However it is still difficult to solve Ising model
which has hundreds of variables. As one of the factor,
the machine restricts interactions between variables to
edges of the hardware graph, for example, Chimera graph
(Figure 1 (a)) implemented in the D-wave machine. The
embedding problem is indicated by Choi [3]. When we
would like to solve Ising model, we have to map each
variable of Ising model to variables of the D-wave ma-
chine. The mapping exists if and only if the graph of
Ising model is a minor of the hardware graph.
Let I = (V (I), E(I)) denote an input graph, which

we want to embed, and H = (V (H), E(H)) denote a
hardware graph. We figure that an input graph is a graph
minor of a hardware graph, when we find ϕ : V (I) →
2V (H) such that

• ∀i ∈ V (I), ϕ(i) ⊂ V (H), the subgraph induced by
ϕ(i) is connected in H.

∗teranishi@is.s.u-tokyo.ac.jp
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• ∀i ∈ V (I), ϕ(i) ̸= ∅.

• ∀i, j ∈ V (I), ϕ(i) ∩ ϕ(j) = ∅ when i ̸= j.

E(ϕ) = |{(i, j) ∈ E(I)|∃u ∈ ϕ(i),∃v ∈ ϕ(j), (u, v) ∈ E(H)}|
= |E(I)|

Finding graph minors is NP-hard problem and exact
algorithm for the problem require exponnential time. As
heuristical approach, there exist the heuristic introduced
by Cai, Macready and Roy (CMR) [7] and probabilistic-
swap-shift-annealing (PSSA), Simulated Annealing for
finding graph minors by Sugie et al. [8] These heuristics
are contrast; while searching graph minors, CMR toler-
ate a hardware vertex represents multiple input variables,
but keeps E(ϕ) = |E(I)|, on the other hand, PSSA keeps
a hardware vertex represents an input variable, but toler-
ate E(ϕ) ≤ |E(I)| These heuristics enabled us to embed
cubic graphs with a certain size, but embedding random
graphs is still difficult.

(a) (b)

Figure 1: (a) A Chimera graph, which is implemented in
the QA machine developed by D-wave Systems. (b) Gen-
erating initial solutions ϕ following grid-line of a Chimera
graph based on PSSA counterpart.
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Figure 2: Move operations, swap and shift based on
PSSA counterpart.

In this paper, we proposed to use Breakout Local
Search (BLS), one of the-state-of-the-art classical meta-
heuristics, applied to finding graph minors. Our im-
plementation is inspired by PSSA. BLS is proposed
by Benlic and Hao, and they experimentally showed
BLS exhibits high performance in several NP-hard prob-
lems [4][5][6]. Generating initial solutions and move op-
erations, swap and shift (Figure 2), are based on PSSA
counterpart.
We describe below briefly our implementation of BLS

for a Chimera graph.

1. Generate initial solutions ϕ following grid-line of a
Chimera graph (Figure 1 (b)).

2. Move to a local optimum from the current solutions
with using best-first search. Firstly apply best-first
search with swap move, then with shift move.

3. Adjusts the jump magnitude. If the current solu-
tions is equal to the previous local optimum, in-
crease the jump magnitude, else set the jump mag-
nitude at the initial jump magnitude.

4. Decide a perturbation type with probability de-
pending on the current search stagnation. If BLS
assesses the search is stagnate, decide applying
strong perturbation, else applying weak perturba-
tion.

5. Reconstruct initial solutions with probability in
strong perturbation, else apply shift move chosen
randomly.

6. In weak perturbation, chose swap or shift move
with probability, then apply the chosen move and
search better solutions near the current solutions.
BLS has tabu list and prevent repeat same move in
short time.

Repeat 2.∼6. while the stopping condition not
reached. We ran our BLS in the following situations.
The input graphs is (a) random graphs, (b) random cubic
graphs or (c) random scale-free graphs and the hardware
graph is a Chimera graph.

2 Outline of our experiments

The machine environment is as shown below: CPU:
Intel(R) Core(TM) i5-7200U CPU @2.50GHz, Memory:
8.00GBytes. The parameter of BLS is in Table 1.

The hardware graph is a fixed Chimera graph (|V | =
2048) and the maximum number of iterations is 40000.
We ran BLS 10 times for each input graph, and counted
the number of success to finding graph minors. We pre-
pared three graph types for input graphs.

(a) random graphs: We generated random graphs
with rudy [9], a graph generator which is frequently used.
We set graph density 20% for comparing results of [8].
Hence, the number of edges of generated graphs is about
|V | ∗ (|V | − 1) ∗ 0.2.

(b) random cubic graphs: Degree of each vertex of
cubic graphs is 3. We generated random cubic graph in
according to [10]. The number of edges of cubic graphs
is 1.5 ∗ |V |.

(c) random scale-free graphs: Degree distribution
of scale-free graphs follows a power law. We used
Barabasi-Albert model [11]. The number of edges of gen-
erated graphs is almost |V |.

3 Results and Discussion

Experimental results are given in Table 2. In random
graph (|V | ≤ 76), BLS could find graph minor with high
probability only applying best-first search. We assessed
initial solutions are exceedingly good.

In [8], CMR running repeatedly (CMRR) and PSSA
could embed random cubic graphs (|V | ≥ 200), however
they fail in embedding random graphs (|V | ≥ 68). Our
implemented BLS could only embed random cubic graphs
(|V | ≤ 150), but embed random graphs (|V | ≤ 80). The
results imply BLS is better than PSSA and CMRR in
embedding random graphs and our implementation could
stand improvement in embedding random cubic graphs.

4 Future Work

Generating initial solutions of our implementation is
hold up on the assumption that the hardware graph has
no missing edge nor vertex. For applying the existing D-
wave machine, we have to implement generating initial
solutions dealing with dead edges and vertices.
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Table 1: The parameter of BLS.

Param. Description Value
L0 Initial jump magnitude 0.1|V (I)|
T Maximum number of local optimum visited before 1000

applying strong perturb
t Tabu tenure 2|V (I)|
P0 Minimum probability for applying weak perturb 0.8
Q Probability for applying swap move in weak perturb 0.3
R Probability for applying restart in strong perturb 0.1

Table 2: Success ratio of finding graph minors by BLS in running 10 times for each instance. In random cubic and
random graph instances, We gathered success ratio for instances whose number of vertices and edges are same. There
are (a) Random cubic graphs in upper row, (b) Random graphs in middle row, and (c) Random scale-free graphs in
lower low.
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Quantum phase transitions and Schmidt gap closing in a Kitaev chain
with long-ranged interactions
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Abstract. The quantum phase diagram of a generalized Kitaev chain that exhibits long-ranged hopping
and pairing is mapped out by looking for sharp changes in the Schmidt gap of a ground state bipartition.
Finite-size scaling analysis reveals that the Schmidt gap exhibits universal scaling behavior about the
quantum critical lines. The critical exponents found shows that the model displays different properties at
the long- and short-range limits of the interaction.
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1 Background and motivations

The past few decades saw an increase of interest in
quantum information theory considering its wide range of
possible applications (e.g. quantum computers). Much of
the study of quantum information theory revolves around
the concept of entanglement which leads to further inves-
tigation of strongly correlated many-body systems. The
entanglement in these systems manifests in the differ-
ent quantum phases driven by changes in ground state
parameters. In this study, the quantum phases of a
fermionic chain model with long-range interactions were
identified by numerically calculating the Schmidt gap in
a finite bipartition of the system prepared in the ground
state. The Schmidt gap is the difference between the
first two largest eigenvalues of the reduced density ma-
trix of the subsystem under study. In [1], the Schmidt gap
is shown to be an acceptable order parameter to signal
the symmetry protected topological phase in spin mod-
els even if it does not lie under the standard Ginzburg-
Landau theory of phase transitions.

Moreover, from the quantum phases mapped, the crit-
ical points were located. The Schmidt gap in the vicinity
of these points was scaled using finite-size methods. The
universal scaling lead to the numerical calculation of the
quantum critical exponents associated to the phase tran-
sition within the model.

2 Model and methods

The model, which is a generalization of the Kitaev
chain model, is defined by the Hamiltonian

H = sin θ
L∑

i,j=1

a†iaj + a†ia
†
j + h.c.

|i− j|α
+ 2 cos θ

L∑
i=1

a†iai. (1)

The pairing and coupling interactions decay with site dis-
tance by a power law decay with exponent α. The site
indices (i, j) run from 1 to the chain length L. Addition-
ally there is a relative chemical potential controlled by
the parameter θ. The model can be diagonalized by a
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Figure 1: The Schmidt gap shows the 2 different phases of
the model with the anti-ferromagnetic phase with vanish-
ing Schmidt gap and the paramagnetic phase with non-
zero gap. α < 1 denotes the region with long-range in-
teractions while α ≥ 1 are for short-range.

Bogoliubov transformation in k-space. The exactly diag-
onalized Hamiltonian in quasi-fermionic modes is,

H =
∑
k

γα(k)(η†kηk − 1/2). (2)

where γα(k) is the excitation spectrum.
The reduced density matrix (RDM) was derived an-

alytically for a subsystem with 30 sites. All calcula-
tions were done in the thermodynamic limit of an infinite
chain. Numerical calculations yielded the eigenvalues of
the RDM for 0 ≤ α ≤ 3 and 0 ≤ θ ≤ π. The Schmidt gap,
∆λ = λ1 − λ2, showed the different phases of the Kitaev
chain. Finite-size analysis was applied to the Schmidt
gap near the critical points of the phase transition.

3 Phase diagram and scaling

In Ref. [2], phases of this model were mapped using
the effective central charge of an underlying conformal
field theory. Here we show that the same phases can be
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Figure 2: Finite-size analysis near the critical point of
α = 2.0 on the left critical line obtains curve collapse for
all lengths

located using the Schmidt gap as the parameter. Non-
zero Schmidt gap shows the area for the paramagnetic
phase. This phase is characterized by the disorder of
spins caused by the presence of strong interactions. A
transition to the anti-ferromagnetic phase is indicated
by the abrupt change in the Schmidt gap to zero. The
absence of entanglement restores the system in a ordered
phase in this region. This also indicates a double de-
generacy in the low level entanglement spectrum. The
transition lines between these phases also correspond to
the gapless regions (broad solid black lines, Fig. 1). The
limiting case, α → ∞, the phase diagram simplifies to
three regions and the vertical critical lines lie at θ = π/4
and θ = 3π/4. The paramagnetic phases corresponds
to the non-topological phase at θ < π/4 and θ > 3π/4.
The anti-ferromagnetic phase reduces to the topological
phase at π/4 < θ < 3π/4 where unpaired Majoranas are
localized at the boundaries [3].

The Schmidt gap for five critical points was scaled for
finite block lengths, ` = 50, 100, 250, 500, 750, 1000 using
finite-size scaling analysis. The following universal scal-
ing ansatz [4] was used to calculate the exponents β and
ν:

O(g, L) = Lβ/νf(|g − gc|L−ν). (3)

The critical exponents (Table 1) were chosen when an
optimal curve collapse was achieved such as shown in Fig.
2. In [4], the exponents of the Schmidt gap scaling in the
spin-1/2 Ising model showed close correspondence to the
critical exponents when using the magnetization as the
order parameter, β = 1/8 and ν = 1.0. A similar ob-
servation can be made with the values extracted from α
values in the short-range region. Eq. 3 was derived under
the assumption that the correlation function decays ex-
ponentially with ν when approaching the critical point.
Since the correlation is preserved over longer distances in
the long-range region, the scaling anzats may not apply
accurately as seen in the relatively larger discrepancy in
β for α = 0.5. This raises the possibility that there is an
α dependence in the scaling of long-range interactions, a

Table 1: Numerical values of the critical exponents for
each critical point

α β ν
0.5 0.1883 0.9916
2.0 (Left) 0.1670 1.0025
2.5 (Left) 0.1699 0.9999
2.0 (Right) 0.1511 1.1428
2.5 (Right) 0.1734 0.9968

problem for a presently ongoing work.

4 Summary and conclusions

The Schmidt gap was shown to behave like an order pa-
rameter so that its value delineates the quantum phases
of a Kitaev chain model with power law decaying in-
teractions. The quantum phase transition occurs at the
closing of the Schmidt gap, indicating a degeneracy in
the first two levels of the entanglement spectrum. The
Schmidt gap also exhibits associated critical behavior re-
sulting in universal critical exponents. Finite-size analy-
sis showed that the scaling of this parameter is consistent
with the Ising class of phase transitions when the inter-
actions are sufficiently short-ranged.

References

[1] F. Pollman, A. M. Turner, E. Berg, and M. Oshikawa,
Entanglement spectrum of a topological phase in one
dimension, Phys. Rev. B, 81, 064439, 2010.

[2] D. Vodola, L. Lepori, E. Ercolessi, and G. Pupillo,
Long-range Ising and Kitaev models: phases, corre-
lations and edge modes, New J. Phys., 18, 015001,
2015.

[3] A. Yu Kitaev Unpaired Majorana fermions in quan-
tum wires Physics-Uspekhi 131, 44.10S, 2001.

[4] G. de Chiara, L. Lepori, M. Lewenstein, and A. San-
pera, Entanglement spectrum, critical exponents,
and order parameters in quantum spin chains Phys.
Rev. Lett., 109, 237208, 2012.

175



Minimizing Quantum Circuits for Simultaneous Two-Qubit
Measurement by Single-Qubit Measurements

Risa Segawa1 ∗ Shigeru Yamashita1 † Rudy Raymond2

1 Graduate School of Information Science and Engineering, Ritsumeikan University
2 IBM Research - Tokyo

Abstract. (3, 2)-Quantum Random Access Coding (QRAC) is one of the examples of measuring two
qubits simultaneously. Although IBM Q system allows only single-qubits measurement at a time, an
example shows that a method of decoding (3, 2)-QRAC is implemented by IBM Q System. The method
performs simultaneous measurement of two-qubit by single-qubit measurement. However, the quantum
circuit which is used for the method contains a large number of Controlled-NOT (CNOT) gates. This
paper shows a method to minimize the number of CNOT gates used in a quantum circuit to perform
simultaneous measurement of two-qubits by single-qubit measurement. The proposed method generates
a quantum circuit consisting of only one CNOT gate. Our method generates a circuit which maps an
arbitrary orthogonal basis to the initial states. We determine parameters of one-qubit gates in the circuit
by approximation. We found that the optimal initial states is different depending on the orthogonal basis
used in the quantum circuit generated by the proposed method. We also show that our method can
construct a circuit for (3, 2)-QRAC decoding with the minimal number of CNOT gates.

Keywords: two-qubit measurement, circuit optimization, IBM Q System

1 Introduction

(3, 2)-Quantum Random Access Coding (QRAC) is an
example of performing two-qubit simultaneous measure-
ment [1]. IBM Q system is a system of quantum comput-
ing developed by IBM. The system allows only measuring
single-qubits at a time. Therefore, we need to consider a
special way to perform two-qubit measurements on IBM
Q System. Measurement is performed in the example
of implementation of (3, 2)-QRAC on Quantum Infor-
mation Software Kit (QISKit) [2] by IBM as follows [3].
First, we decode a quantum state using a quantum circuit
that maps each orthogonal basis used for measurement
to |00⟩ and |01⟩. Then, we can measure the two qubits si-
multaneously by measuring the second qubit only. Three
circuits are constructed so that each of three bits can
be decoded. These circuits contain at least two CNOT
gates.
A Controlled-NOT (CNOT) gate is more costly than

a one-qubit gate [4]. Therefore, we need to reduce the
number of CNOT gates in a quantum circuit. KAK de-
composition [5] can automatically design a quantum cir-
cuit that maps a pair of orthogonal basis states to |00⟩
and |01⟩, so it is also useful technique. However, we can-
not reduce the number of CNOT gates in the circuit de-
signed by KAK decomposition compared to [3]. This
is because KAK decomposition construct a circuit using
three CNOT gates.
By considering the above, this paper proposes a

method for minimizing a quantum circuit to perform two-
qubit simultaneous measurement with single-qubit mea-
surements. We propose to construct a quantum circuit
consisting of four ry gates which are one-qubit gates and
one CNOT gate. The circuit maps an arbitrary orthog-
onal basis to the initial states which can be expressed as
a tensor product of |0⟩ and |1⟩. We approximate param-
eters of ry gates in the circuit.
We found that the optimal initial states differ depend-

ing on the orthogonal basis in the circuit of the proposed
method. We also show the result of applying the pro-
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posed method to (3, 2)-QRAC. In this case, the success
probability of (3, 2)-QRAC can be maintained and the
number of CNOT gates can be reduced compared to the
quantum circuit of [3].

2 Simultaneous two-qubit mesurement
with single-qubit measurements

We propose a method of measuring two-qubit simul-
taneously with single-qubit measurements. Figure 1 (a)
shows a quantum circuit used in our work. The circuit
contains one CNOT gate and four ry gates which are
one-qubit gates and it maps the orthogonal basis to the
initial states. Initial states mean orthogonal quantum
states which are expressed as a tensor product of |0⟩ and
|1⟩. In the following, we determine the parameters of ry
gates in the circuit; we express those four parameters as
a，b，c，d ∈ R. In this way, we use approximation to de-
termine the parameters. Namely, we minimize the error
between the coefficients in the state vectors of actually
mapped and those of the initial states.

We explain the procedure to derive an expression about
a quantum circuit as shown in Fig. 1 (a). First, we pre-
pare the orthogonal basis and the initial states. K1 and
K2 are the orthogonal basis (Eq. (1)) . S1 and S2 are the
initial states (Eq. (2)) .

K1 =

K1[0]
K1[1]
K1[2]
K1[3]

 K2 =

K2[0]
K2[1]
K2[2]
K2[3]

 (1)

S1 =

S1[0]
S1[1]
S1[2]
S1[3]

 S2 =

S2[0]
S2[1]
S2[2]
S2[3]

 (2)

We calculate a matrix to express the linear transfor-
mation corresponding to the quantum circuit as shown
in Fig. 1 (a). Equation (3) shows the calculation result.

U0 = (ry(c)⊗ ry(d)) · CNOT · (ry(a)⊗ ry(b)) (3)
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Figure 1: (a) A quantum circuit with one CNOT gate
(b) A quantum circuit with two CNOT gates

Arbitrary orthogonal basis K1 and K2 are inputs of
Fig. 1 (a). Equation (4) shows the calculation result.
M1 and M2 in Eq. (4) are state vectors of calculation
results corresponding to inputs K1 and K2 respectively.

U0K1 =

M1[0]
M1[1]
M1[2]
M1[3]

 U0K2 =

M2[0]
M2[1]
M2[2]
M2[3]

 (4)

We compare the state vectors of Eq. (4) to that of
the initial states. In Eq. (5), we sum up all the squared
differences of the corresponding coefficients between the
initial and the state vectors expressed as Eq. (4). When
we consider only the part where the coefficients in the ini-
tial sates are 0 (or 1), we do not sum up all the squared
differences in Eq. (5) but we sum up only the squared dif-
ferences corresponding to the part where the coefficients
of initial sates are 0 (or 1).

{S1[0]−M1[0]}2 + {S1[1]−M1[1]}2

+ {S1[2]−M1[2]}2 + {S1[3]−M1[3]}2

+ {S2[0]−M2[0]}2 + {S2[1]−M2[1]}2

+ {S2[2]−M2[2]}2 + {S2[3]−M2[3]}2

(5)

To obtain failure probability, we calculate the square
of the amplitude coefficients of the state created by the
circuit as shown in Fig. 1 (a) and sum up all of them.
Note that, we use the basis excluding we want to obtain
by measurement.
In addition, we can determine the parameters in

Fig. 1 (b) by the same method for Fig. 1 (a). We calculate
a matrix to express the linear transformation correspond-
ing to the quantum circuit of Fig. 1 (b). Eq. (6) shows
the calculation result.

U
′

0 = (ry(e)⊗ ry(f)) · CNOT · U0 (6)

After that, we calculate the matrix in the same method
as Eq. (5).

3 Experimental results

In order to create quantum circuit with only one
CNOT gate, we used Eq. (5) and determined parame-
ters of one-qubit gates in this circuit. We measured of
(3, 2)-QRAC with QISKit and used a simulator called
local qasm simulator as a backend to execute quantum
programs.
In our work, three orthogonal basis are used as inputs

of quantum circuit. M1-M4, M5-M8 and M9-M12 are

test cases using different basis. The initial states in each
test case are as follows. M1, M5, M9 is |00⟩ , |11⟩, M2,
M6, M10 is |00⟩ , |10⟩, M3, M7, M11 is |11⟩ , |01⟩ and M4,
M8, M12 is |11⟩ , |10⟩. Failure probabilities of M5-M8 are
higher than those of other test cases. M5-M8 use sec-
ond basis. For example, the failure probability of M1 is
2.4×10−28, but that of M5 is 0.9. We found that the
failure probability changes by the initial states; the fail-
ure probabilities of M5 and M8 are very high especially.
For example, the failure probability of M5 is 0.9 but the
failure probability of M6 is 0.1. M6 differs from M5 only
in the initial states.

We also constructed a circuit for (3, 2)-QRAC decod-
ing keeping success probability of this method (errors of
less than 0.6). More than two CNOT gates are used in
the circuit for (3, 2)-QRAC decoding by [3]. With the
proposed method, one CNOT gate is used in the circuit
decoding the first bit and the third bit. Two CNOT gates
are used in the circuit decoding the second bit.

4 Conclusion

We proposed a method for minimizing a quantum
circuit to perform two-qubit simultaneous measurement
with single-qubit measurement.

As a result, we found that optimal initial states dif-
fer from orthogonal basis in the circuit for mapping the
two-qubit states which can be expected original states
by measuring single-qubit. With maintaining the suc-
cess probability, we can reduce CNOT gates used in the
circuit for (3, 2)-QRAC decoding of proposed method as
compared with that of [3].

We will analyze the regularity for mapping arbitrary
initial states to orthogonal basis in the circuit used one
CNOT gate, and consider application to QRAC.
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Generalized nonlocality criteria under the correlation symmetry
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Abstract. The class of correlation for the most generalized Bell scenario consideringN -partite d-chotomic
system with k number of measurements is derived under the constraint of measurement symmetries. The
nonlocality criteria for the generalized scenario is obtained using the correlation function, which is derived
from Fourier analysis of probability spectrum. The condition under which the local hidden variable model
is violated by the multipartite quantum state is found in analytic manner. It is shown that the various
types of known Bell inequalities can be derived in our class of correlation.

Keywords: Non-locality, Bell inequality, quantum correlation

1 Introduction

Bell inequality is the correlation inequality satisfied
by any local-realistic theory. Since the seminal work of
J. S. Bell showing the violation of local hidden-variable
model by quantum mechanical expectation [1], various
type of the Bell inequalities has been derived under gen-
eralized Bell scenarios [2–10]. Although there has been
many contributions to the problem of the characteriza-
tion of so-called all-the-Bell inequalities [11], many prob-
lems has still remained [12, 13]. The difficulty of char-
acterizing nonlocality in generalized scenario arises from
the fact that the dimension of the correlation space in-
creases geometrically when the system becomes complex.
In this work [10], we present the nonlocality criteria in
the fully generalized Bell scenario using generic correla-
tion with the symmetries on the choice of the measure-
ment settings [10, 14]. The local-realistic [15] and quan-
tum [16] optimization of our class of Bell inequalities [7]
has been studied in our previous work. The symmetriza-
tion method to efficiently characterize generalized Bell
inequality has been introduced independently in the pa-
pers [7, 10, 14, 17, 18]. Although with the constraint
on the choice of measurement settings, it is found that
the various types of known Bell inequalities can be de-
rived from our class of correlation. The application of
our class of Bell inequalities to entanglement measure
[19] and quantum cryptography [20] has been recently
introduced based on [7]. In the following sections, the
general class of correlation is defined and the nonlocal-
ity criteria is derived from it with the quantum violation
condition.

2 General class of Bell correlation

The correlation for the fully generalized Bell scenario
for N -partite d-chotomic system with k-number of mea-
surement settings is given below.

GcN,k,d =
d−1∑̄
n=1

f(n̄c)

〈
N∏
j=1

[
k−1∑
mj=0

ωcjnjmj/kA
cjnj

j (λ,mj)

]〉
+ c.c. (1)

where c.c. denotes the complex conjugate. The complex
weighting function of the correlation, f(n̄c), determines

∗sonwm@physics.org

the specific form of correlation in the class GcN,k,d. The
joint-probabilistic representation is derived as

GcN,k,d =
d∑

{αj}=1

k−1∑
{mj}=0

gcᾱ,m̄p(~α|~m). (2)

The real coefficient gcᾱ,m̄ is derived from the Fourier
transform relation of correlation function such that

gcᾱ,m̄ = 2Re

[∑
n̄

f(n̄c)ω
n̄c·(ᾱ+m̄/k)

]
. (3)

Then the bound by the local hidden-variable theory can
be obtained from the weighting function g such that

GcN,k,d ≤ BLR = max
~α

[∑
~m

gcᾱ,m̄

]
(4)

In [10], it is shown that the known Bell inequalities;
CHSH [2], Mermin [3], CGLMP [4], Zukowski-Brukner
[5], Epping-Kampermann-Bruss [8] can be derived in our
class. The weighting functions f and g for each Bell
correlations are listed in [10].

3 Quantum violation by maximally en-
tangled state

Using the concurrent observables defined in [10], the
Bell operator corresponding to (1) reduce to the sum of
ladder operators whose dimensional weighting is given
as the fucntion f . The violation of the local-realistic
bound with the maximally entangled state can be evalu-
ated from the bound obtained,

BLR ≤ QM = 2kN
d−1∑
n=1

(
1− n

d

)
|f(n)| (5)

when assuming the high-order powers for the correlation
functions is homogeneous. For example, the CGLMP
violation can be derived from the weighting function of
CGLMP as a not-closed(open) but analytic formula (6).

QCGLMP
M = 2kN

d−1∑
n=1

(
1− n

d

) ∣∣∣sec
[nπ

2d

]∣∣∣ (6)
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4 Conclusion

In this work, a class of correlation for fully generalized
Bell scenario is presented under correlation symmetry
which reduces the complexity embedded in the deriva-
tion of generalized Bell inequalities. Although with the
constraints on correlation, we could derive various type
of known Bell type correlations from the correlation. The
criteria for deriving LHV bound and quantum violation
for the suggested correlation is obtained as the functions
of weighting parameter which is given when the specific
correlation is determined in our class of correlation.
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Abstract.
TQC (Topological Quantum Computation) has been proposed because it has fault tolerance to quantum

decoherence. In TQC, we can perform quantum computation by using 3D cluster states. We can optimize
a topological quantum circuit by some transformation rules. In 2019, a variety of transformation rules
have been proposed. However, we can optimize circuits by utilizing these rules only manually. This paper
studies the condition that a transformation called bridge does not destroy the topology of circuits. We
then propose an optimization method of quantum circuits by focusing the number of intersections of the
torus.

1 Introduction

The quantum decoherence is a phenomenon that the
quantum superposition is destroyed by the effect of out-
side factors such as heat and electromagnetism, etc. TQC
has been proposed because it has the fault tolerance to
quantum decoherence [1]. In TQC, we can perform quan-
tum computation by using topological cluster states and
a logical operation called braiding [2, 3, 4]. The topolog-
ical cluster state consists of surface codes [1]. Circuits
can be represented by the tracks of braiding.
Topological rules are to transform an original circuit

into an equivalent circuit by only expansion and contrac-
tion. Another rule is a transformation called bridge [5].
Bridge is one of the transformations for preserving the
equivalence of a calculation.
We need to reduce the cost of a topological quantum

circuit because it uses many quantum bits. Fowler and
Devitt proposed a method that reduces the cost of a topo-
logical quantum circuit by using the topological rules and
bridge [5]. Their method spends bags of time to opti-
mize a topological quantum circuit because they opti-
mize a circuit manually. Adam and Fowler also proposed
a method to optimize a topological quantum circuit by
only using topological rules [6].
In this paper, we propose to reduce the cost of circuits

by using bridge, which is called bridge compression. We
study an automatic optimization method based on the
condition such that bridge compression does not destroy
the topology of circuits. Then we can generate an op-
timized circuit which has a minimal number of intersec-
tions of the toruses. We can reduce the cost of circuits by
only using topological rules. Subsequently, we can fur-
ther reduce the cost of circuits by applying bridge com-
pression to the reduced circuits.

2 Optimization of Topological Quantum
Circuits

All topological quantum circuits can be considered as
a set of toruses where each torus corresponds to a pair

∗jonathan@ngc.is.ritsumei.ac.jp
†ger@cs.ritsumei.ac.jp

of defects. Fig. 1 (a) shows a topological quantum cir-
cuit represented by a set of toruses. A topological quan-
tum circuit consists of red and blue toruses as shown in
Fig. 1 (a). Red and blue toruses are referred to as primal
and dual toruses, respectively. We can reduce the cost of
circuits by considering a set of toruses. In this paper, the
cost of circuits is the number of intersections of toruses.
The presence or absence of intersections of toruses cor-
responds to the presence or absence of braiding between
the corresponding defects, respectively.

Our proposed condition of bridge compression:
Fig. 1 (b) shows bridge which is a transformation
to connect toruses of the same type. We can
reduce the cost of circuits by using bridge, which
is called bridge compression. Bridge compression
integrates primal (dual) edges which intersect
with a shared dual (primal) torus, respectively.
We can transform the circuit shown in Fig. 1 (b)
to the circuit shown in Fig. 1 (c) by applying
bridge compression. In this paper, we introduce
the concept of what we call an integrated edge.
By applying bridge compression, we can integrate
dual (primal) edges into one edge, which we call
an integrated edge. The formula (1) represents an
integrated edge shown in Fig. 1 (c).

P2[D1, D2] (1)

First and second dual torus intersects with the sec-
ond primal torus. Therefore, the formula (1) in-
dicates that these edges of dual toruses are inte-
grated. We show two conditions of integrated edges
that destroy the topology of circuits in the follow-
ing.

(i) The integrated edges are not adjacent in
Fig. 2 (a)

(ii) We can not apply bridge compression to each
edge of all toruses that a concave torus shown
in Fig. 2 (b) intersects with. (Fig. 2 (c))

We can optimize circuits by applying bridge compression
if bridge compression satisfies some condition.
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Figure 1: (a)A topological quantum circuit represented
by toruses. (b)A topological quantum circuit can be ob-
tained by applying bridge to Fig. 1 (a). (c)A topological
quantum circuit can be obtained by applying bridge com-
pression to P2. (d)A topological quantum circuit can be
obtained by applying bridge compression to P3 and P4
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Figure 2: (a)A topological quantum circuit whose inte-
grated edges are not adjacent. (b)A concave torus form
a part of a topological quantum circuit. (c)A topological
quantum circuit whose genus is distinct from Fig. 2 (b).

3 Experimental results

We have compared our method with the method by
Fowler and Devitte. For our comparison, we used |Y ⟩
state distillation circuit as shown in Fig. 3 (a). Fig. 3 (b)
shows an initial topological quantum circuit to perform
the quantum circuit shown in Fig. 3 (a). The initial cost
of Fig.3(b) is 22. The cost of Fig. 3 (b) has decreased to
4 by our method. We can obtain the same cost as the
method by Fowler and Devitte. Therefore, we can con-
firm that the method by Fowler and Devitte is thought
to be best for |Y ⟩ state distillation circuit.

4 Conclusion

In this paper, we have proposed a new scheme to op-
timize a topological quantum circuit automatically with
a bridge. We can treat a topological quantum circuit en-
tirely as a set of toruses and optimize topological quan-
tum circuits by using transformation rules. In 2019, a va-

(a) (b) (c)

Figure 3: (a)|Y ⟩ state distillation circuit (b)A topological
quantum circuit performing the computation of Fig. 3 (a)
(c)A topological quantum circuit obtained by the method
by Folwer and Devitte from Fig. 3 (b)

riety of transformation rules have been proposed. How-
ever, the condition of bridge compression has not been
defined precisely. Therefore, we define two conditions of
bridge compression. Consequently, we can optimize topo-
logical quantum circuits automatically with our scheme.
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Unsharp, or generalized, measurements are known to
provide an advantage in certain Quantum Information
Processing tasks. Examples include quantum tomogra-
phy, state discrimination, randomness certification, to
name a few. However, there is one important prop-
erty of generalized measurements that is discussed less
often than the others in the literature. It is the trade-off
between information gain and the disturbance that this
type of measurements allows for. In fact, unsharp mea-
surements can be seen as a resource in sequential scenar-
ios, as compared to projective ones and their probabilistic
mixtures.

In this work we consider the case of binary qubit un-
sharp measurements. All these measurements can be
simulated by probabilistic mixture of projective measure-
ments. However, as we show in our work, there exist se-
quential scenarios, in which unsharp measurements pro-
vide a strict advantage over their probabilistic realiza-
tions. The key fact, which allows for such discrimina-
tion, is that the set of quantum instruments realizing
a given Positive-Operator Valued Measure (POVM) is
much larger than the set of instruments, corresponding
to simulation of that POVM with projective measure-
ments. Moreover, as shown later in the text, the proposed
scheme allows for semi-device-independent self-testing of
essentially all binary qubit measurements.

Semi-device-independent (SDI) framework, introduced
in [1], is an analogy of device-independent approach for
the scenarios with communication. In this framework the
single assumption is made on the dimension of the Hilbert
space, associated with the degree of freedom, used for en-
coding of quantum information. We would like to point
out that the assumption on the dimension is natural for
both cryptographic schemes with quantum communica-
tion and for studying generalized measurements.

Since in the SDI framework the bases of measurements
are not fixed, the only parameters that we will be in-
terested in are the eigenvalues of the effects of POVMs.
However, we will concentrate on the case when all the
effects are trace-1. This case is the most relevant one,
as it studies the trade-off between an unbiased random
assignment and a projective measurement. The “biased
case” corresponds to the same picture, but with random
assignment being biased.

Let us now introduce our scenario for self-testing. This
scenario is a direct generalization of 22 → 1 Quantum
Random Access Code (QRAC) [2]. Consider three par-
ties, Alice, Bob, and Charlie, communicating in a sequen-
tial way as shown on Fig. 1. Alice receives two random
bits, ~x = (x0, x1), x0, x1 ∈ {0, 1}. Bob and Charlie
each receives a random bit, y and z respectively, which
indicates which bit of Alice they are interested in. De-

FIG. 1: Scenario. ~x – input data of Alice. y, b – input and
output of Bob, z, c – input and output of Charlie. %~x – states that

Alice sends to Bob. %y
b,~x

– states that Bob sends to Charlie.

pending on ~x, Alice prepares a qubit state %~x, which she
sends to Bob, who then performs some quantum opera-
tion on it, depending on his input y. Afterwards, Bob
sends the post-operation state %y~x,b to Charlie, who per-
forms a measurement, depending on z. The instruments
of Bob and the respective POVMs are the ones that we
are self-testing in this scheme.

A figure of merit that we consider, is the following
average success probability

P̄succ =
α

8

∑
~x,y

Pr(b = xy|~x, y)+
1− α

8

∑
~x,z

Pr(c = xz|~x, z),

(1)
with α ∈ [0, 1]. The parameter α is announced prior to
the game and remains unchanged. It dictates the parties
whose guess will contribute more to the overall success
probability.

Now we are ready to present our main results.

Proposition 1. Average success probability P̄succ for
strategies, involving projective measurements and their
probabilistic mixtures, is bounded by the following expres-
sion

P̄PVM
succ (α) =


1
2 + 1−α

2
√
2
, 0 ≤ α ≤ 1− 2√

7
,

1
2 + 1

8

√
4 + (1− α)2, 1− 2√

7
< α ≤ 1

3 ,
1
2 + 1

4

√
1 + α2, 1

3 < α ≤ 1.

Proposition 2. The bound on the average success prob-
ability P̄succ for the general strategy is the following

P̄POVM
succ (α) =

1

2
+

1− α
4
√

2
+

1

4
√

2

√
(1− α)2 + 4α2. (2)

The operator norm of the effects of the optimal POVMs
of Bob is the following

||Byb || =
1

2
+

α√
(1− α)2 + 4α2

, b = 0, 1, y = 0, 1. (3)
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probability, with respect to the optimal one.

As a part of the proof of this Proposition, we have pro-
posed a modification of the Semi-Definite Programming
(SDP) techniques of Ref. [3] that approximate the set of

correlations, that can be observed in our scenario.
The results of both Propositions 1, 2 are shown on

Figure 2. On this plot we have also shown the classical
bound of 3

4 for this game, which does not require a proof.
We should point out that all the bounds are tight, in the
sense that there exist states and measurement reaching
these average success probabilities.

On Figure 3 (black line) we plot the optimal norm
||Byb || from Eq. (3), which is, as we can see, a monoton-
ically increasing function of α. It also takes all possible
values from 0.5 to 1. This fact suggests that we can,
in principle, self-test any unsharp “unbiased” POVM by
picking the corresponding value of α.

The next main result is the robustness of our tests.
In particular, we can ask what can be inferred about
the norm of the POVM effects, if our experimental value
of the average success probability is somewhere between
P̄PVM
succ (α) and P̄POVM

succ (α). Our results on the robustness
are shown on Figure 3 (colour lines).

In Ref. [1] the authors proposed a semi-device-
independent one-way quantum key distributions scheme
which is based on QRAC protocol. It was shown that one
can prove a security against individual attacks if the av-
erage success probability of the 22 → 1 QRAC is greater

than 5+
√
3

8 ≈ 0.8415.
As one of the main results of this paper (Proposition 2)

we have derived the following family of monogamy rela-
tions

αP̄Bob
QRAC + (1− α)P̄Charlie

QRAC ≤ P̄POVM
succ (α), α ∈ [0, 1].(4)

We can now naturally think about Bob as an eavesdrop-
per, and Alice and Charlie trying to establish a secret
key, as described in Ref. [1]. From Eq. (4) we can im-
mediately derive the bound on Bob’s success probability
as a function of Charlie’s success probability by optimiz-
ing over α. Setting P̄Bob

QRAC = P̄Charlie
QRAC , and taking the

optimal α = 2
5 , we find the value of the critical success

probability 1
2 +

√
2
5 ≈ 0.7828, which is a significant im-

provement, in comparison to 0.8415.
From the monogamy relations (4) one could also cal-

culate the secret key rates corresponding to a particular
success probability of Charlie. For Charlie’s success prob-
ability equal to 1

2 + 1
2
√
2
, we can see that Bob’s success

probability has to be 1
2 , which results in the secret key

rate of approximately 0.5835. This is also a significant
improvement to the results of Ref. [1], where the maximal
key rate was reported to be 0.0581.
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Abstract
We propose quantum generative adversarial net-
works (quantum-GANs) for discrete data genera-
tion, which complements classical GANs that are
not suitable for this task due to the problem of in-
differentiability. Our quantum GAN is composed
of a parameterized quantum circuit as the generator
and a classical feedforward neural network as the
discriminator. Two families of quantum circuits,
both consist of simple one-qubit rotation and two-
qubit controlled-phase gates, are considered. The
analytic gradient of the quantum generator can be
estimated by sampling the same quantum genera-
tor, and thus gradient-based methods can be used
in the training. The results of a small-scale numeri-
cal simulation demonstrate the effectiveness of our
scheme.

1 Introduction
Generative models aim to emulate the distribution of training
data and generate new instances accordingly, and a number
of deep generative models have been proposed that are capa-
ble to create novel human-level art. Have you ever imagined
that you could paint like da Vinci or Picasso? That’s out of
question today and generative adversarial networks (GAN-
s [Goodfellow et al., 2014]) can help you producing images
which look like paintings by the artist you choose.

The idea of GANs is to introduce a discriminator to play
the role of the generator’s adversary, forming a two-player
game. The objective of the discriminator is to distinguish real
from generated ones, e.g., fake images, while the objective of
the generator is to produce new instances resembling training
instances, e.g., real images.

Apart from images, language data also plays an important
role in artificial intelligence. As Denis Diderot said, “If they
find a parrot who could answer to everything, I would claim
it to be an intelligent being without hesitation . . . ” You may
wonder whether GANs can help with such dialogue gener-
ators, or generate other language and text data, e.g., poetry,
stories and jokes. Indeed, GANs could potentially become

powerful tools for natural language processing, but the first
condition is that the indifferentiability problem of GANs can
be resolved, since language data is much more discrete than
data in the visual domain.

The indifferentiability problem of GANs is in the training
process: The generator produces some fake samples. Not
only is the discriminator trained to distinguish between the
generated and real data, but also the discriminator tells the
generator how to tweak so that generated instances become
more realistic. Technically, the gradients of the discrimina-
tor’s output with respect to the generated data is further back-
propagated to all the generator’s parameters. In order to do
this, the loss function should be differentiable w.r.t. the in-
stance, which requires that the data space is continuous.

We propose a novel method based on quantum computing
techniques, which shows that quantum computation naturally
has this merit to equip GANs with the ability of dealing with
discrete data.

The era of quantum computing is around the corner. In
2016, IBM provided access to its quantum computer to the
community through a cloud platform called IBM Quantum
Experience. A quantum computing competition among IT gi-
ants including Microsoft, Google, Intel is under way. Because
quantum computing has the admirable capability of process-
ing exponentially high-dimensional data, quantum machine
learning [Biamonte et al., 2017] is expected to be one of
the most intriguing future applications of quantum comput-
ers. Many researches on machine learning problems with the
help of quantum computing have been taken in the last decade
[Wiebe et al., 2012; Rebentrost et al., 2014; Yu et al., 2016;
Dunjko et al., 2016; Monràs et al., 2017; Duan et al., 2017;
Du et al., 2018; Yu et al., 2019].

In this paper, we present a quantum GAN in which the gen-
erator is a parameterized quantum circuit and the discrimina-
tor is a classical feedforward neural network. Two families
of quantum circuits, both consist of simple one-qubit rotation
and two-qubit controlled-phase gates, are considered. This
quantum GAN can be trained by a hybrid quantum-classical
gradient descent approach, as the analytic gradient of the
quantum generator can be estimated by sampling the same
quantum generator. We also use a small-scale numerical sim-
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ulation to demonstrate the effectiveness of our scheme.

2 Related Work
Recently, some efforts have been devoted to how to improve
the generative models with the help of quantum computing.
[Benedetti et al., 2018a] trained shallow parameterized quan-
tum circuits to generate GHZ states, coherent thermal states
and Bars and Stripes images. [Liu and Wang, 2018] devel-
oped a gradient-based learning scheme to train deep param-
eterized quantum circuits for generation of Bars and Stripes
images and mixture of Gaussian distributions. These quan-
tum generative models are also known as Born machines as
the output probabilities are determined by Born’s rule. In
addition, the idea of quantum generative adversarial learn-
ing was recently explored theoretically by [Lloyd and Weed-
brook, 2018]. A quantum GAN consists of a quantum genera-
tor and a quantum discriminator was numerically implement-
ed to generate simple quantum states [Dallaire-Demers and
Killoran, 2018]. [Benedetti et al., 2018b] derived an adversar-
ial algorithm for the problem of approximating an unknown
quantum pure state. [Hu et al., 2019] demonstrated that a su-
perconducting quantum circuit can be adversarially trained to
replicate the statistics of the quantum data output from a dig-
ital qubit channel simulator. Compared with these researches
on quantum GANs that focused on generating quantum data,
our work centers on the generation of classical discrete data.
We emphasize the fact that the outputs of quantum genera-
tors can be either quantum states, or classical discrete mea-
surement outcomes. But there is no way to produce classical
continuous data for a quantum circuit.

Parameterized quantum circuits are also used in other
machine learning parameterized models [Wan et al., 2017;
Romero et al., 2017; Mitarai et al., 2018; Cincio et al., 2018;
Lamata et al., 2018]. One of the possible reasons for adopt-
ing parameterized quantum circuits is that sampling from out-
put distributions of random quantum circuits must take ex-
ponential time in a classical computer [Boixo et al., 2018],
which suggests that quantum circuits exhibit stronger repre-
sentational power than neural networks.

Besides GANs, there is another commonly used generative
model, called variational autoencoders (VAE [Kingma and
Welling, 2013]), which can also be improved with quantum
techniques. [Khoshaman et al., 2018] introduced quantum
VAEs and used quantum Monte Carlo simulations to train and
evaluate the performance of quantum VAEs.

Several ways have been proposed to make classical GAN-
s capable to output discrete data, in particular language and
text data. For example, by combining with policy gradient,
GANs use a discriminative model to guide the training as a
reinforcement learning policy [Guo et al., 2018].

3 Model Architecture
In this section, we present the architecture of our genera-
tive quantum circuits built with simple one-qubit rotation and
two-qubit controlled-phase gates, and the adversarial training
scheme.
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Figure 2: A layer of the quantum circuit for four qubits

3.1 Generative Quantum Circuit
Our quantum circuit for generation ofN -bit samples involves
N qubits, the layout of which is described in Fig. 1. The input
quantum state is initialized to |0〉⊗N , and then passed through
L layers of unitary operations. At the end of the circuit, al-
l the qubits are measured in the computational basis. The
measurement outcomes are gathered to form an N -bit sam-
ple x. Each layer is composed of several one-qubit rotation
gates and two-qubit controlled-phase gates. Fig. 2 shows the
arrangement of these gates in one layer. Three rotation op-
erations are first applied to each qubit. This process can be
written as

N∏
i=1

Riz(θ
i
l,3)R

i
x(θ

i
l,2)R

i
z(θ

i
l,1),

where the superscript i denotes the ith qubit, and the subscript
l denotes the lth layer. Rx(θ) and Rz(θ) are rotation gates,
i.e.,

Rx(θ) =

(
cos θ2 −i sin θ

2

−i sin θ
2 cos θ2

)
, Rz(θ) =

(
e−iθ/2 0

0 eiθ/2

)
.

The number of parameters/gates in this process is 3N per lay-
er. The choice of these operators is because any one-qubit
unitary can be decomposed into this sequence of rotation op-
erators.

We also need to entangle the qubits by performing
controlled-U gates between the qubits. This process can be
written as

N∏
i=1

CU i(i mod N)+1,

where the superscript i denotes the control qubit, and the sub-
script (imodN)+1 denotes the target qubit. Each unitary is
characterized by three parameters, so the number of parame-
ters in this process is 3N per layer. However, [Schuld et al.,
2018] has pointed out that this process can be simplified to

N∏
i=1

R(i mod N)+1
x (θil,5)CP

i
(i mod N)+1(θ

i
l,4),
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where

CP (θ) =

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiθ


is the controlled-phase gate. Now the entangling process only
has 2N parameters/gates per layer. The total number of pa-
rameters/gates in the quantum circuit is 5NL. The set of all
parameters can be denoted as a vector ~θ = {θ1, . . . , θ5NL}
for convenience of expression.

3.2 Generative MPS Quantum Circuit

Besides the aforementioned family of quantum circuits, we
also consider another family of quantum circuits, which are
called “MPS quantum circuits” [Huggins et al., 2018]. Fig.
3 illustrates the structure of the MPS quantum circuit, which
looks like a maximally unbalanced tree with N nodes. Each
node is a quantum ansatz which inputs and outputs V + 1
qubits. The uppermost output qubit of each node is measured
in the computational basis and the other V qubits flow to the
next node. The N measurement outcomes comprise the N -
bit generated sample x. Each node can contain L > 1 layers
which have the same gates and layouts as the layers depicted
in Fig. 2. The number of parameters/gates in one node is
5L(V + 1), so the number of parameters/gates in an MPS
quantum circuit is 5NL(V + 1). The input qubits are all
initialized to |0〉 in our numerical experiment.

If the MPS quantum circuit is implemented using quantum
devices, each qubit that has been measured can be set to |0〉
and reused as the input of the next node. So only V +1 qubit-
s are actually needed in the circuit evaluation process. The
sample dimensionN is only related to the depth of the circuit.
Fig. 4 gives an equivalent form of the MPS circuit in order
to illustrate the idea of qubit recycling. This quantum circuit
has advantage in physical implementation because near-term
quantum devices have limited number of qubits.

3.3 Discriminator
A discriminator D is introduced to distinguish between real
samples and generated samples. The discriminator we use is
a shallow feedforward neural network. The input layer has
the same dimension as the samples. Only one hidden layer
is employed. The output layer has only one output value in
[0, 1], which represents the discriminator’s prediction about
the probability of the input sample being real. An output
D(x) = 1 means the discriminator believes the input sam-
ple x is definitely real, while an output D(x) = 0 means it
believes the input sample x is definitely fake.

The loss function of the discriminator we adopt here is the
binary cross entropy function commonly used in binary clas-
sification tasks:

JD = −1

2

(
Ex∼Pd(x) logD(x) + Ex∼P~θ(x) log

(
1−D(x)

))
,

(1)

where Pd(x) is the real data distribution and P~θ(x) is the gen-
erated distribution. In every epoch of the training process, we
sample one mini-batch of samples from the training data and
the generator, respectively, to calculate the average loss

JD(x,y) =−
1

2 · batch D

∑
i

yi logD(xi)

+ (1− yi) log(1−D(xi)), (2)

where batch D denotes the number of samples in one mini-
batch, (xi, yi) ∈ (x,y) denotes the ith sample and its label,
yi = 1(0) for real (fake) labels. The loss function evaluates
how close are the predictionsD(xi) and the desired labels yi.
JD(x,y) achieves minimum zero if D(xi) = yi for every
(xi, yi).

Let w be the set of all the parameters of the discriminator.
The gradient of JD(x,y) with respect to w can be obtained
by the backpropagation algorithm. A variety of gradient-
based optimization algorithms can be used to train the dis-
criminator. For example, the vanilla gradient descent method
updates w in the following way:

w← w − αD ·
∂JD(x,y)

∂w
,

where αD is the learning rate.

3.4 Optimization of the generator parameters
The goal of the generator is to generate samples that can fool
the discriminator. The training process of the generator only
uses generated samples, which are paired with true labels, so
Eq. (1) reduces to

JG = −Ex∼P~θ(x) logD(x),

where P~θ(x) is the probability of getting measurement out-
come x from the quantum circuit parameterized with ~θ =
{θ1, θ2, . . .}. The gradient of JG with respect to θi is

∂JG
∂θi

= −
∑

x∈{0,1}N
logD(x)

∂P~θ(x)

∂θi
. (3)
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Using the techniques in [Mitarai et al., 2018] we have

∂P~θ(x)

∂θi
=

1

2

(
P~θ+(x)− P~θ−(x)

)
, (4)

where ~θ± = ~θ± π
2 e

i, ei is the ith unit vector in the parameter
space (i.e., θi ← θi ± π

2 , with other angles unchanged). The
proof is given in the appendix. By substituting Eq. (4) into
Eq. (3), we have

∂JG
∂θi

=
1

2
Ex∼P~θ− (x) logD(x)− 1

2
Ex∼P~θ+ (x) logD(x).

In order to estimate the gradient with respect to each θi, we
have to sample two mini-batches x+

i and x−i from the circuits
with parameters ~θ+ and ~θ−, respectively, then the gradient is
estimated by

1

2 · batch G

( ∑
x∈x−

i

logD(x)−
∑
x∈x+

i

logD(x)
)
, (5)

where batch G denotes the number of samples in one mini-
batch.

The generator’s parameters ~θ can be optimized by gradient-
based optimization algorithms. For example, the vanilla gra-
dient descent method updates ~θ in the following way:

~θ ← ~θ − αG ·
∂JG

∂~θ
, (6)

where αG is the learning rate.

3.5 Adversarial Training
The adversarial training algorithm of our quantum GAN is
described in Algorithm 1. The training process iterates for
a fixed number of epochs, or until some stopping criterion
is reached, e.g., convergence on the loss function. At each
epoch, the parameters of the discriminator and the generator
are updated d step and g step times, respectively.

4 Numerical Simulation
We verify our proposal using a synthetic dataset known as
Bars and Stripes (BAS), which is also used in [Benedetti
et al., 2018a; Liu and Wang, 2018] to test quantum generative
models. The dataset containsm×m binary images with only
bar patterns or stripe patterns. There are 2m different vertical
bar patterns and 2m different horizontal stripe patterns. The
all-black and all-white patterns are counted in both bar pat-
terns and stripe patterns. So there are 2m+1−2 possible BAS
patterns for an m × m image. We assume all BAS patterns
appear with equal probability. Obviously each pixel can be
encoded in one qubit, so an m×m image can be encoded in
m2 qubits. We restrict our experiments to the case of m = 2,
because it’s difficult to simulate more qubits efficiently using
an ordinary PC. Experiments for larger m will be done in the
future if an intermediate-scale near-term quantum device is
available.

The simulation code is written in Python language. The
discriminator is classical so it’s implemented using the wide-
ly used deep learning framework PyTorch. The discriminator

Algorithm 1 Adversarial training algorithm of our quantum
GAN
Input: L: number of layers; V : number of ancilla qubit-

s (only for MPS circuits); batch D,batch G: mini-
batch size; d step: times of updating w in one epoch;
g step: times of updating ~θ in one epoch;

Output: ~θ: the parameters of the generator
1: Initialize the generator and the discriminator with ran-

dom parameters
2: for number of training epochs do
3: for d step steps do
4: Sample a mini-batch of batch D samples from

the training dataset. Label them as “real”.
5: Sample a mini-batch of batch D samples from

the quantum circuit. Label them as “fake”.
6: Use these samples and labels to calculate the gra-

dient of the loss according to Eq. (2).
7: Update the discriminator’s parameters w accord-

ing to the gradient.
8: end for
9: for g step steps do

10: For each θi, sample a mini-batch of batch G

samples from the quantum circuit with parameters ~θ+.
11: For each θi, sample a mini-batch of batch G

samples from the quantum circuit with parameters ~θ−.
12: Use these samples to calculate the gradient of the

loss according to Eq. (5).
13: Update the generator’s parameters ~θ according to

the gradient.
14: end for
15: end for

has one input layer with dimension m ×m, one hidden lay-
er made up of 50 neurons with the ReLU activation function
f(x) = max(0, x), and one output neuron using the Sigmoid
activation function f(x) = 1/(1+e−x). The stochastic gradi-
ent optimizer Adam (Adaptive Moment Estimation) [Kingma
and Ba, 2014] is used to update the discriminator’s parame-
ters. The initial learning rate for Adam is 10−3.

The generative quantum circuit is simulated directly by
calculating the evolution of the wavefunction. An N -qubit
wavefunction is encoded in a 2N -dimensional complex vec-
tor. After performing a single-qubit operation u11|0〉〈0| +
u12|0〉〈1|+ u21|1〉〈0|+ u22|1〉〈1| on the ith qubit, the wave-
function is transformed to

α′∗...∗0i∗...∗ = u11 · α∗...∗0i∗...∗ + u12 · α∗...∗1i∗...∗,
α′∗...∗1i∗...∗ = u21 · α∗...∗0i∗...∗ + u22 · α∗...∗1i∗...∗,

where α and α′ are amplitudes before and after transfor-
mation. The case of two-qubit operation can be deduced
analogously. The parameters of the quantum circuit is up-
dated according to Eq. (6) with a constant learning rate
αG = 2 × 10−2. The gradient is estimated according to Eq.
(5).

The two numerical experiments we perform differ in the
structure of the quantum generator. The first experiment uses
the general quantum circuit described in section 3.1, while the
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Figure 5: Averages and standard deviations of the accuracy w.r.t. the
number of epochs

second experiment uses the MPS quantum circuit described
in section 3.2.

4.1 Generative Quantum Circuit
In the first numerical experiment, the quantum generator is
the general quantum circuit presented in Section 3.1. We
choose hyper-parameters batch D = 64, batch G = 100,
d step = 1, g step = 1. The learnable parameters of
the quantum circuit are randomly initialized in the interval
(−π, π). Unlike the training of classification models, the
stopping criterion of training GANs is very tricky, so we sim-
ply run the training algorithm for 5000 epochs. For each
L = 1, 2, 3, 4, 5, 6, we repeat the experiment 30 times. The
averages and standard deviations of three indicators (i.e., ac-
curacy, KL divergence and loss) are reported every 50 epochs.

We first examine the accuracy of the generator. The accura-
cy in some epoch is defined as the ratio of the number of valid
samples (i.e., BAS patterns) in one mini-batch to batch D.
The generator accuracy w.r.t. the number of epochs is depict-
ed in Fig. 5. We can see that for each L from 1 to 6, the
accuracy increases very quickly and achieves nearly 100% in
1000 epochs, which means that it’s not difficult for the gener-
ator to learn to avoid producing non-BAS patterns.

But our goal is not merely producing correct BAS patterns.
The distribution of the generated patterns is expected to be the
same as that of the training dataset, i.e., uniform distribution
in our case. KL divergence is usually used to measure how
one probability distribution diverges from a second, expected
probability distribution, which is defined by

KLD(Pd‖P~θ) = −
∑
x

Pd(x) log
P~θ(x)

Pd(x)
,

2

(a) L = 1 (b) L = 2

(c) L = 3 (d) L = 4

(e) L = 5 (f) L = 6

Figure 6: Averages and standard deviations of the KL divergence
w.r.t. the number of epochs

where Pd and P~θ are the real data distribution and the gener-
ated distribution, respectively. KLD(Pd‖P~θ) is non-negative
and equals zero if and only if Pd = P~θ almost everywhere.
The distribution of the generated samples can be estimated
by their frequency of occurrences. In numerical simulation,
the exact distribution can be obtained from the wave function.
We draw the variation of the KL divergence w.r.t. the number
of epochs in Fig. 6. For L = 1, 2, the capacity of the gen-
erator is not enough for generating the target distribution. A
large standard deviation means in some runs the generator can
produce the target distribution, but in other runs it can gener-
ate only part of the valid BAS patterns. For L = 3, the trained
generator can generate the target distribution in most of the 30
runs. For L = 4, 5, 6, the KL divergence always converges to
zero, which demonstrates the representation power of deeper
quantum circuits.

We also plot the loss functions of both the generator and
the discriminator w.r.t. the number of epochs in Fig. 7. When
the adversarial game reaches equilibrium, the output of the
discriminator is 1/2 for both real and generated samples. By
substituting D(xi) = 1/2 into Eq. (2), we have Jfinal =
− log 1

2 ≈ 0.693. According to Fig. 7 we can see that for
L = 1, 2, the averages of two loss functions are separated.
With the increase of L, they gradually converge to Jfinal.

4.2 Generative MPS Quantum Circuit
In the second numerical experiment, the quantum generator
is the MPS quantum circuit presented in section 3.2. After a
lot of trials, we choose the hyper-parameters batch D = 64,
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Figure 7: Averages and standard deviations of the loss functions of
the generator (in blue) and the discriminator (in orange) w.r.t. the
number of epochs

batch G = 100, d step = 1, g step = 1. The learnable
parameters of the quantum circuit are randomly initialized in
the interval (−π, π). We report 4 cases with L and V set to:
(a) L = 2, V = 1, (b) L = 2, V = 2, (c) L = 2, V = 3, (d)
L = 3, V = 2. Because the amount of learnable parameters
in the MPS circuit is 5NL(V +1), the number of parameters
in these four cases is 80, 120, 160 and 180, respectively. A
model with more parameters can be regarded as having larger
capacity. For each case, we repeat the experiment 30 times
and report the averages and standard deviations every 50 e-
pochs.

The generator accuracy w.r.t. the number of epochs is de-
picted in Fig. 8, which shows that the accuracy increases very
quickly and achieves nearly 100% after 1000 epochs. The
variation of the KL divergence is depicted in Fig. 9. We
can see that the generated distribution gradually approaches
the real data distribution with the increase of the capacity of
the generator. The variation of the loss functions of both the
generator and the discriminator w.r.t. the number of epochs is
plotted in Fig. 10. We can see that both loss functions con-
verge to Jfinal when the KL divergence approaches zero.

5 Conclusion
We propose quantum GANs for classical discrete data gen-
eration, which can be regarded as a complement to classical
GANs and deserve further research.

Interesting future research directions include 1) generating
discrete data with higher dimension, 2) choosing the layout
of the generative quantum circuit, 3) modelling the generator
with non-unitary quantum dynamics, 4) employing variants
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Figure 8: Averages and standard deviations of the accuracy w.r.t. the
number of epochs
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Figure 9: Averages and standard deviations of the KL divergence
w.r.t. the number of epochs
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Figure 10: Averages and standard deviations of the loss functions
of the generator (in blue) and the discriminator (in orange) w.r.t. the
number of epochs
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of GAN framework, using more heuristics to guide the train-
ing, and 5) in-depth theoretical analysis of quantum GANs.
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Abstract. We analyze entanglement costs of encoding and decoding quantum information in a
multipartite quantum system distributed among spatially separated parties connected by a net-
work, aiming at quantitatively characterizing nonlocal properties of the encoding and decoding.
We identify conditions for parties being able to encode or decode quantum information in the
distributed quantum system deterministically and exactly, when inter-party quantum communi-
cation is restricted to a tree-topology network. While encoding and decoding are inverse of each
other, our results suggest that a quantitative difference in entanglement cost between encoding
and decoding arises due to the difference between quantum state merging and splitting.

Keywords: distributed quantum information processing, quantum network, quantum encoding
and decoding, multipartite entanglement transformation, entanglement cost

1 Motivation and setting

Encoding and decoding quantum information in
a multipartite quantum system are fundamental
building blocks in quantum information processing.
In particular, quantum error correcting codes [2–5]
require such encoding and decoding between a logi-
cal state and an entangled physical state of a multi-
partite system. Quantum information is represented
by this logical state, and these encoding and de-
coding are the inverse transformation of each other,
mathematically represented by isometries. These
encoding and decoding have to be performed so that
coherence of these states is kept; that is, an arbi-
trary superposition of the logical state should be
preserved without revealing the classical description
of the logical state. In addition to quantum infor-
mation processing, the concept of encoding and de-
coding nowadays has interdisciplinary roles in ana-
lyzing many-body quantum systems exhibiting non-
local features, such as topological order in quantum
phase of matter [6, 7], holographic principle in quan-
tum gravity [8, 9], and eigenstate thermalization hy-
pothesis in statistical physics [10].

These encoding and decoding are also indispens-
able when we aim to perform distributed quantum
information processing, where spatially separated
parties connected by a network for quantum com-
munication cooperate in achieving an information

∗yamasaki@qi.t.u-tokyo.ac.jp
†murao@phys.s.u-tokyo.ac.jp

processing task. Distributed quantum information
processing is considered to be a promising candi-
date for realizing large-scale quantum computation,
since there exists technical difficulty in increasing
the number of low-noise qubits in one quantum
device. Moreover, encoding and decoding are es-
pecially crucial for some multiparty cryptographic
tasks such as quantum secret sharing [11–13]. In
these distributed settings, a multipartite system en-
coding a logical state is distributed among these spa-
tially separated parties. Thus, encoding and decod-
ing are nonlocal transformations over all the parties,
and the nonlocal properties of transformations for
encoding and decoding lead to cost in implementa-
tions of the encoding and decoding.

This submission with the technical version [1]
aims to quantitatively characterize nonlocal proper-
ties of transformations for the encoding and decod-
ing in the distributed settings, adopting an entan-
glement theoretical approach. In the entanglement
theory, operations beyond the restriction of local op-
erations and classical communication (LOCC) can
be performed with assistance of nonlocal resource
states, such as bipartite maximally entangled states.
Under LOCC, a single use of a noiseless quantum
channel and that of a maximally entangled state
are at equivalent cost by means of quantum tele-
portation achieving quantum communication [14].
For a bipartite state, the minimal amount of quan-
tum communication required for preparing the state
provides a well-established entanglement measure
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Figure 1: Encoding and decoding quantum information in a multipartite quantum system shared among
spatially separated parties, where the quantum information is represented by unknown states illustrated by
red circles. The parties are connected by a network of noiseless quantum channels represented by a graph,
so that the parties can sequentially apply exact state splitting to spread quantum information for encoding,
and exact state merging to concentrate quantum information for decoding. Under LOCC, a single use of
each noiseless quantum channel represented by an edge e of the graph is equivalent to that of a maximally
entangled state

∣∣Φ+
Me

〉
of the Schmidt rank Me illustrated by a pair of blue circles connected by a line.

quantifying a nonlocal property of the state, called
the entanglement cost of the state [15–17]. The en-
tanglement cost of a bipartite state also generalizes
to that required for spatially separated parties im-
plementing a given nonlocal transformation, such
as nonlocal unitaries [18–37] and nonlocal measure-
ments [38–40], although this generalization usually
accompanies challenging optimization and has been
analyzed only in special cases to date. Another di-
rection is generalization of a bipartite state to a mul-
tipartite state [41–43] while analysis of multipartite
entanglement is also challenging [44–46]. Regarding
a multipartite generalization in terms of quantum
communication, Ref. [41] formulates a cost required
for preparing a multipartite state shared among par-
ties using a network [47] of the noiseless quantum
channels.

Progressing beyond these previous works, we for-
malize entanglement costs characterizing the non-
local properties of multipartite transformations for
encoding and decoding. In our setting, as illustrated
in Fig. 1, N parties are connected by a network of
the noiseless quantum channels. The network topol-
ogy is represented by a graph G = (V,E), where
each vertex vk ∈ V = {v1, . . . , vN} represents one
of the N parties, and each edge e = {vk, vk′} ∈ E
represents the channel between two parties vk and
vk′ . Any connected network of N parties requires at
least N−1 channels. If an N -vertex connected graph
has exactly N − 1 edges, the graph is called a tree,
denoted by T = (V,E). Given any connected graph,

there exist trees spanning all the vertices which can
be obtained by removing some of the edges of the
given graph. We consider tasks where using quan-
tum communication over a given network, the par-
ties spread and concentrate quantum information of
arbitrary unknown state so as to encode and decode
the quantum information in a distributed system. In
other words, for any unknown state, these tasks aim
to implement a given nonlocal isometry U : Hv1 →⊗N

k=1Hvk and U † :
⊗N

k=1Hvk → Hv1 representing
the encoding and decoding, respectively, where Hvk

represents a local system for each party vk ∈ V , and
without loss of generality, we always assign v1 ∈ V
as the party where logical states of these encoding
and decoding are input and output. These tasks are
performed deterministically and exactly.

The amount of quantum communication required
for spreading and concentrating quantum informa-
tion over the network characterizes nonlocal prop-
erties of the isometries. In our setting, we assume
that LOCC is free, and consider a collection of bi-
partite entanglement as an initial resource state that
is motivated by quantum communication on net-
works, while more general states exhibiting multi-
partite entanglement could also be candidates for
resources. Since quantum communication of a state
of an Me-dimensional system is achieved by LOCC
assisted by a maximally entangled state

∣∣Φ+
Me

〉e
:=

1√
Me

∑Me−1
l=0 |l〉vk ⊗ |l〉vk′ of the Schmidt rank Me

shared between vk and vk′ connected by an edge
e = {vk, vk′}, we consider the initial resource state
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⊗
e∈E

∣∣Φ+
Me

〉e
consisting of bipartite maximally en-

tangled states distributed according to a given net-
work topology G = (V,E), which serves as a re-
source for quantum communication on the network.
The minimal total amount of quantum communica-
tion for spreading and concentrating quantum in-
formation is evaluated by the entanglement entropy
log2Me of the maximally entangled state for each
edge e ∈ E, which we call the entanglement costs of
spreading and concentrating quantum information.
The entanglement cost of spreading quantum infor-
mation characterizes the encoding represented by a
given isometry U , and that of concentrating charac-
terizes the decoding represented by U †.

2 Results and implications

We evaluate the entanglement costs of spreading
and concentrating quantum information over any
given tree-topology network for an arbitrarily given
isometry, which differs from the works presented in
Ref. [48, 49] for implementing particular isometries
in the context of quantum secret sharing. During
spreading and concentrating quantum information,
coherence has to be kept, and this point contrasts
with encoding and decoding classical information
in a distributed quantum system which have been
investigated in the context of a type of quantum se-
cret sharing based on LOCC state distinguishabil-
ity [50–55]. To analyze the entanglement costs, we
consider multiparty transformations between partic-
ular fixed states that are proven to be equivalent to
spreading and concentrating quantum information
represented by arbitrary unknown states. Then, we
achieve these multiparty transformations by reduc-
ing them to sequential applications of exact quan-
tum state merging and splitting for two parties that
we have established in Ref. [56] (See also Fig. 1).

Regarding spreading quantum information, we
use exact state splitting to provide an algorithm that
achieves the optimal entanglement cost of spreading
quantum information for any encoding. Note that
we show this optimality using the LOCC monotonic-
ity of the Schmidt rank.

Theorem 1 Entanglement cost of spreading quan-
tum information. Given any tree T representing
network topology and any isometry U : Hv1 →⊗N

k=1Hvk representing encoding, the minimal en-
tanglement cost of spreading quantum information
according to the encoding U over the network T is
given in terms of the rank of quantum states that
can be defined with respect to each edge of T .

We also provide another algorithm achieving con-
centrating quantum information using exact state
merging, and show that the entanglement cost of
concentrating quantum information can be reduced
compared to that of spreading.

Theorem 2 Entanglement cost of concentrating
quantum information. Given any tree T repre-
senting network topology and any isometry U † :⊗N

k=1Hvk → Hv1 representing decoding, there ex-
ists an algorithm for concentrating quantum infor-
mation according to the decoding U † over the net-
work T whose entanglement cost, given by an explic-
itly calculable formula, is always smaller or equal to
that for the corresponding encoding U over T .

Applications of our algorithms for spreading and
concentrating quantum information are wide-range
because these algorithms are applicable to any isom-
etry representing encoding and decoding. Given
any tree-topology network, the algorithm for con-
centrating quantum information achieves zero en-
tanglement cost in decoding quantum error correct-
ing codes such as the 5-qubit and 7-qubit codes,
while the algorithm for spreading quantum infor-
mation is optimal for any encoding. Using these
algorithms, we show an algorithm for one-shot dis-
tributed source compression [57–59] that is applica-
ble to arbitrarily small-dimensional systems unlike
the previously known algorithms. We also provide
a general algorithm for LOCC-assisted decoding of
shared quantum information that have been studied
in the context of quantum secret sharing for special
classes of encoding [60].

Consequently, while the multipartite entangle-
ment transformations U : H → ⊗N

k=1Hvk for en-

coding and U † :
⊗N

k=1Hvk → H for decoding are
inverse of each other, our results yield bounds that
quantitative differentiate between nonlocal proper-
ties of U and U † in terms of entanglement cost.
Further analyses of these tasks over other network
topologies than trees may lead to another charac-
terization of nonlocal properties of the multipar-
tite transformations in terms of changes of network
topologies, while our algorithms for trees also pro-
vide bounds of the entanglement costs over general-
topology networks by considering their spanning
trees. The concept of encoding and the decoding
represented by isometries has essential roles not only
in quantum information science, and we leave inves-
tigation of further applications within and beyond
quantum information science for future works.
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Extended Abstract: Experimental Cryptographic Verification for Near-Term Quantum Cloud
Computing
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We explore the applicability of a cryptographic verification scheme for quantum cloud computing, where the
clients are completely classical. We provided a theoretical extension and implemented the scheme on a 5-qubit
NMR quantum processor in the laboratory and a 5-qubit and 16-qubit processors of the IBM quantum cloud. We
found that the experimental results of the NMR processor can be verified by the scheme with about 2.5% error,
after noise compensation by standard techniques. However, the fidelity of the IBM quantum cloud is currently
too low to pass the test (about 42% error). This verification scheme shall become practical when servers claim
to offer quantum-computing resources that can achieve quantum supremacy. (The long version of the present
work is available on arXiv [1])

Introduction.— Quantum computation promises a regime
with unprecedented computational power over classical de-
vices, offering numerous interesting applications, such as fac-
torization [2], quantum simulation [3, 4], and quantum ma-
chine learning [5, 6]. However, before quantum computers
become prevalent to the public, one might expect that only
organizations with sufficient resources could operate a full-
scale quantum computer, analogous to today’s supercomput-
ers. Furthermore, individuals who have demands for quantum
computation could access the service through the internet, i.e.,
quantum cloud computing. In fact, several small-scale quan-
tum cloud services have already been launched [7–9], which
can be operated by remote clients through the internet. As
a result, many simulations performed from quantum cloud
servers have been reported (see Ref. [10] for a summary).

In the near future, it is not impossible that these clouds may
claim to offer 100 or more working qubits and many layers
of quantum gates, where quantum supremacy [11–14] could
be achieved. However, one may naturally ask, is there a real
quantum computer behind the cloud? Or, would it just be
a classical computer simulating quantum computation? For
ordinary clients who only have control and access of classi-
cal computer, a natural task is to verify whether these cloud
servers are truly quantum.

Alternatively, the question can be formalized as follows: is
it possible for a purely-classical client to verify the output of
a quantum prover? This question has been extensively ex-
plored for more than ten years. In 2004, Gottesman initialized
this question, which Aaronson wrote down in his blog [15].
A straight-forward idea is to run a quantum algorithm solv-
ing certain NP problems, for example, Shor’s algorithm for
integer factorization [2]. Such problems might be hard for

classical computation, but are easy for classical verification
once the result is known. However, the challenge is that a full
quantum algorithm typically requires thousands of qubits and
quantum error correction to be implemented, which is out of
question in the NISQ [16] (Noisy Intermediate-Scale Quan-
tum) era.

Note that the verification problem have different variants.
For example, one may assume that the supposedly “classical”
client may actually have a limited ability to perform quantum
operations on a small number of qubits. This line of research
has already attracted much attention [17–23]. Without any
quantum power, the client might still be able to verify dele-
gated quantum computation which is spatially separated and
entanglement can be shared [24, 25]. Currently, this approach
does not seem to fit the setting of the available quantum cloud
services, but it does reveal the outstanding challenge for es-
tablishing a rigorous verification scheme based on a classi-
cal client interacting with a single server using only classical
communication [26].

Until recently, Mahadev has made important pro-
gresses [27, 28], assuming that the learning-with-errors prob-
lem [29] is computationally hard even for quantum computer.
The protocol allows a classical computer to interactively ver-
ify the results of an efficient quantum computation, achieving
a fully-homomorphic encryption scheme for quantum circuits
with classical keys. Despite these great efforts, we are still fac-
ing the problems of “non-interactively” verifying near-term
quantum clouds, which would be too noisy for implementing
full quantum algorithms but may be capable of demonstrating
quantum supremacy.

Here we report an experimental demonstration of a simple
but powerful cryptographic verification protocol, originally
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BYes, quantum cloud service available. 

A
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UIQP = exp
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i ⇡8 H

�
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B
00100, 11000, 01000, 10000, 00001 …
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basis. Thanks!
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11110
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FIG. 1. Schematic representation of the protocol. Alice generates
an IQP circuit and an associating secret vector s, using the method
described in Ref. [30]. Bob runs this circuit, measures and sends
back the measurement data to Alice. From Bob’s data, Alice com-
putes the probability bias Ps⊥, with respect to the secret vector s, and
sees whether it is close to 0.854, to decide whether Bob has a true
quantum device or not.

proposed by Bremner and Shepherd [30] in 2008. We fur-
ther extended the theoretical construction in terms of n-point
correlation. The implementation was first performed with a
5-qubit NMR quantum processor in the laboratory. Addition-
ally, we also benchmarked the performance of the verification
scheme by actually implementing the protocol with the IBM
quantum cloud processors [7].

The verification protocol implemented is based on a sim-
plified circuit model of quantum computation, called IQP (in-
stantaneous quantum polynomial) model [30]; the qubits are
always initialized in the ‘0’ state. The IQP circuits con-
tain three parts. In the first and the last part, single-qubit
Hadamard gates are applied to every qubit. The middle part
of an IQP circuit does not contain an explicit temporal struc-
ture, in the sense that diagonal (and hence commuting) gates
acting on single or multiple qubits are applied. On one hand,
the IQP model represents a relatively resource-friendly com-
putational model to be tested with near-term quantum devices.
On the other hand, the IQP model has been proven to be hard
for classical simulation [31, 32], under certain computational
assumptions, similar to Boson sampling [33].

Verification protocol.— In the cryptographic verification
protocol [30], there are two parties labeled as Alice (the client)
and Bob (the server). Alice is assumed to be completely clas-
sical; she can only communicate with others through classical
communication (e.g., internet). Suppose Bob claims to own

a quantum computer and Alice is going to test it. In reality,
of course, there is no need for Alice to inform Bob about her
intention; she may just pretend to run a normal quantum pro-
gram. The protocol can be succinctly summarized as follows
(depicted by Fig. 1).

Step 1: Alice first generates an IQP circuit UIQP associated with
a secret string s ∈ {0, 1}n, which is only kept by Alice.
Then she sends the information about the circuit to Bob.

Step 2: Bob returns the outputs to Alice in terms of the bit
strings x ∈ {0, 1}n, which should follow the distribu-
tion of the IQP circuit, i.e., Pr (x) = |〈x|UIQP |0n〉|2, if
Bob is honest.

Step 3: Ideally, Alice should be able to determine if the proba-
bility distributions Pr(x) for a subset of strings orthogo-
nal to the secret string, where x · s ≡ x1s1 + x2s2 + · · ·+

xnsn = 0 mod 2, add up to an expected value 0.854.
Otherwise, Bob fails to pass the test.

More specifically, the key quantity of interest is the follow-
ing probability bias defined by,

Ps⊥ ≡
∑

x∈{0,1}n
|〈x|UIQP |0n〉 |2 δx·s=0 , (1)

where δx·s=0 = 1 if it is true that x · s = 0, and δx·s=0 = 0 oth-
erwise. For a perfect quantum computation, the value of the
probability bias should be Ps⊥ = 0.854. The best known clas-
sical algorithm [30] would instead produce a value of 0.75,
which is relevant when n is sufficiently large. This quantum-
classical gap in the probability bias makes it possible to apply
such a resource-friendly cryptographic verification scheme for
testing quantum cloud computing in the regime where quan-
tum supremacy would be achieved.

The IQP circuit used in the protocol is of the form exp(iθH),
where the effective Hamiltonian H is a sum of tensor prod-
ucts of Pauli-X (see Fig. 1 for an example). Each term in
the Hamiltonian can be represented as an n-bit binary vec-
tor, with the positions of 1 indicating the qubits that this term
non-trivially acts on; for example, X1X3X4 corresponds to
(1, 0, 1, 1, 0).

Here the IQP circuit has a layer of security for protecting
the knowledge of the secret string s from Bob. Explicitly,
there are two parts in the Hamiltonian (and hence the circuit),
(i) the main part and (ii) a redundant part. Those vectors repre-
senting terms in the main part are not orthogonal to the secret
vector s, i.e., x · s = 1, while vectors for the redundant part
are, i.e., x · s = 0. Both parts have to be changed if the secret
string is changed.

However, an important property of the IQP circuit is that
the probability bias Ps⊥ depends only on the main part. So
Alice can append as many redundant vectors that are orthogo-
nal to s to this Hamiltonian as she wishes, which corresponds
to adding gates to the circuit. Of course, later she would need
to scramble the Hamiltonian, in order to hide the secret s from
Bob. See the long version for a description [1].
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a

b

FIG. 2. (a) Probability distributions from IBM quantum processors
and the NMR processor. ibmqx4 is the 5-qubit processor and ibmqx5
is the 16-qubit one. (b) The probabilities are put into grids and the
colors indicate their values according to the color scale on the right.

Theoretical extension.— We provide a theoretical extension
of the original work [30], transforming it into a form more fa-
miliar to the physics community. Specifically, we connect the
probability bias in Eq. (1) with the Fourier coefficient of the
probability Pr(x) of the output strings. As a result, we can ex-
press the probability bias through the n-point correlation func-
tion (see the long version [1]):

Ps⊥ =
1
2

(1 + 〈Z s1 Z s2 · · · Z sn〉) . (2)

Since the string s = s1s2 · · · sn is not known to Bob, the veri-
fication protocol can be regarded as a game where Alice tests
the outcomes in terms of a particular correlation function un-
known to Bob.

In addition, the representation of Eq. (2) provides a straight-
forward way to understand why the redundant part of the IQP
circuit does not affect the probability bias—they commute
with the n-point correlation function.

Our theoretical extension in Eq. (2) allows us to take
into account the effect of noises. More precisely, if one
models [34, 35] the decoherence by a dephasing chan-
nel (with an error rate ε) applied for each qubit at each
time step, then the probability bias becomes Ps⊥ →
1
2

(
1 + (1 − 2ε)|s| 〈Z s1 Z s2 · · · Z sn〉

)
, where |s| is the Hamming

weight of s, that is the number of 1’s in s.
Experimental results.— Experimentally, our data were

taken separately from two different sources, namely a five-
qubit NMR processor in the laboratory, and the IBM cloud
services, aiming to benchmark the performances of the IQP
circuit implementation under the laboratory conditions and
that from the quantum-cloud service.

* *
* *

* *
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FIG. 3. The ratio of the experimental value to the theoretical value
of the n-point correlation function 〈Z s1 Z s2 · · · Z sn 〉 in log scale, versus
Hamming weights.

Our results show that the laboratory NMR quantum proces-
sor can be employed to verify the IQP circuit after noise com-
pensation by standard techniques, but the IBM quantum cloud
was too noisy. The probability bias obtained from the IBM’s
processors are close to 0.5, which is the result of uniform dis-
tribution. The main reason is that IBM’s system has many
constraints on the connectivity between the physical qubits;
we had to include many extra SWAP gates to complete the
circuit, causing a severe decoherence problem.

Specifically, the blue histogram in Fig. 2 (a) gives the out-
put distribution from the NMR processor, which is the raw
data. The probability bias from this raw distribution is 0.755.
After noise compensation, the probability bias obtained from
the NMR processor is 0.866 ± 0.016 (comparable to the theo-
retical value: 0.854).

The other two histograms in Fig. 2 (a) show the distribution
from two IBM quantum devices. However, the probability
bias from the two distributions is 0.488 and 0.492, respec-
tively, which are all close to that from a completely mixed
state, indicating that the final states of the IBM devices are
highly corrupted by noise. Fig. 2 (b) shows the comparison of
experimental data. The probabilities are put into a grid, and
the color indicates the corresponding values, according to the
color scale on the right.

As we mentioned, we can use the relation between proba-
bility bias and n-point correlation function to study the effect
of noise. If there is single-qubit dephasing noise on every
qubits at each step, the n-point correlation function will decay
by a factor (1−2ε)|s| [34, 35]. Thus the ratio of the experimen-
tal n-point correlation (which is from the raw distribution) to
the theoretical value is (1 − 2ε)|s|. Fig. (3) shows this ratio
in log scale, versus Hamming weights of all possible s. The
slope of the linear fit is log(1 − 2ε), from which we obtain an
effective noise rate ε = 6.79% of the NMR processor.
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Quantifying the magic of quantum channels
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Abstract. To achieve universal quantum computation via general fault-tolerant schemes, stabilizer oper-
ations must be supplemented with other non-stabilizer quantum resources. Motivated by this necessity, we
develop a resource theory for magic quantum channels to characterize and quantify the quantum “magic”
or non-stabilizerness of noisy quantum circuits. For qudit quantum computing with odd dimension d, it
is known that quantum states with non-negative Wigner function can be efficiently simulated classically.
First, inspired by this observation, we introduce a resource theory based on completely positive-Wigner-
preserving quantum operations as free operations, and we show that they can be efficiently simulated via
a classical algorithm. Second, we introduce two efficiently computable magic measures for quantum chan-
nels, called the mana and thauma of a quantum channel. As applications, we show that these measures
not only provide fundamental limits on the distillable magic of quantum channels, but they also lead to
lower bounds for the task of synthesizing non-Clifford gates. Third, we propose a classical algorithm for
simulating noisy quantum circuits, whose sample complexity can be quantified by the mana of a quantum
channel. We further show that this algorithm can outperform another approach for simulating noisy quan-
tum circuits, based on channel robustness. Finally, we explore the threshold of non-stabilizerness for basic
quantum circuits under depolarizing noise.

Keywords: Non-stabilizer state, fault-tolerant quantum computing, resource theory, gate synthesis

1 Introduction

One of the main obstacles to physical realizations of
quantum computation is decoherence that occurs dur-
ing the execution of quantum algorithms. Fault-tolerant
quantum computation (FTQC) [1, 2] provides a frame-
work to overcome this difficulty by encoding quantum
information into quantum error-correcting codes, and it
allows reliable quantum computation when the physical
error rate is below a certain threshold value.

The fault-tolerant approach to quantum computation
allows for a limited set of transversal, or manifestly fault-
tolerant, operations, which are usually taken to be the
stabilizer operations. However, the stabilizer operations
alone do not enable universality because they can be
simulated efficiently on a classical computer, a result
known as the Gottesman–Knill theorem [3, 4]. The ad-
dition of non-stabilizer quantum resources, such as non-
stabilizer operations, can lead to universal quantum com-
putation [5]. With this perspective, it is natural to con-
sider the resource-theoretic approach [6] to quantify and
characterize non-stabilizer quantum resources, including
both quantum states and channels.

One solution for the above scenario is to implement
a non-stabilizer operation via state injection of so-called
“magic states,” which are costly to prepare via magic-
state distillation [5] (see also [7, 8, 9, 10, 11, 12, 13]).
The usefulness of such magic states also motivates the
resource theory of magic states [14, 15, 16, 17, 18, 19],
where the free operations are the stabilizer operations
and the free states are the stabilizer states (abbreviated
as “Stab”). Moreover, since a key step of fault-tolerant
quantum computing is to implement non-stabilizer oper-
ations, a natural and fundamental problem is to quantify

This submission is based on arXiv:1903.04483.

the non-stabilizerness or “magic” of quantum operations.
As we are at the stage of Noisy Intermediate-Scale Quan-
tum (NISQ) technology, a resource theory of magic for
noisy quantum operations is desirable both to exploit the
power and to identify the limitations of NISQ devices in
fault-tolerant quantum computation.

2 Overview of results

In this paper, we develop a framework for the resource
theory of magic quantum channels, based on qudit sys-
tems with odd prime dimension d. Related work on this
topic has appeared recently [20], but the set of free op-
erations that we take in our resource theory is larger,
given by the completely positive-Wigner-preserving op-
erations as we detail below. We note here that d-
level fault-tolerant quantum computation based on qu-
dits with prime d is of considerable interest for both the-
oretical and practical purposes [21, 22, 23, 24, 25]. In
particular, we establish the following:

(i) We introduce and characterize the completely
positive-Wigner-preserving (CPWP) operations.
We then introduce two efficiently computable magic
measures for quantum channels. The first is the
mana of quantum channels, whose state version was
introduced in [16]. The second is the max-thauma
of quantum channels, inspired by the magic state
measure from [19]. We prove several desirable prop-
erties of these two measures, including reduction
to states, faithfulness, additivity for tensor prod-
ucts of channels, subadditivity for serial composi-
tion of channels, an amortization inequality, and
monotonicity under CPWP superchannels.

(ii) We explore the ability of quantum channels to gen-
erate magic states. We first introduce the amortized
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magic of a quantum channel as the largest amount
of magic that can be generated via a quantum chan-
nel. Furthermore, we introduce an information-
theoretic notion of the distillable magic of a quan-
tum channel. In particular, we show that distillable
magic of a quantum channel can be bounded by its
max-thauma.

(iii) We apply our magic measures for quantum chan-
nels in order to evaluate the magic cost of quan-
tum channels, and we explore further applications
in quantum gate synthesis. In particular, we show
that at least four T gates are required to perfectly
implement a controlled-controlled-NOT gate.

(iv) We propose a classical algorithm, inspired by [26],
for simulating quantum circuits, which is relevant
for the broad class of noisy quantum circuits that
are currently being run on NISQ devices. This al-
gorithm has sample complexity that scales with re-
spect to the mana of a quantum channel. We fur-
ther show by concrete examples that the new algo-
rithm can outperform a previous approach for sim-
ulating noisy quantum circuits [20].

3 Resource theory of magic quantum
channels

For most known fault-tolerant schemes, the restricted
set of quantum operations is the set of stabilizer opera-
tions, consisting of preparation and measurement in the
computational basis and a restricted set of unitary opera-
tions. Here we review the basic elements of the stabilizer
states and operations for systems with a dimension that is
a product of odd primes. LetHd denote a Hilbert space of
dimension d, and let {|j〉}j=0,··· ,d−1 denote the standard
computational basis. For a prime number d, we define the
unitary boost and shift operators X,Z ∈ L(Hd) in terms
of their action on the computational basis. We define
the Heisenberg–Weyl operators as Tu = τ−a1a2Za1Xa2 ,
where τ = e(d+1)πi/d, u = (a1, a2) ∈ Zd × Zd. For each
point u ∈ Zd × Zd in the discrete phase space, there is
a corresponding operator Au, and the value of the dis-
crete Wigner representation [27, 28, 29] of a state ρ at
this point is given by

Wρ(u) :=
1

d
Tr[Auρ], (1)

where d is the dimension of the Hilbert space and {Au}u
are the phase-space point operators: A0 = 1

d

∑
u Tu and

Au = TuA0T
†
u.

Our first main contribution is to introduce a resource
theory with the free operations being those that com-
pletely preserve the positivity of the Wigner function.
This is motivated by the fact that any quantum circuit
consisting of an initial quantum state, unitary evolutions,
and measurements, each having non-negative Wigner
functions, can be classically simulated [26].

Specifically, a Hermiticity-preserving linear map Π is
called completely positive-Wigner-preserving (CPWP) if
for any system R with odd dimension, the following holds

∀ρRA ∈ W+, (idR⊗ΠA→B)(ρRA) ∈ W+, (2)

where W+ denotes the set of quantum states with non-
negative Wigner function. Indeed, any such free quantum
operation can be efficiently simulated via a classical algo-
rithm introduced in our paper and thus become reason-
able free operations for the resource theory of magic. We
further show that the following statements about CPWP
operations are equivalent:

1. The quantum channel N is CPWP;

2. The discrete Wigner function of the Choi–
Jamio lkowski matrix of N is non-negative;

3. The Wigner function of the channel WN (v|u) :=
1
dB

Tr[Av
BN (Au

A)] is non-negative for all u and v
(i.e., WN (v|u) is a conditional probability distri-
bution or classical channel).

We then introduce two magic measures for channels:

Mana of N : M(N ) := log max
v

∑
u

|TrN (Av)Au|/d,

Max-thauma of N : θmax(N ) := min
E:M(E)≤0

Dmax(N‖E),

where Dmax(N‖E) := log min{t : JNAB ≤ tJEAB} and
JNAB , J

E
AB are Choi operators. Here, the mana of a chan-

nel N can be understood as the maximal mana that can
be generated via N and it is generalized from the state
version in [16]. Meanwhile, the max-thauma of a channel
N is defined in terms of the channel divergence between
N and the set of free operations.

We show that these measures have desirable properties,
including faithfulness, additivity, monotonicity, and non-
increase under amortization. In particular, we show the
subadditivity of these measures under serial composition
of channels: M(N2 ◦N1) ≤M(N1) +M(N2), θmax(N2 ◦
N1) ≤ θmax(N1) + θmax(N2), which can be applied to
analyze operational tasks in FTQC.

4 Distilling magic from channels

Since many physical tasks relate to quantum chan-
nels and time evolution rather than directly to quantum
states, it is of interest to consider the non-stabilizer prop-
erties of quantum channels. Now having established suit-
able measures to quantify the magic of quantum chan-
nels, it is natural to figure out the ability of a quantum
channel to generate magic from input quantum states.

Our second contribution is to establish fundamental
limits on the capability of the channel N to generate
magic states. A common choice for a non-Clifford gate
is the T -gate. The qutrit T gate [30] is given by T =
diag(ξ, 1, ξ−1), where ξ = e2πi/9 is a primitive ninth root
of unity. The T gate leads to the T magic state |T 〉 :=
T |+〉. Furthermore, by the method of state injection [31,
32], one can generate a T gate by acting with stabilizer
operations on the T state |T 〉.

The most general protocol for distilling some resource
by means of a quantum channel N employs n invocations
of the channel N interleaved by free channels [33, Sec-
tion 7]. In our case, the resource of interest is magic, and
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here we take the free channels to be the CPWP chan-
nels. In such a protocol, the instances of the channel
N are invoked one at a time, and we can integrate all
CPWP channels between one use of N and the next into
a single CPWP channel, since the CPWP channels are
closed under composition. The goal of such a protocol is
to distill magic states from the channel.

In particular, we establish the limits for the T -gate
generating capacity of a channel N : the rate R of distill-
ing T states via n uses of N with infidelity tolerance ε is
upper bounded by

R ≤ 1

log(1 + 2 sin(π/18))

(
θmax(N ) +

log(1/[1− ε])
n

)
.

Consequently, the T -gate generating capacity of a chan-
nel N (the rate of generating T gates via N with vanish-
ing error in the asymptotic limit) is bounded by

CT (N ) ≤ θmax(N )

log(1 + 2 sin(π/18))
.

The main idea here is to utilize the sub-additivity of θmax

as well as the stabilizer hypothesis testing [19].

5 Magic cost of a quantum channel

Beyond magic distillation via quantum channels, the
magic measures of quantum channels can also help us
investigate the magic cost in quantum gate synthesis.
In the past two decades, tremendous progress has been
accomplished in the area of gate synthesis for qubits
(e.g., [34, 35, 36, 37, 38, 39, 40, 41]) and qudits (e.g.,
[42, 43, 44, 45, 46]). Elementary two-qudit gates include
the controlled-increment gate [43] and the generalized
controlled-X gate [45, 46]. More recently, the synthesis
of single-qutrit gates was studied in [47, 48].

Our third contribution is to establish lower bounds for
the task of synthesizing noiseless or noisy non-Clifford
gates. For a given channel N , let ST (N ) denote the num-
ber of qutrit T gates required to implement it. Then

ST (N ) ≥ max {M(N )/M(T ), θmax(N )/θmax(T )} .

The proof utilizes monotonicity of the channel measures.
As applications, we investigate gate synthesis of el-

ementary gates. In particular, for the controlled-
controlled-X qutrit gate, we find that

ST (CCX) ≥ M(CCX)

M(|T 〉〈T |)
≥ 2.1876

0.6657
≥ 3.2861, (3)

which means that four qutrit T gates are necessary to
implement a qutrit CCX gate.

For NISQ devices, it is natural to consider gate
synthesis under realistic quantum noise. One com-
mon noise model in quantum information process-
ing is the depolarizing channel Dp(ρ) = (1 − p)ρ +
p

d2−1
∑

0≤i,j≤d−1
(i,j)6=(0,0)

XiZjρ(XiZj)†. Suppose that a T gate

is not available, but instead only a noisy version Dp ◦ T
of it is. Then it is reasonable to consider the number
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Figure 1: Number of noisy T gates required to implement
a low-noise CCX gate.

of noisy T gates required to implement a low-noise CCX
gate, and the resulting lower bound is depicted in Fig-
ure 1. Considering the depolarizing noise (p = 0.01), our
lower bound gives the magic resource cost:

M(D⊗30.01 ◦ CCX)/M(Dp ◦ T ).

6 Classical simulation of noisy circuits

An operational meaning associated with mana is that
it quantifies the rate at which a quantum circuit can be
simulated on a classical computer. Our fourth contri-
bution is to propose a classical algorithm for simulating
quantum channels, inspired by [26], whose sample com-
plexity scales with the mana of quantum channels. We
show that the complexity of this algorithm scales with the
mana (the logarithmic negativity) of quantum channels,
establishing mana as a useful measure for measuring the
cost of classical simulation of a noisy quantum circuit.

Consider a noisy circuit consisting of channels {Nl}Ll=1

acting on the initial state |0n〉, after which a computa-
tional basis measurement is performed. The goal is to
estimate the value Tr

[
E(NL ◦ · · · ◦ N1)(ρ)

]
for a stabi-

lizer measurement operator E. With our algorithm, it
suffices to take

2

ε2
M2
→ log

(2

δ

)
(4)

samples to estimate the probability of a fixed measure-
ment outcome with accuracy ε and success probability

1 − δ, where M→ = 2
∑L

j=1M(Nj). Note that for a se-
ries of CPWP operations {Nl}Ll=1, it holds that M→ =

2
∑L

j=1M(Nj) = 1. This indicates that CPWP operations
can be classically simulated efficiently and thus are rea-
sonable free operations for the resource theory of magic
quantum resources.

We further show via concrete examples that our algo-
rithm can outperform previous approaches in simulating
noisy quantum circuits. For an n-qudit system with odd
prime dimension, the sample complexity of our algorithm
is never worse than the algorithm of [20] based on channel
robustness. Furthermore, our approach can be strictly
faster than the simulation approaches based on channel
robustness and magic capcaity [20] for certain quantum
circuits.
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