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T -quench versus f-quench dynamics : Our work also provides insights into the qualita-

tive differences between the two-state dynamics upon force or temperature variations (compare

PTDE(R) and PS(R) in Fig.2). For an apparent two-state folder, the fraction of folded states is

ϕNBA(f) = 1/[1+e−(∆F o
UF−f∆xUF )/kBT ]. The half-width of fluctuations (δf1/2) around transition

mid-force fm = ∆FUF /∆xUF using dϕNBA(f)/df is

δf1/2 =
kBT

∆xUF

log

√

3 + 2
√

2

3 − 2
√

2
≈ 1.7 × kBT

∆xUF

. (1)

∆xUF ≈ 6 nm for P5GA hairpin [1] (see Fig.S3), thus δf1/2 ≈ 1.2 pN at kBT = 4.14 pN · nm.

For the folded state to be predominantly populated after the force is quenched, the depth

of quench should satisfy δfQ = fm − fQ > δf1/2 ≈ 1.2 pN. It is noteworthy that only the

characteristic force kBT/∆xUF determines the sharpness of the transition (δf1/2), while ∆FUF

plays no significant role. Since ∆xUF ∼ N , it follows that δf1/2 ∼ 1/N , which differs from the

thermodynamic scaling upon temperature variation, (TΘ − T )/TΘ = δT/TΘ ∼ 1/
√

N [2, 3].

Thus, for a given length N , the force-induced transition is sharper than the temperature-induced

transition [4]. Since exp (fQ∆x‡
U→N/kBT ) = exp (fm∆x‡

U→N/kBT ) exp (−δfQ∆x‡
U→N/kBT ), a

larger depth of quench exponentially increase the rate of folding by lowering the free energy

barrier associated with refolding dynamics from the UBA, in contrast to the homopolymer

following a temperature quench (τc ≈ τRδT/TΘ) [3].

Calculation of PRSE and PTSE: To calculate PRSE(R) over the time traces, we collect

the data points from 50 < t < 70 µs for fS = 56 pN, and 10 < t < 30 µs for fS = 14

pN. Similarily, to calculate PTSE(R) over the time traces, the data are collected from

τF (i) − 270 < t < τF (i) − 250 µs for all fQ values, where τF (i) denotes the folding time of ith

trajectory.

Dependence of folding time of P5GA hairpins on stretch- (fS) and quench-forces

(fQ) : For a given survival probability (Σ(t) = R(t; fS, fQ)/R(0; fS)) the average folding

time is obtained by using τF (fS, fQ) =
∫∞
0

dtΣ(t; fS, fQ). The force fS determines the ini-

tial distribution of molecules in the UBA and NBA, and is giving the Boltzmann distribu-

tion. To probe folding we are interested in the dynamics of molecules that are initially in the

UBA. The fraction of molecules in the UBA for the two state RNA hairpin is ϕUBA(fS) =

2



(

1 + e(∆FUN−fS∆xUN )/kBT
)−1

=
(

1 + e(−δfS∆xUN )/kBT
)−1

where fS = fm + (fS − fm) = fm + δfS,

and ∆FUN − fm∆xUN = 0. It follows from Fig.1B in the text that τf ∼ efQ∆x‡
U→N/kBT . Since

fS and fQ are independent control variables in an experiment, one can factorize the survival

probability as Σ(t, fS , fQ) = ϕUBA(fS)Σ(t;∞, fQ). Therefore,

τF (δfS, δfQ) =
τ(0)

1 + e(−δfS∆xUN )/kBT
e−δfQ∆x‡

U→N/kBT (2)

where δfS = fS − fm and δfQ = fm − fQ.

The expanding sausage model for a Gaussian chain under tension: In the presence

of an external tension f , the simplest modification to the free energy of the expanding sausage

model as a function of the length of the sausage (≈ R) is given by

F = γA − fR ≈ kBT

ξ2
× 2πρR − fR =

kBT

ξ2
2
√

πΩR1/2 − fR, (3)

where the surface tension for the thermal blob (of size ξ) is given as kBT/ξ2, and the exposed

surface area of the cylindrical sausage is A ∼ 2πρR (ρ is the radius of the sausage). The model

is schematically shown in Fig. S4A. The rate of free energy reduction in the system is given by

Ḟ = γȦ − fṘ =
(

kBT
ξ2

√
πΩR−1/2 − f

)

Ṙ, while the entropy production due to the dissipation

is −T Ṡ ≈ η × R × Ṙ2. Equating Ḟ = −T Ṡ, as in the main text, we obtain
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where R0 the initial extension of the polymer, τ0 ≡ ηξ2R
5/2

0

kBT
√

πΩ
, and f

0 ≡ fτ0/ηR2
0. The ratio R/R0

in Eq.4 is interpreted as the survival probability [5], PS(t), as in the main text. For f
0 → 0, we

recover the de Gennes’ collapse kinetics in poor solvent without tension, PS(t) =
[

1 − 5
2

(

t
τ0

)]2/5

.

The average folding (collapse) time in the absence of tension, given in Eq. 6 of the main text,

is 〈τ〉0 =
∫ 2/5×τ0
0

dtS0(t) = 2
7
τ0. Using the definition of τ0 and f

0
, we can rewrite the free energy

F in the dimensionless form, F (R/R0) = F (R)τ0
ηR3

0

=
[

2(R/R0)
1/2 − f

0
(R/R0)

]

, which is shown

in Fig. S4A.

Above f
0

= 1, the free energy develops a barrier (δF
‡
) for refolding, whose position varies

with force as RTS/R0 = 1/(f
0
)2. If RTS < R0, a valid solution of SI Eq. 4 cannot be found

for all t > 0 (see also the discussion in the main text). The refolding time τF scales with the

3



effective height of a free energy barrier as τF ∼ exp (δF ‡) where δF ‡ is easily calculated as

δF
‡
= F (RTS/R0) − F (1) = 1/f

0 − 2 + f
0
. Therefore, the refolding (or nucleation) time scales

with the quench force (f
0
) as

τF ∼ exp

[

1

f
0 − 2 + f

0

]

, (5)

in parallel to the calculation in the main text. The survival probability for varying f
0

is shown

in Fig. S4B. The average folding time is determined from Eq. 6, and we see in Fig. S4C that

τF increases almost exponentially with the quench force for f
0

. 0.6, beyond which there is a

sharp increase in log[τF (f
0
)]. However, we note that the rapid reduction in R in the first stage

of collapse seen in the simulations (Fig. 1D of the main text) is not observed in the predicted

behavior of R(t)/R0 for the Gaussian chain (Fig. S4B).

Barrier height in the WLC-expanding sausage model for fQ > (fQ)∗ : When

fQ > (fQ)∗, R0/L → 1 and RTS/L → 0. The conditions of F
′
(R0/L) = 0 and F

′
(RTS/L) = 0

i.e., F
′
(R0/L) = 0 = (R0/L)−1/2 + f p [1/4(1 − R0/L)2 − 1/4 + R0/L] − fQ ≈ f p/4(1 −

R0/L)2−fQ and F
′
(RTS/L) = 0 =

(

RTSL
)−1/2

+f p

[

1/4(1 − RTS/L)2 − 1/4 + RTS/L
]

−fQ ≈
(

RTS/L
)−1/2 − fQ lead to RTS/L ≈ 1/f

2

Q and R0/L ≈ 1 − 1
2

√

f p/fQ. The free energy barrier

for fQ(> (fQ)∗) can be computed using

F (RTS/L) ≈ 1

fQ

+
f p

4

1

f
4

Q
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F (R0/L) ≈ 2(1 −
√

s − s

2
− s3/2

2
− · · · ) +
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4

(

1

2
√

s
− 6

√
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)

− fQ(1 − 2s)

=
fp

8
√

s
+ (2 − fQ) −
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2 − fQ +
3

2
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)√
s + 2fps + O(s3/2) · · · (6)

where s(≡ f p/fQ) → 0 when fQ takes large value. Thus, the free energy barrier is calculated

as

δF
‡
= F (RTS/L) − F (R0/L)

≈
(

1 − 2f
2

p

fQ

− 2 + fQ

)

+

(

2 − fQ +
3

2
f p

)

√

fp

fQ

+ O





(

f p

fQ

)3/2


 (7)
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The collapse of a semiflexible chain in a poor solvent : The Hamiltonian used in

our simulations of a wormlike chain in a poor solvent undergoing collapse to a toroidal structure

upon force quench is given by

H =
ks

2a2

N−1
∑

i=1

(ri,i+1−a)2 +
kb

2

N−2
∑

i=1

(1− r̂i · r̂i+1)+ǫLJ

∑

i,j

[

(

a

rij

)12

− 2

(

a

rij

)6
]

−f(zN −z1)] (8)

with the parameters, ǫLJ = 1.5kBT , ks = 2000kBT , N = 200, a = 0.6 and kb = 80

kBT . To integrate the equation of motion, we used Brownian dynamics algorithm

~r(t + ∆t) = ~r(t) − D~∇H({~r})∆t/kBT + ~R(t) where ~R(t) is a vector of Gaussian ran-

dom number satisfying 〈~R〉 = 0 and 〈~Rα(t) · ~Rβ(t)〉 = 2D∆tδαβ. We use diffusion coefficient

D = 1 × 10−7cm2/s, thus characteristic time for simulation is a2/2D ≈ 2 ns. We chose

integration time step ∆t = 0.00025(a2/2D) ≈ 0.5 ps.
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FIG. S1: Initial ensemble for the P5GA simulation. A Structural ensembles of the P5GA hairpin

represented by P (R) at each fS . B The average end-to-end distance as a function fS . Excluding the

values at fS = 14 and 16 pN, where the distribution is biomodal, 〈R〉 vs fS is well fit by the wormlike

chain model 〈R〉 ≈ L
(

1 −
√

kBT
4lpfS

)

, yielding L = 12.2 nm and lp = 0.43 nm.
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FIG. S2: Analysis of τF versus fQ data by adapting Dudko and coworkers’ microscopic model for force

spectroscopy τF (fQ, fS) = τ o
F (fS)

(

1 +
νfQ∆x‡

U→F

∆F ‡
U→F

)1−1/ν

e−∆F ‡
U→F /kBT ·[1−(1+νfQ∆x‡

U→F /∆F ‡
U→F )1/ν ]

where we use ν = 2/3 (cubic potential) and change the sign of force from the one in Ref.[6] to consider

the refolding process under tension. When τF is scaled by τ o
F for each fS, the folding times approxi-

mately collapse to a single curve (right). From the fit using thick line, the parameters extracted for

the collapsed data are ∆x‡ = 0.45 nm and ∆F ‡
U→F = 0.56 pN · nm.
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FIG. S3: The free energy of the P5GA hairpin as a function of R near f = fm, schematically illustrating

how the initially stretched structure of RNA at fS = 18 pN adapts its structure under the force-quench

condition at fQ = 12 pN.
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FIG. S4: The expanding sausage model under variation of the external tension. A. The free energy

profile calculated using R/R0 with varying tension (fQ). The collapse of a homopolymer is diagrammed

schematically for fQ = 0, but the extended structure can be stabilized in the presence of tension. B.

Reduction of the molecular extension with increasing tension (from left to right). C. The average

refolding time as a function of external tension, with log(τF ) ∼ f
0

for f
0

. 0.6.
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FIG. S5: Full 50 force-quench induced dynamic trajectories of semiflexible polymers.

11



FIG. S6: The collapse dynamics of a freely jointed homopolymer in a poor solvent is shown, with

fS = 83 pN to fQ = 4 pN (A) and fS = 83 pN to fQ = 75 pN (B). The flexible chain shows no

evidence of the plateau for small fQ, but a higher quench force stabilizes intermediate structures.
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