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Kinetics of interior loop formation in semiflexible chains
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Loop formation between monomers in the interior of semiflexible chains describes elementary
events in biomolecular folding and DNA bending. We calculate analytically the interior distance
distribution function for semiflexible chains using a mean field approach. Using the potential of
mean force derived from the distance distribution function we present a simple expression for the
kinetics of interior looping by adopting Kramers theory. For the parameters, that are appropriate for
DNA, the theoretical predictions in comparison with the case are in excellent agreement with
explicit Brownian dynamics simulations of wormlike chain �WLC� model. The interior looping
times ��IC� can be greatly altered in the cases when the stiffness of the loop differs from that of the
dangling ends. If the dangling end is stiffer than the loop then �IC increases for the case of the WLC
with uniform persistence length. In contrast, attachment of flexible dangling ends enhances rate of
interior loop formation. The theory also shows that if the monomers are charged and interact via
screened Coulomb potential then both the cyclization ��c� and interior looping ��IC� times greatly
increase at low ionic concentration. Because both �c and �IC are determined essentially by the
effective persistence length �lp

�R�� we computed lp
�R� by varying the range of the repulsive interaction

between the monomers. For short range interactions lp
�R� nearly coincides with the bare persistence

length which is determined largely by the backbone chain connectivity. This finding rationalizes the
efficacy of describing a number of experimental observations �response of biopolymers to force and
cyclization kinetics� in biomolecules using WLC model with an effective persistence length.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2178805�
I. INTRODUCTION

The kinetics of formation of contact between the ends of
a polymer chain has a rich history.1,2 Both experiments,1,2

theory,3–9 and simulations10–12 have been used to address the
elementary event of the dynamics of end-to-end contact for-
mation �or cyclization kinetics� �Fig. 1�a��. Contact forma-
tion between two reactive groups separated by a certain dis-
tance along the chain is a basic intramolecular rate process in
a polymer. Recently, there has been renewed interest in un-
derstanding the looping dynamics that has been studied both
theoretically3–7 and experimentally12–16 because of its funda-
mental importance in a number of biological processes. The
hairpin loop formation is the elementary step in RNA
folding,17 structure formation in ssDNA,18,19 and protein
folding.13,20–23 Cyclization in DNA has recently drawn re-
newed attention not only because of its importance in gene
expression24,25 but also it provides a way to assess DNA’s
flexibility. The promise of using single molecule technique to
probe the real time dynamics of polymer chains has also
spurred theories and simulations of cyclization kinetics. Us-
ing loop formation times between residues that are in the
interior as the most elementary event in protein folding, it
has been argued, using experimental data and theoretical ex-
pression for probability for loop formation in stiff chains,
that the speed limit for folding is on the order of a 1 �s.26
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These examples illustrate the need to understand quantita-
tively the elementary event of contact formation between
segments of a polymer chain.

Even without taking hydrodynamic interactions into ac-
count theoretical treatment of cyclization kinetics in polymer
chains is difficult because several relaxation times and length
and energy scales are interwined. At the minimum the varia-
tion of time scale for cyclization ��c� with polymer length is
dependent on polymer relaxation time ��R�. In biopolymers
additional considerations due to chain stiffness and heteroge-
neity of interactions between monomer �amino acid residue
or nucleotides� must be also taken into account. Majority of
the cyclization kinetics studies on synthetic polymers2 have
considered examples in which the contour length �L� of the
polymer is much greater than its persistence length �lp�. In
contrast, loop formation dynamics in biopolymers have fo-

FIG. 1. Loop formation in semiflexible polymer chains: �a� Cyclization
event. �b� Interior contact �IC� formation between monomers s1 and s2 in the
chain interior. The segment length s1 and L−s2 are referred to either as

dangling ends or handles in the text.
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cused on systems in which L / lp is relatively small. In disor-
dered polypeptide chains L / lp can be as small as 3,15,27 while
in DNA L / lp�1.16,28 Thus, it is important to develop theo-
retical tools for the difficult problem of loop formation dy-
namics for arbitrary L and lp. Despite the inherent complexi-
ties in treating loop formation in biopolymers it has been
found that the use of polymer-based approach is reasonable
in analyzing experimental data on cyclization kinetics in
proteins8,15 and DNA.16

In this paper we are primarily concerned with the loop-
ing dynamics between interior segments of a semiflexible
chain. While a lot of theoretical and experimental works
�mentioned above� have been done on the end-to-end loop-
ing �Fig. 1�a��, only a few studies have been reported on the
contact formation between monomers in the interior of a
chain �interior looping� �Fig. 1�b��.29–33 There are a few rea-
sons to consider kinetics of interior looping. �1� The biologi-
cal events such as hairpin formation and DNA looping often
involve contact formation between monomers that are not at
the ends of the chain. For example, it is thought that the
initiation of nucleation in protein folding occurs at residues
that are near the loop regions.34 The residues that connect
these loops are in the interior of the polypeptide chain. Simi-
lar processes are also relevant in RNA folding.35 �2� It is
known that for flexible chains with excluded volume inter-
actions �polymer in a good solvent� the probability of loop
formation is strongly dependent on the location of the two
segments. For large loop length �S� the loop formation prob-
ability, P�S�, in three dimensions for chain ends �S�1 where
�1�1.9 while P�S��S�2 with �2�2.1 for monomer in the
interior.36 Although the values of �1 and �2 are similar it
could lead to measurable differences in loop formation
times.32

The rest of the paper is organized as follows. In Sec. II
we present the physical considerations that give rise to the
well-established results for �c for flexible chains. The exten-
sion of the arguments for flexible chains to semiflexible
polymers suggests that the local equilibrium approximation
can be profitably used to analyze both cyclization kinetics
and interior looping dynamics. The basic theory for the equi-
librium distance distribution between two interior segments
s1 and s2 �Fig. 1�b�� is presented in Sec. III. Using the equi-
librium distribution function and adopting Kramers theory
and following the suggestion by Jun et al.,37 we obtain an
analytical expression for time scale �IC for interior contact
formation in Sec. IV. Explicit results of simulations of worm-
like chain �WLC�, which validate the theory, are presented in
Sec. V. In Sec. VI we consider the kinetics of interior loop
formation in WLC in which the stiffness of the loop is dif-
ferent from that of the dangling ends. Section VII describes
the consequences of screened Coulomb interaction between
monomer segments on cyclization kinetics and interior loop-
ing dynamics. Because the results in Sec. VIII are expressed
in terms of a renormalized persistence length �lp

�R�� of WLC
we present the simulation results for lp

�R� variation for a num-
ber of potentials that describe interactions between mono-
mers in Sec. VII. The conclusions of the article are summa-

rized in Sec. IX.
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II. PRELIMINARY CONSIDERATIONS

The pioneering treatment of loop formation dynamics
due to Wilemski and Fixman38 �WF� has formed the basis for
treating cyclization kinetics in flexible polymer chains. Us-
ing a generalized diffusion equation for the probability den-
sity, �P��rN� , t� /�t=LFPP��rN� , t�−kS��rN��P��rN� , t� �LFP is
a generalized diffusion operator, and kS is a sink term�, for
an N-segment polymer, and local equilibrium approximation
within the sink, WF expressed the cyclization time �c in
terms of an integral involving a sink-sink correlation func-
tion. From the WF formalism and related studies it is known
that even in the simplest cases �ideal chains or polymers with
excluded volume interactions� the validity of the local equi-
librium approximation depends on the interplay between �c

and the chain relaxation time, �R. If �c��R then the local
equilibrium approximation is expected to hold because the
polymer chain effectively explores the available volume be-
fore the monomers at the end �reactive groups� form a con-
tact. In this situation, �c can be computed by considering
mutual diffusion of the chain ends in a potential of mean
force �F�Re��. For ideal chains, F�Re�=−kBT log P�Re�
�3kBTRe

2 /2R̄2 where Re is the end-to-end distance, R̄
�aN1/2 is the mean end-to-end distance, a is the size of the
monomer, T is the temperature, and kB is the Boltzmann
constant. By solving such an equation subject to the absorb-
ing boundary condition, Szabo, Schulten, and Schulten6

�SSS� showed that �SSS=�oN3/2. Simulations4 and theory5

show that if the capture radius for contact formation is non-
zero, and is on the order of a monomer size, then �c

�	R2
 /Dc��1N2�+1 where �=1/2 for Rouse chains and �
�3/5 for polymers with excluded volume, and Dc is a mu-
tual diffusion coefficient. The use of these theories to analyze
the dependence of �c on N in polypeptides shows that the
physics of cyclization kinetics is reasonably well described
by diffusion in a potential of mean force F�Re� which only
requires accurate calculation of P�Re� the end-to-end distri-
bution function.15,37 For describing interior looping times �IC

for contact between two interior monomers s1 and s2, we
need to compute P�R12, �s1−s2�� where R12 is the distance
between s1 and s2. With P�R12, �s2−s1�� in hand �c can be
computed by solving a suitable diffusion equation.

Because the use of F�Re� in computing �c and �IC is
intimately related to chain relaxation times it is useful to
survey the conditions which satisfy the local equilibrium ap-
proximation. By comparing the conformational space ex-
plored by the chain ends compared to the available volume
prior to cyclization39 the validity of the local equilibrium
approximation in flexible chains can be expressed in terms of
an exponent �= �d+g� /z.7 Here d is the spatial dimension,
the correlation hole exponent �des Cloizeaux exponent�40 g
describes the probability of the chain ends coming close to-

gether, and z is the dynamical scaling exponent ��R� R̄z�. If
��1 the local equilibrium approximation is expected to hold
and �c is determined essentially by the equilibrium P�Re� as
Re→a the capture radius. Using the scaling form of P�Re�
for small Re P�Re��1/ R̄d�Re / R̄�g and R̄�N� �� is the Flory
exponent� we find �c�N��d+g�. For Gaussian chains �=1/2

3/2
and g=0 and hence �SSS��c�N . This result was obtained
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50 years ago by Jacobsen and Stockmayer.41 However, in the
free-draining case �z=4, g=0, �=1/2, d=3�, ��1 and hence
the condition �c��R is not satisfied. In this case �c��R

�Nz��N2. Thus, for ideal Gaussian chains it is likely that
�SSS��c��WF.42 Indeed, recent simulations show that if the
number of statistical segments is large ��20� then for ideal
chains �c�N2 which signals the breakdown of the condition
�c��R. Experiments on cyclization of polypeptide chains
show that �c�N3/2a is obeyed for N in the range 10�N
�20 �see Fig. 5 in Ref. 15�. Deviations from ideal chain
results are found for N�10, either due to chain stiffness15 or
sequence variations.43 For polymer chains in good solvents
with hydrodynamic interactions �d=3, g=5/18, z=3, and �
=3/5�, �=59/54�1. Thus, in real chains the local equilib-
rium approximation may be accurate.

For stiff chains bending rigidity severely restricts the
allowed conformations especially when the contour length
�L� is on the order of the persistence length �lp�. Because of
high bending rigidity the available volume is restricted by
thermal fluctuations. Clearly in this situation, the chain is
close to equilibrium. This may be the case for short DNA
segments. In effect these chains satisfy the �c��R condition
which enables us to calculate �c or �IC by solving an appro-
priate one-dimensional diffusion equation �see below� in a
suitable potential of mean force.

Effect of chain stiffness. Many biopolymers are intrinsi-
cally stiff and are better described by WLC models. The
persistence length, which is a measure of stiffness, varies
considerably. It ranges 3–7 Å �proteins�,15 10–25 Å �ss-
DNA �Ref. 19 and 44� and RNA �Ref. 45 and 46��, and
50 nm for ds-DNA. Typically, loops of only a few persis-
tence length form, which underscores the importance of
chain stiffness. In order to correctly estimate the loop closure
time, consideration of the stiffness in the loop closure dy-
namics is necessary unless the polymer looping takes place
between the reactive groups that are well separated and the
chain length L is long. If L� lp �persistence length�, the loop-
ing dynamics will follow the scaling law for flexible chains.
However, at short length scales loop dynamics can be domi-
nated by chain stiffness.16 If the chain is stiff then WLC
conformations are limited to those allowed by thermal fluc-
tuations. In this situation, the time for exploring the chain

conformations is expected to be less than �c. Thus, we expect
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local equilibrium to be a better approximation for WLC than
for long flexible chains.

Recently, Dua et al.47 have studied the effect of stiffness
on the polymer dynamics based on Wilemski-Fixman for-
malism and showed that for free-draining semiflexible chain
without excluded volume �c�N2.2–2.4 at moderate values of
stiffness. However, the procedure used to obtain this result is
not complete, as recognized by the authors, because they
use a Gaussian propagator G�r , t �r� ,0�= �3/2		r2
�1
−
�t���3/2exp�−3�r−
�t�r��2 /2	r2
�1−
�t��� which is not
valid for WLC. The end-to-end distance distribution be-
comes a Gaussian at equilibrium, limt→�G�r , t �r� ,0�
= Peq�r�= �3/2		r2
�3/2exp�−3r2 /2	r2
�, which is incorrect
for semiflexible chain especially when lp�L �see Fig. 2 and
Refs. 48 and 49�.

As an alternative method we include the effect of chain
stiffness assuming that local equilibrium approximation is
valid. This is tantamount to assuming that �c��R which, for
reasons given above, may be an excellent approximation for
WLC.37 In this case we can compute �c by solving the dif-
fusion equation in a one-dimensional potential F�Re�=
−kBT ln P�Re� where P�Re� is the probability of end-to-end
distance distribution for WLC. For the problem of interest,
namely, the computation of �IC, we generalize the approach
of Jun et al.37 who used Kramers theory in the effective
potential F�Re� to obtain �c. In general, the time for cycliza-
tion can be calculated using

�c = �
a

r

dye�F�y� 1

D
�

y

L

dze−�F�z�, �1�

where a is the capture �contact� radius of the two reactive
groups. We show that Eq. �1� provides accurate estimates of
�c, thus suggesting that the local equilibrium approximation
is guaranteed.

Here, we address the following specific questions. What
is the loop formation time between the interior segments in a
semiflexible chain? Does the dangling ends �Fig. 1�b�� affect
the dynamics of loop formation? How does the effect of
interaction between monomer segments �e.g., excluded vol-
ume and electrostatic interaction� affect loop closure kinetics

FIG. 2. Comparison between the interior distance dis-
tribution functions for different size of the loops ��s2

−s1� /L=1,0.8,0.5�. The value of �s2−s1� /L=1 corre-
sponds to end-to-end distribution function. The flexible
chain limit �t=10� is on the left and the right panel is
for stiff chains �t=2�. The panel on the right shows a
sketch of the effective potential F�r�=−kBT log P�r� for
the case �s2−s1� /L=0.8. The wells at Rb and the barrier
top Rt are highlighted.
in WLC models?
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III. DISTANCE DISTRIBUTION FUNCTION BETWEEN
TWO INTERIOR POINTS

A key ingredient in the calculation of the potential of
mean force is appropriate distribution function between the
two monomers that form a contact. In Refs. 49 and 50 the
equilibrium end-to-end �Re� radial distribution function of a
semiflexible chain P�Re� was obtained in terms of the persis-
tence length �lp� and the contour length �L�. Despite the
mean field approximation employed in Refs. 49 and 50 the
distribution function P�Re� is in very good agreement with
simulations.48 The simplicity of the final expression has
served as a basis for analyzing a number of experiments on
proteins,51 RNA,45 and DNA.52 In this section, we use the
same procedure to calculate the distribution function
P�R12; lp ,s1 ,s2 ,L� where 0�s1 ,s2�L, and R12 is the spatial
distance between s1 and s2.

For the semiflexible chain in equilibrium we write the
distribution function of the distance R12 between s1 and s2

�Fig. 1� along the chain contour as

G�R12;s1,s2� =�R12 − �
s1

s2

u�s�ds��
MF

=
�D�u�s���R12 − �s1

s2u�s�ds��MF�u�s��

�D�u�s���MF�u�s��
,

�2�

where u�s� is a unit tangent vector at position s. The
=�F /�=0. Technically, the optimal value of  and � should
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exact weight for the semiflexible chain is ��u�s��
�exp�−lp /2�0

Lds��u /�s�2���u2�s�−1�. The nonlinearity,
that arises due to the restriction u2�s�=1, makes the compu-
tation of the path integral in Eq. �2� difficult. To circumvent
the problem we replace ��u�s�� by the mean field weight
�MF�u�s��,53

�MF�u�s�� � exp�−
lp

2
�

0

L � �u�s�
�s

�2

ds − ��
0

L

�u2�s� − 1�

�ds − ��u0
2 − 1� + �uL

2 − 1��� . �3�

The Lagrange multipliers � and , which are used to enforce
the constraint u2�s�=1,54 will be determined using stationary
phase approximation �see below�. The path integral associ-
ated with the weight �MF�u�s�� is equivalent to a kicked
quantum mechanical harmonic oscillator with “mass” lp and
angular frequency ���2� / lp. Using the propagator for the
harmonic oscillator,

Z�us,u0,s� = �	 sinh��s�
�p

�−3/2

�exp�− �p

�us
2 + u0

2�cosh��s� − 2us · u0

sinh��s�
� ,

�4�

and defining �p��lp /2 the isotropic distribution function

becomes
G�R12,s1,s2� = N−1e�L+2� d3k

�2	�3 � du0dus1
dus2

duLe−u0
2
Z�u0,us1

;s1�

�eik·R12−�k2/4���s1−s2�Z�us1
+

ik

2�
,us2

+
ik

2�
;s2 − s1�e−uL

2
Z�us2

,uL;L − s2� . �5�
By writing the distribution function as G�R12,s1 ,s2�
=�−i�

i� d��−i�
i� d exp�−F�� ,�� it is clear that the major con-

tribution to G �in the thermodynamic limit L→�� comes
from the saddle points of the free energy functional F�� ,�,
i.e., �F /��=�F /�=0. The functional F�� ,� is �see Ap-
pendix A for details of the derivation�

F��,� = − �L� + 2� +
3

2
ln� sinh �L

�p
�2 + �p

2

+ 2�p coth �L�� −
3

2
ln

�2

Q�s1,s2;�,�

+
�2R12

2

Q�s1,s2;�,�
. �6�

To obtain the optimal values of � and  we first take the
L→� limit and then solve stationarity conditions �F /��
be calculated for a given L and then it is proper to examine
the L→� limit. The consequences of reversing the order of
operation are discussed in Appendix B. Using the first pro-
cedure �taking L→� first� we obtain Q�s1 ,s2 ;� ,�
→ �s2−s1�� in the limit L�s2�s1�1, and thus F�� ,� be-
comes

F��,� � − �L� + 2� +
3

2
ln� e�L

�p
� 

�p
+ 1�2� +

3

2
ln �p

2

+
3

2
ln

�s2 − s1�
�

+
R12

2 �

�s2 − s1�

= L�3

2
� − ��1 −

�s2 − s1�
L

R12
2

�s2 − s1�2
��

+
3

2
ln��p

�
� 

�p
+ 1�2� +

3

2
ln�s2 − s1� − 2 ,
�7�
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where we have omitted numerical constants. The major con-
tribution to the integral over � and  comes from the sets of
� and  which pass the saddle point of a stationary phase
contour on the Re�F� plane. Since the term linear in L domi-
nates the logarithmic term in lp even when L / lp�O�1�, the
stationary condition for � can be found by taking the deriva-
tive with respect to � by considering only the leading term in
L �cf. see Appendix B for details�. The stationarity condition
leads to

�p =��lp

2
=

3

4

1

1 − ��s2 − s1�/L�r2 , �8�

where r=R12/ �s2−s1� with 0�r�1. Similarly, the condition
for  can be obtained as

 = 3
2 − �p. �9�

Determination of the parameters � and  by the stationary
phase approximation amounts to replacing the local con-
straint u2�s�=1 by a global constraint 	u2�s�
=1.54 Finally,
the stationary values of � and  in the large L limit give the
interior distance distribution function,

G�R12,s2 − s1�

=
N

�1 − ��s2 − s1�/L�r2�9/2

�exp�−
9�s2 − s1�

8lp��s2 − s1�/L��1 − ��s2 − s1�/L�r2�� . �10�

The mean field approximation allows us to obtain a
simple expression for the internal segment distance distribu-
tion function. The previously computed P�Re� �Ref. 49� can
be retrieved by setting �s2−s1�=L. The radial probability den-
sity, for the interior segments, in three dimensions, for semi-
flexible chains is

P�r;s2 − s1,t�

= 4	C
r2

�1 − ��s2 − s1�/L�r2�9/2

�exp�−
3t

4��s2 − s1�/L��1 − ��s2 − s1�/L�r2�� , �11�

where r=R12/ �s2−s1��R / �s2−s1� and t= �s2−s1� / l0 with l0

= 2
3 lp. The normalization constant C is determined using

�0
1P�r ,s ; t�dr=1. The integral is evaluated by the substitution

��s2−s1� /Lr=x /�1+x2 to yield

C =
1

4	
� �s2 − s1�

L
�3/2��

0

x0

dxx2�1 + x2�e−��1+x2��−1

=
4

	�−7/2� �s2 − s1�
L

�3/2�− 2��x0e−��1+x0
2��15 + 2��6

+ 5x0
2 + 2��1 + x0

2�2�� + �2e−��	 erf���x0�

��1 + 3�−1 +
15

4
�−2��−1

, �12�

�
where �=3t /4�s2−s1� /L, x0= �s2−s1� / �L− �s2−s1��, and
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erf�x� is the error function. The peak in the distribution func-
tion is at

rmax =�� + ��2 + 14

7�s2 − s1�/L
, �13�

where �= 5
2 −3t / �4�s2−s1� /L�. For �s2−s1�=L, rmax→0 as t

→� and rmax→1 as t→0.
In Fig. 2 we compare the distribution functions P�Re�

and P�R12,s2−s1�. When �s1−s2� /L=1 Eq. �11� gives the
end-to-end distribution for semiflexible chains. By adjusting
the value of t �or equivalently l0� we can go from flexible to
intrinsically stiff chains. As the chain gets stiff there is a
dramatic difference between the P�r ; �s1−s2� , t� and P�r ; �s1

−s2�=L , t� �see Fig. 2�b��. Contact formation between inte-
rior segments is much less probable than cyclization process
�compare the green and red curves with the black in Fig.
2�b��. Physically, this is because stiffness on shorter length
scales ��s1−s2� /L�1� is more severe than when �s1−s2� /L
�O�1�. However, when the chain is flexible �large t� the
difference between the probability of contact between the
interior segments and cyclization is small �Fig. 2�a��. In the
limit of large t��L / lp� the Hamiltonian in Eq. �3� describes a
Gaussian chain for which the distance distribution between
interior points remains a Gaussian. However, if excluded
volume interactions are taken into account there can be sub-
stantial difference between P�x , �s1−s2� , t� and end-to-end
segment distribution even when t is moderately large.

IV. INTERIOR LOOP CLOSURE TIME USING KRAMERS
THEORY

Having obtained the effective potential between interior
segments of semiflexible chain we can evaluate Eq. �1� using
F�R�=−kBT log P�R� with P�R� given by Eq. �11� with r
=R /L. For clarity we have suppressed the dependence of
P�R� on �s2−s1�. The expression for the mean first passage
time �Eq. �1�� can be approximated by expanding the
effective potential F�R� at the barrier top and at the
bottom as �F�R��F�Rt�− 1

2�R
2F�R��R=Rt

�R−Rt�2+¯ and
�F�R��F�Rb�+ 1

2�R
2F�R��R=Rb

�R−Rb�2+¯, respectively
�Fig. 2�. Evaluating the resulting Gaussian integrals yields
the Kramers equation,

�c � �Kr

=
	kBT

D���R
2F�R��R=Rb

���R
2F�R��R=Rt

exp��F‡/kBT� . �14�

When evaluating the Gaussian integral at the barrier top with
R=Rt �Fig. 2�, we assume that only the integral beyond R
�Rt contributes to the result. In the overdamped limit
the mean first passage time, which is roughly the
inverse of the reaction rate, is determined by the barrier
height ��F‡=F�Rt�−F�Rb��, and the curvatures of the bound
state, the curvature at the barrier top, and the friction
coefficient, that depends on D�=2D0� where D0 is the
monomer diffusion coefficient. The curvatures of the
potential at the bottom �R�=Rb� or at the top �R�=Rt�
�Fig. 2 right panel� are obtained using ���R

2F�R��R=R�� 2
= kBT�6/R�− �G��R� ,S ,L� /G�R� ,S ,L��� by impos-
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ing the condition ��RF�R��R=R�
=0, i.e., ��2/R

+ ��RG�R ,S ,L� /G�R ,S ,L����R=R�
=0. There is an uncertainty

in the evaluation ���R
2F�R��R=Rt

because F�R� does not really
form a barrier at R=Rt. Thus, we assume that the curvature at
the barrier top is �1/Rt using dimensional analysis. We ex-
press lengths in terms of the persistence length lp

�0�= l0. Set-
ting �s1−s2� / lp

�0��s, L / lp
�0�� l, and R / lp

�0��x the radial prob-
ability density is

P�x,s,l� =
4	C�s,l��x2/s3�
�1 − �x2/ls��9/2 exp�−

3s

4�s/l��1 − �x2/ls��� ,

�15�

with �0
sdxP�x ,s , l�=1. When the dimensionless contact

radius xt���=a / lp
�0���1, the exponential factor can be

approximated as exp�−�F‡ /kBT�= P�� ,s , l� / P�xb ,s , l�
��2G�0,s , l� /xb

2G�xb ,s , l�.
The function P�r� �Eq. �11�� is not appropriate for esti-

mating the contact probability of semiflexible chains even
though the overall shape of the mean field distribution func-
tion is in excellent agreement with the simulations and ex-
periment. The contact probability for DNA is well studied by
Shimada and Yamakawa,55 thus we use their result for
G�0, l�. If x=0 and s�10 then the Shimada-Yamakawa
equation gives a reliable estimate of the looping probability
�G�0,s , l�=G0�s��.

G0�s� =
896.32

s5 exp�− 14.054/s + 0.246s� . �16�

At a large s��10� value an interpolation formula G0�s�
�s−3/2 due to Ringrose et al.56 can be used. Note that as the
chain gets stiffer �l decrease� G0�s� decreases substantially
indicating a great reduction in the loop formation probability
for intrinsically stiff chains. It should be stressed that Eq.
�16� has been obtained only for cyclization process and does
not take into account the effect of dangling ends �Fig. 1�b��.
The contact probability �r→0� between interior segments
should be different from the one for the end-to-end contact.
In other words, G�r→0,s , l� should depend on s / l. Unfortu-
nately, we do not know any analytical results for G�0,s , l�.

We simply use G0�s� for G�0,s , l� and resort to the values of
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xb and G�xb ,s , l� to account for end effects. We validate the
approximation that G�0,s , l� does not depend on l�G0�s�
=G�0,s , l�� explicitly using simulations �see below�.

With these approximations the loop formation time in
the presence of dangling ends �Fig. 1�b�� is

�c�s,l� � �	

�
xb

2G�xb,s,l��� 6

xb
2 −

G��xb,s,l�
G�xb,s,l� �

1/2�
�

1

�D

�lp
�0��2

G0�s�
, �17�

where x=xb=���+���2+14� /7�sl and � is the adjustable
parameter we introduced to account for the uncertainty
in computing the curvature at the barrier top,
i.e., ���x

2F�x��x=xt��= �� /���kBT. Note that the structure of
Eq. �17� is identical to our previous estimate of tertiary con-
tact formation time used to interpret kinetics of loop forma-
tion in proteins ��n��	Rn

2
 / �D0P�n��, where n is the loop
length, 	Rn

2
 is the mean square distance between the two
residues, D0 is an effective monomer diffusion constant, and
P�n� is the loop formation probability.8,34,57 The differences
between the two lie in the numerical prefactor inside �¯�. In
addition, in the dimensional argument used to obtain ��n� we
used 	Rn

2
 instead of lp
2 that arises in the present theory.

Figure 3 shows that the estimates of looping time using
Eq. �17� and the results of simulations for the same set of
parameters are in excellent agreement when ��7.3 �see the
next section for details of the simulations�. First, �c increases
and converges to the finite value with the increasing size of
end tails �decreasing s / l� and this trend manifests itself as the
chain gets stiffer and shorter �small s� �see Refs. 30 and 29�.
The inset shows that, at s=3, �c increases by a factor of �1.5
when the total contour length of the dangling end is five
times longer than the contour length of the loop. Second, �c

is a minimum ��c
min� when the contour length between loop

formation sites, �s1−s2�, is around �3–4�lp
�0� and �c

min shifts
towards the large s value with the increasing size of dangling
ends. Note that when the loop size becomes large �s�6� �c

does not depend on the length of the dangling ends. In non-

FIG. 3. Plots of loop formation time ��IC� obtained us-
ing Eq. �17� as a function of the distance between sites
s1 and s2 expressed in terms of lp

�0� for various size of
dangling ends expressed by s / l�=�s1−s2� /L�. Here l
=L / lp

�0� and s= �s2−s1� / lp
�0�. The specific values for pa-

rameters are lp
�0�=50 nm, D=2D0=1.54�10−11 m2/s,

and �=0.1. The insets are for the loop closing time at
�s1−s2� / lp

�0�=3 as a function of s / l. For two sites sepa-
rated by �s1−s2� along the chain the longer loop closing
time is expected if the sites of interest are connected by
long dangling ends. If the separation is much larger
than the persistence length ��s1−s2�� lp

�0�� the effect of
dangling end on loop closing time vanishes. The results
of simulations for the same set of parameters are shown
in symbols. The excellent agreement between theory
and simulations validates the assumptions leading to
Eq. �17�.
interacting Gaussian chains the equilibrium distribution of
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any two segments along the chain is always Gaussian. In this
case, the presence of the dangling ends does not affect the
chain statistics.

V. SIMULATION OF LOOP CLOSURE DYNAMICS

To check the validity of the theoretical estimates for loop
closure time we performed simulations using a coarse-
grained model for ds-DNA. The simulation procedure is
identical to the one used by Podtelezhnikov and Vologodskii
�see details in Ref. 58�. Because the time scale of approxi-
mately milliseconds is computationally difficult to accom-
plish, even using Brownian dynamics �BD�, we use a coarse-
grained model of ds-DNA by choosing the pitch of the helix
�ten base pairs with the diameter l0=3.18 nm� as a building
block of a ds-DNA chain. The energy for a wormlike chain,
that is appropriate for ds-DNA, is taken to be the sum of the
bending rigidity �Eb� term and the chain connectivity �Es�
term, which, respectively, are given by

Eb = �RT�
i=1

N−1

�i
2 �18�

and

Es =
�RT

l0
2 �

i=1

N

�li − l0�2, �19�

where T is the temperature, R is the gas constant, �i is the ith
bond angle, and li is the ith bond length. By choosing the
parameters �=7.775 and �=50 one can get the typical per-
sistence length of 50 nm for ds-DNA.

Despite the simplification in the energy function compu-
tation of the looping time through direct BD simulation is
still prohibitively difficult. From Eq. �17� it is clear that the
loop formation time can be even up to O�1� s for certain
values of lp and L. To overcome this problem, Podtelezhni-
kov and Vologodskii used the relation between the equilib-
rium probability of loop formation and the loop closure and
opening times,

P�r0; �s2 − s1�,L� =
�o

�IC + �o
. �20�

�o is the loop opening time of the closed loop. In general
�o��IC. This observation enables us to perform direct BD
simulation for the loop dissociation rather than loop closure.
Since P�r0 ; �s2−s1� ,L� is normally very small for small r0

�r0=5 nm�, there is a sampling problem. However, P�r0 ; �s2
−s1� ,L� can be found using the Markov relation,
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P�r0; �s2 − s1�,L� = �
i=1

n−1

P�ri�ri+1� , �21�

where P�ri �ri+1� is the conditional probability that conforma-
tions with r�ri in the subset of conformations with r�ri+1.
To obtain P�ri �ri+1� we performed �n−1� Monte Carlo sam-
plings using the pivot algorithm59 by iteratively adjusting the
interval of the end-to-end �or interior-to-interior� distance
r0�r1� ¯ �rn such that P�ri �ri+1��0.2.

The results of our simulations for P�r0 ;L� and �o for
both end-to-end contact and contact between segments are
shown in Fig. 4. Note that there is minor difference between
the contact probabilities of the end-to-end and of the interior-
to-interior ��s2−s1� /L=0.5� segments whereas the loop open-
ing dynamics for the chain with dangling ends is slower than
the case without dangling ends by about �50%. The inde-
pendence of P�r0 ; �s2−s1� ,L� justifies the approximation,
G0�s�→G�0,s , l�, used in obtaining Eq. �17�. The values of
�c and �IC can be computed knowing P�r0 ; �s2−s1� ,L� and �o.
The results, which are shown in Fig. 3, are in excellent
agreement with theory.

VI. INTERIOR LOOPING DYNAMICS IN SEMIFLEXIBLE
CHAIN WITH VARIABLE PERSISTENCE LENGTH

In many cases stiffness of the loop, which is involved in
interior looping, is different from the overall persistence
length of the chain. A simple example is the formation of a �
hairpin in peptides. In this case, the stiffness of the loop is
typically less than the � strands. If the �-hairpin-forming
polypeptide chain is treated as a WLC then it is characterized
by three fragments, namely, the loop with a persistence
length lp2 and the strands whose persistence lengths are lp1

and lp3. Such a variable persistence length WLC is also re-
alized in the DNA-RNA-DNA construct in which lp2

�10 Å and lp1� lp3�500 Å. Constructs consisting of three
WLC fragments are also used routinely in laser optical twee-
zer experiments.

The Kramers-type theory, used to calculate interior loop-
ing in WLC with uniform lp, can be adopted to compute �IC

in WLC with variable lp. The mean field equilibrium distri-
bution function P�r� �with r=R12/ �s2−s1��, which is needed
to calculate �IC, is �see Appendix C for the derivation�

P�r� =
4	Cr2

1 − �L2/L�r2 exp�−
3t

4

1

1 − �L2/L�r2� , �22�

where L2= �s2−s1� is the contour length of the loop part of

FIG. 4. Plot of looping probability, P�r0 ;S�, �left� and
dissociation time, �o, �right� as a function of interior
loop contour length S. The capture radius r0=5 nm. The
simulations are performed for both end-to-end �S /L
=1� �black circle� and interior-to-interior �S /L=0.5�
�red triangle�. The parameters of the semiflexible chains
are the same as in Fig. 3. Note that the loop dissociation
time is much shorter than �IC.
WLC with persistence length lp2, L is the total contour length
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of the chain, and t=L / l0
eff. The effective persistence length of

the WLC, consisting of three segments 0�s�s1 with lp1,
s1�s�s2 with lp2, and s2�s�L with lp3, is

lp
eff = ��

i=1

3
Li

L

1
�lpi

�−2

. �23�

In the mean field approximation, the WLC in which lp varies
along the contour in a discrete manner is equivalent to a
WLC with an effective persistence length. It follows from
Eq. �23� that the effective persistence length is determined by
the smallest lpi

.
Consider the simplest case L2=Lint, L1=L3= �L−Lint� /2,

lp1= lp3= lp
H, and lp2= lp

�0�. In this case,

lp
eff

lp
�0� =

1

��1 − x��lp
H/lp

�0� + x�
, �24�

where x=Lint /L. It follows from Eq. �24� that if lp
H� lp

�0�

�handle is stiffer than the loop� then lp
eff� lp

�0�. Because in the
Kramers description �IC is controlled by lp

eff we expect that
interior looping time is greater than �IC for a chain with
uniform lp. In the opposite limit, lp

H� lp
�0�, �handle is softer

than the loop� lp
eff� lp

�0�. Consequently, attaching a soft handle
should enhance the rate of interior looping.

The interior looping kinetics for a WLC copolymer for
different values of the loop and handle persistence lengths
are shown in Fig. 5. In accord with the arguments given
above, we find that when lp

H / lp
�0�=2 �stiff handles� �IC in-

creases substantially compared to �IC���IC
o � for lp

H / lp
�0�=1 for

all values of �s2−s1� / lp
�0� �Fig. 5�. Similarly, when the handle

is softer than that of the loop, �IC decreases appreciably com-
pared to �IC

o which is the interior looping: the case when the
chain has uniform stiffness. In the interesting regime of �s2

−s1� / lp
�0���2–4� we predict a dramatic increase in �IC com-

pared to �IC
o when lp

H / lp
�0��1 and a substantial decrease in

�IC/�IC
o when lp

H / lp
�0��1 �see inset in Fig. 5�. Thus, stiff

handles retard interior loop kinetics whereas soft handle en-

hances rates of interior loop formation.
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VII. EFFECT OF MONOMER-MONOMER INTERACTION
ON LOOP CLOSURE TIMES

Majority of the recent experiments on dynamics of loop
formation have been analyzed using simple polymer models
that do not explicitly consider interaction between monomer
segments. In a number of cases there are physical interac-
tions between monomers. For instance, DNA is charged and
the interaction between the monomers can be approximately
described using the short ranged Debye-Hückel potential.
Similarly, solvent-mediated interactions also arise especially
when considering proteins. For these reasons it becomes nec-
essary to consider an interplay between chain stiffness, en-
tropic fluctuations of the polymer, and nonlocal interaction
between monomer segments.

The nonlinear problem, that arises from the constraint
u2�s�=1, in a noninteracting semiflexible chain is further ex-
acerbated when interactions between monomers are taken
into account.60 To circumvent this problem we assume that
the effect of intrachain interaction is to only alter the effec-
tive persistence length. We compute the loop closure kinetics
using Eq. �17� with a renormalized persistence length that
explicitly depends on the nature of the interaction between
the monomers. This approximation is in the same spirit as
the local equilibrium assumption used in this study.

To calculate the renormalized persistence length lp
�R� we

follow the procedure due to Hansen and Podgornik61 who
used a mean field weight �similar to �MF�u�s��� in the pres-
ence of nonlocal interaction, V�r�s�−r�s��� between mono-
mers s and s�. The standard field-theoretic procedure is to
use the Hubbard-Stratonovich transformation via auxiliary
fields to eliminate the nonMarkovian nature of V�r�s�
−r�s���. Using stationary phase approximation to evaluate
the optimal values of the auxiliary fields they61 obtained an
expression for lp

�R� for arbitrary potential V�r�s�−r�s���. In
our applications, we assume that the charged monomers in-
teract via the screened Coulomb interaction V�r�
= �kBTlB /A2��e−�r /r�, where lB is the Bjerrum length
�e2 /4	�0kBT= lB� and A is the effective separation between
charges on the monomer. The use of Debye-Hückel potential

FIG. 5. Interior looping time ��IC� as a function of the
reduced distance between sites s1 and s2 for the dan-
gling ends of s / l=0.3 for WLC with variable persis-
tence lengths �lp

H / lp
�0�=2 in green, triangle up, lp

H / lp
�0�

=1 in red thick line, and lp
H / lp

�0�=0.5 in blue, triangle
down�. The physical situation corresponds to Fig. 1 in
which the persistence length of the two handles �0,s1�
and �s2 ,L� is lp

H and the contour lengths of three seg-
ments are identical. For comparison the cyclization time
��c with s / l=1 and the chain persistence lp

�0�� as a func-
tion of s�=l=L / lp

�0�� is shown in black dashed line. The
inset shows the ratios of looping times ��IC� for the
chain with variable persistence length with respect to
the looping time ��IC

o � of the chain with uniform persis-
tence. The up triangle in green is for the ratio between
lp
H / lp

�0�=2, s / l=0.3 and lp
H / lp

�0�=1, s / l=0.3 �stiff handle�,
and the triangle down in blue is for the ratio between
lp
H / lp

�0�=0.5, s / l=0.3 and lp
H / lp

�0�=1, s / l=0.3 �soft
handle�.
is appropriate when considering ds-DNA in monovalent
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�Na+� counterions. With this choice of V�r� the renormalized
persistence length becomes lp

�R�= lp
�0�+lp

�R�, and is given by61

lp
�R� = lp

�0� + V̄1�lp
�R��2I�L/lp

�R�,�� , �25�

with

I�L/lp
�R�, �̄� = �

0

L/lp
�R�

dzz4e−�B̄/�̄� 1

�̄B̄
+

1

B̄3/2� , �26�

where V̄1= lB / �12�2dA2�, B̄�z�=z−1+e−z, and �̄

=1/ ��2�lp
�R��. The integral I�L / lp

�R� , �̄� has different
asymptotic behaviors depending on the two parameters �lp

�R�

and L / lp
�R�. �i� If lp

�R���−1 ��̄�1�, i.e., the persistence length
is greater than the screening length, then the contribution due
to electrostatic interaction can be treated perturbatively. In
this case the upper limit of the integral in Eq. �26� is effec-

tively set to infinity. We find B̄�z��z2 and I�L / lp
�R� , �̄�� �̄2,

which is also small since �̄�1. Therefore, lp
�R�� lB /�2A2,

which coincides with the Odijk-Skolnick-Fixman �OSF�
result.62,63 For electrostatic contribution to persistence length
Downloaded 10 Mar 2006 to 132.239.69.8. Redistribution subject to 
of a polyelectrolyte chain the limit lp
�R���−1 is most appro-

priate for DNA. �ii� If lp
�R���−1 ��̄�1�, i.e., the persistence

length is smaller than the screening length, there is substan-
tial interaction between the chain segments beyond the
length scale of lp

�R�. We believe that this situation is difficult
to be realized in experiments involving biopolymers. In this

case, the integral up to z= �̄2 becomes important, B̄�z��z and

I�L / lp
�R� , �̄�� �̄7. Therefore, lp

�R�� lB /�7A2.
To calculate loop closure times the renormalized persis-

tence length lp
�R� is numerically computed for each parameter

set �contour length L, inverse screening length �−1� and we
use �c �Eq. �17�� with lp

�0�→ lp
�R�. For the ds-DNA in the

monovalent salt solution �concentration c� the parameters in
the semiflexible chain model are lB=7.1 Å, A=1.7 Å, and
�=�8	lBc. The results for �c and �IC are plotted in Figs. 6
and 7. First, the cyclization times are computed as a function
of L at various salt concentrations �Fig. 6�. We find that �c

shows a dramatic increase as c is varied at small values of
L / lp

�0�. The electrostatic repulsion retards loop closure times,
as the salt concentrations �strong intersegment repulsion� de-

FIG. 6. Plots of cyclization time ��c� as a function of L
�expressed in terms of lp

�0�� for various salt concentra-
tions. The same parameters �lp

�0� ,D ,�� with those in
Fig. 3 are used. The inset shows �c at L / lp

�0�=3 as a
function of c. The cyclization time �c increases sharply
below c�50 mM.

FIG. 7. Interior looping time ��IC� as a function of the
reduced distance between sites s1 and s2 for various size
of dangling ends under two salt concentrations. The
length of the dangling end is given by the parameter
s / l�=�s1−s2� /L�. The same parameters �lp

�0� ,D ,�� as in
Fig. 3 are used. The values of the salt concentration
�10 mM,500 mM� are explicitly shown. At each value
of c the different curves correspond to distinct values of
s / l. The values of s / l range from 0.2 to 1. The inset
shows �IC, at the two values of c, as a function of s / l for
�s2−s2� / lp

�0�=3 �the vertical dashed line�.
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crease �Fig. 6�. Because of the interplay between bending
rigidity and chain entropy �c has a minimum at t= t*. The
value of t* shifts from t*=3 to t*=6 as c decreases. The inset
in Fig. 6 shows that there is practically no change in �c at t
=3 if c�100 mM, which is near the physiological concen-
tration �150 mM Na+�. In this range of c the electrostatic
contribution to the persistence length is small so that lp

�R� is
almost the same as lp

�0�. Note that the c corresponding to the
condition lp�=1 for lp=50 nm is c�40 mM.

The dependence of �IC, which examines the effect of the
dangling ends, at high and low concentrations and various
values of �s2−s1� /L on �s2−s1� is shown in Fig. 7. The insets
of Fig. 7 show an increased time scale at low salt concentra-
tion �10 mM� compared with high salt concentration
�500 mM�. When �IC for �s2−s1� /L=0.2 is compared with
�s2−s1� /L=1, �c increases by a factor of �2.7 at c=10 mM
whereas the increase is about a factor of �1.5 for c
=500 mM. The effect of dangling ends on loop formation
dynamics manifests itself more clearly at low salt concentra-
tion when electrostatic repulsion is prominent and at small

�0�
ratio of �s2−s1� / lp .
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VIII. DEPENDENCE OF LP
„R… ON THE MONOMER-

MONOMER INTERACTION POTENTIAL

In our theory �c and �IC can be determined provided lp
�R�

and the distance distribution functions are known. To exam-
ine the variation of lp

�R� on the nature of monomer-monomer
interactions we have computed lp

�R� for different potentials
V�r�. Sets of equilibrium conformations of 50-mer bead-
spring model �see Eqs. �18� and �19�� are generated with
different bending rigidities, �b, and with different nonlocal
potentials V�r�=1/r���=1,2 ,4 ,6 ,12�. In each case the ef-
fective persistence length lp

�R� is computed by 1/ �1−cos	�
�
�Ref. 64� where 	�
 is the ensemble average of the angle
formed by three consecutive beads. We show the simulated
radial distribution function and the effective persistence
lengths for different �b values for the various ranges of non-
local interaction in Figs. 8�a� and 8�b�. The results from ra-
dial distribution function �Fig. 8�a�� and the persistence
length show that lp

�R�� lp
�0� when the interaction is short

ranged, i.e., ��4. When ��4 then the effective interaction
between monomers leads to an increase in the persistence

FIG. 8. �a� End-to-end radial distribution function for a
semiflexible chain with bending rigidity ��b=3, 10, 20,
50, and 100 in unit of kBT� for various nonlocal inter-
action potentials between monomers. The form of the
potential is V�r�=r−�, with �=1,2 ,4 ,6 ,12. The results
are obtained using Brownian dynamics simulation using
the energy function EWLC=Eb+Es+�i�jV�rij�. �b� The
effective persistence length for various potentials V�r�
at different values of the bare bending rigidities.
length �Fig. 8�b��. These results are consistent with the field
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theoretical approach by Hansen and Podgornik.61 Consider-
ing that the excluded volume potential is of short range na-
ture �modeled using �r−12 or delta function� we conclude
that the excluded volume effect on the looping dynamics of
rigid polymer chain is negligible. Note that the screened
electrostatic potential V�r�=e−�r /r can be either a short or a
long range potential depending on the value of �.

These calculations, especially changes in lp as the range
of interaction is altered, explain the reason that a simple
WLC model works remarkably well in a number of applica-
tions. For example, the response of DNA, RNA,65,66 and
proteins67 to mechanical force has been routinely analyzed
using WLC. Surprisingly, recent analysis of small angle
x-ray scattering measurements45 on ribozymes have shown
that the distance distribution function can be quantitatively
fit using P�Re�. In these biopolymers the interactions that
determine the conformations are vastly different. However,
the results in Fig. 8�b� show that as long as these effective
interactions are short ranged lp should not differ from the
bare persistence length. This key result rationalizes the use of
WLC in seemingly diverse set of problems.

IX. CONCLUSIONS

In this paper we have used theory and explicit simula-
tions of wormlike chains to examine loop formation dynam-
ics with emphasis on kinetics of contact formation between
monomers that are in the interior of the chain. The Kramers
theory, adopted to describe looping time scales using the
analytically computed potential of force between the contact-
ing �or reacting� groups, gives the results that are in quanti-
tative agreement with simulations. The theory37 for �IC and
�c contains one parameter that was introduced to account for
the uncertainty in the estimate of the frequency at the tran-
sition state �Fig. 2� in the intramolecular reaction �Fig. 1�.
The present study also provides a justification for the use of
Kramers-type theory in describing looping dynamics by ex-
plicit comparison with the simulations of semiflexible
chains. Although several questions of fundamental theoreti-
cal importance remain in previous studies, beginning with
the pioneering work by WF, and the present study has given
a practical analytic formula to analyze most of the recent
experimental data on proteins and DNA. We conclude the
paper with a few additional comments.

�1� The present work and several previous studies,15,37,57,58

which have examined the effect of stiffness on looping
dynamics, have shown that the rates of cyclization and
interior looping must slow down as the loop length be-
comes small. In other words, there must be a turnover
in the plot of k� ��=c or IC� as s decreases �see Fig. 3
in which �IC as a function of s is shown�. For the pa-
rameters used in Fig. 3 the turnover occurs around s
��3–4�. Such a crossover has been observed in the
cyclization kinetics of DNA and in simulations of
wormlike chain models. When s is small the time scales
for loop formation can be substantially large

��O�1� s�.
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The effect of stiffness on cyclization rate in disordered
peptides has also been emphasized.15 For the construct
Cys− �Ala−Gly−Gln� j −Trp with j from 1 to 6 the
stiffness effects are evident at j�3.15 However, these
authors did not observe the theoretically predicted turn-
over in this construct for which the persistence length is
estimated to be lp�0.7 nm. Using the results in Fig. 3
we predict that the turnover must occur only when the
number of peptide bonds is less than about 3. This limit
has not been reached in the experiments by Lapidus et
al.15 For the construct �Gly−Ser� j Hudgins et al.27 have
clearly observed a turnover when the number of peptide
decreases below about 4. The observation of Hudgins et
al. is consistent with our prediction that turnover in
cyclization rates in disordered polypeptides occurs
when s�3. When the number of residues in the
polypeptides chain becomes too small then measuring
�c using bulky donor-acceptor pairs in flourescence
resonance energy transfer �FRET� experiments is diffi-
cult. In this situation other methods22 could be used.

�2� For the parameters used in Fig. 3 the difference be-
tween �c and �IC is no more than about a factor of 4.
However, if charged interactions between monomers
become relevant then �IC can be very different from �c.
At both low and high values of the salt concentration
the �c and �IC can differ by nearly an order of magni-
tude �see Fig. 6�. These variations are significant be-
cause �c in polypeptide chains studied thus far varies by
less than a factor of 10 as the number of residues is
varied from 5 to 20. It would be interesting to probe
looping dynamics by varying the net charge on
polypeptides. We should also stress that as the salt con-
centration increases the electrostatic interactions in a
high dielectric medium are effectively short ranged. In
this case �IC is determined essentially by the bending
rigidity of the backbone �Fig. 8�.

�3� The Kramers based theory for �c and �IC is a convenient
way to measure persistence length of polypeptide
chains as a function of temperature and denaturant con-
centration. Recent measurements suggest that lp de-
pends on urea concentration.23 More importantly, there
appears to be strong sequence effects in �c which, at the
level of polymer-based theories, must reflect changes in
lp. For example, �c for polyproline deviates substan-
tially from ideal chain behavior.43 Similar measure-
ments of �c for other polypeptides along with the
simple theory can be used to extract how lp varies with
sequence.

�4� The dependence of interior looping time on the ratio of
the persistence lengths of loop and the handle shows
that in the interesting range of s��2–4��IC can be sub-
stantially larger than �IC

o for a chain in which lp
H / lp

�0�

=1 �see inset in Fig. 5�. This case is directly applicable
to �-hairpin formation that is controlled by formation
of a loop with persistence length that is less than that of
the strands.20 From Fig. 5 it follows that as the stiffness
of the loop increases the interior looping time also in-
creases. This conclusion is in accord with explicit simu-

lations of coarse-grained models of �-hairpin formation
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that showed that enhancement of loop stiffness retards
rate of �-hairpin formation.20
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APPENDIX A: CALCULATION OF THE DISTRIBUTION
FUNCTION G„R12,s1 ,s2…

In this Appendix we outline the steps leading to Eq. �6�.
The distribution function G�R ,s −s � is
12 1 2
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G�R12,s1 − s2�

= e�L+2� d3k

�2	�3 � du0dus1
dus2

duL

�e−u0
2
Z�u0,us1

;s1�e−�k2/4���s2−s1�+ik·R12

�Z�us1
+

ik

2�
,us2

+
ik

2�
;s2 − s1�

�e−uL
2
Z�us2

,uL;L − s2� . �A1�

Using the expression in Eq. �4� for Z�us ,u0 ,s� and carrying
out the integrals over the u variables Eq. �A1� becomes
G�R12,s1 − s2� = e�L+2�	 sinh �s1

�p
�−3/2�	 sinh ��s2 − s1�

�p
�−3/2�	 sinh ��L − s2�

�p
�−3/2� d3k

�2	�3

�exp�ik · R12 −
k2

4�
�s2 − s1� +

k2

2�2�p�coth ��s2 − s1� −
1

sinh ��s2 − s1���
� � 	

det A�3/2

exp�1

4
bT�k�A−1b�k�� , �A2�

where

A =�
 + �p coth �s1 − �p/sinh �s1 0 0

− �p/sinh �s1 �p�coth �s1 + coth ��s2 − s1�� − �p/sinh ��s2 − s1� 0

0 − �p/sinh ��s2 − s1� �p�coth ��s2 − s1� + coth ��L − s2�� − �p/sinh ��L − s2�
0 0 − �p/sinh ��L − s2�  + �p coth ��L − s2�

� ,

�A3�

and

bT =
ik

�
�p�coth ��s2 − s1� −

1

sinh ��s2 − s1���0 1 1 0� . �A4�

The integration with respect to k leads to

G�R12,s1,s2� = e�L+2�	 sinh �s1

�p
�−3/2�	 sinh ��s2 − s1�

�p
�−3/2�	 sinh ��L − s2�

�p
�−3/2

� � 	

det A�3/2 1

�2	�3� 4	�2

Q�s1,s2;�,��
3/2

e−�2R12
2 /Q�s1,s2;�,�, �A5�
where

det A =
�p

2 sinh �L

sinh �s1 sinh ��s2 − s1�sinh ��L − s2�

���2 + �p
2� + 2�p coth �L� , �A6�
Q�s1,s2;�,� = �s2 − s1�� − 2�p�coth ��s2 − s1�

−
1

sinh ��s2 − s1�� + M�s1,s2� , �A7�

and
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M�s1,s2;�,� =
�p sinh���s2 − s1�/2�tanh2 ��s2 − s1�/2

2�p cosh �L + �2 + �p
2�sinh �L

� �4�p cosh
��2L − �s2 − s1��

2

+ 2�2 + �p
2�sinh

��2L − �s2 − s1��
2

− �2 − �p
2��sinh

��2L − 3s1 − s2�
2

− sinh
��2L − s1 − 3s2�

2
�� . �A8�

In limit L�s2�s1�1, M�s1 ,s2�→�p and Q�s1 ,s2 ;� ,�
→ �s2−s1��−�p. As a result of translational symmetry along
the chain G�R ,s1 ,s2�=G�R , �s2−s1��. Using F�� ,�
�−ln G�R12,s1 ,s2� leads to Eq. �6�.

APPENDIX B: STATIONARY PHASE APPROXIMATION

In obtaining the stationarity condition to evaluate � and
 we first took the thermodynamic limit �L→�� and then
calculated the optimal values of � and . It is technically
necessary to solve the stationarity condition F /��=�F /�
=0 before taking the L→� limit. In this appendix we exam-
ine the consequence of taking the thermodynamic limit after
solving for optimal values of � and . For simplicity, set
�s2−s1�=L. The variational equations for � and  become

 + �p = 3
2 , �B1�

and

L�� 3

4�p
− 1 +

R2

L2� −
lp

L
� 9

8�p
2 −

1

2�p
�� = 0. �B2�

From the second relation we find two roots for �p, namely,

�p
± =��±lp

2
=

3�1 + �1/t��
4�1 − r2�

�1

2
±

1

2
�1 −

12�1 − r2�
t�1 + �1/t��2� ,

�B3�

where t=L / l0, l0= 2
3 lp, and r=R /L. There are no restrictions

on the values of L and lp in Eq. �7� in which the thermody-
namic limit is taken first. However, when the order of opera-
tion is exchanged there is a possibility that the two roots are
�p

± that can be imaginary. For �p
+ we retrieve the same sta-

tionary phase condition as Eq. �8� only if L� lp�t�1�. The
second root �p

−=0 but this can be discarded since ��0.
Although there are multiple saddle points, we can always
deform the contour such that the contour passes the saddle
point with F���p

+�=0 which satisfies the stationarity condi-
tion. In addition, 1

12�10− t− �1/ t���r2�1 should be always
satisfied for �p to be real �Eq. �B3��.

APPENDIX C: P„R12, �s2−s1�… FOR SEMIFLEXIBLE
CHAINS WITH VARIABLE PERSISTENCE LENGTH

We calculate P�R12, �s2−s1�� for a semiflexible chain in
which the persistence length of the loop is different from that

of the dangling ends. The chain can be thought of as a tri-
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block WLC copolymer which is an appropriate model for
RNA hairpins or � hairpins in disordered polypeptides. The
interior R12 distribution function is

G�R12;L1,L2,L3� =�R12 − �
L2

u�s�ds��
MF

=
�D�u�s���R12 − �L2

u�s�ds��MF�u�s��

�D�u�s���MF�u�s��
,

�C1�

where u�s� is a tangent vector at position s. Suppose the
chain consists of three different parts characterized by the
persistence lengths �lpi� and the contour lengths �Li� with i
=1,2 ,3 �L=�i=1

3 Li�. The exact weight ��u�s��
�exp�−�i=1

3 �lpi /2��Li
ds��u /�s�2���u2�s�−1� is replaced by

the mean field weight �MF�u�s��.

�MF�u�s��exp�− �
i=1

3
lpi

2
�

Li

� �u�s�
�s

�2

ds

− �
I=1

3

��
Li

�u2�s� − 1�ds − ��u0
2 − 1� + �uL

2 − 1��� .

�C2�

As in Appendix A, the Lagrange multipliers � and  are used
to enforce the local constraint u2�s�=1. Following exactly
the procedure outlined in Appendix A we find that in the L
→� limit, the analog of Eq. �7� becomes

F��,� � − �L� + 2� + �
i=1

3
3

2
ln

e�iLi

�pi
+

3

2
ln�� + �p1���p1

+ �p2���p2 + �p3�� + �p3�� +
3

2
ln

L2

�
+

R12
2 �

L2

= L�3

2
��1

L1

L
+ �2

L2

L
+ �3

L3

L
� − ��1 −

L2

L

R12
2

L2
2 ��

+
3

2
ln��p2

�
� 

�p1
+ 1���p1

�p2
+ 1���p3

�p2
+ 1�

�� 

�p3
+ 1�� +

3

2
ln L2 − 2 , �C3�

where �i=�2� / lpi and �pi=�ilpi /2. The major contribution
to the integral comes from the sets of � and  which pass the
saddle point of a stationary phase contour on Re�F� plane.
The stationary condition for � by taking derivative with re-
spect to � by retaining the leading term in L leads to

�1/2 =
3

4�1 − �L2/L�r2���
i=1

3 � 2

lpi

Li

L
� , �C4�

where r=R12/L2. Similarly, the condition for  results

1

 + �p1
+

1

 + �p3
=

4

3
. �C5�

Substituting Eqs. �C4� and �C5� to G�R��exp�−F�R ;� ,��

gives the desired distribution function,
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G�R12;�lpi�,�Li�� =
N

�1 − �L2/L�r2�9/2

�exp�−
9

8

L

1 − �L2/L�r2��
i=1

3 � 1

lpi

Li

L
�2� .

�C6�

The effective persistence length in the mean field approxima-
tion is

lp
eff = ��

i=1

3
Li

L

1
�lpi

�−2

. �C7�

The result derived for a triblock WLC can be generalized
into N-block WLC with persistence lengths �lpi� and contour
lengths �Li�. The distribution function is

P�r� =
4	Cr2

�1 − �L2/L�r2�9/2 exp�−
3t

4

1

1 − �L2/L�r2� , �C8�

where t=L / lo
eff, lo

eff= 2
3 ��i=1

N �Li /L��1/�lpi��−2, r=R12/ �s2−s1�,
and C is a normalization constant.
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