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Preparation of kinesin and MT structure : The simulations of kinesin were performed,

referenced to an ADP-complexed crystal structure of rat kinesin dimer (PDB code : 3kin)

in which the neck-linkers of both monomers are in an ordered state. For the completeness,

using a self-avoiding chain, we filled the gap of the missing residues 240-255, whose sequence

is sktgaegavld, corresponding to the L12 loop in the crystal structure. Unlike the monomeric

kinesin, KIF1A, whose L12 loop contains many lysine residues implying an important role in

the motility by interacting with negatively charged E-hook of the tubulin [1], the L12 loop

of rat kinesin has only one lysine. Presumably, the electrostatic between the L12 loop and

MT surface is not as important as the one in KIF1A. As an initial configuration, one of the

kinesin monomers was placed on a tubulin binding site of the MT, and the other monomer is

tethered to the MT-bound monomer via coiled-coil association but away from the direct MT

interaction range. The topological information of binding interface between kinesin and tubulin

was acquired using the Hirokawa and coworkers’ KIF1A and tubulin complex [2] (see also Ref.

[3] for the detailed procedure).

Computation of two-dimensional potential of mean force (PMF) : The multiple

histogram reweighting technique [4, 5] was adopted to compute the two-dimensional PMF be-

tween the tethered kinesin head and MT at temperature T . For example, the 2-D PMF can be

obtained at arbitrary values of T if the conformational states are well sampled over a range of T

values. The probability of finding the kinesin head at position (x, z) at temperature T is given

by

P (x, z)(T ) =

∑
E e

−E/T
PK

k=1 hk(E,x,z)
PK

k=1 nke(Fk−E)/Tk

∑
E,x,z e
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PK
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(1)

where K is the number of histograms, hk(E, x, z) is the number of states between (E,E + δE),

(x,x+ δx), and (z,z + δz) in the k-th histogram, nk =
∑

E,x,z hk(E, x, z), Tk is the temperature

in the simulations used to generate the k−th histogram. The free energy, Fk, that is calculated

self-consistently, satisfies

e−Fr/Tr =
∑

E,x,z

e−E/Tr

∑K
k=1 hk(E, x, z)∑K

k=1 nke(Fk−E)/Tk

. (2)

The self-consistent equation for Zk ≡ e−Fk/Tk converge to the final values of {Zk} starting from
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Zk = 1 (k = 1, 2, . . . , K). Using the hybrid MC/MD simulations, we sampled the conformational

states over the range of 295 K< T < 356 K. Once P (x, z)(T ) is obtained, the 2-D PMF as a

function of (x, z) is given by

∆F (x, y)(T ) = −kBT logP (x, z)(T ). (3)

∆F (x, y), ∆F (y, z), and ∆F (Qint, Qp) are similarly obtained, and the 1-D PMFs are easily

reduced from the 2-D PMFs.

Estimate of the translational diffusion constant of kinesin motor domain : When

performing the Brownian dynamics simulation, we decided the diffusion constant of monomer

using Stokes-Einstein relation,

Do =
kBT

6πηa
, (4)

where η is the viscosity of water (≈ 1cP = 10−3N/m2 · sec), and a is the hydrodynamic radius

of residue (a ≈ 0.19 + 0.14 nm), so that the monomer diffusion constant at T = 300 K is

Dm ≈ 578 µm2/sec = 5.8 × 10−6cm2/sec. Similar calculation for the spherical object of radius

R ≈ 4 nm (approximately the size of kinesin head) leads to DK ≈ 5.5 × 10−7cm2/sec = 55

µm2/nsec.

Brownian dynamics with hydrodynamics : To simulate the real time kinetics of ki-

nesin’s swiveling motion using a Brownian dynamics of coarse-grained model, the inclusion of

hydrodynamics is extremely important to obtain a correct time scale for the translational diffu-

sion of whole object. Without hydrodynamics, the translational diffusion constant of a protein

(DK) that is coarse-grained by the N beads is scaled as Do/N , where Do is the diffusion con-

stant of the single bead. To naturally satisfy the Stokes-Einstein relation for the translational

diffusion constant, the Brownian dynamics simulations requires the inclusion of hydrodynamic

interaction. When off-diagonal elements of diffusional tensor is included and preaveraged, the

diffusion constant of whole object DK scales as [6, 7]

DK =
Do

N
+

kBT

6πηRH

∼ Do

N
+
Do

N ν
→ Do

N ν
. (5)

DK ∼ Do/N
ν is the correct scaling relative to theDo. Without hydrodynamics, the translational

diffusion constant is significantly underestimated especially when N is large. However, it is also
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challenging to simulate the Brownian dynamics with hydrodynamic interaction. The Langevin

equation under multidimensional space is

ri(t+ ∆t) − ri(t) =
1

kBT

∑

j

Dij · Fj +
√

2
∑

j

Bij · nj(t) (6)

with 〈ni(t)〉 = 0, 〈ni(t) · ni(t)〉 = δijδ(t − t′) and D = BBT . The diffusion tensor D should

be positive definite i.e.
∑

ij Fi · Dij · Fj > 0 for all F 6= 0, then D is deomposed into B and

BT using the Cholesky decomposition. For the hydrodynamic diffusion tensor, Rotne-Prager

diffusion tensor [7] is used. By averaging the square displacement of many different trajectories,

we show in Fig.9 how the explicit inclusion of hydrodynamics can alter the translational

diffusion constant of the kinesin head domain. The value of D(hydro) = 19.9 µm2/sec is closer

to the expected value for the DK(≈ 55 µm2/sec. See above) that can be roughly estimated

from the Stokes-Einstein relation.

Consideration of electrostatics − Manning counterion condensation around the

microtubule : The microtubule is viewed as a cylindrical object with many charges. Unlike

other thin polyelectrolyte such as RNA, ss-DNA and ds-DNA that can adapt its conformation

depending on the salt concentration, the MT can serve as an excellent example to apply the

Manning condensation theory for the cylindrical object. Because each tubulin hetero-dimer

contains ∼ 35e negative charge, the line charge density of microtubule is computed as

d ≈ (13 × 35e)

80Å
≈ 5.6e/Å. (7)

The large Manning condensation parameter [8] ξ = lB/b(≈ 7.1Å/(1/5.6)Å) ≈ 39.8 suggests

that a drastic counterion condensation should occur around the microtubule to make ξ ≈ 1.

This requires n ∼ 34.1e monovalent positive counterion, which is estimated from b∗ ≈ lB, i.e.,

82
13×(35−n)

≈ 7.1, should condense to the surface of tubulin. The numerical solution of nonlinear

Poisson-Boltzmann equation with φ′(a) = −2ξ
a

and φ(∞) = 0

∇2φ = κ2 sinhφ, (8)

where φ(r) ≡ eψ(r)/kBT and κ =
√

8πlBc, determines the ion distribution around the charged

cylinder. With φ(r) value, the number of positive and negative ions per lB around the cylinder
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can be computed using n+(r) = n∞e
−φ and n−(r) = n∞e

φ, respectively. The net condensate

charge number q(r) = (n+(r) − n−(r)) provides the thickness of condensate ion by imposing

the Manning condensation condition, q(RM) × lB = 1. For the parameter a = 12.5 nm,

c = 150 mM , the counterion condensation occurs at RM ≈ 16.7 nm (see Fig.10). About 4 nm

condensate counterion layer is formed around the cylinder. Unless the interfacial binding takes

place and expulges the counterion condensated near the binding site, the electrostatic potential

due to the microtubule charge does not significantly affect the swiveling dynamics of kinesin

head. The widely-accepted notion of “electrostatic steering” in the context of protein-protein

association dynamics is not clear for the object on highly charged but effectively neutralized

cylindrical surface. It has been shown that the processivity of the kinesin is affected by the salt

concentration [9]
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FIG. 7: Mechanochemical cycle of the conventional kinesin at the track of MT protofilament. ATP

binding to the leading head (red) induces a undocked-to-docked transition of the neck-linker, which

results in 16-nm stepping dynamics of the trailing head (blue). When the tethered head succeeds in

binding to the next binding site, the rearward tension built on the neck-linker perturbs the nucleotide

binding site and eases the dissociation of ADP from the tethered head [3, 10]. The ATP hydrolysis

follows at the trailing head (red). The step corresponding to the stepping motion is enclosed by a box.
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FIG. 8: A snapshot of simulation shown in the xz, xy, yz plane. The kinesin monomer in red is the

MT-bound head, and the kinesin monomer in blue is the tethered head.
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FIG. 9: The diffusion constant of kinesin head domain is computed using Brownian dynamics simu-

lations with explicit hydrodynamic tensor (Rotne-Prager tensor). Mean square displacements (〈δR2〉)

of single bead (left) and kinesin head composed of 334 beads (right) are compared. For kinesin head,

we performed Brownian dynamics simulations with and without hydrodynamics. By including the

hydrodynamics, the correct diffusion behavior of kinesin head is obtained.

8



1 1.2 1.4 1.6 1.8
r/a

0

1

2

3

4

5

6

q(
r)×

l B

1 1.1 1.2 1.3 1.4 1.5
r/a

0
20
40
60
80

100
n-(r)
n+(r)

c=50mM

c=100mM

c=150mM

c=200mM

c=500mM

c=1000mM

RM/a

FIG. 10: The numerical solution of nonlinear Poisson-Boltzmann equation under varying concentrations

of monovalent salt. The electrostatic potential around cylinderical geometry φ(r) is obtained by solving

∇2φ = κ2 sinh φ with boundary condition, and φ(r) is used to compute n+(r), n−(r), and q(r). The

inset and the purple line are the numerical solution for c = 150 mM. The thickness of condense ion

layer, RM , is determined using the Manning condensation criterion, q(RM ) × lB = 1.
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