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In many living organisms displaying circadian rhythms, the intake of energy
often occurs in a periodic manner. Glycolysis is a prototypical biochemical
reaction that exhibits a self-sustained oscillation under continuous injection
of glucose. Here we study the effect of periodic injection of glucose on the
glycolytic oscillation from a dynamical systems perspective. In particular,
we employ Goldbeter’s allosteric model of phosphofructokinase as a
model system for glycolytic oscillations, and explore the effect of periodic
substrate influx of varying frequencies and amplitudes by building the
phase diagrams of Lyapunov exponents and oscillatory periods. When the
frequency of driving is tuned around the harmonic and sub/super-harmonic
conditions of the natural frequency, the system is entrained to a frequency-
locked state, forming an entrainment band that broadens with an increasing
amplitude of driving. On the other hand, if the amplitude is substantial, the
system may transition, albeit infrequent, to a chaotic state which defies pre-
diction of dynamical behaviour. Our study offers in-depth understandings
into the controllability of glycolytic oscillation as well as explaining physical
underpinnings that enable the synchronous oscillations among a dense
population of cells.
1. Introduction
Glycolysis is one of the metabolic processes essential for all living organisms. It is
an anaerobic process that catalyses the transformation of one glucose molecule
into two pyruvates, each resulting in a net production of two adenosine tripho-
sphates (ATPs) and a reduction of nicotinamide adenine dinucleotide (NAD+)
toNADH,which are later used in the processes of Kreb cycle and electron transfer
cycle to generate more ATPs under aerobic condition [1]. Notably, in yeast
and heart muscle cell extracts [2–4] and in pancreatic b-cells [5–7], the products
of glycolysis exhibit sustained oscillations even when the influx of glucose to
the system is constantly maintained.

Among various models and mechanisms developed for describing glyco-
lytic oscillations [8–12], the positively regulated autocatalytic–allosteric action
of phosphofructokinase (PFK) has been suggested as a core mechanism
for the generation of the sustained oscillation [4,8,13,14]. Specifically, PFK is a
phosphotransferase that catalyses ATP hydrolysis, so as to convert fructose
6-phosphate (F6P) into fructose 1,6-biphosphate (FBP). Binding of one of the
reaction products (adenosine diphosphate (ADP)) to the regulatory sites of
PFK positively regulates the allosteric transition of PFK into a catalytically
more competent state, which generates oscillations in substrate and product
concentrations. In experiments using yeast cell extracts, sustained oscillations
of NADH concentration were observed as long as the influx of glucose and
the degradation of product were maintained in a proper range [4,15].

From the perspective of dynamical systems of continuous variables in two
dimensions, the sustained oscillation of substrate and product concentrations
([S] and [P]) can be understood as a stable limit cycle formed around an
unstable fixed point, which is ensured by the Poincaré–Bendixon theorem
[16]. An introduction of third variable that changes over time, such as a
non-autonomous time-varying influx of glucose to the system, however,
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substantially increases the complexity of the resulting
dynamics. In particular, the external periodic driving effec-
tively puts dynamical trajectories on the phase space
surface of a torus [17,18]. Boiteux et al. [4] carried out an
experimental study to explore the effect of stochastic and
periodic injection of glucose on the glycolytic oscillation, and
observed subharmonic entrainments of the system for the
case of periodic injection (see appendix for the effect of sto-
chastic forcing). That is, when the period of external
driving (Text) relative to the autonomous period of the
system (To) was over a certain range, the system was
entrained towards a new period of Tobs = nText (n = 1, 2,
3,…). Meanwhile, if the system was not entrained, the
external driving gave rise to an irregular trajectory.

Our study on the PFK model under periodic influx of sub-
strate can be considered as a theoretical extension of Boiteux
et al.’s experimental work [4]. We find that the perturbation
leads to extremely rich dynamical behaviours. By varying
the frequency (ωext = 2π/Text) and amplitudes (1) of the exter-
nal driving, we calculate two-dimensional phase diagrams
of (i) the Lyapunov exponent (λ) and (ii) the resulting oscil-
lation period (Tobs), which not only clarify the condition
that leads to entrainment, but also help differentiate between
chaotic and quasi-periodicity orbits. Our study offers in-
depth understandings into the controllability of glycolytic
oscillation by illuminating its dynamical responses and
modulations under periodic drivings.
2. Phosphofructokinase model of glycolytic
oscillation

The PFK is an oligomeric enzyme that retains a catalytic and a
regulatory site in each of n subunits, where the value of n (= 2,
4, 8) varieswith the species. At low substrate concentration, the
PFK is predominantly in the tense (T) state, but high concen-
tration of substrate shifts the pre-equilibrated population of
enzyme in T state to the catalytically competent relaxed (R)
state. The PFK in the R state is capable of converting F6P
into FBP via phosphorylation while catalysing the ATP
hydrolysis. A reaction product, ADP, cooperatively binds to
the n ð¼8 for yeastÞ distinct regulatory sites available in the
R state and positively regulates the T→R transition of PFK.
Thus, with an increasing substrate concentration, PFK has
more chances to exhibit its catalytic power, which accelerates
with the amount of ADP until the n regulatory sites are half
filled by ADP, but saturates when all the sites are filled up,
giving rise to an activity curve with a sigmoidal shape.

The autocatalytic–allosteric model of glycolysis processed
by PFK is formulated using a system of ordinary differential
equations (ODEs) [8,19],

d½S�
dt
¼ n0 � k

Xn
i¼0

Xn
j¼0

i½Rij�

and
d½P�
dt
¼ k

Xn
i¼0

Xn
j¼0

i½Rij� � kd½P�:

9>>>>>=
>>>>>;

ð2:1Þ

TheODEs describe themass balance of the substrate and prod-
uct concentrations. The substrate S supplied to the systemwith
a rate ν0 is converted by PFK to a product P with a rate pro-
portional to the occupation number of the substrate in the
catalytic sites of R state, k

Pn
i¼0
Pn

j¼0 i½Rij� where k denotes
the conversion rate and Rij denotes a microstate of R state in
which i (= 0, 1,…, n) catalytic sites and j (= 0, 1,…, n) regulat-
ory sites are occupied by the substrate and product,
respectively. The product P undergoes uni-molecular degra-
dation with the rate kd from the system. In writing the ODEs
in equation (2.1), it is assumed that the conformational changes
of PFK enzyme into its subpopulations of T or R states occur in
much faster time scales than the time scale associated with
the variations in substrate and product concentration. As a
consequence, the corresponding concentrations of the sub-
populations [Ti] and [Rij] are pre-equilibrated and can be
expressed as a function of the substrate and product concen-
tration ([S] and [P]) (see equations (2.2) and (2.3)). The PFK
model, proposed by Goldbeter & Lefever [8], is built based
on the Monod–Wyman–Changeux (MWC) model [20–22],
which is the workhorse of protein allostery [22–25], along
with a set of key parameters:

— L≡ [T0]/[R0], where R0≡R00 is the ratio of T and R states
in the absence of substrate.

— KS
Tð¼kST,off=k

S
T,onÞ and KS

Rð¼kSR,off=k
S
R,onÞ are the dissociation

constants or the binding affinities of substrate (S) to the T
and R states, respectively.

— c ; KS
R=K

S
T , the ratio of binding affinities in R and T states,

specifies the preference of substrate binding to the R
against the T state.

In the PFK model, the concentration of PFK subpopulation in
the T state bound by i substrates (0≤ i≤ n) can be expressed as

½Ti� ¼ L n
i

� �
c½S�
KS
R

� �i

� ½R0�, ð2:2Þ

and similarly the concentration of PFK subpopulation in the R
state bound by i substrates in the catalytic sites and j product
molecules in the regulatory sites is given as

½Rij� ¼ n
i

� �
½að½S�Þ�i n

j

� �
½gð½P�Þ�j � ½R0�, ð2:3Þ

where að½S�Þ ; ½S�=ðKS
R þ k=kSR,onÞ and gð½P�Þ ; ½P�=KP

R with KP
R

denoting the binding affinity of product (ADP) to
the regulatory site of the R state. Using equations (2.2),
(2.3) and the total enzyme concentration Etot ¼

P
i½Ti�þP

i,j½Rij� ¼ fLð1þ c½S�=KS
RÞn þ ð1þ að½S�ÞÞn ð1þ gð½P�ÞÞng½R0�,

one can express
Pn

i¼0
Pn

j¼0 i½Rij� in terms of [S] and [P] as

Xn
i¼0

Xn
j¼0

i½Rij� ¼ nað½S�Þ(1þ að½S�Þ)n�1(1þ gð½P�Þ)nEtot

L(1þ c½S�=KS
R)

n þ (1þ að½S�Þ)n(1þ gð½P�Þ)n ,

ð2:4Þ
which clarifies that equation (2.1) is a set of ODEs with two
variables, _x ¼ FðxÞ with x = ([S], [P]).

In our earlier work [26], we used the parameters,
kSR,on ¼ 2000 =mMs, KS

R ¼ 0:05mM, KP
R ¼ 0:025mM [27–30]

and c ¼ KS
R=K

S
T ¼ 0:01 which ensures preferential binding of

substrate to the R state. Since the ATP hydrolysis time due
to ATPase activity is typically *Oð1Þmsec [31], we used
k= 500 s−1 for the rate of catalysis. In addition, by specifically
considering the yeast PFK that adopts an octameric form (n =
8), we use the allosteric constant L= 4 × 109 which is 3 orders
of magnitude greater than the value known for the tetramer
(n= 4) [29]. In [26], we studied the phase diagrams of various
quantities as a function of constant influx of substrate ν0 and
the degradation rate kd, identifying the parameter space
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Figure 1. Allosteric model for phosphofructokinase. (a) (i) The schematic of glycolytic pathway, highlighting the F6P→ FBP conversion regulated by PFK that
undergoes positive allosteric activation. (ii) The more detailed schematic highlighting the allosterism of PFK catalysis. Each subunit of PFK has catalytic and regulatory
sites, where substrate (S = F6P) and product (P = ADP) bind, respectively. The oscillatory dynamics of PFK model is realized in a setting of open thermodynamic
system, where glucose molecules, which lead to the production of F6P, are injected at the rate ν(t) and the product (P) degrades at the rate of kd. At low substrate
concentration (½S� , KST ), the enzyme is mainly in the T state. But, with increasing substrate concentration, conformational transition to the R state occurs, increas-
ing the chance of enzymatic activity. (iii) The octameric structure (n = 8) of PFK (left bottom corner), which catalyses the conversion of F6P to FBP via the ATP
hydrolysis. (b) Phase diagram of dynamical behaviour of PFK model as a function of constant injection rate ν(t) = ν0 and degradation rate kd. A set of parameter
values relevant for octameric PFK of yeast (L = 4 × 109, k = 500 s−1, ν0 = 0.005 mM s−1, kd = 0.05 s−1, c = 0.01, Etot = 5 × 10−4 mM and n = 8), which corre-
sponds to the location marked with a yellow star on the phase diagram, yields a stable limit cycle with a period of To = 388.6 s. (c) Anti-phasic oscillations of [S](t)
and [P](t) (top), and the phase portrait (bottom) with the velocity fields vð½S�, ½P�Þ ¼ ðd½S�=dt, d½P�=dtÞ along with the steady state trajectory (thick magenta
line) around the unstable fixed point ([S*], [P*]) = (0.22 mM, 0.10 mM) marked by an asterisk. The colour-code in the phase portrait depicts the size of the velocity
field, kvð½S�, ½P�Þk.
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associatedwith the self-sustained oscillations (figure 1b). For the
parameter values relevant for octameric PFK of yeast (L= 4 ×
109, k = 500 s−1, ν0 = 0.005 mM s−1, kd= 0.05 s−1, c= 0.01, Etot =
5 × 10−4 mM and n = 8), which yields a stable oscillation with a
period of To = 388.6 s, we find the system poised at a thermody-
namically optimal point with minimal entropy production rate
[26,32] in the limit cycle region near the phase boundary (the
point marked with the yellow star in figure 1b), corresponding
to the state above the Hopf bifurcation point [26].

Here, we explore how the oscillatory behaviour of the
PFK model is modulated under a periodic influx of substrate
ν(t) satisfying

nðtÞ ¼ n0 þ 1 sinðvexttÞ, for nðtÞ � 0
0, for nðtÞ , 0

�
ð2:5Þ

with ωext = 2π /Text. For 1 . n0, ν(t) is set to 0 if ν(t) < 0, which
renders ν(t) a strong periodic pulse to the system.

Themain set ofODEs, equation (2.1)with equation (2.4),was
numerically integrated to generate time trajectories of [S](t) and
[P](t) using the backward differentiation formula (BDF) along
with the time-periodic drivings specified in equation (2.5).
3. Results
3.1. Phase diagram, entrainment and quasi-periodic

orbits
Our calculation of the two-dimensional diagram for the PFK
model under external periodic driving is summarized in
figures 2 and 3. Figure 2a depicts the Lyapunov exponent
evaluated for dynamic time trace as a function of the par-
ameters, V and 1 that vary in the ranges of 0 � V � 5 and
0 � 1 � 1:2n0 (see Methods for the detail of evaluating Lya-
punov exponent). Here, the V is the ratio of the system’s
natural frequency of oscillation to the frequency of external
driving, i.e. V ¼ vo=vext ¼ Text=To. In figure 2b, the period
of entrained dynamics Tobs is calculated on each grid point,
if Tobs is resolved within our simulation time (i.e. Tobs <
Ts = 104 × Text); and no specific value of Tobs is assigned to
the grid point if the dynamics is either quasi-periodic or cha-
otic (see equation (5.16) in Methods). Some of the time traces
at their stationary state are plotted in figure 2c. The
trajectories, marked with star symbols in the diagram of λ
in figure 2a and [S](t) and [P](t) in figure 2c, are:

— (red) frequency-locked orbit entrained to Tobs≈ 389 s
generated with 1 ¼ 0:6n0 and V � 1 (Text = To≈ 389 s);

— (green) frequency-locked orbit entrained to Tobs≈ 389 s
generated with 1 ¼ 0:4n0 and V � 1=3 (Text≈ 129 s, To≈
389 s);

— (cyan) effectively quasi-periodic orbit generated with
1 ¼ 0:3n0 and V ¼ 2:797; and

— (yellow) chaotic orbit generated with 1 ¼ 0:92n0 and
V ¼ 2:393.

In the limit of small perturbation (1! 0), if the parameter V
is rational (Text is commensurate with To), the system is
entrained into a frequency-locked state with a period Tobs,
which corresponds to the least common multiple (LCM) of
Text and To, i.e. Tobs = LCM(Text, To). By contrast, if the ratio
of frequencies is irrational (Text is incommensurate with To),
the resulting dynamics is quasi-periodic to display an orbit
with an indefinite period (Tobs→∞). In practice, if Tobs =
LCM(Text, To) acquired from a rational V were much greater
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Figure 2. The two-dimensional diagrams of (a) the Lyapunov exponent λ and (b) the observed oscillation period Tobs within the entrainment bands as a function of 1
and V. The oscillation periods less than 3000 s, which imply that systems are entrained into a frequency-locked state, are depicted with filled circles in rainbow colour.
(c) The actual time trajectories at parameter values marked with star symbols in different colours. Substrate concentration [S](t) in red and product concentration [P](t) in
green in response to periodic driving ν(t) in blue. The dotted lines in magenta on the panels marked with cyan and yellow stars are drawn to highlight the irregularity
of spikes in each interval of the periodic driving (ν(t)). The trajectories generated at different sets of parameters, 1 and V, marked with star symbols, are: (red)
frequency-locked state entrained to Tobs≈ 400 s (1 ¼ 0:6n0, V � 1); (green) frequency-locked state entrained to Tobs≈ 400 s (1 ¼ 0:4n0, V � 1=3); (cyan)
effectively quasi-periodic state (1 ¼ 0:3n0, V ¼ 2:797); (yellow) chaotic state (1 ¼ 0:92n0 and V ¼ 2:391). (d ) The entrainment period (Tobs) as a function
of the period of external driving (Text) calculated at 1 ¼ 0:6n0. The clusters of points at Tobs≈ 400 s correspond to the periods of entrainment calculated in the
Arnold tongues of subharmonic (Text≈ To/2, To/3, To/4) and harmonic (Text≈ To) entrainments. The clusters of points at Tobs≈ 800 s and Tobs≈ 1200 s are due
to the Arnold tongues formed under the super-harmonic entrainments. The cyan line corresponds to the condition of Tobs = Text.
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such that Tobs≫ Text, the corresponding frequency-locked
state would display an oscillatory orbit with a long
period. The corresponding trajectory densely fills the state
space and is effectively indistinguishable from the dynamics
of a truly quasi-periodic state generated from an irrational V.
In such a case, we regard the trajectory effectively quasi-
periodic.

Difference between periodic and (effectively) quasi-
periodic trajectories is more clearly grasped by plotting
dynamic time traces on a polar coordinate and their piercings
on a surface of the Poincaré section (figure 3). Dynamic trajec-
tories of frequency-locked states with V � 1 (Text≈ 389 s) and
V � 1=3 (Text≈ 129 s), plotted as a function of phase variable
uðtÞ ¼ vextt mod 2p with ωext = 2π/Text on the polar coordi-
nate, form closed loops with a single (figure 3a, left) and
three revolutions (figure 3b, left), displaying a single (figure
3a, right) and three piercings (figure 3b, right) on the Poincaré
section at θ(tn) = 0, respectively. In comparison, the trajectory
of an effectively quasi-periodic state with V ¼ 2:797 (Text =
1085 s, the trajectory marked with cyan star in figures 2
and 3), which results in an orbit with Text≈ 420 980 s,
almost fully covers the phase space on the polar coordinate
as well as giving rise to the continuous piercings on the
corresponding Poincaré section.

A finite amplitude (1 = 0) coupled to the oscillatory
mode of the system expands the parameter range of V for
the frequency-locked state, and thus widens the entrainment
bands, forming the Arnold tongues [33–36] (figure 2b).
Consistent with the experiment by Boiteux et al. [4], the
subharmonic entrainments to Tobs = nText≈ To≈ 389 s for
Vð¼Text=ToÞ � 1=n with n = 2, 3, 4,… are confirmed for
V & 1 (figure 2b). For V . 1, we observe super-harmonic
entrainments to Tobs ≈ 1200 s at V � 3=2, Tobs ≈ 800 s at
V � 2, Tobs ≈ 1200 s at V � 3, and Tobs≈ 1600 s at V � 4
(figure 2b). The width of the Arnold tongue is the greatest
for the harmonic entrainment, i.e. V � 1.
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Figure 3. Analysis of the trajectories at different parameter values, marked with star symbols in red (a), green (b), cyan (c), and yellow (d ) in figure 2a,c. Steady
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In principle, unless λ > 0, all the time traces generated at
each grid point of rational V (figure 2) are still characterized
with a finite periodicity Tobs <∞. However, outside the
entrainment bands, the two-dimensional phase diagram is
in fact densely populated by quasi-periodic states since the
density of irrational V is significantly higher than that of
rational V. The Lebesgue measure of irrational V, giving
rise to quasi-periodic orbits, is 1 for 1! 0 [17,18]. Mean-
while, an increasing value of 1 leads to expansions of the
entrainment bands, which in turn reduces the region associ-
ated with the quasi-periodicity. Figure 2d, which visualizes
the periods of entrainment (Tobs) for a given period of exter-
nal driving (Text) at 1 ¼ 0:6n0, hints at the winding number
[34,35] of the map associated with our model.
3.2. Chaotic state
The conditions that give rise to a chaotic orbit are of great
interest. The trajectories of [S](t) and [P](t) at a chaotic state
(1 ¼ 0:92n0, V ¼ 2:391) which display a train of spikes with
irregular height (figure 2c, yellow star) are similar to those
with quasi-periodicity (figure 2c, cyan star), and the patterns
of piercings on the Poincaré section are also qualitatively simi-
lar (figure 3c,d). However, together with the sign of Lyapunov
exponent, chaotic orbit is differentiated from quasi-periodic
orbit when the trajectory is drawn on the polar coordinate of
phase angle. The phase space represented in the polar coordi-
nate (figure 3) is only partly filled with the chaotic orbit,
whereas it is fully filled with the quasi-periodic orbit.

The chaotic states with positive Lyapunov exponents (λ >
0) are sporadically identified in the phase diagram. In figure
2a, they are localized in the vicinity of V � 0:5 and V � ð2–
2.5) for 1 � ð0:8�1Þn0. Figure 4a extends the phase diagram
displayed in figure 2a to a wider range of 1. It is clear from
figure 4a that while chaotic states are scarce under strong driv-
ing (1 * n0), they are still found at 1 � 4n0 and 7ν0 in the range
of 0 , V & 0:3. The inset of figure 4a magnifies the region of
phase diagram where chaotic states are frequently observed,
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and the chaotic maps at fixed V ¼ 0:257 (figure 4b) visualize
qualitative changes of the periodic orbits, [S](t) and [P](t)
with increasing 1. The periodic orbits generated at four specific
values of 1 marked with the arrows in different colours in the
inset of figure 4a,b are shown in figure 5. Straightforwardly
gleaned from the number of piercings in the Poincaré section
(the panels in the rightmost column of figure 5), the system
is in the frequency-locked states of period-3 (1 ¼ 5n0),
period-5 (1 ¼ 6n0) and period-2 cycles (1 ¼ 8n0); however, it
displays a chaotic behaviour at 1 ¼ 7n0. The irregularities in
the size and the number of spikes of the chaotic orbit
(1 ¼ 0:7n0) are seen in the leftmost panel in figure 5, and the
other remaining panels of figure 5 capture the characteristic
features of chaotic states.
3.3. Mapping onto the circle map
To analyse the model of glycolytic oscillation under the per-
iodic driving more systematically, we recast the original set of
ODEs in the following form:

@t½S� ¼ F1ð½S�,½P�Þ þ 1uðtÞ
@t½P� ¼ F2ð½S�,½P�Þ,

)
ð3:1Þ
where uðtÞ ¼ sin ðvexttÞ ¼ uðtþ TextÞ is a Text-periodic perturb-
ation term which can be defined consistently with equation
(2.5). For 1 ¼ 0, the system is left unperturbed, exhibiting a
stable limit cycle dynamics on x(t) = ([S], [P]) with the
oscillation frequency ωo( = 2π/To) (figure 1c).

For ν0 = 0.005 mM s−1, kd = 0.05 s−1 and 1 ¼ 0 (the yellow
star in the phase diagram depicted in figure 1b), the substrate
and product concentrations ([S](t), [P](t)) undergo oscillation
around the (unstable) fixed point ([S*], [P*]) = (0.22 mM,
0.10 mM) (see the phase portrait in figure 1c), and this
dynamics can be described using time-dependent phase
angle and amplitude defined as uðtÞ ¼ tan�1ðd½P�ðtÞ=
d½S�ðtÞÞ [ ½0,2pÞ and RðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd½S�ðtÞÞ2 þ ðd½P�ðtÞÞ2

q
, where

δ[S] = [S]− [S*] and δ[P] = [P]− [P*]. While the phase angle
θ(t) is 2π-periodic, its variation is still non-uniform in time,
i.e. dθ(t)/dt≠ const., as suggested by the varying size of vel-
ocity field in figure 1c. Thus, one can consider uniformizing
the phase angle by defining a new phase angle ϕ(θ),

fðuÞ ¼ vo

ðu
0

du
dt

� ��1
du, ð3:2Þ

which changes linearly in time for a limit cycle dynamics and
satisfies ϕ(θ + 2π) = ϕ(θ) + 2π.
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Under a Text-periodic driving, u(t + Text) = u(t) with small
1, one can formally recast equation (3.1) to an equation of
motion in continuous time for the phase angle ϕ,

df
dt
¼ @f

@½S�
d½S�
dt
þ @f

@½P�
d½P�
dt
� vo þ 1Qðf, tÞ, ð3:3Þ

where Q(ϕ, t) = (∂ϕ/∂[S])u(t). Integrated over a single period
of driving Text, i.e. from tn to tn+1, where tn = 2πn/ωext,
equation (3.3) can be written as a one-dimensional mapping
from ϕn to ϕn+1, which corresponds to the circle map with an
additional perturbation,

fnþ1 ¼ [fn þ 2pVþ 1Rðfn; vextÞ] mod 2p, ð3:4Þ

where ϕn = ϕ(tn), V ¼ vo=vext ¼ Text=To and Rðfn; vextÞ ¼Ð Text

0 Qðf, tÞdt.
As Q(ϕ, t) is a 2π-periodic function of ϕ and a Text-periodic

function of time t, the phase space of equation (3.3) is
defined on a two-dimensional torus of 0≤ ϕ < 2π and 0≤ t <
Text. For 1 ¼ 0, the dynamics of the uniformized phase angle
forms a limit cycle with frequency ωo, satisfying ϕ(t) = ωot + ϕ0.
Importantly, there exists a one-to-one correspondence
between the points on the unperturbed trajectory xo(t) = ([S](t),
[P](t)) and the phase angle ϕ(t), such that xo = xo(ϕ) is an inver-
tible function of ϕ. A forced dynamical system with 1 = 0
still sustains its oscillatory trajectory x1ðfÞ around the stable
limit cycle xo(ϕ) as long as 1 remains small. However, when 1

is too large, x1 ¼ x1ðfÞ becomes non-invertible, so that the
one-to-one mapping between x1 and ϕ no longer holds,
which leads to disruption of the torus [37]. In the case of
the sine circle map, R(ϕn) in equation (3.4) is given as
RðfnÞ ¼ sinfn, and hence the map becomes non-invertible
if @fðfþ 2pVþ 1 sinfÞ ¼ 1þ 1 cosf � 0 for some ϕ, which
is realized when 1 � 1. In our PFK model of glycolytic oscil-
lation, it is found that the transition to non-invertibility,
which permits the formation of chaotic orbits, is made for
1 * 0:8n0 (figure 2a).
4. Discussions
The actual glycolytic oscillation is far more complicated than the
simplified model explored here [8,11,12,38–40]. However, the
overall dynamical responses of the system to the external peri-
odic driving, are recapitulated as (i) the harmonic and sub/
super-harmonic entrainments inside the Arnold tongues at
weak-to-moderate driving, (ii) quasi-periodic states outside the
Arnold tongues, and (iii) emergence of chaotic behaviours at
strong driving. These are generic features expected for a dynami-
cal system demonstrating a self-sustained oscillation [36] and
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should neither be limited to the model of glycolytic oscillation
nor depend on its microscopic details. Despite the diversity of
network designs for biochemical oscillations, one can still use
the general notions of dynamical system to gain reasonable
understanding of their responses to periodic drivings.

Whereas this study discusses the emergence of chaotic
behaviours from the conventional PFK model of glycolysis
under non-autonomous external driving, chaotic dynamics
can also arise autonomously for a more complex version of
glycolysis. Decroly & Goldbeter [41] have studied another
PFK model of glycolysis with three variables constituting
two positive feedback loops, showing that the model, albeit
autonomous, exhibits chaotic dynamics as well as both
simple and birhythmic oscillations.

In order for a yeast cell to display glycolytic oscillations,
the glucose injection rate along with the product degradation
rate must be in a proper range. The phase diagram of PFK
model built under the condition of constant glucose injection
rate (figure 1b) suggests that an increased glucose injection
rate surpassing ν0 ≈ 0.01 mM s−1 (k = 0.05 s−1) results in the
cessation of glycolytic oscillation, which could imply a
physiological state potentially associated with the hyper-
glycaemia. This study, however, suggests that the
dynamical response of the system exhibiting a limit cycle to
the external forcing is extremely rich. As long as the glucose
is injected in a time-varying (periodic) manner over a proper
range of frequency and amplitude, the system can be
entrained into the Arnold tongues, still sustaining its oscil-
latory dynamics around its natural frequency. Although the
role of glycolytic oscillations in physiology is not fully
elucidated, glycolytic oscillations have been suggested as a
pacemaker of other physiological oscillations [42–44]. Specifi-
cally, an oscillation of NADH, a product of glycolysis and the
precursor of Kreb/electron transfer cycle, drives the oscil-
lation of mitochondrial membrane potential [45]. Sustained
oscillations in lactate released from islets of Langerhans
provide a mechanism for pulsatile insulin secretion from
b-cells [5]. Furthermore, acetaldehyde, a membrane-
permeating metabolite from glycolysis, mediates cell-to-cell
communication among a yeast cell population leading to
in-phase oscillations [46–50].

The enhancement of the harmonic and sub/super-
harmonic entrainments of glycolytic oscillation under the
weak-to-medium periodic drivings (broadening of the
entrainment bands) could be discussed from a more general
perspective considering a phase angle dynamics under non-
autonomous time-varying perturbation expressed in the
form of equation (3.3). Specifically, recent studies on the
synchronization among phase oscillators coupled with a
coupling strength γ that can be mapped to 1 in the present
study, have also shown enlarged Arnold tongues with
increasing γ [51], indicating the enhanced stability of oscil-
latory dynamics or chronotaxicity, in other words the ability
of a self-sustained oscillator to resist non-autonomous
perturbations. Along with these studies [51,52], our study
substantiates that the glycolytic oscillation of a single cell
can indeed be influenced by the oscillatory metabolic signals
from the surrounding cells, and explains the ease of inter-
cellular synchronization and enhanced stability of oscillations
in cell populations [50,53,54]. However, an excessive amount
of glucose injection can bring the system into disarray, render-
ing the dynamical state of the system chaotic, in other words,
hyper-sensitive to initial conditions and unpredictable.
5. Methods
5.1. Evaluation of Lyapunov exponents
For general d-dimensional continuous-time dynamical equation
satisfying a set of ODEs with the vector function F[x(t)] over
the d-dimensional vector x(t),

dxðtÞ
dt
¼ F½xðtÞ�, ð5:1Þ

its variation of variables, x→ x + δx, yields

ddxðtÞ
dt

¼ F½xðtÞ þ dxðtÞ� � F½xðtÞ� � @F
@x
� dxðtÞ, ð5:2Þ

for δx(t)→ 0, and it formally satisfies

dxðtÞ ¼Mðt, xð0ÞÞ � dxð0Þ, ð5:3Þ

where Mðt, xð0ÞÞ ; T exp
Ð t
0
@FðxðtÞÞ
@xðtÞ dt denotes an d × d time-

ordered exponential operator. The Lyapunov exponent of a
dynamical system dictates the growth rate of the size of the vari-
ation. Thus, one can consider

kdxðtÞk2 ¼ dxð0ÞT � kMðt, xð0Þk2 � dxð0Þ, ð5:4Þ
with

kMðt, xð0Þk2 ¼
X
i

uiðt, xð0ÞÞxiðt, xð0ÞÞ � uiðt, xð0ÞÞT ,

where ui(t, x(0)) and χi(t, x(0)) are the ith eigenvector and eigen-
value of kM(t, x(0))k2 matrix, respectively. The Lyapunov
exponent associated with the change in the vector size kδx(t)k∼
eλtkδx(0)k is calculated as follows [55]:

lðxð0ÞÞ ¼ lim
t!1

1
2t
ln xmaxðt, xð0ÞÞð Þ, ð5:5Þ

where χmax is the largest eigenvalue among the set of eigenvalues
{χi} of kM(t, x(0))k2 matrix.

For a practical numerical procedure to evaluate the Lyapu-
nov exponent, we used the one proposed by Benettin et al. [56].
We consider d possible variations from d-dimensional vector
x(0), say, dx1ð0Þ, dx2ð0Þ, . . ., dxdð0Þ. Since these variations are
not generally orthonormal to each other, the Gram–Schmidt
procedure is used to obtain a corresponding set of ortho-
normal vectors dX̂ð0Þ ¼ fdx̂1ð0Þ, dx̂2ð0Þ, . . ., dx̂dð0Þg, which span
the same subspace by dXð0Þ ¼ fdx1ð0Þ, dx2ð0Þ, . . ., dxdð0Þg.
Specifically, we build mutually orthogonal vectors

wkð0Þ ¼ dxkð0Þ �
Xk�1
i¼1
hdxkð0Þ, dx̂ið0Þidx̂i, ð5:6Þ

and normalize them using

dx̂kð0Þ ¼ wkð0Þ
kwkð0Þk : ð5:7Þ

We integrate equation (5.1) to calculate the next position x(τ)
and employ equation (5.3) to calculate the next variations
dXðtÞ ; ½dx1ðtÞ, dx2ðtÞ, . . ., dxdðtÞ�. We then again apply the
Gram–Schmidt procedure to obtain the corresponding set of
orthonormal vectors dx̂1ðtÞ, dx̂2ðtÞ, . . ., dx̂dðtÞ. We repeat this
procedure of integration and orthonormalization over the time
duration of Nτ for the full time trace.

At time τ≫ 1, we expect

kdxkðtÞk � elktkdx̂kð0Þk: ð5:8Þ
Hence, the Lyapunov exponent corresponding to the growth rate
of the variation in the kth direction is given by

lk ¼ lim
t	1

1
t
ln
kdxkðtÞk
kdx̂kð0Þk: ð5:9Þ
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This can be cast into a matrix form

dXðtÞ ¼Mðt, xð0ÞÞ � dX̂ð0Þ ¼ eLt � dX̂ð0Þ, ð5:10Þ
whereM(τ, x(0)), δX(0), andL ¼ ðl1, . . . , ldÞ � I are d × dmatrices,
and it yields

kdetMðt, xð0ÞÞk ¼ exp
Xd
k¼1

lk

 !
t

" #
: ð5:11Þ

Therefore,

Xd
k¼1

lk ¼ lim
t	1

1
t
ln kdetMðt, xð0ÞÞk

¼ lim
t	1

1
t

Xn
k¼1

ln kwkðtÞk:
ð5:12Þ

Note that the transformation Mðt, xð0ÞÞ : dX̂ð0Þ ! dXðtÞ maps
the d-dimensional hypercube of volume 1 formed by the d
orthonormal vectors of variation dX̂ð0Þ into an d-dimensional
parallelopiped made of δX(τ). Thus, (i)

P
k lk measures the

growth rate of the d-dimensional volume from the hypercube to
the parallelopiped. (ii) The second line of the equation (5.12)
follows from the fact that the determinant of the operator M(τ,
x(0)) is identical to the volume of the d-dimensional parallelo-
piped, Vol(P), and this volume can be calculated using the
product of mutually orthogonalized vectors of δxk(τ), i.e. wk(τ)
(equation (5.6)). Taken together,

kdetMðt, xð0ÞÞk ¼ VolðPÞ ¼
Yd
k¼1
kwkðtÞk: ð5:13Þ

In our study, we aim to decide the growth (or convergence)
rate of the trajectory averaged over the period of the external
driving along the kth variation. Provided that the time traces
are generated over N iterations of the period at steady state,
we set τ = Text and consider calculating the Lyapunov exponent
averaged over the N times of driving period.

lk ¼ 1
NText

XN
i¼1

ln kwkðiTextÞk: ð5:14Þ

Finally, the Lyapunov exponent characterizing the dynamical be-
haviour of the system is obtained from the set of {λ1, λ2,…, λd}
with λ1 > λ2 > · · · > λd, and the largest Lyapunov exponent λ1 de-
cides the dynamical behaviour of the system at a long time limit.

Our system subject to an external periodic driving (equation
(3.1)) can be recast in the form of a set of ODEs, _x ¼ FðxÞ, with
three variables (d = 3), x = ([S], [P], ψ),

@t½S� ¼ F1ð½S�, ½P�Þ þ 1 sinc
@t½P� ¼ F2ð½S�, ½P�Þ
@tc ¼ vext:

9>=
>; ð5:15Þ

Since ψ is Text-periodic, the corresponding Lyapunov exponent is
always 0. Hence, λ1 = 0 and λ2, λ3 < 0 for the case of periodic or
quasi-periodic orbits, whereas λ1 > 0 for chaotic orbits. In the
phase diagrams of Lyapunov exponents in figures 2a and 4a,
we report the value of exponent λ, such that we use the positive
largest Lyapunov exponent (λ = λ1 > 0) to quantify the growth
rate of variation for chaotic states and the negative largest Lyapu-
nov exponent (λ = λ2 < 0) to quantify the convergence rate for
periodic or quasi-periodic states:

l ¼ l1 for l1 . 0
l2 for l1 ¼ 0:

�
ð5:16Þ
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Appendix A
A.1. Effect of stochastic forcing on self-sustained

oscillations
In comparison with the periodic forcing (equation (2.5)),
the stochastic forcing can be written as ν(t) = ν0 + ξ(t) with
〈ξ(t)〉 = 0 and hjðtÞjðtÞi ¼ 1dðt� tÞ. Boiteux et al. varied the
glucose injection rate (30–180 mM h−1≃ 8.33 × 10−3−
0.05 mM s−1) ‘stochastically’ around its average value ν0(=
0.005 mM s−1), finding that the system retains its autonomous
oscillation around its natural frequency [4].

In the light of equation (3.3), their finding can be formu-
lated into the following dynamics of a limit cycle in a
phase variable ϕ: dϕ/dt = ω0 + ξ(t). Thus, it follows that
mf ; hdfðtÞi ¼ v0t and s2

f ; hðdfðtÞÞ2i ¼ 1t, where 〈· · ·〉
denotes the average over trajectories. If one were to have a
relative error (noise-to-signal ratio) less than 1, i.e.
sf=mfð¼

ffiffiffiffi
1t
p

=v0tÞ , 1, one obtains a condition of t . 1=v2
0.

This means that even when subject to a stochastic forcing
with a strength 1, the underlying phase variable dynamics of
a self-sustained oscillation with the frequency ω0 can still be
read out as long as the observation time t is greater than 1=v2

0.
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