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CALCULATION OF V AND D OF KINESIN-1
IN 6-STATE MULTI-CYCLIC MODEL

To obtain the expression of V and D for multicyclic
kinetic network model in terms of a set of rate con-
stants {kij}, we have generalized the technique by
Koza [1] (Alternatively, technique based on the large
deviation theory can be used. See Ref. [2, 3]). We

define the generating functions for the given network
model.

In the 6-state double-cycle kinetic network (Fig.
1A), we define the three distinct generating functions
for F , B, and X cycles. The two generating functions
for the subcycles, F and B-cycles, are convenient to
calculate the chemical current JF and JB in each sub-
cycle. To calculate V and D in a convenient way, we
have defined another generating function for X -cycle,
which is not explicit in the kinetic scheme in Fig. 1A.
The X -cycle differs from F , B-cycle in that the former
explicitly considers the physical location of the motor
along the 1D track. Although V is obtained either
evaluating V = d0(JF − JB) or V = d0JX , it is not
straightforward to decompose the diffusivity of motor
D into the contributions from F and B-cycle.

The expressions of JF ({kij}), JB({kij}), V ({kij})
and D({kij}) can be obtained by considering an
asymptotic limit (t → ∞) of the corresponding gen-
erating function.

In what follows, we provide the derivation of
generating function in details. In order to derive the
generating function, we introduce a generalized index
for reaction cycle I, with I = F , B, or X .

Master equation

For a system with N chemical states ({1, 2, · · · , N}),
a generalized state µI(t) is defined by using the chem-
ical state of the motor at time t and the number of
completed I-cycles (nIc (t)). For kinesins whose dy-
namics can be mapped onto the 6-state double-cycle
kinetic network model, if the motor is in the i-th chem-
ical state (i ∈ {1, 2, · · · , N} with N = 6) at time t,
the generalized state of the motor in the I-cycle is
µI(t) = i+N ×nIc (t), where I could denote either F ,
B, or X depending on reader’s interest. P (µI , t) that
represents the probability of the system being in µI at
time t, satisfies

∂P (µI , t)

∂t
=
∑
ξ

KµI−ξ,µIP (µI − ξ, t)−KµI ,µI−ξP (µI , t), (S1)
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where Kµ,ν =
∑
α k

α
µ,ν and kαij denotes the rate of

transition from state i to state j that follows the α-
th pathway. Here, the periodicity of network model
imposes kαµ+N,ν+N = kαµ,ν , Kν+N,µ+N = Kν,µ, and
kαµ,ν = kαi,j for µ = i (mod N) and ν = j (mod N).
The range of (integer) summation index ξ depends on
the existing pathways for I-cycle. Hereafter, the su-
perscript I on µ shall be omitted for simplicity.

Following Ref. [1], we define

Pj(µ, t) ≡ P (µ, t)δNµ,j (S2)

where,

δNµ,j =

{
1, if j = µ (mod N)

0, otherwise
(S3)

Here, j ∈ {1, 2, · · · , N}. Multiplying δNµ,j on both sides

of Eq.S1 and using the equality δNµ,j = δNµ−ξ,j−ξ, we get

∂Pj(µ, t)

∂t
=
∑
ξ

Kj−ξ,jPj−ξ(µ− ξ, t)−Kj,j−ξPj(µ, t).

(S4)

Generating function

We define a generating function to derive V and D.
The generating function for I-cycle is defined by

GIj (z, t) ≡
∞∑

µ=−∞
ezX

I
µPj(µ, t). (S5)

where XIµ denotes the generalized coordinate for I-
cycle at generalized state µ. Then Eq.(S4) and
the equality (XIµ − XIµ−ξ)Pj−ξ(µ − ξ, t) = (XIj −
XIj−ξ)Pj−ξ(µ− ξ, t) with δNµ,j = δNµ−ξ,j−ξ lead to

∂GIj (z, t)

∂t
=
∑
ξ

( ∞∑
µ=−∞

ezX
I
µKj−ξ,jPj−ξ(µ− ξ, t)

)
−
∑
ξ

Kj,j−ξGIj (z, t)

=
∑
ξ

ezd
I
j−ξ,jKj−ξ,jGIj−ξ(z, t)−

∑
ξ

Kj,j−ξGIj (z, t)

(S6)

where dIµν ≡ XIν −XIµ . In general, different cycle has

different {dIµ,ν}. For example, for the F-cycle in Fig.
1A,

dFi,j =


1, for i = 6, j = 1

−1, for i = 1, j = 6

0, otherwise,

(S7)

for the B-cycle,

dBi,j =


1, for i = 3, j = 4

−1, for i = 4, j = 3

0, otherwise,

(S8)

and for the X -cycle,

dXi,j =


1, for i = 2, j = 5

−1, for i = 5, j = 2

0, otherwise.

(S9)

In fact, Eq. (S6) can be expressed more succinctly
as

∂tGIj (z, t) =

N∑
i=1

ΓIijGIi (z, t) (S10)

where

ΓIij(z) =

{∑
α k

α
ije

zdI,αij , if i 6= j

−
∑N
m=1(6=i)

∑
α k

α
im, if i = j

(S11)

With α, an index to discern the pathways, Γ can be
written in the form of N ×N matrix.

Generating function at the asymptotic limit

Here we consider the asymptotic limit (t → ∞) in
which V and D are well defined for an arbitrary chem-
ical network model. The general solution of Eq.(S10)
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can be written as [1]

GIj (z, t) =
∑
m

T Imj(z, t)e
λIm(z)t

(S12)

where λIm(z)’s (m = 0, 1, 2, . . ., N) are the eigenvalues
of ΓI(z). For a system in (unique) steady state, the
eigenvalues satisfy λI0 (0) = 0 and λIm(0) < 0 form 6= 0.
Thus, at t→∞ and when z ∼ 0,

lim
t→∞

GIj (z, t) ∼ T I0j(z, t)eλ
I
0 (z)t (S13)

Now, summed over the index j, Eq.(S5) is led to

N∑
j=1

GIj (z, t) =

N∑
j=1

∞∑
µ=−∞

ezX
I
µPj(µ, t)

=

∞∑
µ=−∞

ezX
I
µP (µ, t)

≡ GI(z, t).

(S14)

From Eq.(S13), at t→∞, we have

GI(z, t) ∼
∑
j

T I0j(z, t)e
λI0 (z)t = hI(z, t)eλ

I
0 (z)t

(S15)
where hI(z, t) ≡

∑
j T
I
0j(z, t). Since GI(0, t) = 1 and

λI0 (z = 0) = 0, hI(0, t) ∼ 1 at t→∞.

Velocity and Diffusion coefficient

In this section, we first define the flux JI and the dif-
fusion coefficient DI of I-cycle using XI(t) at t→∞.
Then by using the asymptotic form of the generating
function, we will get the relation between JI and DI ,
and the lowest eigenvalue λI0 (z).

The mean value of the generalized coordinate XI(t)
can be obtained using

〈
XI(t)

〉
= ∂zGI(z, t)|z=0 ∼ (hI)′ + t (λI0 )′ (S16)

where Eq.(S15) was used and the prime denotes a par-
tial derivative with respect to z at z = 0. The flux of
I-cycle is defined by

JI ≡ lim
t→∞

〈
XI(t)

〉
t

= (λI0 )′. (S17)

JX multiplied by the step size d0 corresponds to the
velocity V of motor

Similarly, the diffusion coefficient DI is obtained by
considering the second moment of XI .〈

(XI)2
〉

= ∂2
zGI(z, t)

= (hI)′′ + 2t(hI)′(λI0 )′ + t(λI0 )′′ + ((λI0 )′)2t2, (S18)

which gives

DI = lim
t→∞

〈
(XI(t))2

〉
−
〈
XI(t)

〉2
2t

=
(λI0 )′′

2
. (S19)

Thus, the diffusion coefficient of motor is obtained:
D = d2

0DX .

Characteristic polynomial

To express the derivatives of λI0 in terms of rates
{kij}, we use the characteristic polynomial of ΓI(z)
[1],

det
(
λI0 I− ΓI(z)

)
=

N∑
n=0

(λI0 )nCn(z) = 0. (S20)

By differentiating both side of Eq.S20 with respect to
z and setting z = 0, we get

C ′0 + C1(λI0 )′ = 0, (S21)

and

C ′′0 + 2C ′1(λI0 )′ + C1(λI0 )′′ + 2C2((λI0 )′)2 = 0. (S22)

From Eqs.(S21) and (S22), we get

JI = (λI0 )′ = −C
′
0

C1
(S23)

DI =
(λI0 )′′

2
= −C

′′
0 + 2C ′1(λI0 )′ + 2C2(λI0 )′

2C1
= −C

′′
0 + 2JI + 2C2JI

2C1
(S24)

Cn’s and their derivatives, which depend on the choice of XI , can readily be found by differentiating the
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characteristic polynomial with respect to λI0 (z) with
λI0 (0) = 0 [1].

Explicit expression of JF

The expression of reaction current in each subcycle
F and B in terms of {kij} can be obtained by consid-
ering the corresponding generating function GI∈{F,B}
Here, we provide the expression of JF in terms of rate
constants {kij} for the 6-state double-cycle kinetic net-
work.

JF = J+
F − J

−
F

=
1

Ξ

(
k12(k25k32k43 + k23k34k45 + k25(k32 + k34)k45)k56k61 − k16k21(k34k45k52 + k32(k43 + k45)k52 + k32k43k54)k65

)
(S25)

where

Ξ = k25k32k43 + k23k34k45 + k25(k32 + k34)k45)k56 + k21(k34k45(k52 + k56)

+ k32(k45(k52 + k56) + k43(k52 + k54 + k56))))k61 + k21(k34k45k52 + k32(k43 + k45)k52 + k32k43k54)k65

+ k16((k25k32k43 + k23k34k45 + k25(k32 + k34)k45)k56 + (k32k43k52 + k32k45k52 + k34k45k52 + k32k43k54

+ k25(k34k45 + (k34 + k43)k54 + k32(k43 + k45 + k54)) + k23((k43 + k45)k52 + k43k54 + k34(k45 + k52 + k54)))k65

+ k21(k34k45(k52 + k56) + k43k54k65 + k34(k45 + k54)k65 + k32(k54k65 + k45(k52 + k56 + k65)

+ k43(k52 + k54 + k56 + k65)))) + k12((k34k45(k52 + k56) + k32(k45(k52 + k56) + k43(k52 + k54 + k56)))k61

+ (k34k45k52 + k32(k43 + k45)k52 + k32k43k54)k65 + k23(k45(k52 + k56)k61

+ k43(k52 + k54 + k56)k61 + k45k52k65 + k43(k52 + k54)k65 + k34((k52 + k54 + k56)k61 + (k52 + k54)k65

+ k45(k56 + k61 + k65))) + k25(k43k54(k61 + k65) + k34(k54(k61 + k65) + k45(k56 + k61 + k65))

+ k32(k54(k61 + k65) + k43(k56 + k61 + k65) + k45(k56 + k61 + k65))

Similarly, JB and DX can also be expressed in terms
of {kij}.

ANALYSIS OF OTHER TYPES OF KINESINS

Kinesin-1 mutant (Kin6AA)

Single molecule motility data digitized from Ref. [4]
was fitted to 6-state network model (Figs. 1A, S4)
by using the same method employed for the analysis
of kinesin-1 data (Methods ). However, 4 additional
initial conditions for k25 ({300, 3000, 30000, 3000000}),
thus total 245 initial conditions, were explored. The
rate constants estimated from this procedure are pro-
vided in Table S2.

Kinesin-2 (KIF17, KIF3AB)

Single molecule motility data digitized from Ref.
[5] was again fitted to the 6-state double-cycle ki-
netic model (Fig. 1A, S6, S8) following the identical
procedure employed in the analysis of kinesin-1 data
(Methods). However, two additional initial condi-
tions for k25 ({30000, 3000000}) were explored, which
results in total 147 initial conditions. The rate con-
stants are shown in Table S2.

MYOSIN-V

Here we summarize the multi-cyclic model for
myosin-V [6] which consists of ATP-dependent chemo-
mechanical forward cycle F , dissipative cycle E , and
ratcheting cycle (ATP independent stepping cycle)M
(Fig. 4A). The E-cycle, consisting of ATP binding
[(2) → (5)], ATP hydrolysis [(5) → (6)], and ADP
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release [(6) → (2)] (Figure 4B), was originally intro-
duced to connect the two cycles F andM [6]. Calcula-
tion of the two currents JE and JF reveals that a grad-
ual deactivation of F-cycle with decreasing [ATP] ac-
tivates the E-cycle (Figure S11A, 100 µM . [ATP] . 1
mM, f . 1 pN). Thus, E-cycle can be regarded a fu-
tile F-cycle, which is activated when chemical driving
force is balanced with a load f at low [ATP].

We first explain how V and D of myosin-V are cal-
culated, and next express the affinity and heat pro-
duction (Q̇) in terms of a set of rates {kij}. Finally,

Q shall be calculated using V , D, and Q̇.

Calculation of V and D

The M-cycle consisting of a single state (Fig. 4A)
prevents the application of Eq.(S11). To circumvent
this difficulty, the model with additional state (5′) is
considered (Fig. S10). The (5′)-state is chemically
equivalent to the state (5), but describes motor in dif-
ferent position on actins, such that X(5) = X0 and
X(5′) = X0 ± d0 where d0 = 36 nm for myosin-V. In
this new network, the rate constants κij ’s are

κ2,5 = κ2,5′ =
k25

2

κ6,5 = κ6,5′ =
k65

2
κ5,2 = κ5′,2 = k52

κf5,5′ = κf5′,5 = k55,f

κb5,5′ = κb5′,5 = k55,b (S26)

where the subscripts f and b denote the forward and
backward motion, respectively. Other rate constants
satisfy κij = kij . This modification can be justified by
considering stochastic movement of myosin-V on the
chemical network [7]: κi,5, κi,5′ are set to ki5/2, such
that the outgoing fluxes from the states i = (2), (6)
to the state (5) remain identical in the both networks
depicted in Fig. 4A and Fig.S10. Next, we set κ5,i =
κ5′,i to keep the inward fluxes toward (6), (2) identical

for the two networks. Finally, κf5,5′ = κf5′,5 = k55,f

and κb5,5′ = κb5′,5 = k55,b. These modification of rate
constants enable us to describe transitions within the
M-cycle.

Now, the elements of distance matrix scaled by d0

are

dX3,4 = 1,

dX4,3 = −1,

dX ,f5,5′ = 1,

dX ,f5′,5 = 1,

dX ,b5,5′ = −1,

dX ,b5′,5 = −1. (S27)

Other elements (dXi,j) are all zero. Thus, ΓXi,j is written
as (with (7) ≡ (5′))


−κ12−κ14 κ12 0 κ14 0 0 0

κ21 −κ21−κ23−κ25−κ26−κ27 κ23 0 ezκ25 κ26 κ27
0 κ32 −κ32−κ34 κ34 0 0 0
κ41 0 κ43 −κ41−κ43 0 0 0

0 e−zκ52 0 0 −κ52−κ56−κ57,b−κ57,f κ56 κ57,b+κ57,f

0 κ62 0 0 κ65 −κ62−κ65−κ67 κ67
0 κ72 0 0 κ75,b+κ75,f κ76 −κ72−κ75,b−κ75,f−κ76


(S28)

Now, the travel velocity V and the diffusion coef-
ficient D of myosin-V are readily acquired by using
Eqs.(S23, S24, and S28). The rate constants used in
the calculation are summarized in Table. S4.

Affinities and heat production

The affinities of individual cycles are

AF = kBT log

(
k12k23k34k41

k21k32k43k41

)
,

AE = kBT log

(
k25k56k62

k52k65k26

)
,

AM = kBT log

(
k55,f

k55,b

)
. (S29)
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Only the following rate constants depend on the load
(f):

k34 = ko34e
−θdmf/kBT

k43 = ko43e
−(1−θ)dmf/kBT

k56 = ko56

1 + e−χdmfc/kBT

1 + eχdm(f−fc)/kBT

k52 = ko52

1 + e−χdmfc/kBT

1 + eχdm(f−fc)/kBT

k55,b =
D′

kBT

fdm − U
d2
m

1

1− e(U−fdm)/kBT

k55,f = k55,be
−fdm/kBT (S30)

where θ = 0.65, χ = 4, fc = 1.6 pN , U = 20 kBT ,
D′ = 4.7× 10−4µm/s2 as described in Ref. [6]. Thus,
the affinities can be written as

AF = kBT log

(
ko12k

o
23k

o
34k

o
41

ko21k
o
32k

o
43k

o
41

)
− fd0

AE = AE,f=0

AM = −fd0. (S31)

The relation AM = −fd0 results from the fact that
M-cycle is ATP-independent and activated by the
load. Thus, the heat production rate of the system
is

Q̇ = JFAF + JEAE + JMAM (S32)

JF , JE , and JM can be calculated by using Eqs. (S23)
and (S28). Finally, Q for myosin-V is given by

QMyosin-V = Q̇
2D

V 2
(S33)

where D = DXd
2
0 and V = JXd0. S5

DYNEIN

The original model (Figure 5A of Ref. [8]) describes
the major pathway of tightly coupled dimeric dynein
whose linker connecting the two dynein head domains
is short and stiff. This major pathway results from the
kinetic simulation of the elastomechanical model [8].
Although the futile cycle, which branches out of the
major pathway, is activated at large hindering loads
[8], we consider the unicycle model by confining our-
selves to the regime of small forces (f < fstall). Thus,
only the major forward pathway, where the transitions
between the states are denoted by solid black lines in
Fig. 5A of Ref. [8], is considered. The model consists
of 7 states: dissociation of Pi [(1)→ (2)]; dissociation
of ADP [(2)→ (3)]; ATP binding [(3)→ (4)]; dissocia-
tion of microtubule binding domain (MTBD) from the

filament [(4) → (5)]; power stroke [(5) → (6)]; linker
swinging to the pre-power stroke state [(6) → (7)];
MTBD binding to the filament [(7)→ (1)]. We also as-
sume only the rate constants describing the mechanical
transition of dynein depend on f . The values of rate
constants obtained from Ref. [8] are summarized in
Table S5. To describe the force-dependence of power-
stroke, we model the rate constant for forward and
reverse strokes (k+PS and k−PS) as follows.

k+PS = k+PS,f=0e
−θ fd0kBT

k−PS = k−PS,f=0e
(1−θ) fd0kBT (S34)

where θ = 0.3 is selected based on the previous studies
[9, 10]. In the original literature [8], all the rate con-
stants depend on both elastic energy originated from
the interaction between two monomer units of dynein,
and f . Although this approach will better describe the
details of dynein dynamics, it is not possible to calcu-
late elastic energy without explicit simulation of the
motion of dyneins which are modeled as elastic mate-
rials [8]. Thus, for simplicity, we assumes only k±PS
changes significantly by f . Again, V and D were cal-
culated using Eqs. S23, S24.

Affinity and heat production

The affinity for unicyclic model is written as [11–13]

A = kBT log

N∏
i=1

ki,i+1

ki+1,i

= −∆µhyd − fd0 (S35)

where d0 = 8.2 nm. The second term, describing force-
dependence, is originated from the use of Eq. S34.
Finally, Q is

Q =
2D

V d0
A. (S36)

F1-ATPASE

Here, we summarize the unicyclic model developed
for F1-ATPase in Ref. [14]. The model is (N = 2)
unicyclic model (Fig. 4C) where 3 cycles in chemical
state space correspond to a single rotation in real space
(angle changes by 90◦ upon transition from the state
(1) to state (2) whereas transitions from the state (2)
to (1)′ induce 30◦ rotation (Fig. 4C). The model is
valid when the torque applied to F1-ATPase is small
enough (τ . 30 pN·nm) that the mechanical cycle is
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tightly coupled to the chemical reaction [14]. The de-
pendences of rate constants on the torque are

k12(τ, ζ) = kbi
12(τ, ζ)× [ATP]

=
1

eak12 (τ) + ζebk12 (τ)
× [ATP]

k21′(τ, ζ) =
1

eak21′ (τ) + ζebk21′ (τ)

k1′2(τ, ζ) = kbi
1′2(τ, ζ)× [ADP][Pi]

=
1

eak1′2 (τ) + ζebk1′2 (τ)
× [ADP][Pi]

k21(τ, ζ) =
k12(ζ, τ)u2(ζ, τ)

k21(ζ, τ)
e(∆µ0

hyd+ 2π
3 τ)/kBT (S37)

where ∆µ0
hyd = −12.5 kBT ≈ −50 pN·nm, ζ is

the friction coefficient (for example, if the γ-shaft of
F1-ATPase is attached to a bead of radius r, ζ =
2πηr3(4+3 sin2 π/6) [14] with the water viscosity η = 1
cP = 10−9 pN×s× nm−2. In our calculation, r = 40
nm as in Ref. [14]), and ai(τ), bi(τ) are polynomial
function of τ defined in Ref. [14]. The expressions of
ai(τ), bi(τ) and the coefficients of the polynomials are
given in Table. S6.

V , D, affinities, and heat production

For (N=2)-unicyclic model, the speed of rotation V ,
diffusion coefficient D, and affinityA are [1, 11, 13, 15–
18]

V = dR
k1,2k2,1′ − k2,1k1′,2

k1,2 + k2,1′ + k2,1 + k1′,2
≡ dRJ,

D =
d2
R

2

[
k1,2k2,1′

k2,1k1′,2
+ 1− 2

(
k1,2k2,1′

k2,1k1′,2
− 1

)2
k2,1k1′,2

σ2

]

× k2,1k1′,2

σ
,

A = kBT log

(
k1,2k2,1′

k2,1k1′,2

)
=

(
−∆µ0

hyd + kBT log

(
[ATP]

[ADP][Pi]

))
− 2π

3
τ

= −∆µhyd −W, (S38)

where dR = 2π
3 is the radian distance that motor trav-

els upon ATP hydrolysis, σ = k12 + k21′ + k21 + k1′2,
and W ≡ 2π

3 τ denotes the work done by the motor.
Here, τ > 0 implies the motor performs work against
the hindering load. Thus, Q is given by

Q =
2D

V dR
A (S39)

.

UNICYCLIC KINETIC MODEL FOR
KINESIN-1

To analyze the kinesin-1 data, we also considered
(N = 4)-unicyclic model (Fig. S3A) which was used
in our previous study [13]. Briefly, the model consists
of four forward rates {u1, u2, u3, u4} and four back-
ward rates {w1, w2, w3, w4}. Only u1(= kbi[ATP]) de-
pends on [ATP]. Barometric dependence of the rates

on forces are assumed: un = uone
−fd0θ+n /kBT and wn =

wone
fd0θ

−
n /kBT with

∑N
n=1 (θ+

n + θ−n ) = 1 [19, 20]. V ,
D, A, and a set of rate constants used in the calcula-
tion of Q are provided in Table. S7 [13].

UNICYCLIC KINETIC MODEL FOR
MYOSIN-V

For myosin-V, we also considered the (N = 2) uni-
cyclic model from Ref. [21]. Briefly, the model consists
of two forward rates {u1, u2} and two backward rates
{w1, w2}. Only u1(= k[ATP]) and w2(= k′[ATP]α)
depend on [ATP]. Here, α = 1/2. Different choice of
α introduces only minor difference in the results as
argued in [21]. Barometric dependences of the rates

on forces are assumed again: un = uone
−fd0θ+n /kBT

and wn = wone
fd0θ

−
n /kBT with

∑N
n=1 (θ+

n + θ−n ) = 1
[19, 20]. The parameters used in the calculation are
available in Eqs. (12), (13) in Ref. [21] and summa-
rized in Table. S8. Identical expressions for V , D, and
A from Eq. S38 were used for the calculation except
for W = fd0.

THE LOWER BOUND OF Q FOR UNICYCLIC
MODEL

The analytic expression for the lower bound of the
uncertainty measureQ is available for unicyclic models
[22]. For (N)-state unicyclic model, the lower bound
of Q is

Qb =
A
N

coth

(
A

2NkBT

)
≥ 2kBT. (S40)

The Qb and the ∆Q ≡ Q − Qb of the motors as a
function of f and [ATP] are calculated in Figs. S3D
(kinesin-1), S14D (F1-ATPase), and S15D (myosin-V).
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FIG. S1. Analysis of experimental data of kinesin-1, digitized from Ref. [23], using the 6-state model [24]. The solid lines
are the fits to the data A. V vs [ATP] at f =1.05 pN (red square), 3.59 pN (blue circle), and 5.63 pN (black triangle).
B. V vs f at [ATP] = 5 µM. C. V vs f at [ATP] = 2 mM. D. Stall force as a function of [ATP], measured by ‘Position
clamp’ (red square) or ‘Fixed trap’ (blue circle) methods. E. D vs [ATP] at f =1.05 pN (red square), 3.59 pN (blue
circle), and 5.63 pN (black triangle). D was estimated from r = 2D/V d0. F. D vs f at [ATP] = 2 mM.

FIG. S2. Various physical properties of kinesin-1 calculated using the 6-state network model (Fig. 1A) at varying f and

[ATP]. A. Transport properties (flux J and D). B. Heat Q̇ and work production Ẇ . C. Thermodynamic affinity A. D.
Q(f, [ATP]). The white dashed lines indicate the stall condition.
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FIG. S3. Various physical properties of kinesin-1 calculated using (N=4)-unicycle model [13, 20] at varying f and [ATP].

We used the same model parameters from Ref. [13]. A. Transport properties (V , D). B. Heat Q̇ and work production

Ẇ . C. Thermodynamic affinity A. D. Q, Qb (Eq.S40), and their difference ∆Q = Q−Qb. For clarity, identical data of

Q and ∆Q are shown again using contour plots. E. Power efficiency η ≡ Ẇ/(Ẇ + Q̇) (η = 0 for f > fstall). The white
dashed lines indicate the stall condition.
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FIG. S4. Motility data of Kin6AA, a mutant made of kinesin-1 to which six additional amino-acids are inserted in the
neck-linker domains [4], and the theoretical fits made using the 6-state double-cycle kinetic network model (Fig. 1A).
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FIG. S5. Various physical properties of kin6AA calculated using 6-state network model (Fig. 1A) at varying f and [ATP].

A. Transport properties (J , D). B. Heat Q̇ and work production Ẇ . C. Thermodynamic affinity A. D. Q(f, [ATP]). E.

Power efficiency η ≡ Ẇ/(Ẇ + Q̇) (η = 0 for f > fstall). The white dashed lines indicate the stall condition.

FIG. S6. Motility data of homodimeric kinesin-2 (KIF17) [5] and their theoretical fits (solid lines).
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FIG. S7. Various physical properties of KIF17 calculated using 6-state network model (Fig. 1A) at varying f and [ATP].

A. Transport properties (J , D). B. Heat Q̇ and work production Ẇ . C. Thermodynamic affinity A. D. Q(f, [ATP]). E.

Power efficiency η ≡ Ẇ/(Ẇ + Q̇) (η = 0 for f > fstall). The white dashed lines indicate the stall condition.

FIG. S8. Motility data of heterotrimeric kinesin-2 (KIF3AB) [5] and their theoretical fits (solid lines).
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FIG. S9. Various physical properties of KIF3AB calculated using the 6-state network model (Fig. 1A) at varying f

and [ATP]. A. Transport properties (J , D). B. Heat Q̇ and work production Ẇ . C. Thermodynamic affinity A. D.

Q(f, [ATP]). E. Power efficiency η ≡ Ẇ/(Ẇ + Q̇) (η = 0 for f > fstall). The white dashed lines indicate the stall
condition.

FIG. S10. Augmented kinetic network model of myosin-V. Each line represents a reversible kinetics.
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FIG. S11. Various physical properties of myosin-V calculated using the multi-cyclic model [6] at varying f and [ATP].

[ADP] = 70 µM and [Pi] = 1 mM condition was used for the calculation. A. Transport properties (J , D). B. Heat Q̇

and work production Ẇ . C. Thermodynamic affinity A. D. Q(f, [ATP]). E. Power efficiency η ≡ Ẇ/(Ẇ + Q̇) (η = 0
for f > fstall). The white dashed lines indicate the stall condition.
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FIG. S12. Various physical properties of myosin-V calculated using the multi-cyclic model [6] at varying f and [ATP].

[ADP] = 0.1 µM and [Pi] = 0.1 µM condition was used for the calculation. A. Transport properties (J , D). B. Heat Q̇

and work production Ẇ . C. Thermodynamic affinity A. D. Q(f, [ATP]). E. Power efficiency η ≡ Ẇ/(Ẇ + Q̇) (η = 0
for f > fstall). The white dashed lines indicate the stall condition.

FIG. S13. Various physical properties of dynein monomer calculated using (N = 7)-unicyclic model [8] at varying f and
[ATP]. [ADP] = 70 µM and [Pi] = 1 mM condition was used for the calculation. A. Transport properties (V , D). B.

Heat Q̇ and work production Ẇ . C. Thermodynamic affinity A. D. Q(f, [ATP]), Qb(f, [ATP]), and ∆Q(f, [ATP]. E.

Power efficiency η ≡ Ẇ/(Ẇ + Q̇) (η = 0 for f > fstall). The white dashed lines indicate the stall condition.



17

FIG. S14. Various physical properties of F1-ATPase calculated using (N = 2)-unicyclic model (Fig. 4C) at varying f and
[ATP]. [ADP] = 70 µM and [Pi] = 1 mM condition was used for the calculation. A. Transport properties (V , D). B.

Heat Q̇ and work production Ẇ . C. Thermodynamic affinity A. D. Q, Qb (Eq.S40), and their difference ∆Q = Q−Qb.

E. Power efficiency η ≡ Ẇ/(Ẇ + Q̇) (η = 0 for f > fstall). The white dashed lines indicate the stall condition.

FIG. S15. Various physical properties of myosin-V calculated using (N = 2)-unicyclic model [21] at varying f and [ATP].

A. Transport properties (V , D). Same data are shown twice over the different range of f for clarity. B. Heat Q̇ and work

production Ẇ . Same data are shown twice over the different range of f for clarity. C. Thermodynamic affinity A. D. Q,
Qb (Eq.S40), and their difference ∆Q = Q−Qb. E. Power efficiency η ≡ Ẇ/(Ẇ + Q̇) (η = 0 for f > fstall). The white
dashed lines indicate the stall condition.
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TABLE S1. Optimal f and [ATP] that locally minimize Q. For unicyclic models of kinesin-1, myosin-V, and F1-ATPase,
also shown are f and [ATP] that minimizes ∆Q = Q − Qb, where Qb is a stronger lower bound for unicyclic kinetic
schemes [22] (Eq.S40).

Kinesin-1 Kinesin-1 KIF17 Myosin-V Myosin-V Dynein F1-ATPase

(multi-cycle) (unicycle) (multi-cycle) (multi-cycle) (unicycle) (unicycle) (unicyclic)

[ADP]=[Pi]=0.1 µM

f (pN) 4.1 3.2 a 1.5 1.1 0.03 a 3.9 8.6 a b

[ATP] (µM) 210 460 a 200 20 17 a 200 16 a

Qmin (kBT ) 4.0 4.5 9.2 6.5 14 5.2 4.2

∆Qmin (kBT ) n/a 1.6 n/a n/a 0 2.6 0
a Condition for local minimization of ∆Q = Q−Qb.
b For F1-ATPase, we consider a resisting torque (τ with the unit of pN·nm) against the rotation of the motor.

TABLE S2. Parameters determined for the 6-state double-cycle model [24]. The unit of rate constants ({kij}) is s−1

except for kbiij ([kbiij ] = µM−1s−1). The rates in the table are determined for f = 0.

Kinesin-1 Kin6AA KIF17 KIF3AB

kbi12 2.8 10 10 10

k21 4200 92 3600 500

k25 1.6× 106 1.6× 104 4.0× 104 6.2× 106

k52 1.1 3.4 0.079 7.2

k56 190 680 590 92

k65 10 4.1 13 37

k61 250 58 310 320

k16 230 260 1100 750

k54 2.1× 10−9 4.3× 10−6 1.4× 10−8 6.8× 10−10

θ 0.61 0.59 0.34 0.82

χ12 0.15 0.12 0.15 0.09

χ56 0.0015 0.0 0.012 0.021

χ61 0.11 0.18 0.17 0.16

TABLE S3. Initial values and constraints applied during the fit of kinesin data using 6-state double-cyclic model. The
units are identical to those in Table S2. For k65 and k16, we used 7 initial values (0.001, 0.01, 0.1, 1, 10, 100, 1000) for the
fits.

kbi12 0.5 ≤ 1.8 ≤ 10 k56 10 ≤ 200 ≤ 104 k61 10 ≤ 200 ≤ 104 k25 104 ≤ 3× 105 ≤ 107

k21 10 ≤ 100 ≤ 104 k65 10−4 ≤ 10[−3,−2,−1,0,1,2,3] ≤ 104 k16 0−4 ≤ 10[−3,−2,−1,0,1,2,3] ≤ 104

θ 0 ≤ 0.3 ≤ 1 χ12 0 ≤ 0.25 ≤ 1 χ56 0 ≤ 0.05 ≤ 1 χ61 0 ≤ 0.05 ≤ 1

TABLE S4. Parameters used for calculation of Q of myosin-V. The values are obtained from Ref. [6]. The unit of rate
constants ({kij}) is s−1 except for kbiij ([kbiij ] = µM−1s−1). The rates in the table are determined for f = 0.

Description value

k12 ADP release 1.2

kbi21 ADP binding 4.5

kbi23 ATP binding 0.9

k32 ATP release 2× 10−5

k34 step 7000

k43 reverse step 0.65

kbi56 ATP binding 0.9

k65 ATP release 2× 10−5

k55,f step (mechanical) 1.5× 10−8

k55,b reverse step (mechanical) 1.5× 10−8



19

TABLE S5. Parameters used for calculation of Q of dynein. The values are obtained from Table 3. of Ref. [8]. The unit
of rate constants ({kij}) is s−1 except for kbiij ([kbiij ] = µM−1s−1). The rates in the table are determined for f = 0.

Description value

k12 Pi release 5000

kbi21 Pi binding 0.01

k23 ADP release 160

kbi32 ADP binding 2.7

kbi34 ATP binding 2

k43 ATP release 50

k45 MT release in poststroke state 500

k54 MT binding in poststroke state 100

k56 Power stroke 5000

k65 Reverse stroke 10

k67 linker swing to prestroke 1000

k76 linker swing to poststroke 100

k71 MT binding in prestroke state 10000

k17 MT release in prestroke state 500

TABLE S6. Polynomial coefficient of ai(τ) = a
(0)
i + a

(1)
i τ + a

(2)
i τ2 and bi(τ) = b

(0)
i + b

(1)
i τ + b

(2)
i τ2 used in F1-ATPase

(N = 2)-unicyclic model. The values are obtained from Table 3. of Ref. [14].

i = k12 i = k21′ i = k1′2 Unit

a
(0)
i −16.952 −5.973 −19.382 -

a
(1)
i 9.8× 10−4 1.7× 10−4 0.129 (pN nm)−1

a
(2)
i 5.8× 10−4 1.0× 10−3 2.8× 10−4 (pN nm)−2

b
(0)
i −16.352 −2.960 −18.338 -

b
(1)
i −6.6× 10−2 −2.7× 10−2 5.9× 10−3 (pN nm)−1

b
(2)
i 1.0× 10−3 3.6× 10−4 −2.1× 10−4 (pN nm)−2

TABLE S7. Parameters of (N=4)-unicyclic model of kinesin-1. The values are obtained from our previous study [13].
The unit of {un} and {wn} is s−1 except for uo

1 ([uo
1] = µM−1s−1).

u0
1 2.3 u2 600 u3 400 u4 190

θ+1 0.00 θ+2 0.04 θ+3 0.01 θ+4 0.02

w1 20 w2 1.4 w3 1.7 w4 120

θ−1 0.14 θ−2 0.15 θ−3 0.5 θ−4 0.14

TABLE S8. Parameters for (N = 2)-unicyclic model of myosin-V. The values are obtained from Eqs. (12), (13) in Ref.
[21]. The unit of rate constants ({ui, wi}) is s−1 except for k and k′ ([k, k′] = µM−1s−1). The rates in the table are
determined for f = 0.

k 0.70

w1 6× 10−6

u2 12

k′ 5.0× 10−6

θ+1 -0.01

θ−1 0.045

θ+2 0.385

θ−2 0.58


