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1. DERIVATION OF THE THIRD DEGREE
POLYNOMIAL DEPENDENCE OF D ON V .

Here, we show a polynomial dependence of D on V

using a few specific examples of the N -state periodic re-
action model [1] whose reaction scheme is demonstrated
in Fig. 1.

(N=1)-state kinetic model

When N=1, the master equation to solve is:
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where ⇡
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(t) is the probability of motor being in the µ-
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Now, it is straightforward to obtain the mean velocity
(V ) and di↵usion constant (D) using @
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where µ(t) is the number of steps taken by the molecular
motor until time t.
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Provided that only u

1

changes (for example by increasing
ATP concentration) while w
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remains constant. elimina-
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showing that for (N=1)-state kinetic model, D is linear
in V .

(N=2)-state kinetic model

For the (N=2)-kinetic model [3],
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Then, D = D(V ) is obtained by eliminating u

1

be-
tween Eq.S7 and Eq.S8:
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where  ⌘ u2(u2+w1+w2)
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. Eq.S9 confirms that D is a third
order polynomial in V .

Incidentally, the (N=2)-kinetic model is reduced to the
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and that for D(v) to be positive for all the range of v,
the parameter � should be in a rather narrow range of
0  �  2.

General case: N-state kinetic model

The above two examples of one-dimensional hopping
model was extended to the N -state kinetic model by Der-
rida [1]. He obtained exact expressions for the mean ve-
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Finally, with Eqs.S14 and S16, we show that D
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(Eq.S13) can be expressed as a third degree polynomial
in V
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Alternative derivation of D(V )

In addition to Derrida’s result [1], the sign of ↵

i

can
be determined by deriving the relation between V
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2. THE 1D HOPPING MODEL WITH A FINITE
PROCESSIVITY

Because of a probability of being dissociated from mi-
crotubules, kinesin motors display a finite processivity.
However, since the mean velocity and di↵usion constant
are calculated from the trajectories that remain on the
track, the expressions of V and D in terms of the rate
constants are unchanged. To make this point mathe-
matically more explicit, we consider the master equation
assuming a constant dissociation rate k

d

from each chem-
ical state.
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where P
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(t) is the probability of being in the n-th chem-
ical state at the µ-th reaction cycle. The probability of
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The expectation value of an observable, which can be
used to calculate hx(t)i or hx2(t)i, is expressed as

hA(t)i =
1
X

µ=�1

N

X

n=1

�
µ,n

(t)A(µ(t)) (S26)

with a probability density function renormalized with re-
spect to the survival probability

�
µ,n

(t) ⌘ P

µ,n

(t)

S(t)
= P

µ,n

(t)ek

d

t

. (S27)

Incidentally, �
µ,n

(t) satisfies the following master equa-
tion.
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which is identical to Eq.1, but now the probability of
interest is explicitly confined to the ensemble of trajec-
tories remaining on the track. For an arbitrary value of
k

d

and for any N , the expressions of V , D, and Eq.S17
remain unchanged except that the range of ensemble is
specific to the motor trajectories remaining on the track.
Furthermore, the expression of Q̇, which depends only on
V and rate constants, remains identical in the presence
of detachment (finite k

d

> 0). Therefore, our formalisms
remain valid for motors with a finite processivity.
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3. MAPPING THE MASTER EQUATION FOR
N-STATE KINETIC MODEL ONTO LANGEVIN

AND FOKKER-PLANCK EQUATIONS

The master equation (Eq.S1) can be mapped onto a
Langevin equation for position x(t) as
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where we plugged V and D from Eqs.S3, S4 for (N=1)-
state kinetic model in the last line. Unlike the nor-
mal Langevin equation, where the noise strength deter-
mined by FDT is associated with an ambient tempera-
ture (⇠ p

T ), the noise strength in Eq.S29 is solely de-
termined by the forward and backward rate constants,
which fundamentally di↵ers from the Brownian motion
of a thermally equilibrated colloidal particle in a heat
bath.

Next, Fokker-Planck equation follows from Eq.S29,
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with the probability current being defined as
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Then, mean local velocity v(x, t) ⌘ j(x, t)/P (x, t) is de-
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In order to relate this definition of the mean local veloc-
ity to heat dissipated from the molecular motor moving
along microtubules in a NESS, we consider �
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, an e↵ec-

tive friction coe�cient, and introduce a nonequilibrium
potential �(x) ⌘ � logP
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Following the literature on NESS thermodynamics [5–
7], we endowed each term of Eq.S35 with its physical
meaning. (i) housekeeping heat:
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and (iii) excess heat:
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Eqs.S36, S37, and S38 satisfy
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and in fact Q

ex

= 0 because of the periodic boundary
condition implicit to our problem of molecular motor,
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Although we introduced the e↵ective friction coe�cient
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in Eq.S35 to define the heats produced at nonequilib-
rium, Eq.S40 finally allows us to associate �
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Here, note that we for the first time introduced the tem-
perature T , which was discussed neither in the master
equation (Eq.S1) nor in the Langevin equation (Eq.S29).
Of special note is that �
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does not remain constant, but
depends on the steady state flux j
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In fact, D
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B

T/�

DB

e↵

= d

2

0

j

0

satisfies the FDT for pas-
sive particle at thermal equilibrium, i.e., k

B

T = D

0

�

DB

e↵

.
For (N=1)-state model, D

0

= d

2

0

w

1

, which is identical
to Eq.S6.

4. NONEQUILIBRIUM STEADY STATE
THERMODYNAMICS.

To drive a system out of equilibrium, one has to sup-
ply a proper form of energy into the system. Molec-
ular motors move in one direction because transduc-
tion of chemical free energy into conformational change
is processed. Relaxation from a nonequilibrium state
is accompanied with heat and entropy production. In
the presence of external nonconservative force (chemical
or mechanical force), the system reaches the nonequi-
librium steady state. If one considers a Markov dy-
namics for microscopic state i, described by the mas-
ter equation @

t

p

i

(t) = �P
j

(W
ij

p

i

(t) � W

ji

p

j

(t)), the
system relaxes to nonequilibrium steady state at long
time, establishing time-independent steady state prob-
ability {pss

i

} for each state satisfying the zero flux con-
dition

P

j

(W
ij

p

ss

i

� W

ji

p

ss

j

) = 0. A removal of the non-
conservative force is led to further relaxation to the equi-
librium ensemble, in which the detailed balance (DB) is
(locally) established in every pair of the states such that
p

eq

i

W

ij

= p

eq

j

W

ji

for all i and j. An important feature of
the equilibrium, which di↵erentiates itself from NESS, is
the condition of DB.

Over the decade, there have been a number of endeav-
ors to better characterize the system out-of-equilibrium
[5]. One of them is to define the heat and entropy pro-
duction in the context of Master equation. The heat and
entropy productions in reference to either steady state or
equilibrium are defined to better characterize the process

of interest. The aim is to associate the time dependent
probability for state ({p

i

(t)}) and transition rates be-
tween the states {W

ij

} with newly defined macroscopic
thermodynamic quantities at nonequilibrium [8]. Here,
we review NESS thermodynamics formalism developed
by Ge and Qian [8].
For nonequilibrium relaxation processes one can con-

sider three relaxation processes: (i) relaxation process of
a system far-from-equilibrium (FFE) to a nonequilibrium
steady state (NESS); (ii) relaxation process of a system
far-from-equilibrium (FFE) to an equilibrium (EQ). (iii)
relaxation process of a system in NESS to an equilib-
rium (EQ). To describe these relaxation processes using
the probabilities for state, we introduce a phenomeno-
logical definition of an internal energy of state i at a
steady state by u

ss

i

= �k

B

T log p

ss

i

, and at equilibrium
by u

eq

i

= �k

B

T log p

eq

i

. Then the following thermody-
namic quantities are defined either in reference to NESS
or equilibrium.
First, the thermodynamic potentials are defined in

reference to the NESS: the total energy U(t) =
P

N

i

p

i

(t)uss

i

; the total free energy F (t) = U(t) �
TS(t) = k

B

T

P

N

i

p

i

(t) log (p
i

(t)/p

ss

i

). Second, the ther-
modynamic potentials are defined in reference to the
equilibrium: the total energy U

eq(t) =
P

N

i

p

i

(t)ueq

i

;
the total free energy F

eq(t) = U

eq(t) � TS(t) =

k

B

T

P

N

i

p

i

(t) log (p
i

(t)/p

eq

i

). In both cases, Gibbs en-

tropy, S(t) = �k

B

P

N

i

p

i

(t) log p

i

(t), is defined as usual.
Next, the above definitions of generalized thermody-

namic potentials, one can define the heat and entropy
productions associated with the relaxation processes (i),
(ii), (iii). The diagram in Fig.S1 depicts the relaxation
processes mentioned here.

F

eq

U

eq

Te

p

Q

hk

f

d

h

d

Q

ex

Q

hk

F

ss

U

ss

FFE

NESS
NESS

EQ
EQ

FIG. S1. A diagram illustrating the balances between various
thermodynamic quantities discussed in the text. The curvy
arrows denote the heat and entropy production from relax-
ation processes.
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�dF (t)/dt is the rate of entropy production in the relaxation from FFE to NESS,

dF (t)

dt

⌘ �ḟ

d

= �T

X

i>j

[W
ij

p

i

(t)� W

ji

p

j

(t)] log



p

i

(t)pss

j

p

j

(t)pss

i

�

. (S43)

and �dU(t)/dt is the rate of heat production in the relaxation from FFE to NESS.

dU(t)

dt

⌘ �Q̇

ex

= �
X

i>j

(W
ij

p

i

(t)� W

ji

p

j

(t))(uss

i

� u

ss

j

)

= T

X

i>j

(W
ij

p

i

� W

ji

p

j

) log

 

p

ss

i

p

ss

j

!

. (S44)

Similarly, �dF

eq(t)/dt is the rate of entropy production during the relaxation to equilibrium,

dF

eq(t)

dt

⌘ �T ė

p

= �T

X

i>j

[W
ij

p

i

(t)� W

ji

p

j

(t)] log



p

i

(t)W
ij

p

j

(t)W
ji

�

(S45)

and �dU

eq(t)/dt is the rate of heat production.

dU

eq(t)

dt

⌘ �ḣ

d

= �
X

i>j

(W
ij

p

i

(t)� W

ji

p

j

(t))(ueq

i

� u

eq

j

)

= T

X

i>j

(W
ij

p

i

� W

ji

p

j

) log

✓

W

ij

W

ji

◆

(S46)

where the condition of DB (peq

i

/p

eq

j

= W

ji

/W

ij

) was used
to derive the last line. Furthermore, the heat production
involved with the relaxation from NESS to equilibrium
(Q̇

hk

), namely housekeeping heat which is introduced in
NESS stochastic thermodynamics from the realization
that maintaining NESS requires some energy, is defined
by either using Q̇

hk

= (�dF

eq(t)/dt) � (�dF (t)/dt) =
T ė

p

� ḟ

d

or Q̇

hk

= (�dU

eq(t)/dt) � (�dU(t)/dt) =
ḣ

d

� Q̇

ex

. Explicit calculations using the representation
of thermodynamic potential in terms of master equation
lead to

Q̇

hk

= T

X

i>j

[W
ij

p

i

(t)� W

ji

p

j

(t)] log

"

p

ss

i

W

ij

p

ss

j

W

ji

#

. (S47)

Lastly, from the definition of Gibbs entropy (S(t) =
�k

B

P

i

p

i

(t) log p

i

(t)), or from the thermodynamic rela-
tionships TdS/dt = dF/dt�dU/dt = dF

eq

/dt�dU

eq

/dt,
it is straightforward to show that

T

dS

dt

=
dF

dt

� dU

dt

=
dF

eq

dt

� dU

eq

dt

= �T

X

i>j

[W
ij

p

i

(t)� W

ji

p

j

(t)] log

✓

p

i

(t)

p

j

(t)

◆

= ḣ

d

� T ė

p

. (S48)

Now, with the various heat and entropy production de-
fined from generalized potentials F (t), U(t), and F

eq(t),
U

eq(t) (ḟ
d

, Q̇

ex

, T ė

p

, ḣ

d

, and Q̇

hk

) we acquire two im-
portant balance laws in nonequilibrium thermodynamics:

T ė

p

= ḟ

d

+ Q̇

hk

ḣ

d

= Q̇

hk

+ Q̇

ex

(S49)

Thus, (i) the total entropy production of a system,
T ė

p

(= �dF

eq

/dt), is contributed by the free energy dis-
sipation due to the relaxation to NESS, ḟ

d

(= �dF/dt),
and the housekeeping heat, Q̇

hk

(= dF/dt � dF

eq

/dt),
that is required to maintain the NESS. (ii) The total
heat production ḣ

d

(= �dU

eq

/dt) of a system is decom-
posed into Q̇

hk

(= dU/dt � dU

eq

/dt) and the excess heat
Q̇

ex

(= �dU/dt). The diagram in Fig.S1 recapitulates the
various heat and entropy production terms and their bal-
ance. When the system is already in NESS, then neither
the production of entropy nor excess heat is anticipated
(ḟ

d

= 0, Q̇

ex

= 0), and hence it follows that the amount
of heat, entropy, and housekeeping heat required to sus-
tain NESS are identical (T ė

p

= Q̇

hk

= ḣ

d

).
In order to gain a better insight into the energy bal-

ance of molecular motor that operates in nonequilibrium
steady state, we consider the dynamics of molecular mo-
tor systems by means of a cyclic Markov model and re-
late the essential parameters of the model with NESS
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FIG. S2. Relaxation dynamics of various nonequilibrium thermodynamic quantities from far-from-equilibrium states calculated
using (N=2)-state system. The parameters used for the plots are: [ATP] = 1 mM, f = 1 pN; u0

1 = 1.8 s�1µM�1, u2 = 108 s�1,
w1 = 6.0 s�1, and w2 = 16 s�1 at zero load; ✓+1 = 0.135, ✓+2 = 0.035, ✓�1 = 0.080, and ✓�2 = 0.75. Plots were made using three
di↵erent initial conditions: A. p1(0) = 1, p2(0) = 0; B. p1(0) = 0.5, p2(0) = 0.5; and C. p1(0) = 0, p2(0) = 1.

thermodynamics. The thermodynamic quantities associ-
ated with nonequilibrium process (ḟ

d

, Q̇

hk

, T ė

p

, ḣ

d

, Q̇

ex

)
can be evaluated explicitly using (N = 2)-state Markov
model; the time evolution of each state is given by p

1

(t) =
p

ss

1

+(p
1

(0)�p

ss

1

)e��t and p

2

(t) = p

ss

2

�(p
1

(0)�p

ss

1

)e��t

with p

ss

1

= (u
2

+ w

1

)/�, p

ss

2

= (u
1

+ w

2

)/�, and
� = u

1

+ u

2

+ w

1

+ w

2

. Using the conditions satisfied
in 2-state model (p

1+2

(t) = p

1

(t)) W

12

= u

1

, W

21

= w

1

,
W

23

= u

2

, W

32

= w

2

; otherwise W

ij

= 0, we obtain

Q̇

hk

(t)

T

= [w
1

p

2

(t)� u

1

p

1

(t)] log



(u
2

+ w

1

)w
1

(u
1

+ w

2

)u
1

�

+ [w
2

p

1

(t)� u

2

p

2

(t)] log



(u
1

+ w

2

)w
2

(u
2

+ w

1

)u
2

�

=
u

1

u

2

� w

1

w

2

u

1

+ u

2

+ w

1

+ w

2

log



u

1

u

2

w

1

w

2

�

� �(p
1

(0)� p

ss

1

)e��t

�t�1���! (j
+

� j�) log

✓

j

+

j�

◆

� 0 (S50)

where � =
n

(u
1

+ w

1

) log
h

(u2+w1)w1

(u1+w2)u1

i

� (u
2

+ w

2

) log
h

(u1+w2)w2

(u2+w1)u2

io

.

ė

p

(t) = [w
1

p

2

(t)� u

1

p

1

(t)] log



p

2

(t)w
1

p

1

(t)u
1

�

+ [w
2

p

1

(t)� u

2

p

2

(t)] log



p

1

(t)w
2

p

2

(t)u
2

�

�t�1���! u

1

u

2

� w

1

w

2

u

1

+ u

2

+ w

1

+ w

2

log



u

1

u

2

w

1

w

2

�

= (j
+

� j�) log

✓

j

+

j�

◆

� 0 (S51)

ḣ

d

(t)

T

= [w
1

p

2

(t)� u

1

p

1

(t)] log



w

1

u

1

�

+ [w
2

p

1

(t)� u

2

p

2

(t)] log



w

2

u

2

�

�t�1���! u

1

u

2

� w

1

w

2

u

1

+ u

2

+ w

1

+ w

2

log



u

1

u

2

w

1

w

2

�

= (j
+

� j�) log

✓

j

+

j�

◆

� 0 (S52)

ḟ

d

(t)

T

= [w
1

p

2

(t)� u

1

p

1

(t)] log



p

2

(t)pss

1

p

1

(t)pss

2

�

+ [w
2

p

1

(t)� u

2

p

2

(t)] log



p

1

(t)pss

2

p

2

(t)pss

1

�

= �(p
2

(t)pss

1

� p

1

(t)pss

2

) log



p

2

(t)pss

1

p

1

(t)pss

2

�

� 0

�t�1���! 0 (S53)

The relaxation time to a steady state (NESS) from an arbitrary state in a far-from-equilibrium is ⇠ �

�1 =



9

(u
1

+ u

2

+ w

1

+ w

2

)�1, and it is noteworthy that the
entropy production inside the system (T ė

p

), the total
heat production that will be discharged to the surround-
ing (ḣ

d

), and the housekeeping heat (Q̇
hk

) are all iden-
tical at the steady state as T ė

p

= ḣ

d

= Q̇

hk

! (j
+

�
j�) log (j+/j�) � 0, and ḟ

d

= 0. Here, Q̇

ex

, the residual
of heat (excess heat, Q̇

ex

= ḣ

d

� Q̇

hk

) for the nonequi-
librium process, is zero at the steady state. Although
obtained for 2-state model, the above expression, espe-
cially the total heat production (or housekeeping heat) at
the steady state, ḣ

d

= T ė

p

= Q̇

hk

= T (j
+

�j�) log j

+

/j�
can easily be generalized for the N -state model.

5. RELATIONSHIP BETWEEN MOTOR
DIFFUSIVITY AND HEAT DISSIPATION.

For (N = 2)-state model one can obtain an explicit
expression that relates D with Q̇ (for the case of f = 0)
as follows. From the expressions of V (Eq.S7), D (Eq.S8),
and Q̇,

Q̇ =
V

d

0

k

B

T log
u

1

u

2

w

1

w

2

(S54)

Substitution of u

1

= u

1

(V ) from Eq.S7 into Eq.S54 gives
an expression of Q̇ as a function of V :

Q̇

k

cat

k

B

T

= v log



1 + v

1� v

�

=
1
X

n=1

1

n

�

1 + (�1)n�1



n

�

v

n+1 (S55)

where v = V/V

max

(0  v  1) and  ⌘ k

cat

(k

cat

+w1+w2)

w1w2
.

Q̇ diverge as v ! 1; but for small v ⌧ 1, Q̇/(k
cat

k

B

T ) ⇠
( + 1)v2, thus v ⇠ Q̇

1/2.
As long as Q̇ is small, one should expect from Eq.S9

that D increases with Q̇ as

D = D

0

+ �

1

q̇

1/2 + �

2

q̇ + �

3

q̇

3/2 (S56)

where q̇ ⌘ ˙

Q

k

B

Tk

cat

, D

0

= d

2
0k

cat

+1

, �

1

= d

2

0

k

cat

�1

2(+1)

3/2 ,

�

2

= �d

2

0

k

cat

k

2
cat

w1w2
, and �

3

= d

2
0k

cat

(+1)

5/2

k

2
cat

w1w2
.

For arbitrary number of states N , by using Eq.S12 and
Eq.S15, Q̇ can be written as

Q̇/k

B

T =
V

d

0

log

Q

N

i=1

u

i

Q

N

i=1

w

i

=
V

(D)

N

log

 

1 + V

(D)

P

N

n=1

r

n

N

Q

N

i=1

u

i

Q

N

i=1

w

i

!

=
V

(D)

N

log

✓

1 +
V

(D)

N

(A + Bu

1

)
1

C

◆

=
V

(D)

N

log

✓

1 +
V

(D)

N

f(V (D)

/N)

◆

(S57)

where we used V

(D) = V N/d

0

, f(V (D)

/N) = A

C

+

B

⇣

1� B

V

(D)

N

⌘�1

⇣

1 + A

C

V

(D)

N

⌘

, and Eqs.S12, S15, S16.

The definitions of A, B, and C are identical to those in
Eq.S15. Here V

(D)

/N corresponds to ATP hydrolysis
rate. For V

(D) ! 0, Q̇ ! 0 is expected. Also for small

V

(D), Q̇ ⇠ (A

C

+ B)
⇣

V

(D)

N

⌘

2

. Thus, V ⇠ Q̇

1/2. Since

D ⇠ V + O(V 2) for small V , it follows that D can be
written as a function of q̇ as in the same form as Eq.S56.

6. RATE CONSTANTS, ENHANCEMENT OF
DIFFUSION, AND CONVERSION EFFICIENCY

DETERMINED FROM THE (N=2)-STATE
KINETIC MODEL.

The values in the Table 1 were compiled based on the
followings.

Catalase

In Ref.[9] (�D/D

0

) = 0.28 at V = 1.7 ⇥ 104

s

�1;
however, V = 1.7⇥104

s

�1 is not the maximum catalytic
rate. Because �D/D

0

is approximately linear in V , the
enhancement of di↵usion at the maximal turnover rate
V

max

= u

2

= 5.8 ⇥ 104 is estimated as (�D/D

0

)
obs

=

0.28⇥ 5.8⇥10

4

1.7⇥10

4 = 0.96 ⇡ 1.

Alkaline phosphatase

Similar to catalase, (�D/D

0

)
obs

= 0.77 ⇥ 1.4⇥10

4

5.5⇥10

3 =
2.5 ⇡ 3.

Estimate of (�D/D0)max

Freely di↵using enzymes e↵ectively perform no work
on the surrounding environment; thus ��µ

e↵

= Q with
W = 0, which leads to e

Q/k

B

T = u

1

u

2

/w

1

w

2

. By as-
suming that the substrate concentration [S] ⇠ K

M

=
(u

2

+ w

1

)/u

o

1

, we get

e

Q/k

B

T =
u

1

u

2

w

1

w

2

⇠ u

o

1

K

M

u

2

w

1

w

2

=
(u

2

+ w

1

)u
2

w

1

w

2

� u

2

2

w

1

w

2

=
k

2

cat

w

1

w

2

.

This relation allows us to estimate the upper bound of
(�D/D

0

)
max

as follows when u

2

� w

1

, w

2

is satisfied.
✓

�D

D

0

◆

max

⇡ k

2

cat

2w
1

w

2

 1

2
e

Q/k

B

T

. (S58)

Alternatively, u

1

and w

2

of enzymes can be estimated
by assuming (i) that the reaction is di↵usion limited,
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u

o

1

= 108

s

�1

M

�1, and (ii) that the substrate concen-
tration [S] is similar to Michaelis-Menten constant K

M

([S] ⇠ K

M

). The two conditions u

1

= u

o

1

[S] ⇠ K

M

⇥ 108

(s�1) and K

M

(= (u
2

+ w

1

)/u

o

1

), and Q (heat measured
by the calorimeter in ref. [9]), u

2

, K

M

which are avail-
able in ref. [9], provide all the rate constants including
w

1

= u

o

1

K

M

� u

2

and w

2

= u1u2

w1e

Q/k

B

T

, allowing us to

calculate
⇣

�D

D0

⌘

max

= u

2
2+(w1+w2)u2�w1w2

2w1w2
.
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FIG. S3. Analysis of experimental data, extracted from Ref. [10], but using (N=2)-state model. The solid lines are the fits to
the data A. V vs ATP at f =1.05 pN (red square), 3.59 pN (blue circle), and 5.63 pN (black triangle). B. V vs load at [ATP]
= 5 µM. C. V vs load at [ATP] = 2 mM. D. Stall force as a function of [ATP], measured by ‘Position clamp’ (red square)
or ‘Fixed trap’ (blue circle) methods. E. D vs ATP at f =1.05 pN (red square), 3.59 pN (blue circle), and 5.63 pN (black
triangle). D was estimated from r = 2D/V d0. F. D vs load at [ATP] = 2 mM. G-I. Motor di↵usivity (D) as a function of
mean velocity (V ) for kinesin-1. (V ,D) measured at varying [ATP] (= 0 – 2 mM) and a fixed (G) f =1.05 pN, (H) 3.59 pN,
and (I) 5.63 pN [10]. The black dashed lines in G and H are the fits using Eq.5. The solid lines in magenta in G-I are plotted
using the (N=2)-kinetic model.


