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We investigate the kinetics of loop formation in ideal flexible polymer chains (the Rouse model), and polymers
in good and poor solvents. We show for the Rouse model, using a modification of the theory of Szabo,
Schulten, and Schulten, that the time scale for cyclization isτc ∼ τ0N2 (whereτ0 is a microscopic time scale
andN is the number of monomers), provided the coupling between the relaxation dynamics of the end-to-end
vector and the looping dynamics is taken into account. The resulting analytic expression fits the simulation
results accurately whena, the capture radius for contact formation, exceedsb, the average distance between
two connected beads. Simulations also show that whena < b, τc ∼ NRτ, where 1.5< Rτ e 2 in the range 7
< N < 200 used in the simulations. By using a diffusion coefficient that is dependent on the length scalesa
and b (with a < b), which captures the two-stage mechanism by which looping occurs whena < b, we
obtain an analytic expression forτc that fits the simulation results well. The kinetics of contact formation
between the ends of the chain are profoundly effected when interactions between monomers are taken into
account. Remarkably, forN < 100, the values ofτc decrease by more than 2 orders of magnitude when the
solvent quality changes from good to poor. Fits of the simulation data forτc to a power law inN (τc ∼ NRτ)
show thatRτ varies from about 2.4 in a good solvent to about 1.0 in poor solvents. The effective exponent
Rτ decreases as the strength of the attractive monomer-monomer interactions increases. Loop formation in
poor solvents, in which the polymer adopts dense, compact globular conformations, occurs by a reptation-
like mechanism of the ends of the chain. The time for contact formation between beads that are interior to the
chain in good solvents changes nonmonotonically as the loop length varies. In contrast, the variation in interior
loop closure time is monotonic in poor solvents. The implications of our results for contact formation in
polypeptide chains, RNA, and single-stranded DNA are briefly outlined.

1. Introduction

Contact formation (cyclization) between the ends of a long
polymer has been intensely studied both experimentally1,2 and
theoretically.3-9 More recently, the kinetics of loop formation
has become increasingly important, largely because of its
relevance to DNA looping10,11as well as protein12-19 and RNA
folding.20 The ease of cyclization in DNA, which is a measure
of its intrinsic flexibility,11,21 is important in gene expression
and interactions of DNA with proteins and RNA. In addition,
the formation of contacts between residues (nucleotides) near
the loop8 may be the key nucleating event in protein (RNA)
folding. For these reasons, a number of experiments have probed
the dependence of the rates of cyclization in proteins12,13,22and
RNA23,24as a function of loop length. The experimental reports,
especially on the rates of loop formation in polypeptides and
proteins, have prompted a number of theoretical studies7,25,26

that build on the pioneering treatments by Wilemski and
Fixman3 (WF) and Szabo, Schulten, and Schulten4 (SSS). The
WF formalism determines the loop closure timeτc by solving
the diffusion equation in the presence of a sink term. The sink
function accounts for the possibility that contact between the
ends of a polymer chain occurs whenever they are in proximity.
The time for forming a loop is related to a suitable time integral
of the sink-sink correlation function.

In an important paper, SSS developed a much simpler theory
to describe the dependence of the rate of end-to-end contact
formation in an ideal chain on the polymer lengthN. The SSS
approximation4 describes the kinetics of contact formation
between the ends of the chain as a diffusion process in an
effective potential that is derived from the probability distribu-
tion P(Ree) of finding the chain ends with the end-to-end
distanceRee. More recently, such an approach has been adopted
to obtain the rates of folding of proteins from a free-energy
surface expressed in terms of an appropriately chosen reaction
coordinate.27 The validity of using the dynamics in a potential
of mean force,F(Ree) ∼ -kBT log[P(Ree)], to obtainτc hinges
on local equilibrium being satisfied, that is, that all processes
except the one of interest must occur rapidly. In the case of
cyclization kinetics in simple systems (Rouse model or self-
avoiding polymer chains), the local equilibrium approximation
depends minimally on the cyclization timeτc and the internal
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chain relaxation timeτR. In the limit τc/τR . 1, one can envision
the motions of the ends as occurring in the effective free energy
F(Ree) because the polymer effectively explores the available
volume before the ends meet. By solving the diffusion equation
for an ideal chain for whichF(Ree) ∼ 3kBTRee

2 /2Rhee
2 , with Rhee∼

bxN, where b is the monomer size, subject to absorbing
boundary conditions, SSS showed that the mean first passage
time for contact formation (∼τc) is τSSS∼ τ0N3/2, whereτ0 is a
microscopic time constant (see eq 7).

The simplicity of the SSS result, which reduces contact
formation kinetics to merely computingP(Ree), has resulted in
its widespread use to fit experimental data on polypeptide
chains.12,13,22The dependence ofτc on N using the SSS theory
differs from the WF predictions. In addition, simulations also
show thatτc deviates from the SSS prediction.28-31 The slower
dependence ofτSSS on N can be traced to the failure of the
assumption that all internal chain motions occur faster than the
process of interest. The interplay betweenτc and τR, which
determines the validity of the local equilibrium condition, can
be expressed in terms of well-known exponents that characterize
equilibration and relaxation properties of the polymer chain.
Comparison of the conformational space explored by the chain
ends and the available volume prior to cyclization32 allows us
to express the validity of the local equilibrium in terms ofθ )
(d + g)/z, where d is the spatial dimension,g is the des
Cloizeaux correlation hole exponent that accounts for the
behavior ofP(Ree) for smallRee, that is,P(Ree) ∼ Ree

g , andz is
the dynamical scaling exponent (τR ∼ Rhee

z ). Additional discus-
sions along these lines are given in Appendix A. The SSS
assumption is only valid provided thatθ > 1.33 For the Rouse
chain in the freely draining limit, (ν ) 1/2, g ) 0, d ) 3, z )
4) givesθ < 1, and hence,τc will show deviation from the
SSS predictions for allN.

The purpose of this paper is twofold. (i) The theory based
on the WF formalism and simulations show the closure time
τWF ∼ 〈Ree

2 〉/Dc ∼ N1+2ν (ν ≈ 3/5 for self-avoiding walk andν
) 1/2 for the Rouse chain), whereDc is a diffusion constant.
We show that the WF result for Rouse chains,τWF, can be
obtained within the SSS framework provided an effective
diffusion constant that accounts for the relaxation dynamics of
the ends of the chains is used instead of the monomer diffusion
coefficient D0. Thus, the simplicity of the SSS approach can
be preserved while recovering the expected scaling result3,5 for
the dependence ofτc on N. (ii) The use of the Rouse model
may be appropriate for polymers or polypeptide chains nearΘ
conditions. In both good and poor solvents, interactions between
monomers determine the statics and dynamics of the polymer
chains. The chain will swell in good solvents (ν ≈ 3/5), whereas
in poor solvents, polymers and polypeptide chains adopt
compact globular conformations. In these situations, interactions
between the monomers or the amino acid residues affectτc.
The monomer-monomer interaction energy scale,εLJ, leading
to the chain adopting a swollen or globular conformation,
influences bothν and the chain relaxation dynamics and hence
affectsτc. Because analytic theory in this situation is difficult,
we provide simulation results forτc as a function ofεLJ and for
10 < N e 100.

2. Derivation of τWF for the Rouse Model Using the SSS
Approximation

The Rouse chain consists ofN beads, with two successive
beads connected by a harmonic potential that keeps them at an
average separationb (the Kuhn length). Contact formation
between the chain ends can occur only if fluctuations result in

monomers 1 andN being within a capture radiusa. In other
words, the space explored by the chain ends must overlap within
the contact volume∼a3. There are three relevant time scales
that affect loop closure dynamics, namely:τ0 ≈ b2/D0, the
fluctuation time scale of a single monomer,τee, the relaxation
time associated with the fluctuations of the end-to-end distance,
andτR, the relaxation time of the entire chain. Clearly,τee< τc

∼ τR. Because loop formation can occur only if the ends can
approach each other, processes that occur on time scaleτeemust
be coupled to looping dynamics. We obtain the scaling ofτc

with N, found using the WF approximation, from the SSS
formalism using a diffusion constant evaluated on the time scale
τee.

2.1. Fluctuations in Ree. The Langevin equation for a
Gaussian chain is34

whereηb(s,t) is a white noise force with〈ηb(s,t)〉 ) 0 and 〈ηb-
(s,t)‚ηb(s′,t′)〉 ) 6γkBTδ(t - t′)δ(s - s′); γ is the friction
coefficient, andD0 ) kBT/γ is the microscopic diffusion
coefficient. By writing

the Gaussian HamiltonianH0 becomes

The equation of motion for each mode

can be solved independently. The solutions naturally reveal the
time scale for global motions of the chain,τR ) N2b2/3D0π2 ∼
N2b2/D0. We note thatτR is much larger than the relevant time
scale for internal motions of the monomers,τ1 ≈ b2/D0 for large
N. Equation 3 can be solved directly, and the fluctuations in
the end-to-end distanceRee are given by

with 〈δRee
2 (t)〉 ≡ 〈[Ree(t) - Ree(0)]2〉. The details of the

calculation leading to eq 4 are given in Appendix B. If we define
an effective diffusion constant using

thenD(0) ) 2D0, as is expected for the short time limit.4,30 On
time scales on the order ofτR, we findD(τR) ∼ D0/N, which is
identical to the diffusion constant for the center of mass of the
chain.34 This is the expected result for the diffusion constant
for global chain motion.

2.2. The Effective Diffusion Constant.The theory of Szabo,
Schulten, and Schulten4 (SSS) determines the loop closure time
by replacing the difficult polymer problem, having many degrees
of freedom, with a single particle diffusing in a potential of

γ
∂r (s,t)

∂t
) -

δH0[r (s,t)]

δr (s,t)
+ ηb(s,t) (1)

r (s,t) ) r0 + 2 ∑
n)1

N-1

rn(t) cos(nπs/N)

H0 )
3

2b2
∫0

N
ds(∂r (s,t)

∂s )2

)
3

2Nb2
∑

n

n2π2rn
2(t) (2)

r3 n(t) ) -
3n2π2D0

N2b2
rn(t) + ηbn(t) (3)

〈δRee
2 (t)〉 ) 16Nb2 ∑

n odd

N2

n4π4
sin2(nπ

N )(1- e-n2t/τR) (4)

D(t) )
〈δRee

2 (t)〉
6t

(5)
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mean force. With this approximation,τc, which can be related
to the probability that the contact is not formed (see Appendix
C for more details), becomes

where loop closure occurs when|Ree| ) a, the closure (or
capture) radius, with rateκ, P(r) is the equilibrium end-to-end
distribution of the chain, and

In this paper, we will consider only a chemically irreversible
process, with the binding rate constant ofκ f ∞. In the case of
the noninteracting Gaussian chain,P(r) ∼ r2exp(-3r2/2Nb2).
If D(r) ∼ D0 is a constant, it is simple to show4 that, for large
N, the loop closure time is

The scaling ofτSSSwith N given in eq 7 disagrees with other
theories3,7 and numerous simulations28-31 that predictτc ∼ N2

for Nb2 . a2 and a g b. It has been noted25,33 that the SSS
theory may be a lower bound on the loop closure time for a
freely draining Gaussian chain, and that an effective diffusion
coefficient that is smaller thanD0 is required to fit the
simulated25 and experimental35 data usingτSSS. Physically, the
use of a smaller diffusion constant is needed because contact
formation requires fluctuations that bring|Ree| within the capture
radiusa, a mechanism in whichτee plays a crucial role.

As noted by Doi,5 the relevant time scale for loop closure is
not simply the global relaxation time. The fluctuations inRee

are given not only by the longest relaxation time but also from
important contributions that arise from higher modes. This gives
rise to the differences between the Harmonic Spring and Rouse
models.5,29 In the Harmonic Spring model, the chain is replaced
with only one spring which connects the two ends of the chain.
The spring constant is chosen to reproduce the end-to-end
distribution function. The higher-order modes give rise to excess
fluctuations in〈Ree

2 〉 on a scale of∼0.4xNb ) R′, and their
inclusion is necessary to fully capture the physics of loop
closure. In the approximation of a particle diffusing in an
effective potential (as in the SSS theory), this time scale is
simple to determine. If we consider only thex component of
Ree, we can treat it as a particle diffusing in a potentialUeff(Rx)
) 3Rx

2/2Nb2 - O(1), with diffusion constantD ) 2D0. In this
case, we find

and 〈Ree
2 (t)〉 ) 3〈δRx

2(t)〉, giving the natural end-to-end relax-
ation timeτee) Nb2/6D0. Because we have evaluatedτeeusing
diffusion in an effective potential, the dependence ofτee on N
should be viewed as a mean field approximation.

We can determine the effective diffusion constant on the time
scaleτee, which includes the relaxation ofRee(t) at the mean
field level. We define the effective diffusion constant as

with 〈δRee
2 (t)〉 in eq 4, which includes all of the modes of the

chain and not simply the lowest one. Noting thatτee/τR ∼ N-1

, 1 for largeN, we can convert the sum in eq 4 into an integral

In particular, fort ≈ τee/2 ) Nb2/12D0

We expect these coefficients to be accurate to a constant on
the order of unity. The effective diffusion constantDee takes
the higher-order modes of the chain into account and should
capture the essential physics of the loop closure. In other words,
on the time scaleτee, resulting inDee ∼ N-(1/2), the monomers
at the chain ends are within a volume of∼a3, so that contact
formation is possible.

SubstitutingDee into eq 7 gives

in the limit of largeN. Thus, within the SSS approximation,
theN2 dependence ofτc may be obtained, provided the effective
diffusion constantDee is used. The importance of using a
diffusion constant that takes relaxation dynamics ofRee into
account has also been stressed by Portman.25 The closure time
in eq 13 depends on the capture radius asa-1, which disagrees
with the a-independent prediction of Doi.5 In addition, eq 13
does not account for the possibility ofτc ∼ NRτ, with 1.5< Rτ
< 2, as observed with simulations by Pastor et al.28 when the
capture radius isa < b. Both of these discrepancies are discussed
in the next section by using insights garnered from simulations.

2.3. Simulations of Loop Closure Time for Freely Jointed
Chains. In order to measureRee(t) andτc for a noninteracting
freely jointed chain, we have performed extensive Brownian
dynamics simulations. We model the connectivity of the chain
using the Hamiltonian

with b0 ) 0.38 nm and a spring constant ofks ) 100. We note
that 〈(r i+1 - r i)2〉1/2 ≈ 0.39 nm for this Hamiltonian, which we
take as the Kuhn lengthb when fitting the data. For largeN,
the differences between the FJC and Rouse models are not
relevant, and hence, the scaling ofτc with N for these two
models should be identical. The microscopic diffusion coef-
ficient was taken asD0 ) 0.77 nm2/ns. The equations of motion
in the overdamped limit were integrated using the Brownian
dynamics algorithm,36 with a time step of∆t ) 10-4 ns. The
end-to-end distributionP(r) is easily computed for the model
in eq 14, giving the expression for largeks

which must be numerically integrated.

〈δRee
2 〉 ≈ 2x2

π
N3/2b2 ∫0

∞
dx

sin2(bx/x3D0t)

x4
(1 - e-x2

) (10)

≈ 8bx3D0t

π
(11)

Dee≈ 8D0

xNπ
-

16D0

3N
+ O(N-3/2) (12)

τc ≈ N2b3π

24x6 D0a
∼ τWF (13)

âH )
ks

2
∑
i)1

N (1 -
|r i+1 - r i|

b0
)2

(14)

P(r) ) 2r ∫0

∞
dq qsin(qr)( e-b0

2q2/ks
2

b0q(1 + ks)
×

[b0q cos(b0q) + ks sin(b0q)])N-1

(15)

τc ) 1
N ∫a

Nb
dr

1
D(r)P(r)

(∫r

Nb
dr′P(r′))2 + 1

κN P(a)
(6)

N ) ∫a

Nb
dr P(r)

τSSS≈ 1
3xπ

6
N3/2b3

D0a
(7)

〈δRx
2(t)〉 ) 2

3
Nb2(1 - e-t/τee) (8)

Dee) lim
t∼τee

〈δRee
2 (t)〉
6t

(9)
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In our simulations, we computed the mean first passage time
directly. We generated the initial conditions by Monte Carlo
equilibration. Starting from each equilibrated initial configura-
tion, the equations of motion were integrated until|Ree| e a
for the first time, with the first passage time computed for
multiple values ofN and a. The loop closure timeτc was
identified with the mean first passage time, obtained by
averaging over 400 independent trajectories. For comparison
with the analytic theory, we calculated the modified SSS first
passage time, withP(r) given in eq 15 andDee given in eq 12.
The results are shown in Figure 1. We find that the behavior of
τc depends strongly on the ratioa/b.

a g b: For N j 100 anda g b, we find that the modified
SSS theory using the effective diffusion constantDee in eq 12
gives an excellent fit to the data as a function of bothN anda
(Figure 1A). Thus, modeling the loop closure process as a one-
dimensional diffusive process in a potential of mean force is
appropriate as long as a diffusion coefficient that takes the
dynamics of the chain ends into account is used.

For N J 100 anda g b, we notice significant deviations in
the data from the theoretical curves. The data points appear to
converge asa is varied for largeN, suggesting the emergence

of Doi’s5 predicted scaling ofτc ∼ N2a0. This departure from
the predictions of eq 13 suggests that the one-dimensional mean
field approximation, which gives rise to thea dependence of
τc, breaks down. Even our modified theory, which attempts to
include fluctuations inReeon a mean field level leading toDee,
cannot accurately represent the polymer as a diffusive process
with a single degree of freedom for largeN. In this regime, the
many degrees of freedom of the polymer must be explicitly
taken into account, making the WF theory3 more appropriate.

a < b: The conditiona < b is nonphysical for a freely jointed
chain with excluded volume and certainly not relevant for
realistic flexible chains, in which an excluded volume interaction
between monomers would prevent the approach of the chain
ends to distances less thanb. (Note that for wormlike chains,
with the statistical segmentlp > b, the equivalent closure
condition a < lp is physically realistic. The effect of chain
stiffness, which has been treated elsewhere,33 is beyond the
scope of this article.) In this case (Figure 1B), we findτc ∼
NRτ, with 1.5< Rτ < 2, in agreement with the simulation results
of Pastor et al.28 In derivingDee, we assumed, as did Doi,5 that
the relaxation of the end-to-end vector is rate limiting. Once
|Ree| ∼ R′ ≈ 0.4xNb, we expect the faster internal motions of
the chain will search the conformational space rapidly, so that
τc is dominated by the slower, global motions of the chain (i.e.,
it is diffusion limited). This assumption breaks down ifa , b
because the endpoints must search longer for each other using
the rapid internal motions on a time scale ofb2/D0. In the limit
of small a, the memory of the relaxation of the ends of the
chain is completely lost. Our derivation ofDee, using a mean
field approach, cannot accurately describe the finer details when
the endpoints search for each other over very small length scales,
and hence, our theory must be modified in this regime.

We view the loop closure for smalla (<b) as a two-step
process (Figure 2), with the first being a reduction in|Ree| ∼
b. The first stage is well-modeled by our modified SSS theory
(see Figure 1A) using the effective diffusion coefficient in eq
12. The second stage involves a search for the two ends within
a radius ofb, so that contact can occur whenever|Ree| ) a <
b. The large-scale relaxations of the chain are not relevant in
this regime. We therefore introduce a scale-dependent diffusion
coefficient

Substitution of eq 16 into eq 6 withP(r) given by eq 15 yields,
for a e b,

In Figure 1B, we compare the predictions of eq 17 for the

Figure 1. Dependence ofτc onN for various values ofa. The symbols
correspond to different values of the capture radius. (A) The values of
a/b are 1.00 (+), 1.23 (×), 1.84 (*), 2.76 (∆), 3.68 (∇), and 5.52 ()).
The lines are obtained using eq 6 withκ f ∞. The diffusion constant
in eq 6 is obtained usingD ) 〈δRee

2 (τee/2)/3τee〉, with 〈δRee
2 (t)〉 given

in eq 10. (B) The values ofa/b are 0.10 (+), 0.25 (×), 0.50 (*), and
1.00 (∆). The lines are the theoretical predictions using eq 17. The
poor fit using eq 13 witha ) 0.1b (solid line) shows that the two-
stage mechanism has to be included to obtain accurate values ofτc.
The effective exponentRτ, obtained by fittingτc ∼ NRτ, is shown in
parentheses.

Figure 2. Sketch of the two-stage mechanism for loop closure for
Rouse chains whena < b. Although unphysical, this case is of
theoretical interest. In the first stage, fluctuations inRee result in the
ends approaching|Ree| ) b. The search of the monomers within a
volume of b3 (>a3), which is rate limiting, leads to a contact in the
second stage.

Dee(x) ≈ {8D0/xNπ x > b
2D0 x e b

(16)

τc(a) ≈ N2b2π

24x6 D0

+
N3/2b2(b - a) xπ

6x6 D0a
(17)
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closure time to the simulated data fora e b. The fit is excellent,
showing that the simple scale-dependent diffusion coefficient
(eq 16), which captures the two-stage mechanism of cyclization
whena < b, accurately describes the physics of loop closure
for small a. By equating the two terms in eq 17, we predict
that theN3/2 scaling will begin to emerge whenN j 16b2(a/b
- 1)2/a2π. This upper bound onN is consistent with the
predictions of Chen et al.30

An alternate, but equivalent, description of the process of
loop formation for smalla can also be given. After the endpoints
are within a sphere of radiusb, chain fluctuations will drive
them in and out of the sphere many times before contact is
established. This allows us to describe the search process using
an effective rate constantκeff, schematically shown in Figure
2. For smalla, the loop closure (a search within radiusb)
becomes effectively rate-limited as opposed to diffusion-
limited35 contact formation. The search will be successful, in
the SSS formalism, on a time scale of

with

Again, we have takenD ) 2D0 for r < b, because loop
formation in this regime is dominated by the fast fluctuations
of the monomers, which occurs on the time scale ofb2/D0. For
a ≈ b, τbfa ≈ (a - b)2/6D0, whereasτbfa ≈ b3/6aD0 asa f
0. Theτbfa can be used to define the effective rate constant
κeff ∝ (b - a)/τbfa. This can be substituted into eq 6, and gives
the approximate loop closure time asa f 0

reproducing the same scaling for smalla as that in eq 17.
The two-stage mechanism for the cyclization kinetics fora/b

< 1 is reminiscent of the two-state kinetic mechanism used to
analyze experimental data. The parameterκeff is analogous to
the reaction-limited rate.35 If the search rate within the capture
region given byκeff is small, then we expect the exponentRτ <
2. Indeed, the experiments of Buscaglia et al. suggest thatRτ
changes from 2 (diffusion-limited) to 1.65 (reaction-limited).
Our simulation results show the same behaviorRτ ) 2 for a/b
g 1, which corresponds to a diffusion-limited process, andRτ
≈ 1.65 for a/b ) 0.1, in which the search withina/b < 1
becomes rate limiting.

3. Loop Closure for Polymers in Good and Poor Solvents

The kinetics of loop closure can change dramatically when
interactions between monomers are taken into account. In good
solvents, in which excluded volume interactions between the
monomers dominate, it is suspected that only the scaling
exponent in the dependence ofτc on N changes compared to
Rouse chains. However, relatively little is known about the
kinetics of loop closure in poor solvents in which enthalpic
effects, which drive collapse of the chain, dominate over chain
entropy. Because analytic work is difficult when monomer-
monomer interactions become relevant, we resort to simulations
to provide insights into the loop closure dynamics.

3.1. Simulation of Cyclization Times.The Hamiltonian used
in our simulations isH ) HFENE + HLJ, where

models the chain connectivity, withk ) 22.2kBT andb ) 0.38
nm. The choiceR0 ) 2b/3 (diverging at|r i+1 - r i| ) b/3 or
5b/3) allowed for a larger time step than that when using36 R0

) b/2, and increased the efficiency of conformational sampling.
The interactions between monomers are modeled using the
Lennard-Jones potential

with r ij ) r i - r j. The Lennard-Jones interaction between the
covalently bonded beadsr i and r i+1 is neglected to avoid
excessive repulsive forces. The second virial coefficient, defining
the solvent quality, is given approximately by

with â ) 1/kBT. In a good solventV2 > 0, while in a poor solvent
V2 < 0. A plot of V2 as a function ofεLJ given in Figure 3A
shows thatV2 > 0 whenâεLJ < 0.3 andV2 < 0 if âεLJ > 0.3.
In what follows, we will refer to âεLJ ) 0.4 as weakly
hydrophobic andâεLJ ) 1.0 as strongly hydrophobic. The
classification of the solvent quality based on eq 22 is ap-
proximate. The precise determination of theΘ point (V2 ≈ 0)
requires the computation ofV2 for the entire chain. For our
purposes, this approximate demarcation between good,Θ, and
poor solvents based on eq 22 suffices.

To fully understand the effect of solvent quality on the
cyclization time, we performed Brownian dynamics simulations
for âεLJ ) i/10, with 1 e i e 10. In our simulations,N was
varied from 7 to 300 for each value ofεLJ, with a fixed capture
radius of a ) 2b ) 0.76 nm. The loop closure time was
identified with the mean first passage time. The dynamics for
each trajectory was followed until the two ends were within
the capture radiusa. Averaging the first passage times over 400
independent trajectories yielded the mean first passage time.
The chains were initially equilibrated using parallel tempering
(replica exchange) Monte Carlo37 to ensure proper equilibration,
with each replica pertaining to one value ofεLJ. In Figure 3B,
we show the scaling of the radius of gyration〈Rg

2〉 as a
function ofN. We find 〈Ree

2 〉 ∼ N6/5 for the good solvent and〈
Ree

2 〉 ∼ N for theΘ solvent (âεLJ ) 0.3). In poor solvents (âεLJ

> 0.3), the largeN scaling of〈Ree
2 〉 ∼ N2/3 is not observed for

the values ofN used in our simulations. Similar deviations from
the expected scaling of〈Ree

2 〉 with N have been observed by
Rissanou et al.38 for short chains in a poor solvent. Simulations
using much longer chains (N J 5000) may be required to
observe the expected scaling exponent of 2/3.

Brownian dynamics simulations withD0 ) 0.77 nm2/ns
()kBT/6πηb, with η ) 1.5 cP) were performed to determine
τc. The loop closure time for the chains in varying solvent
conditions is shown in Figure 4A and B. The solvent quality
drastically changes the loop closure time. The values ofτc for
the good solvent (âεLJ ) 0.1) are nearly 3 orders of magnitude
larger than those in the case of the strong hydrophobe (âεLJ )
1.0) for N ) 80 (Figure 4A). ForN in the range of 20-30,
which are typically used in experiments on tertiary contact
formation in polypeptide chains, the value ofτc is about 20 ns
in good solvents, whereas in poor solvents,τc is only about 0.3
ns. The results are vividly illustrated in Figure 4B, which shows

τbfa ≈ 1
2D0N ′ ∫a

b dr
P(r)

(∫r

b
dr′ P(r′))2 (18)

N ′ ) ∫a

b
dr P(r)

τc(a) - τc(b) ≈ 1
κeff N ′P(b)

∝ N3/2b3

D0a
(19)

HFENE ) -
kb2

2
∑
i)1

N

log [1 - (|r i+1 - r i| - b

R0
)2] (20)

HLJ ) εLJ ∑
i)1

N-2

∑
j)i+2

N [( b

r ij
)12

- 2( b

r ij
)6] (21)

V2(εLJ) ) ∫ d3r [1 - exp(-âHLJ(r ))] (22)
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τc as a function ofεLJ for variousN values. The differences in
τc are less pronounced asN decreases (Figure 4B). The absolute
value ofτc for N ≈ 20 is an order of magnitude less than that
obtained forτc in polypeptides.35 There could be two interrelated
reasons for this discrepancy. The value ofD0, an effective
diffusion constant in the SSS theory, extracted from experi-
mental data and simulatedP(Ree) is about an order of magnitude
less than theD0 in our paper. Second, Buscaglia et al.35 used
the WLC model with excluded volume interactions, whereas
our model does not take into account the effect of bending
rigidity. Indeed, we had shown in an earlier study33 that chain
stiffness increasesτc. Despite these reservations, our values of
τc can be made to agree better with experiments usingη ≈ 5
cP9 and a slightly larger value ofb. Because it is not our purpose
to quantitatively analyze cyclization kinetics in polypeptide
chains, we did not perform such a comparison.

We also find that the solvent quality significantly changes
the scaling ofτc ∼ NRτ, as shown in Figure 4C. For the range
of N considered in our simulations,τc does not appear to vary
as a simple power law inN (much like〈Rg

2〉; see Figure 3B) for
âεLJ > 0.3. The values ofτc in poor solvents shows increasing
curvature asN increases. However, if we insist that a simple
power law describes the data then for the smaller range ofN
from 7 to 32 (consistent with the methods of other au-

thors16,22,35), we can fit the initial slopes of the curves to
determine an effective exponentRτ (Figure 4C), that is,τc ≈
τ0NRτ. In the absence of sound analytical theory, the extracted
values ofRτ should be viewed as an effective exponent. We
anticipate that, much like the scaling laws for〈Rg

2〉, the final
largeN scaling exponent forτc will only emerge for38 N J 5000,
which is too large for accurate simulations. However, with the
assumption of a simple power law behavior for smallN, we
find that the scaling exponent precipitously drops fromRτ ≈
2.4 in the good solvent to 1.0 in the poor solvent. Our estimate
of Rτ in good solvents is in agreement with the prediction of
Debnath and Cherayil7 (Rτ ≈ 2.3-2.4) or Thirumalai39 (Rτ ≈
2.4) and is fairly close to the value obtained in previous
simulations31 (Rτ ≈ 2.2). The difference in the scaling exponent
between the present and previous study31 may be related to the
choice of the Hamiltonian in the simulations. Podtelezhnikov

Figure 3. (A) Second virial coefficient as a function ofεLJ from eq
22. The classification of solvent quality based on the values ofV2 are
shown. (B) The variation of〈Rg

2〉 with N for different values ofεLJ.
The value ofâεLJ increases from 0.1 to 1.0 (in the direction of the
arrow).

Figure 4. (A) Loop closure time as a function ofN for varying solvent
quality. The values ofâεLJ increase from 0.1 to 1.0 from top to bottom,
as in Figure 3A. (B)τc as a function ofεLJ, which is a measure of the
solvent quality. The values ofN are shown with various symbols. (C)
Variation of the scaling exponent ofτc ∼ NRτ as a function ofεLJ.
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and Vologodskii31 used a harmonic repulsion between mono-
mers to represent the impenetrability of the chain and tooka/b
< 1 in their simulations. Scaling arguments predictRτ ) 2.2
for a sufficiently long chain in good solvent (see appendix A),
suggesting that our value ofRτ ≈ 2.4 may be due to finite size
effects.

In contrast to the good solvent case, our estimate ofRτ in
poor solvents is significantly lower than the predictions of
Debnath and Cherayil,7 who suggestedRτ ≈ 1.6-1.7 based on
a modification of the WF formalism.3 However, fluorescence
experiments on multiple repeats of the possibly weakly hydro-
phobic glycine and serine residues in D2O have foundτc ∼ N1.36

for short chains22 andτc ∼ N1.05for longer chains,16 in qualitative
agreement with our simulation results. Bending stiffness26,33and
hydrodynamic interactions may make direct comparison between
these experiments and our results difficult. The qualitative
agreement between simulations and experiments on polypeptide
chains suggests that interactions between monomers are more
important than hydrodynamic interactions, which are screened.

3.2. Mechanisms of Loop Closure in Poor Solvents.The
dramatically smaller loop closure times in poor solvents than
those in good solvents (especially forN > 20; see Figure 4B)
requires an explanation. In poor solvents, the chain adopts a
globular conformation with the monomer density ofFb3 ∼ O(1),
whereF ≈ N/Rg

3. We expect the motions of the monomers to
be suppressed in the dense, compact globule. For largeN, when
entanglement effects may dominate, it could be argued that in
order for the initially spatially separated chain ends (|Ree|/a >
1) to meet, contacts between the monomer ends with their
neighbors must be broken. Such unfavorable events might
require overcoming enthalpic barriers (≈ Qh × εLJ, whereQh is
the average number of contacts for a bead in the interior of the
globule), which would increaseτc. Alternatively, if the ends
search for each other using a diffusive, reptation-like mechanism
without having to dramatically alter the global shape of the
collapsed globule,τc might decrease asεLJ increases (i.e., as
the globule becomes more compact). It is then of interest to
ask whether looping events are preceded by global conforma-
tional changes, with a large-scale expansion of the polymer that
allows the endpoints to search the volume more freely, or if
the endpoints search for each other in a highly compact, but
more restrictive, ensemble of conformations.

In order to understand the mechanism of looping in poor
solvents, we analyze in detail the end-to-end distance|Ree(t)|
and the radius of gyration|Rg(t)| for two trajectories (withâεLJ

) 1 andN ) 100). One of the trajectories has a fast looping
time (τc

F ≈ 0.003 ns), while the looping time in the other is
considerably slower (τc

S ≈ 4.75 ns). Additionally, we compute
the time-dependent variations of the coordination number,Q(t),
for each endpoint. We define two monomersi and j to be in
“contact” if |r i - r j| g 1.23b (beyond which the interaction
energyELJ g - εLJ/2) and defineQ1(t) andQN(t) to be the total
number of monomers in contact with monomers 1 andN,
respectively. We do not include nearest neighbors on the
backbone when computing the coordination number, and the
geometrical constraints give 0e Q(t) e 11 for either endpoint.
With this definition, an endpoint on the surface of the globule
will haveQ ) 5. These quantities are shown in Figures 5 and 6.

The trajectory withτc
F (Figure 5) shows little variation in

either |Rg| or |Ree|. We find |Ree| ≈ |Rg|, suggesting that the
endpoints remain confined within the dense globular structure
throughout the looping process. This is also reflected in the
coordination numbers for both of the endpoints, with bothQ1-
(t) and QN(t) in the range of 5e Q(t) e 10 throughout the

simulation. The endpoints in this trajectory, with the small loop
closure timeτc

F, always have a significant number of contacts
and traverse the interior of the globule when searching for each
other. Similarly, we also found that the trajectory with a long
first passage timeτc

S (Figure 6) shows little variation inRg

throughout the run. The end-to-end distance, however, shows
large fluctuations over time, and〈Ree

2 〉1/2 J 2〈Rg
2〉1/2 until

closure. This suggests that, while the chain is in an overall
globular conformation (small, constantRg

2), the endpoints are
mainly found on the exterior of the globule. This conclusion is
again supported by the coordination number, withQ(t) e 5 for
significant portions of the simulation. While the endpoints are

Figure 5. Mechanism of loop closure for a trajectory with a short
(∼0.003 ns) first passage time. The values ofN andâεLJ are 100 and
1.0, respectively. (A) Plots of|Ree| and |Rg| (scaled by the capture
radiusa) as a function of time. The structures of the globules near the
initial stage and upon contact formation between the ends are shown.
The end-to-end distance is in red. (B) The time-dependent changes in
the coordination numbers for the first (Q1(t)) and last (QN(t)) monomers
during the contact formation.
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less restricted by nearby contacts and able to fluctuate more,
they spend a much longer time searching for each other. Thus,
it appears that the process of loop formation in poor solvents,
where enthalpic effects might be expected to dominate forN )
100, occurs by a diffusive, reptation-like process. Entanglement
effects are not significant in our simulations.

We note that trajectories in which the first passage time for
looping is rapid (withτc

i < τc for trajectoryi) have at least one
endpoint with a high coordination number (Q > 5) throughout
the simulation. In contrast, for most slow-looping runs (with
τc

i > τc), we observe long stretches of time where both endpoints

have a low coordination number (Q < 5). These results suggest
that motions within the globule are far less restricted than one
might have thought, and loop formation will occur faster when
the endpoints are within the globule than it would if the
endpoints were on the surface. The longer values ofτc are found
if the initial separation of the endpoints is large, which is more
likely if they are on the surface than if they are buried in the
interior. The absence of any change in|Rg(t)| in both the
trajectories, which represent the extreme limits in the first
passage time for looping, clearly shows that contact formation
in the globular phase is not an activated process. Thus, we

Figure 6. Same as Figure 5, except the data are for a trajectory with a first passage time for contact formation that is about 4.7 ns. (A) Although
the values of|Rg| are approximately constant,|Ree| fluctuates greatly. (B) Substantial variations inQ1(t) andQN(t) are observed during the looping
dynamics, in which both ends spend a great deal of time on the surface of the globule.
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surmise that looping in poor solvents occurs by a diffusive,
reptation-like mechanism, provided entanglement effects are
negligible.

3.3. Separating the Equilibrium Distribution P(Ree) and
Diffusive Processes in Looping Dynamics.The results in the
previous section suggest a very general mechanism of loop
closure for interacting chains. The process of contact formation
for a given trajectory depends on the initial separationRee, and
the dynamics of the approach of the ends. Thus,τc should be
determined by the distribution ofP(Ree) (an equilibrium
property) and an effective diffusion coefficientD(t) (a dynamic
property). We have shown for the Rouse model that such a
deconvolution into equilibrium and dynamical parts, which is
in the spirit of the SSS approximation, is accurate in obtaining
τc for a wide range ofN and a/b. It turns out that a similar
approach is applicable to interacting chains as well.

The decomposition of looping mechanisms into a convolution
of equilibrium and dynamical parts explains the large differences
in τc as the solvent quality changes. We find, in fact, that the
equilibrium behavior of the endpoints dominates the process
of loop formation, with the kinetic processes being only weakly

dependent on the solvent quality for short chains. In Figure 7A,
we plot the end-to-end distribution function for weakly (âεLJ

) 0.4) and strongly (âεLJ ) 1) hydrophobic polymer chains.
The strongly hydrophobic chain is highly compact, with a
sharply peaked distribution. The average end-to-end distance
is significantly lower than is the weakly hydrophobic case. While
the distribution function is clearly strongly dependent on the
interactions, the diffusion coefficientD(t) is only weakly
dependent on the solvent quality (Figure 7B). The values of
D(t) ) 〈δRee

2 〉/6t are only reduced by a factor of about 2
between theâεLJ ) 0.1 (good solvent, with a globally swollen
configuration) and theâεLJ ) 1.0 (poor solvent, with a globally
globular configuration) on intermediate time scales. We note,
in fact, that the good solvent andΘ solvent cases have virtually
identical diffusion coefficients throughout the simulations
(Figure 7B). This suggests that the increase inτc (Figure 4)
between the Rouse chains and the good solvent chains is
primarily due to the broadening of the distributionP(Ree), that
is, the significant increase in the average end-to-end distance
in the good solvent case,〈Ree

2 〉 ∼ N2ν, with ν ) 3/5.

Figure 7. (A) Distribution of end-to-end distances for a weakly (âεLJ ) 0.4) and strongly (âεLJ ) 1.0) hydrophobic chain. (B) Diffusion constant
Dee(t) in units of D0 for varying solvent quality. The diffusion constant is defined usingDee(t) ) 〈δRee

2 (t)〉/6t. The values ofεLJ are shown in the
inset.
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Because of the weak dependence of the diffusion coefficient
on the solvent quality, the loop closure time is dominated
primarily by the end-to-end distribution function. In other words,
the equilibrium distribution functionP(Ree), to a large extent,
determinesτc. To further illustrate these arguments, we find
that if we takeD ≈ 2D0 in eq 6 and numerically integrate the
distribution function found in the simulations forN ) 100,
τc(âεLJ ) 1.0) and τc(âεLJ ) 0.4) differ by 2 orders of
magnitude, almost completely accounting for the large differ-
ences seen in Figure 4B between the two cases. Moreover, if
the numerically computed values ofD(t) for long t (t > 0.5 ns
in Figure 7, for example) are used forDee in eq 6, we obtain
values of τc that are in reasonably good agreement with
simulations. The use ofDee ensures that the dynamics of the
entire chain is explicitly taken into account. These observations
rationalize the use ofP(Ree) with a suitable choice ofDee in
obtaining accurate results for flexible as well as stiff chains.33,40

BecauseP(Ree) can, in principle, be inferred from FRET
experiments,41,42 the theory outlined here can be used to
quantitatively predict loop formation times. In addition, FRET
experiments can also be used to assess the utility of polymer
models in describing fluctuations in single-stranded nucleic acids
and polypeptide chains.

3.4. Kinetics of Interior Loop Formation. We computed
the kinetics of contact between beads that are in the chain
interior as a function of solvent quality (Figure 8A) usingN )
32. The mean time for making a contact is computed using the
same procedure as that used for cyclization kinetics. For
simplicity, we only consider interior points that are centered
around the midpoint of the chain. The ratiorl, which measures
the change in the time for interior loop formation relative to
cyclization kinetics, depends onâεLJ and l/N, where l is the
separation between the beads (Figure 8A). The nonmonotonic
dependence ofrl on l in good solvents further shows that asl/N
decreases to about 0.6,rl ≈ 1. The maximum inrl at l/N ≈ 0.9
decreases asâεLJ increases. In the poorest solvents considered
(âεLJ ) 0.8), we observe thatrl only decreases monotonically
with decreasingl/N. Interestingly, in poor solvents,rl can be
much less than unity, which implies that it is easier to establish
contacts between beads in the chain interior than between the
ends. This prediction can be verified in polypeptide chains in
the presence of inert crowding agents that should decrease the
solvent quality. Just as in cyclization kinetics, interior loop
formation also depends on the interplay between internal chain
diffusion that gets slower as the solvent quality decreases and
equilibrium distribution (which gets narrower) of the distance
between the contacting beads.

We also performed simulations forN ) 80 by first computing
the time for cyclizationτc

80. In another set of simulations, two
flexible linkers, each containing 20 beads, were attached to the
ends of theN ) 80 chain. For the resulting longer chain, we
calculatedτl for l ) 80 as a function ofâεLJ. Such a calculation
is relevant in the context of single-molecule experiments in
which the properties of a biomolecule (RNA) is inferred by
attaching linkers with varying polymer characteristics. It is
important to choose the linker characteristics that minimally
affect the dynamic properties of the molecule of interest. The
ratio τl)80/τc

80 depends onâεLJ and changes from 2.6 (good
solvents) to 2.0 under theΘ condition and becomes unity in
poor solvents (Figure 8B). Analysis of the dependence of the
diffusion coefficients of interior-to-interior vectorDij (i ) 20
andj ) 100) and end-to-end vector (of the original chain without
linkers) Dee on solvent conditions indicates that on the time
scales relevant to the loop closure time (analogous toτee for

the Rouse chain),Dij reduces to about half ofDee in good and
Θ solvents, whereas the two are very similar in poor solvents.
The changes in the diffusion coefficient together with the
equilibrium distance distribution explains the behavior in Figure
8B.

4. Conclusions

A theoretical description of contact formation between the
chain endpoints is difficult because of the many-body nature
of the dynamics of a polymer. Even for the simple case of
cyclization kinetics in Rouse chains, accurate results forτc are
difficult to obtain for all values ofN, a, and b. The present
work confirms that, for largeN anda/b > 1, the looping time
must scale asN2, a result that was obtained some time ago using
the WF formalism.3,5 Here, we have derivedτc ∼ N2 (for N .
1 anda g b) by including the full internal chain dynamics within
the simple and elegant SSS theory.4 We have shown that, forN
< 100 and especially in the (unphysical) limita/b < 1, the loop

Figure 8. (A) The ratio rl ) τl/τc as a function of interior lengthl.
Here,τl is the contact formation time for beads that are separated by
l monomers;rl is nonmonotonic for weakly hydrophobic chains but
increases monotonically withl in the poorest solvents. The observed
maxima occur nearl/N ) 0.9. (B) For loop lengthl ) 80, the ratio
τl)80/τc as a function ofâεLJ for a chain with two linkers (each of 20
beads) that are attached to beads 20 and 100. In good solvents, the
interior loop closure kinetics is about 2.5 times slower than the end-
to-end one with the same loop length. In poor solvents, however, there
is virtually no difference between the two.
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closure time isτc ∼ τ0NRτ, with 1.5< Rτ e 2. In this limit, our
simulations show that loop closure occurs in two stages with
vastly differing time scales. By incorporating these processes
into a scale-dependent diffusion coefficient, we obtain an
expression forτc that accurately fits the simulation data. The
resulting expression forτc for a < b (eq 17) contains both the
N3/2 andN2 limits, as was suggested by Pastor et al.28

The values of τc for all N change dramatically when
interactions between monomers are taken into account. In good
solvents,τc ∼ τ0NRτ (Rτ ≈ 2.4) in the range ofN used in the
simulations. Our exponentRτ is in reasonable agreement with
earlier theoretical estimates.7,39 Polypeptide chains in high
denaturant concentrations may be modeled as flexible chains
in good solvents. From this perspective, the simple scaling law
can be used to fit the experimental data on loop formation in
the presence of denaturants using physical values ofτ0. Only
whenN is relatively small (N ≈ 4) will chain stiffness play a
role in controlling loop closure times. Indeed, experiments show
thatτc increases for shortN (see Figure 3 in ref 15) and deviates
from the power law behavior given in eq 7 for allN, which is
surely due to the importance of bending rigidity.

The simulation results forτc in poor solvents show rich
behavior that reflects the extent to which the quality of the
solvent is poor. The poorness of the solvent can be expressed
in terms of

where theΘ solvent interaction strengthâεLJ(Θ) ≈ 0.3 is
determined fromV2 ≈ 0 (Figure 3). Loop closure times decrease
dramatically asλ increases. For example,τc decreases by a factor
of about 100 forN ) 80 asλ increases from 0 to 2.3. In this
range ofN, a power law fit ofτc with N (τc ∼ NRτ) shows that
the exponentRτ depends ofλ. Analysis of the trajectories that
monitor loop closure shows that contact between each end of
the chains is established by mutual, reptation-like motion within
the dense, compact globular phase.

The large variations ofτc as λ changes suggest that there
should be significant dependence of the loop formation rates
on the sequence in polypeptide chains. In particular, our results
suggest that as the number of hydrophobic residues increase,
τc should decrease. Similarly, as the number of charged or polar
residues increase, the effective persistence length (lp) and
interactions can be altered, which in turn could increaseτc.
Larger variations inτc, due to its dependence onlp andN, can
be achieved most easily in single-stranded RNA and DNA.
These arguments neglect sequence effects, which are also likely
to be important. The results in Figure 4B may also be
reminiscent of “hydrophobic collapse” in proteins, especially
asλ becomes large. For largeλ and longN, it is likely that τc

correlates well with time scales for collapse. This scenario is
already reflected inP(Ree) (see Figure 7A). It may be possible
to discern the predictions in Figure 4B by varying the solvent
quality for polypeptides. A combination of denaturants (makes
the solvent quality good) and PEG (makes it poor) can be used
to measuredτc in polypeptide chains. We expect that the
measuredτc should be qualitatively similar to the findings in
Figure 4B.

The physics of loop closure for small and intermediate chain
lengths (N e 300) is rather complicated due to contributions
from various time and length scales (global relaxation and
internal motions of the chains). The contributions from these
sources are often comparable, making the process of looping

dynamics difficult to describe theoretically. A clear picture of
the physics is obtained only when one considers all possible
ranges of the parameters entering the loop closure time equation.
To this end, we have explored wide ranges of conceivable
parameters, namely, the chain lengthN, capture radiusa, and
conditions of the solvents expressed in terms ofεLJ. By
combining analytic theory and simulations, we have shown that,
for a givenN, the looping dynamics in all solvent conditions is
primarily determined by the initial separation of the endpoints.
The many-body nature of the diffusive process is embodied in
D(t), which does not vary significantly asλ changes for a fixed
N. Finally, the dramatic change inτc as λ increases suggests
that it may be also necessary to include hydrodynamic interac-
tions, which may decreaseτc further, to more accurately obtain
the loop closure times.
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5. Appendix A

Friedman and O’Shaughnessy43 (FO) generalized the concept
of the exploration of space suggested by de Gennes44 to the
cyclization reaction of polymer chains. The arguments given
by de Gennes and FO succinctly reveal the conditions under
which local equilibrium is appropriate in terms of properties of
the polymer chains.

First, de Gennes introduced the notion of compact and
noncompact exploration of space associated with a bimolecular
reaction involving polymers. Tertiary contact formation is a
particular example of such a process. Consider the relative
position between two reactants on a lattice with the lattice
spacinga. The two reactants explore the available conforma-
tional space until their relative distance becomes less than the
reaction radius. One can define two quantities relevant to the
volume spanned prior to the reaction. One comes from the actual
number of jumps on the lattice defined asj(t), which is directly
proportional tot. If the jump is performed in ad-dimensional
lattice, the actual volume explored would beadj(t). The other
quantity comes from the root-mean-square distance. Ifx(t) ∼
tu is the root-mean-square distance for one-dimension,xd(t) is
the net volume explored. The comparison between these two
volumes defines the compactness in the exploration of the space.
(i) The casexd(t) > adj(t) corresponds to noncompact exploration
of the space (ud > 1). (ii) The regimexd(t) < adj(t) represents
compact exploration of the space (ud < 1). Depending on the
dimensionality, the exploration of space by the reactive pair in
the bimolecular reaction is categorized either into noncompact
(d ) 3) or into compact (d ) 1) exploration. In the case of
noncompact exploration, the bimolecular reaction takes place
infrequently, so that the local equilibrium in solution is easily
reached. The reaction rate is simply proportional to the
probability that the reactive pair is within the reaction radius,
so thatk ∼ peq(r < r0), which eventually leads tok ) 4πσD,
the well-known steady-state diffusion-controlled rate coefficient.
It can be shown thatk ∼ tud-1 in the case of compact exploration.

In the context of polymer cyclization, the compactness of
the exploration of space can be assessed using the exponentθ
) (d + g)/z, whereg is the correlation hole exponent andz is
the dynamic exponent, such thatr ∼ t1/z. Since45,46

λ )
εLJ - εLJ(Θ)

εLJ(Θ)
(23)

lim
rf0

peq(r) ∼ 1

Rd ( r
R)g
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whereR ) Ree. The cyclization rate can be approximated byk
∼ (d/dt) ∫ddrpeq(r), and it follows thatk ∼ (d/dt)(r/R)d+g. The
relationsr ∼ t1/z and R ∼ τ1/z lead tok ∼ (1/τ)(t/τ)((d+g)/z)-1,
whereτ is the characteristic relaxation time.

(1) If θ > 1, then the cyclization rate is given byk ∼ peq(r
) r0) ∼ (1/Rd)f(r/R). which, with R ∼ Nν, leads to the scaling
relation

(2) If θ < 1, the compact exploration of conformations
occurs between the chain ends. As a result, the internal modes
are not in local equilibrium. In this case,τc ∼ τR ∼ Rz, where
z ) 2 + (1/ν) is the dynamic exponent for free-draining
case andz ) d when hydrodynamic interactions are in-
cluded.34,45 Therefore, the scaling law for the cyclization rate
is given by

The inference about the validity of local equilibrium, based on
θ, is extremely useful in obtaining the scaling laws for polymer
cyclization, eqs 24 and 25. Extensive Brownian dynamics
simulation by Rey et al.47 have established the validity of these
scaling laws. The expected scaling laws for three different
polymer models are discussed below.

Free-Draining Gaussian Chain (d ) 3, g ) 0, z ) 4, ν )
(1/2)); θ ) 3/4 < 1. Becauseθ < 1, the local equilibrium
approximation is not valid for a “long” free-draining Gaussian
chain or, equivalently, the Rouse model. Accordingly, we expect
τc ∼ N2 for the Rouse chain forN . 1. However, ifN is small
and the local equilibrium is established among the internal Rouse
modes so thatτc . τR, the scaling relation change fromτc ∼
N2 to ∼ Nrτ, with Rτ < 2. The simulations shown here and
elsewhere28 and the theory by Sokolov6 explicitly demonstrate
thatRτ can be less than 2 for smallN. In this sense, the looping
time of the free-draining Gaussian chain of finite size is bound
by25,33 τSSS< τc < τWF.

Free-Draining Gaussian Chain with Excluded Volume
(d ) 3, g ) (γ - 1)/ν ) 5/18,z ) 11/3,ν ) 3/5); θ ) 59/66
< 1. From eq 25, it follows thatτc ∼ N2.2. This polymer
model has been extensively studied using Brownian dynam-
ics simulation, and the value of the scaling exponent 2.2
has been confirmed by Vologodskii.31 The value of the ex-
ponent (2.2) is also consistent with previous theoretical predic-
tions.7,39

Gaussian Chain with Excluded Volume and Hydrody-
namic Interactions (d ) 3, g ) 5/18, z ) 3, ν ) 3/5); θ )
59/54 > 1. Since θ > 1, the local equilibrium approxi-
mation is expected to hold. This polymer model corresponds
to the flexible polymer in a good solvent. The incorporation of
hydrodynamic interactions may assist the fast relaxation of the
rapid internal modes and changes the nature of the cyclization
dynamics from a compact to a noncompact one. The correct
scaling law is predicted to beτc ∼ N2.0. Since the local
equilibrium approximation is correct, the first passage time
approach4 should give a correct estimate ofτc only if the
effective potential of mean force acting on the two ends of the
chain is known.

6. Appendix B

In formulating the fluctuations of the end-to-end distance
vector,〈δRee

2 〉, it is important to take into account the failings
of the continuum model of the freely jointed chain. A simple

calculation of 〈δRee
2 (t)〉 with Ree(t) ) r (N,t) - r (0,t) as

determined from eq 1 gives

We will refer to this result as the standard analytic average.
However, the nonphysical boundary conditions imposed on the
continuum representation, with∂r/∂s ≡ 0 at the endpoints, will
strongly affect the accuracy of this result.

To minimize the effect of the boundary conditions on
averages involving the end-to-end distance, we compute aver-
ages with respect to the differences between the centers of mass
of the first and last bonds using

We will refer to this as the center of mass average. Using this
representation,〈δRee

2 (t)〉 is given in eq 4.
We fit the time-dependent diffusion coefficent (defined in

eq 5), measured in simulations withN ) 19 andb ) 0.39, using
both the standard analytic average (eq 29) and the center of
mass average (eq 4), with the Kuhn lengthb taken as a fitting
parameter for both average techniques. The results are shown
in Figure 9. The center of mass average, which fits the data
quite well, has a best fit ofb ) 0.41 (a difference of 5%),
whereas the standard average does not give accurate results.
For this reason, all averages involvingRee are computed using
the center of mass theory.

7. Appendix C

The relation between the mean first passage timeτ and the
probability Σ(t) that at timet the system is still unreacted is
exact

for any form ofΣ(t) for which Σ(0) is finite and

Figure 9. Measured diffusion coefficient as a function of time for the
Rouse chain withN ) 19 andb ) 0.39 nm. Symbols are the simulation
data, the dashed line (analytic average) is obtained using eqs 29 and 5
(with best fit ofb ≈ 0.26 nm), and the solid line is the center-of-mass
average derived using eqs 4 and 5 (with best fit ofb ≈ 0.41 nm).

〈δRee
2 (t)〉 ) 16Nb2 ∑

n odd

1

n2π2
(1 - e-n2t/τR) (29)

Ree(t) ≈ ∫N-1

N
ds r (s,t) - ∫0

1
ds r (s,t) (30)

τ ) ∫0

∞
Σ(t)dt (26)

lim
tf∞

tΣ(t) ) 0

τc ∼ Nν(d+g) (24)

τc ∼ Nzν (25)
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Therefore, the stricter requirement thatΣ(t) ∼ exp(-t/τ) in the
original SSS paper4 is not required.

We defineF(t), the flux (or density) of passage, asF(t) ≡
-∂Σ(t)/∂t. The mean first passage time is

Performing integration by parts gives

By definition, Σ(t) must be finite, and hence,tΣ(t) ) 0 at t )
0. If Σ(t) is such that it vanishes att f ∞ faster thant-1, then
the first term in eq 28 vanishes, and we are left with eq 26.
Note that these are also necessary and sufficient conditions for
τ in eq 26 to be finite.
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τ ) ∫0

∞
tF(t)dt ) ∫0

∞
t(-

∂Σ(t)
∂t )dt ) -∫0

∞
tdΣ(t) (27)

τ ) -tΣ(t)|0∞ + ∫0

∞
Σ(t)dt (28)
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