
RESEARCH ARTICLE

Chain organization of human interphase

chromosome determines the spatiotemporal

dynamics of chromatin loci

Lei LiuID
1, Guang ShiID

2, D. Thirumalai3, Changbong HyeonID
1*

1 Korea Institute for Advanced Study, Seoul, Korea, 2 Biophysics Program, Institute for Physical Science and

Technology, University of Maryland, College Park, MD, USA, 3 Department of Chemistry, The University of

Texas at Austin, Austin, TX, USA

* hyeoncb@kias.re.kr

Abstract

We investigate spatiotemporal dynamics of human interphase chromosomes by employing

a heteropolymer model that incorporates the information of human chromosomes inferred

from Hi-C data. Despite considerable heterogeneities in the chromosome structures gener-

ated from our model, chromatins are organized into crumpled globules with space-filling

(SF) statistics characterized by a single universal scaling exponent (ν = 1/3), and this expo-

nent alone can offer a quantitative account of experimentally observed, many different fea-

tures of chromosome dynamics. The local chromosome structures, whose scale

corresponds to that of topologically associated domains (� 0.1 − 1 Mb), display dynamics

with a fast relaxation time (≲ 1 − 10 sec); in contrast, the long-range spatial reorganization

of the entire chromatin (≳ Oð102ÞMb) occurs on a much slower time scale (≳ hour), provid-

ing the dynamic basis of cell-to-cell variability and glass-like behavior of chromosomes. Bio-

logical activities, modeled using stronger isotropic white noises added to active loci,

accelerate the relaxation dynamics of chromatin domains associated with the low frequency

modes and induce phase segregation between the active and inactive loci. Surprisingly,

however, they do not significantly change the dynamics at local scales from those obtained

under passive conditions. Our study underscores the role of chain organization of chromo-

some in determining the spatiotemporal dynamics of chromatin loci.

Author summary

Chromosomes are giant chain molecules made of hundreds of megabase-long DNA inter-

calated with proteins. Structure and dynamics of interphase chromatin in space and time

hold the key to understanding the cell type-dependent gene regulation. In this study, we

establish that the crumpled and space-filling (SF) organization of chromatin fiber in the

chromosome territory, characterized by a single scaling exponent, is sufficient to explain

the complex spatiotemporal hierarchy in chromatin dynamics as well as the subdiffusive

motion of the chromatin loci. While seemingly a daunting problem at a first glance, our
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study shows that relatively simple principles, rooted in polymer physics, can be used to

grasp the essence of dynamical properties of the interphase chromatin.

Introduction

The three dimensional (3D) structures of chromosome vary with the developmental stage [1]

and cell types, which implies that knowledge of chromosome structure and dynamics is key to

understanding their link to gene regulation [2]. A well-designed chromosome structure can

facilitate long range transcriptional regulation by keeping two distal genomic loci of enhancer

and promoter in proximity [3–5]. Hierarchical organization of chromosomes are inferred

from the patterns of Hi-C maps which measure mean contact frequencies of cross-linking

between DNA segments based on an ensemble of millions of fixed cells. Chromosomes at� 5

Mb resolution are partitioned into alternating A and B type compartments that are enriched

with active and inactive loci, respectively [6]. Hi-C data at submegabase resolution offer

glimpses into the structure of TADs (topologically associated domains), the functional build-

ing blocks of interphase chromosome [7, 8]. Genome-wide Hi-C maps at even higher resolu-

tion of� Oð10Þ Kb suggests that each type of compartment is associated with distinct

epigenetic pattern, further segregating into six sub-compartments [9]. In addition, fluores-

cence images visualizing real-time chromatin dynamics in vivo [10–13] allow us to decipher

the link between structure, dynamics, and function [14–16].

Along with the above-mentioned knowledge from measurements, extensive effort has also

been made in developing polymer models for the 3D organization of chromosomes [17–23]

and their dynamics [24–30]. For example, ‘strings and binders switch (SBS)’ model, originally

proposed to explain many generic behaviors of chromatin within living cells [19], has recently

been further extended to explore the hierarchical chromosome structures [31] and the effects

of structural variants on chromatin architecture [23]. More recently, chromatins have been

modeled as a block polymer condensed by bivalent or multivalent binding factors, mimicking

the binding of transcription factors; while mainly focusing on structural properties, the model

has shown how an extended chain is collapsed, and discuss how domains are formed [32]. The

loop extrusion polymer model [20, 21], based on the knowledge of the convergent orientation

of the CTCF-binding motifs, has been used to explain the formation of TADs and predict the

contact maps of edited genomes upon deletion of CTCF-binding sites [20, 21]. There is also a

growing trend to integrate the data from Hi-C, fluorescence in situ hybridization (FISH), and

epigenetic states into a block copolymer-type model in order to more realistically design 3D

chromosome structures and their role in biological function [33–39]. However, homopolymer

models with geometrical and topological constraints alone [6, 28, 40–43] may suffice in captur-

ing some of the physical bases of chromosome organization.

The primary aim of this study is to elucidate the principles underlying the intra-chromo-

somal dynamics in space and time, which has been underappreciated in theoretical and

computational studies than the problem of inferring chromosome structure from Hi-C data. A

heterogeneous population of conformational ensemble of chromosomes was generated by

using one of the recently proposed heteropolymer models,—Minimal Chromatin Model

(MiChroM)—whose parameters were trained for the Hi-C data of chromosome 10 (Chr10)

from human B-lymphoblastoid cell [22]. To study dynamics of chromosomes we modified the

original MiChroM, which is partially self-avoiding with an energetic penalty for each crossing,

by imposing a strict self-avoidance constraint and performed Brownian dynamics simulations.

Discussing their dynamic properties using various correlation functions, we show that the
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basic features of the chromatin dynamics reported in the recent experiments [44, 45] can be

explained quantitatively by the crumpled, hierarchical, territorial, summarized as space-filling

organization of chromatin chain. Finally, by incorporating active noises onto active loci, we

investigate the contribution of activity to the dynamic properties of the interphase chromatin.

Results

Heteropolymer model for chromosome

We use MiChroM [22], a 3D coarse-grained heteropolymer model, to study chromosome

dynamics at genomic scales greater than 50 Kb. In the model one of the 6 subcompartment

types (B3, B2, B1, NA, A1, and A2) (see the color barcode above Fig 1A), determined based on

the correlation between the distinct patterns of interchromosomal contacts and epigenetic

information [9], is assigned to each monomer representing 50 Kb of DNA segment. In the Hi-

C map, potential binding sites for CTCF [20] display higher contact frequencies than their

local background. The interactions for chromosome are implemented in the model in terms of

the energy potentials of (i) a homopolymer, (ii) monomer type dependent interactions, (iii)

attractions between loop sites, and (iv) genomic distance-dependent condensation energies

(See SI for details). We note that due to intra-chromosomal interactions, the effect of the con-

fining sphere used in this model, which gives rise to a volume fraction of 10% (ϕ = 0.1), is not

significant enough to alter the chromosome structure and dynamics [28].

To generate a conformational ensemble of chromosomes, we used the low friction Langevin

simulation [46] (see S1 Text) and sampled the folded conformations of chromosome by col-

lapsing an ensemble of extended chromatin chains. The conformational ensemble of Chr10,

resulting from the enhanced sampling of chromosome conformation, produces a checker-

board pattern which resembles that of the Hi-C contact map [9] (Fig 1A), and it displays the

Fig 1. Conformational ensemble of chromosome 10 of human B-lymphoblastoid cells generated from simulations. (A) The contact

frequency map from the ensemble of structures generated using MiChroM (upper right corner) generates the overall checkerboard pattern

of Hi-C map (lower left corner). The 6 subcompartment types assigned to chromosome loci are depicted on the top. (B) The dendrogram

represents the outcome of hierarchical clustering of the ensemble of structures obtained from conformational sampling. Each terminal

branch at DRMS = 3.3 a represents the ensemble of structures that can be clustered with the condition of DRMS< 3.3 a. The distance

(DRMS) between the two distinct structures k and l is given by Dk;l (Eq 1), and the distance between two clusters K and L is defined as the

maximum distance between two conformations, each belonging to the two clusters, i.e., maxk2K;l2LfDk;lg. Among the clusters whose inter-

cluster distance is smaller than Dc ¼ 4:5a, the centroid structures (kc 2 K), which minimize
P

kc ;k2K
Dkc ;k

, are depicted in rainbow coloring

scheme. As suggested by the contact map of each chromosome structure shown at the bottom, the centroid structure of each cluster is

distinct from each other. We have selected these five structures as the initial conformations for generating trajectories for dynamic

simulations of chromosomes.

https://doi.org/10.1371/journal.pcbi.1006617.g001
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hallmark of space-filling (SF) statistics, i.e., the characteristic scaling of contact probability

P(s)� s−1 over the intermediate range of genomic distance 1< s< 10 Mb (S1B Fig). The dis-

tribution of Alexander polynomial, |Δ(t = −1)| [47](S1D Fig), which characterizes the amount

of chain entanglement, has the highest mode at |Δ(t = −1)|� 0, which indicates that the major-

ity of chromosome conformations are free of knots. According to the radial distributions of

monomers belonging to the different subcompartment types [22, 48], the condensed and tran-

scriptionally inactive loci are buried inside the chromosome, whereas the open and active loci

are distributed near the chromosome surface, which is presumably needed to increase the

accessibility to transcription factors (S1E and S1F Fig).

Because of the nature of frustrated interactions in the heteropolymer model, substantial het-

erogeneity is expected for the structural ensemble; thus rigorous conformational sampling is

not easy to achieve. Nonetheless, the resulting heterogeneity of conformational ensemble can

be visualized using clustering analysis over the structures generated. In order to quantify the

(dis)similarity between two conformations and to perform the clustering analysis for the struc-

tures, we use the distance-based root-mean-square deviation (DRMS, D),

Da;b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

NðN � 1Þ

X

i>j

ðrai;j � rbi;jÞ
2

s

: ð1Þ

If DRMS of two distinct chromosome structures, say α and β, is smaller than a cut-off value Dc

such that Da;b < Dc, we consider them similar and group them together into the same cluster.

By repeating this grouping process with increasing value of Dc we clustered the chromosome

structures hierarchically; the result is summarized into a dendrogram (Fig 1B and S2 Fig).

When Dc reaches hDi � 4:5a, which corresponds to the average DRMS, the distinction

between the structures belonging to different clusters or between their contact maps becomes

clear (Fig 1B). We will show that the transformation of a conformation in one cluster to those

in another cluster beyond the value of DRMS greater than hDi is dynamically a very slow pro-

cess. Partitioning of the conformations into distinct clusters is a first indication that the config-

urational space of chromosome is rugged, suggestive of the cell-to-cell variability discovered in

the recent single-cell Hi-C data [5, 49, 50].

Dynamics of chromatin loci probed with mean square displacement

The time-averaged mean square displacement (MSD) is a routinely calculated quantity in ana-

lyzing the dynamics of cellular constituents in live cell imaging experiments as well as in chro-

mosome studies [44, 51, 52].

The time-averaged MSD for i-th locus is defined as

MSDiðtÞ ¼ hj~riðt0 þ tÞ � ~riðt0Þj
2
it0 ¼

1

tmax� t

R tmax� t
0

dt0j~riðt0 þ tÞ � ~riðt0Þj
2
, where τmax

(= 4 × 104τBD� 0.5 hour: see Methods) is the longest simulation time. The loci-averaged MSD

is then obtained by summing over the loci as MSDðtÞ ¼
PN

i¼1
MSDiðtÞ=N. Substantial dynam-

ical heterogenetiy is present in MSDiðtÞ for different i (the inset of Fig 2A and S3 Fig). As a

result, the dynamics of individual loci is characterized with a different scaling exponent β at

long time (see S3 Fig). Dynamics of individual locus, quantified in terms of MSDiðtÞ depends

on the position of locus and varies from one trajectory to another. Nevertheless, the diffusion

of chromatin loci is on average characterized by three different time regimes (Fig 2A). (i) At

short times (t< 10−2τBD), the loci diffuse freely with MSD� t. (ii) At the intermediate times,

corresponding to the Brownian time t� τBD� a2/D, each locus starts to feel the influence of

adjacent loci. (iii) For t> 103 τBD, a subdiffusive behavior of MSD� tβ with β� 0.4, spanning

Spatiotemporal dynamics of chromatin loci
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at least 2–3 orders of time interval, is observed (Fig 2A). This exponent is in line with the

reported values of β = 0.38� 0.44 [45] and β = 0.4� 0.7 [13] from live human cells.

As discussed in other studies [45, 53], the exponent β = 0.4 of loci-averaged MSD at

t> 103τBD can be rationalized using the following argument. The spatial distance (R) between

two loci separated by the curvilinear distance, s, satisfies R(s)� sν, where ν, the scaling expo-

nent [42, 54], is ν = 1/2 for the ideal chain obeying the random walk statistics, and ν = 1/3 for

the space-filling (SF) chain for crumpled globules. Notice that the MSD of a locus in a chain

segment of arc length s scales with time t as MSD� tβ� D(s) × t� Do × t/s, where the scaling

relationship of the diffusion constant of freely draining chain D(s)� Do/s is used. Meanwhile,

the space taken up by the chain segment of arc length s is described by the relation of MSD�

R2(s)� s2ν. These two relations of MSD allow us to relate s with t as s� tβ/2ν, and it follows

that MSD� tβ� t1−β/2ν, which leads to β = 2ν/(2ν + 1) [45, 53]. Thus we obtain

MSDðtÞ � t 2n
2nþ1: ð2Þ

The SF organization of chromosome at intermediate scales (1� s< N2/3) implies ν = 1/3, and

hence β = 0.4. A similar argument was used to explain the growth of MSD(t) in an entirely dif-

ferent model [39]. Other theories [45, 55] and a modeling study [26], which consider interac-

tions to maintain the compactness of the chain structure, lead to the same conclusion.

Meanwhile, a high-throughput measurement of chromatin motion tracking has shown

MSD� t0.5 for yeast chromosomes [11]. Evidently, MSD� t1/2 for ν = 1/2 from Eq 2, and it is

well known that yeast chromosomes obey the random walk statistics (R(s)� s1/2 and P(s)�
s−3/2), indicative of ν = 1/2. Therefore, the diffusion exponent of chromosome loci reflects the

effect of chain organization of chromatin in chromosome structure [45, 53, 55].

The loci-averaged MSD(t) is used as a handy probe for chromatin dynamics in experiments

[45, 53, 55]. However, when a polymer is extraordinarily long just like in the problem of chro-

matin chain, MSDiðtÞ of the i-th locus of even a homopolymer depends critically on the posi-

tion of the locus and its motion exhibit its characteristic scaling behavior at different time

Fig 2. Subdiffusive behavior of chromatin loci. (A) Loci- and time-averaged MSD generated from a single time

trajectory in a log-log plot (Inset displays the time-averaged MSD for individual loci, color-coded by a normalized

monomer index i/N.). (B) Time-averaged MSD of the midpoint monomer MSDN=2
, and the center of mass of the

whole chain MSDcom in a log-log plot. The horizontal dashed line labels the mean square end-to-end distance hR2
eei

(= 62.7 ± 0.9 a2) of the chromatin chain. Conversion to the physical time can be made using τBD� 50 ms.

https://doi.org/10.1371/journal.pcbi.1006617.g002
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regimes with various crossovers [26, 27, 56–58]. The scaling behavior of MSDiðtÞ for different

loci (different i) at different time regimes can be used to disentangle the dynamics of a

polymer chain, e.g., the diffusion time along the tube that can be hypothesized in melt-like

dense polymer environment (te ¼ N2
e =W), Rouse relaxation time (τR = N2/W), and reptation

time (τN = N3/NeW), where Ne and W denotes the entanglement length and diffusivities of

polymer segments, respectively. A test polymer chain of length N in a highly entangled equilib-

rium melt (Ne< N) [56–58], exhibits scale-dependent dynamics with multiple crossovers:

MSDN=2
� t1=2; MSDcom � t for t < te;

MSDN=2
� t1=4; MSDcom � t1=2 for te < t < tR;

MSDN=2
� t1=2; MSDcom � t for tR < t < tN ;

MSDN=2
� t; MSDcom � t for tN < t:

ð3Þ

where the behaviors of time-averaged MSDs were given for the mid-point monomer (i = N/2)

and the center of mass (i = com). Our chromosome model differs from polymer melts and

thus the above scalings of MSDiðtÞ for an ideal test chain (ν = 1/2) in polymer melts in princi-

ple do not apply to our chromosome model comprised of non-ideal subchains (ν = 1/3). Never-

theless, the crossover behaviors at distinct characteristic times (τe, τR, τN) discussed in Eq 3 is

still be of great use to illuminate the dynamics of our chromosome model.

Two points are worth making. (i) The distribution of Alexander polynomial indicates that

our chromatin chain is rarely entangled (S1D Fig). Thus τe is not a quantity relevant to our

chromosome model. Furthermore, MSDcom � t for the entire simulation time (Fig 2C), which

is also an indication of the absence of the crossover. (ii) For an ideal Rouse chain, the chain

relaxation time (the Rouse time, τR) can be estimated from MSDcom ¼ hR
2
eei at t = 3τR/4, where

hR2
eei is the mean square end-to-end distance of the chain [57, 58]. In our case, MSD of ‘com’

still has not reached hR2
eei even at the maximum simulation time, i.e.,

MSDcomðt ¼ tmaxÞ < hR2
eei, which indicates that the total simulation time of our study is still

shorter than the Rouse relaxation time (τmax < τR).

Taken together, the two critical time scales for equilibration, the reptation and Rouse relax-

ation times, of our model are substantially longer than the typical time scales relevant for cellu-

lar processes such as cell doubling times (see below). The global dynamics of chromosomes are

not only heterogeneous but also are too slow for a full equilibration. Thus, it is reasonable to

view that chromosome dynamics is sluggish, glass-like and occurs out of equilibrium.

Correlated loci motion in space and time

Correlation functions are a general tool to study the dynamics of complex systems [59], and

have been used in experimental analysis of genomes or chromosomes [10, 12, 60, 61]. Here,

we adopt this strategy to study the spatio-temporal dynamics of our chromosome model.

Recently, displacement correlation spectroscopy (DCS) using fluorescence has been

employed to study the dynamics of whole chromosomes in the nucleus, revealing that coherent

motion of the μm-sized chromosome territories could persist for μs to tens of seconds [10].

We adopted the same approach used in DCS and studied the spatial correlation in the intra-

chromosomal dynamics generated from our simulations. The spatial correlation between

chromatin loci is evaluated using

CDt
s ðrÞ ¼

P
i>j½D~riðt;DtÞ � D~rjðt;DtÞ�dðri;jðtÞ � rÞ

P
i>jdðri;jðtÞ � rÞ

* +

t

; ð4Þ
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which quantifies the displacement correlations between loci separated by the distance r over

the time interval Δt. CDt
s ðrÞ decays more slowly with increasing Δt. The correlation length cal-

culated using lc ¼
R1

0
½CDt

s ðrÞ=C
Dt
s ðaÞ�dr, shows how lc increases with Δt (Fig 3B). To demon-

strate an image of displacement correlation over the structure, we project the displacement

vectors of the monomers near the equator of the confining sphere (−a� z� a) onto the xy
plane, and visualize the dynamically correlated loci moving parallel to each other by using the

vector field with a similar color (see Fig 3C). If Δt< 100 τBD, the spatial correlation of loci

dynamics is short-ranged and the displacement vectors appear to be random. In contrast, mul-

tiple groups of coherently moving loci that form substantially large domains (� 5a� 0.75 μm)

emerge at a longer waiting time (Δt> 500 τBD).

We also calculated CDt
s ðrÞ for the Rouse chain as a reference (see SI). Just like our chromo-

some model, CDt
s ðrÞ for the Rouse chain decays more slowly over the distance r with increasing

Δt (S4A Fig), and the correlation length lc increases monotonically with Δt as well (S4B Fig).

However, this very feature differs from the one observed in the experiment [10] where lc dis-

played nonmonotonic change with Δt. In fact, the experimentally observed nonmonotonic

change of lc is obtained by incorporating active noise to the model, which will be discussed in

the section that follows (see below, Effects of active noise on chromosome dynamics).

In parallel to the spatial correlation functions calculated above, a time-correlation function

that can potentially characterize the chromatin dynamics has recently been proposed [12, 60]

Fig 3. Spatial correlation between loci displacements. (A) Spatial correlation of loci displacements CDt
s ðrÞ (Eq 4)

with varying lag time (Δt). (B) Correlation length lcð¼
R1

0
½CDt

s ðrÞ=C
Dt
s ðaÞ�drÞ as a function of Δt. Visualized on 3D

chromosome structure are the displacement correlations of chromatin loci probed at short and large time gap

(Δt = τBD and 103 τBD) projected onto the xy-plane. The color-code on the structures depicts the azimuthal angle of loci

displacement. (C) The displacement vector of loci in the equator plane are color-coded by direction. In each panel, the

displacement vectors D~rðt ¼ 0;DtÞ are calculated for Δt = 1, 100, 1000 τBD. Direction-dependent color scheme is

depicted on the right.

https://doi.org/10.1371/journal.pcbi.1006617.g003
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for the displacement vectors of the same locus or two distinct loci for varying lag times. How-

ever, we find the resulting time-correlation function (mean velocity auto-correlation function)

is not so informative in the sense that it is barely discernible from that of the ideal Rouse chain

(see S1 Text and S5 Fig for details).

Euchromatin versus heterochromatin dynamics

Diffusion of heterochromatin-rich loci is slower than euchromatin-rich loci [45]. The time-

averaged MSD (MSDi) exhibits substantial dispersion among different loci (Fig 2A inset and

S3 Fig), and the overall mobility of loci depends on the subcompartment types (see Fig 4A). In

our chromosome model we find that the A-type loci, which are less condensed and distributed

closer to the chromosome surfaces, diffuse faster than the B2 and B3 type loci. The dispersion

of MSDi shown in the inset of Fig 2A is the outcome of both different sub-compartment types

and different genomic positions of loci. Although the diffusivity is greater for the active loci,

they still have the same β = 0.4 for t> 103τBD (Fig 4A inset). The relation β = β(ν) = 2ν/(2ν + 1)

suggests that the exponent ν representing the chain organization is the sole determinant of the

diffusion exponent (β) characterizing the global motion. We will show that this conclusion

holds good even in the presence of active noise incorporated into the chromatin dynamics (see

below).

Decomposing the spatial correlation CDt
s ðrÞ into A and A, B and B, or A and B type loci

(S6A Fig), we find that the corresponding correlation length lc of A-type loci is greater than B-

type loci for Δt≳ τBD (Fig 4B). This suggests that the motion of A-type loci is more coherent;

however, this picture changes completely when “activity” is incorporated into the model (see

below).

Relaxation times of chromatin dynamics depend on the length scale

The time evolution of the averaged mean square deviation of the distances between two loci

with respect to the initial value (see Fig 5A and the caption for the definition of δ(t)) was calcu-

lated to discuss the dynamical stability of chromosome structure. Within our simulation time

τmax, the largest value δmax(= 4.0 ± 0.3 a) is smaller than the value, Dc ¼ 4:5 a, which was

Fig 4. Dynamics of different sub-compartment types of loci. (A) Shown are the loci-averaged MSDs of A and B type

loci. The log-log plot in the inset indicates that the diffusion exponent β is effectively identical for the A and B type loci.

The locus-dependent dynamics is provided in S3 Fig. (B) Correlation length as a function of Δt calculated from spatial

correlation functions CDt
s;ABðrÞ, CDt

s;BBðrÞ, CDt
s;AAðrÞ between different types of loci AB, BB, and AA, respectively.

https://doi.org/10.1371/journal.pcbi.1006617.g004
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chosen to define different conformational clusters in Fig 1B. An extrapolation of δ(t) to

dðtcÞ ¼ Dc gives an estimate of τc� 105 × τBD� 1.4 hours, which is a long time scale consider-

ing that most cells of adult mammals spend about 20 hours in the interphase [62].

From the definition of, δ(t), it follows that limt!1hδ(t)i = δeq. Here, δeq is finite, and h� � �i

is an ensemble average, meaningful only if the equilibrium is reached. We estimate δeq assum-

ing that the long time limit of the mean deviation of the distance between two loci is approxi-

mately the mean end-to-end distance between the loci. Thus, lim t!1hðrijðtÞ � rijð0ÞÞ
2
i � R2

ij

where Rij is the mean end-to-end distance between ith and jth loci. For |i − j|� 1, we expect

that R2
ij � a2ji � jj2n. Consequently, δeq can be calculated using d

2

eq ¼
2

NðN� 1Þ

PN� 1

s¼1
ðN � sÞ

R2ðsÞ ¼ 2a2

NðN� 1Þ

PN� 1

s¼1
ðN � sÞs2n. For N = 2712, and with ν = 1/3 we estimate δeq� 9.4 a, which

is greater than the value (δmax� 4.0 a) reached at the longest times (Fig 5A). An upper bound

of δeq for an ideal Rouse chain is 16.4 a (see SI). These considerations suggest that the chromo-

some dynamics falls short of equilibrium on the time scale of a single cell cycle.

Relaxation dynamics of chromatin domain should be scale-dependent, which is quantified

using the time evolution of intermediate scattering function Fk(t) [59, 63], the van Hove corre-

lation function in Fourier space, calculated at different length scale (� 2π/k) (Fig 5B):

FkðtÞ ¼
1

N

X

m

ei~k �~rmðtþt0Þ
X

n

e� i~k �~rnðt0Þ
* +

j~k j

* +

t0

; ð5Þ

where hh. . .i
j~kjit0 is an average over t0 and over the direction of vectors~k with magnitude

kð¼ j~kjÞ. Two points are worth making for Fk(t) at varying k. (i) The chromatin chains at high

wave number (at local scale) relax fast, which implies that chromatin chains are locally fluid-

like (2π/k≲ a). Although the structure of TAD is highly coarse-grained in our study (TADs,

whose median size is 880 Kb [7], is represented by only 18 beads), this fluid-like dynamics at

local scale is in accord with the recent experimental finding on the structural deformation of

chromatin fibers within TADs [8, 64]. (ii) The spatial organizations of chromatin chains over

intermediate to global scales (2π/k� a) are characterized by slow relaxation dynamics. This

scale-dependent relaxation time is reminiscent of a similar finding in random heteropolymers

[65].

Fig 5. Relaxation times of chain conformations. (A) Time evolution of the root mean square distance between a pair

of loci ri,j(t) at time t relative to its initial value (ri,j(0)) averaged over all pairs, defined by δ(t) = [2∑i>j(ri,j(t) − ri,j(0))2/N
(N − 1)]1/2. (B) Normalized intermediate scattering function Fk(t)/Fk(0), with different values of wave number k, were

calculated from BD simulation trajectories of the chromosome. (C) The chain relaxation time (τ) for different wave

number k was estimated by evaluating tk ¼
R1

0
½FkðtÞ=Fkð0Þ�dt.

https://doi.org/10.1371/journal.pcbi.1006617.g005
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Relaxation time (τ) of a subdomain of size ξ = 2π/k is estimated using tk ¼
R1

0
½FkðtÞ=Fkð0Þ�dt,

which can in turn be related to the number of coarse-grained monomers comprising the

subdomain as ξ� 2π/k� sν. Since the chromosome domain loses memory of the initial con-

formation by spatial diffusion (instead of reptation), the relaxation time τ is expected to obey

τ� ξ2/Deff� (sν)2/(D0/s)� s2ν+1, thus τ� s5/3 for the chromosome structure that obeys SF

statistics (ν = 1/3). The size-dependent relaxation times calculated for our chromosome

model indeed scales with the domain size as τ� s5/3 (cyan symbols and solid line in Fig 6C).

Effects of active noise on chromosome dynamics

Effects of biological activities on the chromosome structure, such as ATP hydrolysis-driven

non-conservative forces exerted by cohesins [20], are only implicit in the original MiChroM in

terms of the differential energy parameters for the loci of A, B subcompartment types. Thus, it

could still be argued that such a model misses the most critical component of living systems.

Live cells abound in a plethora of biological activities such as replication, transcription, and

error-correcting dynamics. While these processes produce local directionality, when mapped

onto our model that has coarse-grained 50 Kb of DNA into a single bead, the effects of vecto-

rial forces on the surrounding environment at length and time scales greater than the correla-

tion length and time of active noises can be assumed isotropic. This is supported by Javer et. al.
[66] who also pointed out, by performing an experimental study of locus-dependent diffusion

coefficient in E. coli., that the contribution of “ballistic” motion to MSD beyond the time scale

of seconds is negligible. We study how an increased noise strength on the active loci (A1 and

A2) occupying 40% of loci population for Chr10, which resuts in the breakdown of fluctua-

tion-dissipation theorem [67, 68], affects the dynamical properties of entire chromosome. To

model the active noise, we increased the noise strength from h~RiðtÞ �~Rjðt0Þi ¼ 6Di0dijdðt � t0Þ

to h~RiðtÞ �~Rjðt0Þi ¼ 12Di0dijdðt � t0Þ, following the recent literature [69, 70].

The model that incorporates active noises as described above has led to two important

results. (i) The disproportionate increase in the mobility of A and B type loci promotes the

phase segregation of the two loci types (see Fig 6B, S3 Fig, and compare S1 and S2 Movies).

The active noises push A-type loci towards the surface of the chromosome, and B-type loci are

pulled towards the center to offset this effect. (ii) More quantitatively, we find that the average

MSD of A1 loci exhibits� 70% increase relative to the passive case (Fig 6A left panel), while

the diffusion exponent (β� 0.4 in MSD� tβ) remains unaltered (Fig 6A right panel and S3

Fig). The finding that the inclusion of active noises increases the amplitude of the MSD with-

out altering the diffusion exponent (β� 0.4) is in accord with an experiment on bacterial chro-

mosomes performed with and without ATP depletion [44]. In addition, the finding is

consistent with the MSD data reported for a live human Hela cell [45], where chromatin loci

at the nuclear periphery and interior, corresponding to the heterochromatin and euchromatin,

displayed diffusion exponents β = 0.39 and 0.41, respectively, although the MSD of the

euchromatin was significantly greater. We however also note that the diffusion exponent

β = 0.32 ± 0.03 was reported for the whole genome of ATP-depleted HeLa cells [10], which is

qualitatively different from β� 0.4 (see S1 Text and S8 Fig for detailed analyses of the experi-

mental data reported in [10]).

In terms of Fk(t), the active noises mainly influence the chain relaxation associated with the

low frequency modes. For the high frequency modes or at local length scales (k≳ 2π/3a), Fk(t)
is practically indistinguishable between active and passive cases (S9 Fig). The chromatin seg-

ments in the presence of active noise, on average, relax faster when the size of the segment is

greater than the sub-Mb. A comparison of the relaxation times in Fig 6C under passive and

active conditions highlight this difference.
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Similarly, the effect of active noise on the correlation length (lc) is evident only at a large lag

time (Δt). We find that in contrast to the passive case, lc changes nonmonotonically with Δt.
There is no distinction between the effects of passive and active noises on lc for small Δt; how-

ever, deviation between the two cases becomes evident for Δt≳ 103τBD� 50 sec (Fig 6D).

Importantly, a similar dependence of correlation length on Δt has been discussed in DCS mea-

surement on genome-wide dynamics of live cell [10].

To dissect the contribution from the loci of each subcompartment type in the presence of

active noises, we again calculated the spatial correlation CDt
s;AB, CDt

s;BB, CDt
s;AA (S6B Fig) and the cor-

responding correlation lengths (lc) (Fig 6E). At short time scale (t< 500τBD), A-type loci dis-

play slightly stronger self-correlations than B-type loci. In stark contrast to the passive case

(Fig 4B), however, at Δt> 500τ active noises disturb the spatial correlations between active

loci, which subsequently reduces the correlation of entire structure. Compared to the thermal

noise (Fig 4B), the active noises randomize the global structure of chromatin chain more effi-

ciently, which shortens the correlation length at sufficiently large lag time.

Discussion

Despite a great amount of complexity inherent to its size and heterogeneous interactions that

give rise to various dynamic behaviors at different time and length scale and crossovers,

Fig 6. Effects of active noise on chromosome organization and dynamics. (A) MSD of active and inactive loci

compared with those under passive condition. Log-log plot is shown in the panel on the right. (A) shares the same

legend with (B). (B) Distribution of active (A1) and inactive (B3) loci with and without active noise. In the presence of

active noise, the segregation of active and inactive loci is more evident. (C) Relaxation times estimated from the

intermediate scattering functions. The wave number k was mapped to the corresponding number of loci inside the

volume defined by the wave number. The red star symbols, the relaxation times in the presence of active noise, are

depicted for the comparison with those under passive condition. (D) Correlation lengths for varying Δt calculated

using the loci displacement correlations under passive (Fig 3A) and active (S7 Fig) conditions are compared. (E)

Correlation length calculated for different types of loci from spatial correlation functions, CDt
s;ABðrÞ, CDt

s;BBðrÞ, CDt
s;AAðrÞ, in

the presence of active noises.

https://doi.org/10.1371/journal.pcbi.1006617.g006
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chromatin chain folded into a heterogeneous ensemble of chromosome conformations via

protein mediated interactions can be viewed from a perspective of polymer physics as a very
long heteropolymer chain collapsed in a poor solvent condition [56–58]. Our study highlights

the importance of chromosome architecture in determining the subdiffusive behavior and

dynamic correlations between distinct loci. Most importantly, we have shown that structure
alone explains many of the dynamical features observed in live cell experiments [10, 13, 44,

45]. In other words, conformational properties of chromatin chain dictate the dynamics

of chromosome. Remarkably, several static and dynamic properties of the model, including

R(s)� sν, P(s)� s−3ν, MSD(t)� t2ν/(2ν+1), τ(s)� s2ν+1, and hX2
pi � p� ð1þ2nÞ (~Xp is the p-th

Rouse mode. See S1 Text and S5D Fig for the details) are fully explained by the SF organization

characterized by the single scaling exponent ν = 1/3, offering a unified perspective on the link

between the structure and dynamics of chromosomes.

The relaxation time (τ) of the chromatin domain spans several orders of magnitude

depending on its genomic length (s), satisfying the scaling relation τ� s5/3 (Fig 6C). To be

more concrete (see Fig 6C), while local chromatin domains of size s≲Oð1ÞMb, a scale corre-

sponding to TADs, reorganize on the time scale of t < 103tBD � Oð1Þ seconds, it takes more

than hours to a day for an entire chromosome chain (≳ 100 Mb) to lose its memory of the ini-

tial conformation as long as the chromosomes are in the interphase with no significant vecto-

rial active noises. This timescale of relaxation is expected to increase even further at higher

volume fractions [28]. Under in vivo conditions, with 46 chromosomes segregated into chro-

mosome territories, the time scale for relaxation would be considerable.

The effects of active noise on chromatin dynamics [10, 44] deserve further discussion.

While the isotropic active noises modeled in this study enhance chain fluctuations and struc-

tural reorganization, their effect on chromatin domain manifests itself only on length scales

greater than 5.5 a (� 0.8 μm), and on a time scale greater than 50 sec (Fig 6D). Our finding is

reminescent of the microrheology measurements on active cytoskeletal network [71], where

the effect of myosin activity could be observed only at low frequency regime of the loss modu-

lus. Of course, the active noise in live cell nuclei is still not a scalar, and thus it remains a chal-

lenge to model their vectorial nature in the form of force dipole or vector force in the context

of chromatin dynamics [69]. Vector activities promote super-diffusive motion (MSDi � tb

with 1< β< 2), and could in principle elicit a qualitative change in the dynamical scaling

relations as in the mitotic phase. Still, the dynamic scalings discussed in this study (e.g.,

MSD� t0.4) are in good agreement with those observed in interphase chromatins of live cells

[13, 45]. There could be many different explanation for this observation, but we reason as fol-

lows. In terms of power generated in a cell, the passive (thermal) power Wp� kBT/ps is many

orders of magnitude greater than the active power (e.g., molecular motors, Wa� 20 kBT/10

ms [62]). At least in the interphase, the gap between the total passive and active power is sub-

stantial; the number of active loci (Na) is smaller than the number of passive loci (Np), render-

ing the total passive power much greater than the active power (NpWp� NaWa). Thus, the

total energetic contribution of the biological activities during the interphase to the chromo-

some structure would be insignificant compared to thermal agitation. Taken together, even in

the presence of biological activities, as long as the scaling exponent ν = 1/3 characterizing the

chromosome structure is unaltered, the various dynamical scaling behaviors remain intact.

To recapitulate, we have shown that the SF organization (ν = 1/3) adopted by a block-copol-

ymer type model of chromosome alone suffices to explain many of the experimentally

observed loci dynamics of human interphase chromosomes. The average behaviors of chroma-

tin dynamics that we have drawn here should not depend critically on the details of the chro-

mosome model being used. One should be able to confirm them as long as a chromosome
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designed using those models maintains crumpled architectures displaying SF statistics with

ν = 1/3. On one hand, despite seemingly a daunting problem at first sight, many aspects of

chromosome dynamics can be quantitatively explained and predicted using purely physical

argument based on the basic concepts of polymer physics. This means that if care is taken,

even the dynamics of a highly complex biological object like chromosome can be deciphered

using the physical law as far as the global dynamics averaged over the large ensemble is con-

cerned. On the other hand, experimental measurement should either be made at a higher reso-

lution in space and time or be specific to genomic loci in individual cells, if one were to extract

dynamical information relevant for specific biological function of chromosomes beyond the

fractal dimension of chain organization.

Methods

To build the model of chromosome 10 of human lymphoblastoid cell and study its dynamical

behaviors, we used the energy potentials and parameters of MiChroM, a type of block-copoly-

mer (heteropolymer) model. The coarse graining of chromatin leads to N = 2712 loci with the

diameter of each locus being a� 150 nm, so that a single locus represents 50 Kb of DNA. The

inverse mapping of the Hi-C map to the ensemble of chromosome structures was carried out

by sampling the conformational space using low-friction Langevin simulations [46]. The gen-

erated structures exhibit the characteristic scaling of the contact probability, P(s)� s−1, and

show the spatial distribution of A/B compartment as well as the plaid pattern noted in Hi-C

experiments. Whereas the original study of MiChroM allowed the chain-crossing with an

energetic penalty for the purpose of sampling the conformations whose population reproduces

the Hi-C map, we imposed a strict chain non-crossing constraint on the chromosome struc-

tures and performed Brownian dynamics simulations to study the dynamics of chromatin

when the conformational sampling was completed.

The mapping from simulation times to the physical times deserves a few remarks. The

apparent viscosity of nuclear environment varies among different experimental reports within

an order of magnitude: η = 1–3 cP [72], 3 cP [73], 7 cP [74], and 10 cP was assumed in model-

ing chromosome dynamics [32]. In the model employed in this study, each monomer repre-

sents 50 Kb genomic region, which is mapped to the diameter of a = 150 nm. Assuming that

the nuclear viscosity η = 7 cP, the Brownian time of single particle τBD = 3πηa3/kBT� 50 ms.

Therefore, the longest simulation time in this study τmax = 4 × 104 τBD corresponds to 0.5 hour.

At 0.5 second, MSD measured in the nucleus of HeLa cells is in the range of 0.01–0.015 μm2 in

the experiment (see Fig 2E in Ref. [45]); correspondingly, at t = 10 × τBD� 0.5 second, we get

MSD� 0.96 a2� 0.022 μm2 in our simulation (see Fig 2A). Clearly, they are within the same

order of magnitude. Thus, the estimate of physical time from our simulation results is sufficient

for the present purpose of our study, given that the model itself is significantly coarse-grained.

In comparison to the time scale estimates for chromosome dynamics in other studies [25, 29],

the Brownian time τBD, albeit a large uncertainty, is roughly mapped to 50 ms in physical time

(τBD� 50 ms, which is the value estimated from η� 7 cP and monomer size a = 150 nm.).

Further details of the energy function and simulation algorithm are provided in the Sup-

porting Information (S1 Text).

Supporting information

S1 Text. We provide details for (i) simulation methods, (ii) dynamics of an ideal Rouse

chain, and (iii) discuss possible cause of the deviation of diffusion exponent from β = 0.4

in Ref. [10].

(PDF)
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S1 Fig. Properties of the structural ensemble of Chr10 generated from our simulations. (A)

Heatmap of the contact probability matrix of chromosome 10 from modeling (the upper diag-

onal region) and from Hi-C [9] (the lower diagonal region). For the simulated map, contact

probability between monomers {i, j} was calculated as ci,j = hf(ri,j)i (see Eq S6 in S1 Text). The

experimental map was obtained by KR normalization [75] of the raw contact counts matrix.

(B) Contact probability, PðsÞ ¼
PN� s

i¼1
ci;iþs=ðN � sÞ, as a function of genomic distance, s from

our model (sim) and Hi-C (exp) [9]. (C) The average end-to-end distance with genomic sepa-

ration (s), which obeys Ree(s)� s1/3. For comparison the expected (s1/2) result for a Gaussian

chain is also displayed. (D) Probability distribution of Alexander polynomial |Δ(t)| with t = −1

[47, 76, 77] calculated for the ensemble of chromosome structures generated at end of the con-

formational sampling. From the distribution the average number of crossings in chromosome

structure is |hΔ(−1)i|� 5.2, which allows us to estimate the average arc-length between the

crossings Ne� Na/h|Δ(−1)|i � 520a and thus the entanglement length of Ree(se)� 10.6a. (E)

Normalized radial density distribution [22] of chromatin monomers with different subcom-

partment types, and (F) with low or high gene expression activity indicated by different RNA-

seq signal levels [48]. Rs(� 15a) is the radius of the confining sphere, and ρ0 is the average den-

sity of monomers that depends on the subcompartment type.

(EPS)

S2 Fig. Statistical weights of M clusters determined from two different clustering algo-

rithms. Statistical weights of total M clusters, wðcÞ ¼
PM

k¼1
dðck � cÞ=M, where ck is the cluster

index of conformation k determined by hierarchical clustering algorithm [78] (red) and by

quality threshold algorithm [79] (blue). In hierarchical clustering, a pair of clusters with the

smallest inter-cluster distance was merged together progressively, until a single cluster remains.

In quality threshold algorithm, we defined the diameter of a cluster m as dm ¼ max k;l2mDk;l.

The smallest cluster around every structure k with a diameter of dk> dc (= 4.5) was found.

Then the largest one was removed from the ensemble. This process was repeated until all struc-

tures were clustered. Since it requires a prescribed value of the cut-off diameter dc, and readily

leads to small clusters or singletons, hierarchical clustering method was preferred.

(EPS)

S3 Fig. Locus-dependent diffusion. (A) Diffusion exponents and MSDs calculated for indi-

vidual loci and their distribution when simulations are performed under passive condition.

(left) Diffusion exponent β of the i-th locus, and the corresponding probability density for dif-

ferent types of loci. The exponent was calculated by fitting the time-averaged MSD of the i-th

locus to C × tβ over the range of 103 < t/τBD < 104. (right) MSDi at time t = 20τBD for the i-th

locus, and the corresponding probability density for different types of loci (A-type in red, B-

type in blue). (B) Same as (A) but the simulations were performed under active condition such

that greater noises were added to the active loci. In comparison to the passive case depicted in

(A), the distribution of MSD for active loci (PðMSDiÞ in red) are clearly distinguished from

that for inactive loci (PðMSDiÞ in blue).

(EPS)

S4 Fig. Correlations in an ideal Rouse chain. (A) Spatial correlation of loci displacements

CDt
s ðrÞ with varying lag time (Δt) in an ideal Rouse chain. Symbols represent BD simulation

results by using Eq 4 in the main text, and solid lines are from Equation S16 and S17 in S1

Text. (B) Correlation length lc as a function of the lag time Δt based on BD simulations.

(EPS)
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S5 Fig. Temporal correlation of locus dynamics. (A) �CDt
V;ðm;mÞðtÞ½� CDt

V;ðm;mÞðtÞ=C
Dt
V;ðm;mÞð0Þ� is a

normalized mean velocity autocorrelation calculated for the midpoint monomer. The each

curve represents different lag time, from Δt = 100 τBD (dark) to 6000 τBD (light). (B) Correla-

tion functions with rescaled argument, �CDt
V;ðm;mÞðt=DtÞ. The theoretical curves calculated by

assuming the fractional Langevin motion [60, 61] are plotted. The theoretical curve are:

�CDt
V;ðm;mÞðt=DtÞ ¼ ðjt=Dt � 1j

b
þ jt=Dt þ 1j

b
� 2jt=DtjbÞ=2 with β = 0.4 (green) and β = 0.5

(white dashed line for the Rouse chain). (C) Mean velocity cross-correlation between the mid-

point (i = m = N/2) and others (j), �CDt
V;ðm;jÞðtÞ for increasing lag time Δt = 125, 500, 2000, 3000

τBD from the top to bottom. (D) Scaling relation of Rouse modes Xp with p: hX2
pi � p� a with

α = 1.7 for large p and α = 1.1 for small p.

(EPS)

S6 Fig. Spatial correlation of displacement vectors between two loci types. (A) Spatial corre-

lation of displacements CDt
s ðrÞ of A-type loci (AA), B-type loci (BB), and between A-type and

B-type loci (AB) with varying lag time Δt. (B) Same as (A), but under active condition. The

corresponding correlation lengths lc as a function of lag time are plotted in Figs 4B and 6E,

respectively.

(EPS)

S7 Fig. Spatial correlation of loci displacements CDt
s ðrÞ with varying lag time (Δt) in the

presence of active noise.

(EPS)

S8 Fig. Reanalysis of MSND data of Zidovska et al. (Fig 4G in Ref. [10]). The fits using

MSND ¼ Aþ B� tb0 (units of A and B are in μm2), which was proposed by Zidovska and

coworkers, give rise to A = 0.00326, B = 0.00304, β0 = 0.527 for aphidicolin (cells in S phase);

A = 0.00312, B = 0.00162, β0 = 0.584 for aphidicolin (cells NOT in S phase); A = 0.00350,

B = 0.00255, β0 = 0.573 for α-amanitin; A = 0.00276, B = 0.00322, β0 = 0.515 for ICRF-193;

A = 0.00187, B = 0.00121, β0 = 0.296 for ATP depleted; A = 0.00097, B = 0.00139, β0 = 0.846 for

formaldehyde; A = 0.00326, B = 0.00304, β0 = 0.527 for control. On the other hand, when the

data fitting is performed only over the large Δt regime (Δt> 4 sec), where linear relationship

of MSND and Δt in log-log scale is more obvious, MSND� Δtβ gives the scaling exponents,

which are generally smaller than β0: β = 0.391 for aphidicolin (cells in S phase); β = 0.400 for

aphidicolin (cells NOT in S phase); β = 0.414 for α-amanitin; β = 0.404 for ICRF-193; β = 0.176

for ATP depleted; β = 0.451 for formaldehyde; β = 0.490 for control. As a guide for the eye,

MSND� t0.4 (red line) and� t0.3 (cyan line) are drawn on the graph.

(EPS)

S9 Fig. Comparison between the intermediate scattering functions at varying wave num-

bers (k) under passive and active conditions. When subject to active noise, Fk(t) decays faster

than in their absence for k> 2π/3a. Thus, the relaxation of Chr10 on long length scale is accel-

erated due to active noise.

(EPS)

S1 Movie. Chromosome simulated under passive condition.

(MOV)

S2 Movie. Chromosome simulated under active condition.

(MOV)
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51. Monnier N, Guo SM, Mori M, He J, Lénárt P, Bathe M. Bayesian approach to MSD-based analysis of

particle motion in live cells. Biophys J. 2012; 103(3):616–626. https://doi.org/10.1016/j.bpj.2012.06.029

PMID: 22947879

52. Bronshtein I, Kepten E, Kanter I, Berezin S, Lindner M, Redwood AB, et al. Loss of lamin A function

increases chromatin dynamics in the nuclear interior. Nat Commun. 2015; 6:8044. https://doi.org/10.

1038/ncomms9044 PMID: 26299252

Spatiotemporal dynamics of chromatin loci

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006617 December 3, 2018 18 / 20

https://doi.org/10.1093/nar/gkw135
http://www.ncbi.nlm.nih.gov/pubmed/27060145
https://doi.org/10.1093/nar/gku698
https://doi.org/10.1093/nar/gku698
http://www.ncbi.nlm.nih.gov/pubmed/25092923
https://doi.org/10.1186/s13059-016-0909-0
http://www.ncbi.nlm.nih.gov/pubmed/27036497
https://doi.org/10.1093/nar/gkv100
http://www.ncbi.nlm.nih.gov/pubmed/25690896
https://doi.org/10.1093/nar/gkw437
https://doi.org/10.1093/nar/gkw437
http://www.ncbi.nlm.nih.gov/pubmed/27185892
https://doi.org/10.1073/pnas.1512577113
http://www.ncbi.nlm.nih.gov/pubmed/26951677
https://doi.org/10.1038/srep35985
http://www.ncbi.nlm.nih.gov/pubmed/27786255
https://doi.org/10.1038/s41467-018-05606-6
http://www.ncbi.nlm.nih.gov/pubmed/30089831
https://doi.org/10.1051/jphys:0198800490120209500
https://doi.org/10.1051/jphys:0198800490120209500
https://doi.org/10.1007/s10577-010-9177-0
http://www.ncbi.nlm.nih.gov/pubmed/21274616
https://doi.org/10.1088/0034-4885/77/2/022601
https://doi.org/10.1088/0034-4885/77/2/022601
http://www.ncbi.nlm.nih.gov/pubmed/24472896
https://doi.org/10.1103/PhysRevE.76.051805
https://doi.org/10.1073/pnas.1119505109
https://doi.org/10.1073/pnas.1119505109
http://www.ncbi.nlm.nih.gov/pubmed/22517744
https://doi.org/10.1371/journal.pcbi.1005136
https://doi.org/10.1002/bip.360320610
http://www.ncbi.nlm.nih.gov/pubmed/1643270
https://doi.org/10.1093/bioinformatics/bts299
http://www.ncbi.nlm.nih.gov/pubmed/22611132
https://doi.org/10.1038/nmeth.1226
http://www.ncbi.nlm.nih.gov/pubmed/18516045
https://doi.org/10.1038/nature12593
https://doi.org/10.1038/nature12593
http://www.ncbi.nlm.nih.gov/pubmed/24067610
https://doi.org/10.1038/nmeth.4155
http://www.ncbi.nlm.nih.gov/pubmed/28135255
https://doi.org/10.1016/j.bpj.2012.06.029
http://www.ncbi.nlm.nih.gov/pubmed/22947879
https://doi.org/10.1038/ncomms9044
https://doi.org/10.1038/ncomms9044
http://www.ncbi.nlm.nih.gov/pubmed/26299252
https://doi.org/10.1371/journal.pcbi.1006617


53. Tamm MV, Nazarov LI, Gavrilov AA, Chertovich AV. Anomalous Diffusion in Fractal Globules. Phys

Rev Lett. 2015; 114:178102. https://doi.org/10.1103/PhysRevLett.114.178102 PMID: 25978267

54. Liu L, Hyeon C. Contact statistics highlight distinct organizing principles of proteins and RNA. Biophys

J. 2016; 110(11):2320–2327. https://doi.org/10.1016/j.bpj.2016.04.020 PMID: 27276250

55. Polovnikov KE, Gherardi M, Cosentino-Lagomarsino M, Tamm MV. Fractal Folding and Medium Visco-

elasticity Contribute Jointly to Chromosome Dynamics. Phys Rev Lett. 2018; 120:088101. https://doi.

org/10.1103/PhysRevLett.120.088101 PMID: 29542996

56. de Gennes PG. Reptation of a Polymer Chain in the Presence of Fixed Obstacles. J Chem Phys. 1971;

55(2):572–579. https://doi.org/10.1063/1.1675789

57. Doi M, Edwards SF. The Theory of Polymer Dynamics (International Series of Monographs on Physics).

Oxford University Press; 1988.

58. Paul W, Binder K, Heermann DW, Kremer K. Dynamics of polymer solutions and melts. Reptation pre-

dictions and scaling of relaxation times. J Chem Phys. 1991; 95(10):7726–7740. https://doi.org/10.

1063/1.461346

59. Hansen JP, McDonald IR. Theory of Simple Liquids. 3rd ed. Academic Press; 2006.

60. Weber SC, Theriot JA, Spakowitz AJ. Subdiffusive motion of a polymer composed of subdiffusive

monomers. Phys Rev E. 2010; 82:011913. https://doi.org/10.1103/PhysRevE.82.011913

61. Lampo TJ, Kennard AS, Spakowitz AJ. Physical Modeling of Dynamic Coupling between Chromosomal

Loci. Biophys J. 2016; 110(2):338–347. https://doi.org/10.1016/j.bpj.2015.11.3520 PMID: 26789757

62. Milo R, Phillips R. Cell Biology by the numbers. New York: Garland Science; 2016.

63. Liu L, Pincus PA, Hyeon C. Heterogeneous Morphology and Dynamics of Polyelectrolyte Brush Con-

densates in Trivalent Counterion Solution. Macromolecules. 2017; 50(4):1579–1588. https://doi.org/10.

1021/acs.macromol.6b02685

64. Tiana G, Amitai A, Pollex T, Piolot T, Holcman D, Heard E, et al. Structural Fluctuations of the Chroma-

tin Fiber within Topologically Associating Domains. Biophys J. 2016; 110(6):1234–1245. https://doi.org/

10.1016/j.bpj.2016.02.003 PMID: 27028634

65. Thirumalai D, Ashwin V, Bhattacharjee JK. Dynamics of Random Hydrophobic-Hydrophilic Copolymers

with Implications for Protein Folding. Phys Rev Lett. 1996; 77:5385–5388. https://doi.org/10.1103/

PhysRevLett.77.5385 PMID: 10062790

66. Javer A, Long Z, Nugent E, Grisi M, Siriwatwetchakul K, Dorfman KD, et al. Short-time movement of E.

coli chromosomal loci depends on coordinate and subcellular localization. Nature Commun. 2013;

4:3003. https://doi.org/10.1038/ncomms3003

67. Hwang W, Hyeon C. Quantifying the Heat Dissipation from Molecular Motor’s Transport Properties in

Nonequilibrium Steady States. J Phys Chem Lett. 2017; 8:250–256. https://doi.org/10.1021/acs.jpclett.

6b02657 PMID: 27983853

68. Turlier H, Fedosov DA, Audoly B, Auth T, Gov NS, Sykes C, et al. Equilibrium physics breakdown

reveals the active nature of red blood cell flickering. Nature Physics. 2016; 12(5):513. https://doi.org/10.

1038/nphys3621

69. Bruinsma R, Grosberg AY, Rabin Y, Zidovska A. Chromatin hydrodynamics. Biophys J. 2014; 106(9):

1871–1881. https://doi.org/10.1016/j.bpj.2014.03.038 PMID: 24806919

70. Smrek J, Kremer K. Small activity differences drive phase separation in active-passive polymer mix-

tures. Phys Rev Lett. 2017; 118(9):098002. https://doi.org/10.1103/PhysRevLett.118.098002 PMID:

28306285

71. Mizuno D, Tardin C, Schmidt C, MacKintosh F. Nonequilibrium mechanics of active cytoskeletal net-

works. Science. 2007; 315(5810):370–373. https://doi.org/10.1126/science.1134404 PMID: 17234946

72. Baum M, Erdel F, Wachsmuth M, Rippe K. Retrieving the intracellular topology from multi-scale protein

mobility mapping in living cells. Nat Commun. 2014; 5:4494. https://doi.org/10.1038/ncomms5494

PMID: 25058002

73. Hink MA, Griep RA, Borst JW, van Hoek A, Eppink MHM, Schots A, et al. Structural Dynamics of Green

Fluorescent Protein Alone and Fused with a Single Chain Fv Protein. J Biol Chem. 2000; 275(23):

17556–17560. https://doi.org/10.1074/jbc.M001348200 PMID: 10748019

74. Hajjoul H, Mathon J, Ranchon H, Goiffon I, Mozziconacci J, Albert B, et al. High-throughput chromatin

motion tracking in living yeast reveals the flexibility of the fiber throughout the genome. Genome Res.

2013; 23(11):1829–1838. https://doi.org/10.1101/gr.157008.113 PMID: 24077391

75. Knight PA, Ruiz D. A fast algorithm for matrix balancing. IMA J Numer Anal. 2013; 33(3):1029. https://

doi.org/10.1093/imanum/drs019

76. Vologodskii A, Lukashin A, Kamenetskii M, Anshelevich V. The knot problem in statistical mechanics of

polymer chains. Soviet J Exp Theor Phys. 1974; 39:1059.

Spatiotemporal dynamics of chromatin loci

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006617 December 3, 2018 19 / 20

https://doi.org/10.1103/PhysRevLett.114.178102
http://www.ncbi.nlm.nih.gov/pubmed/25978267
https://doi.org/10.1016/j.bpj.2016.04.020
http://www.ncbi.nlm.nih.gov/pubmed/27276250
https://doi.org/10.1103/PhysRevLett.120.088101
https://doi.org/10.1103/PhysRevLett.120.088101
http://www.ncbi.nlm.nih.gov/pubmed/29542996
https://doi.org/10.1063/1.1675789
https://doi.org/10.1063/1.461346
https://doi.org/10.1063/1.461346
https://doi.org/10.1103/PhysRevE.82.011913
https://doi.org/10.1016/j.bpj.2015.11.3520
http://www.ncbi.nlm.nih.gov/pubmed/26789757
https://doi.org/10.1021/acs.macromol.6b02685
https://doi.org/10.1021/acs.macromol.6b02685
https://doi.org/10.1016/j.bpj.2016.02.003
https://doi.org/10.1016/j.bpj.2016.02.003
http://www.ncbi.nlm.nih.gov/pubmed/27028634
https://doi.org/10.1103/PhysRevLett.77.5385
https://doi.org/10.1103/PhysRevLett.77.5385
http://www.ncbi.nlm.nih.gov/pubmed/10062790
https://doi.org/10.1038/ncomms3003
https://doi.org/10.1021/acs.jpclett.6b02657
https://doi.org/10.1021/acs.jpclett.6b02657
http://www.ncbi.nlm.nih.gov/pubmed/27983853
https://doi.org/10.1038/nphys3621
https://doi.org/10.1038/nphys3621
https://doi.org/10.1016/j.bpj.2014.03.038
http://www.ncbi.nlm.nih.gov/pubmed/24806919
https://doi.org/10.1103/PhysRevLett.118.098002
http://www.ncbi.nlm.nih.gov/pubmed/28306285
https://doi.org/10.1126/science.1134404
http://www.ncbi.nlm.nih.gov/pubmed/17234946
https://doi.org/10.1038/ncomms5494
http://www.ncbi.nlm.nih.gov/pubmed/25058002
https://doi.org/10.1074/jbc.M001348200
http://www.ncbi.nlm.nih.gov/pubmed/10748019
https://doi.org/10.1101/gr.157008.113
http://www.ncbi.nlm.nih.gov/pubmed/24077391
https://doi.org/10.1093/imanum/drs019
https://doi.org/10.1093/imanum/drs019
https://doi.org/10.1371/journal.pcbi.1006617


77. Lua RC, Grosberg AY. Statistics of Knots, Geometry of Conformations, and Evolution of Proteins. PLoS

Comput Biol. 2006; 2(5):1–8. https://doi.org/10.1371/journal.pcbi.0020045

78. Jain AK, Dubes RC. Algorithms for Clustering Data. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.;

1988.

79. Heyer LJ, Kruglyak S, Yooseph S. Exploring expression data: identification and analysis of coexpressed

genes. Genome Res. 1999; 9(11):1106–1115. https://doi.org/10.1101/gr.9.11.1106 PMID: 10568750

Spatiotemporal dynamics of chromatin loci

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006617 December 3, 2018 20 / 20

https://doi.org/10.1371/journal.pcbi.0020045
https://doi.org/10.1101/gr.9.11.1106
http://www.ncbi.nlm.nih.gov/pubmed/10568750
https://doi.org/10.1371/journal.pcbi.1006617

