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S1 Text

Deviation from the Michaelis-Menten kinetics

The deviation of the odor response from the Michaelis-Menten (MM) form of Eq 2,
namely the fitting of Hill curve with H 6= 1, could originate from multiple sources. Here
we describe three possible scenarios where we can observe such deviation, and offer
relevant quantitative analyses.

A cooperative activation of oligomerized receptors

Let us consider the situation where the receptors form a dimer, resulting in two binding
sites to which a specific type of odorant can bind. Equilibrium constants for the two
binding sites, given as K1 = [OR][O]/[OR ·O1] and K2 = [OR ·O1][O]/[OR ·O2], yield
the following fractional occupancy of the dimeric complex, which is translated to an
odorant concentration (CO = [O])-dependent OR activity:

f =
[OR ·O1] + 2[OR ·O2]

2ORo
=

CO
K1

+ 2
C2
O

K1K2

2
(

1 + CO
K1

+
C2
O

K1K2

) . (S1)

where ORo = [OR] + [OR ·O1] + [OR ·O2]. In this case, the Hill coefficient is obtained
using Eq 9 as:

nH =
4

2 +
√
K2/K1

. (S2)

If the two binding sites have positive cooperativity, we have K2 ≤ K1, which gives rise
to 1 ≤ nH ≤ 2.
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The amplification of sensitivity through the signal cascades via GTP
hydrolysis

Even in the absence of allosteric cooperativity, a highly sigmoidal, switch-like response
can arise from a reversible covalent modification along the signaling pathway. The
reversible covalent modification is exemplified by the signaling processes such as
phosphorylation/dephosphorylation and GDP/GTP exchange accompanied with GTP
hydrolysis, whose effect on the sensitivity of signaling is a well studied issue [1–3] since
the seminal work by Goldbeter and Koshland [4].

In the context of our study, the amount of GDP-bound G-protein (GD) in response
to the stimuli (odorant) defines the olfactory activity. Although our minimal kinetic
model for odorant-OR kinetics did not explicitly take into account the effect of
GDP/GTP exchange in G-protein and recycling of GDP from GTP hydrolysis, such
mechanistic details can modulate the sensitivity of olfactory signaling and consequently
make the Hill coefficient deviate from unity. Here we provide an overview of amplified
sensitivity through covalent modification by explicitly using the terminologies for the
OR signaling.

When OR is in the active form (ORG in Scheme 1), it catalyzes the exchange of GD

into GT ; on the other hand, the GTPase activating protein (GAP) hydrolyzes the GTP
in GT to produce GD back.

OR
k1−−⇀↽−−
k−1

OR ·GD

k2[T]−−−−⇀↽−−−−
k−2[D]

OR +GT

GAP
k3−−⇀↽−−
k−3

GAP ·GT
k4−−−−−⇀↽−−−−−

k−4[Pi]
GAP +GD (S3)

The amount of GD in the pool of G-proteins (Go = [GD] + [GT ]) is the key quantity
that determines the G-protein signaling. The variation of GD is given by the difference
of the incoming and outgoing currents, J+ and J−:

∂t[GD] = −J− + J+

= −
V1[GD]
K1

− V ∗
1 [GT ]
K∗

1

1 + [GD]
K1

+ [GT ]
K∗

1

+

V ∗
2 [GT ]
K∗

2
− V2[GD]

K2

1 + [GT ]
K∗

2
+ [GD]

K2

(S4)

where new notations were introduced for the maximum rates (V ’s) and Michaelis
constants (K’s), associated with GDP→GTP exchange in G-protein by OR

(V1 = k2(OR)o[T ], K1 = k2[T ]+k−1

k1
); reverse exchange of GTP→ GDP in G-protein

(V ∗1 = k−1(OR)o, K
∗
1 = k2[T ]+k−1

k−2[D] ); GTP hydrolysis by GAP (V ∗2 = k4(GAP)o,

K2 = k4+k−3

k−4[Pi]
); and GTP synthesis (V2 = k−3(GAP)o, K

∗
2 = k4+k−3

k3
). It is useful to

define three dimensionless parameters:

θ =
V1/K1

V ∗2 /K
∗
2

, µ =
V2/K2

V ∗2 /K
∗
2

, γ =
k1k2k3k4[T ]

k−1k−2k−3k−4[D][Pi]
(S5)

where γ is associated with the net non-equilibrium chemical driving force of G-protein
signaling pathway in the form of ∆ψ = −kBT log γ. Note that ∆ψ = 0 (or γ = 1) at
equilibrium.

From the steady state solution ∂t[GD] = 0 (Eq S4), we can calculate the activity

f = [GD]ss

[GD]ss+[GT ]ss = [GD]ss

Go
as

θ =
µγ[µ− (µ+ 1)f ]

[
f
(

1− K1

K∗
1

)
−
(

1 + K1

Go

)]
K∗2

[µγ − (µγ + 1)f ]
[
f
(

1− K∗
2

K2

)
+

K∗
2

K2

(
1 + K2

Go

)]
K1

. (S6)
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Recall that the neuronal response is directly determined by the amount of GD (∼ f),
which is in turn dependent on the amount of active OR (∼ θ). Therefore the sharpness
of response f(θ) is characterized by the effective Hill coefficient, which is once again
obtained using Eq 9:
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 µ(γ − 1)

(µγ − 1)(1− µ)
−

1− K1

K∗
1

K∗
2

K2
+
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)(
1 +

K∗
2
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+ 2

K∗
2
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)
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. (S7)

In summary, when GDP/GTP exchange and GTP hydrolysis are explicitly taken into
account, the expression of f(θ) differs from the conventional type of MM expression,
and the Hill coefficient evaluated using Eq 9 depends on the parameters µ, γ, K1,2,
K∗1,2, and Go. Some limiting conditions greatly simplify Eqs S6 and S7:

(i) If the affinities of GD to OR and GT to GAP are sufficiently high (K1/K
∗
1 � 1,

K∗2/K2 � 1) that the overall reaction current associated with the production of
GD is positive (J+ − J− � 0), and if the G-protein level is below K1 and K∗2
(K1/Go � 1, K∗2/Go � 1), the expressions for f and nH are simplified as:

f =
θ + µ

θ + µ+ θ/µγ + 1
; nH =

(µγ − 1)(1− µ)

µ(γ − 1)
. (S8)

(ii) In addition to the aforementioned condition of high affinities of GD to OR and GT

to GAP, if the reversibility of catalytic step is abandoned (µ = 0) together with
high chemical driving force imposed by a far-from-equilibrium balance of GTP
versus GDP (γ � 1), the activity f is given as

V1

V ∗2
=

f(1− f +K1/Go)

(1− f)(f +K∗2/Go)
. (S9)

In this case, the Hill coefficient is obtained from nH = 4
(

∂f
∂ log V1

)
f=1/2
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2
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o

. (S10)

Note that the response is highly sensitized (nH � 1) for K1/Go, K
∗
2/Go � 1.

This corresponds to the Goldbeter-Koshland formula for zeroth-order
ultrasensitivity [3, 4].

Inhomogeneity of the odorant-OR kinetics

Finally, we explore the case when there is inhomogeneity in the parameters for the
odorant-OR kinetics. For example, consider the following MM-type hyperbolic activity
function:

f(θ;α) =
αθ

1 + αθ
. (S11)

Suppose that the parameter α has disorder around its mean value α0 such that
α = α0 + δα, |δα| � |α| where δα is a Gaussian random variable satisfying
δα ∈ N (0, σ2

α), then the above function is approximated up to the second order of δα as
follows:

f(θ;α) ≈ f(θ;α0) + f ′(θ;α0)δα+
1

2
f ′′(θ, α0)(δα)2 (S12)
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Averaging over the inhomogeneity in α with 〈δα〉 = 0 and 〈(δα)2〉 = σ2
α leads to

f ≡ 〈f(θ, α)〉 ≈ α0θ

1 + α0θ
− (α0θ)

2

(1 + α0θ)3
ε2α (S13)

where εα ≡ σα/α0 � 1. From Eq 9, nH = 1 for εα = 0 as expected, and nH ≈ 0.94 < 1
for εα = 0.5. The effect is relatively minor compared to the previous two cases, as long
as we are in the small fluctuation regime εα � 1. Nonetheless, the inhomogeneity in
parameter is still a possible source of the deviation from MM kinetics. It is interesting
to note that the inhomogeneity in kinetic parameter always de-sensitizes the response
(nH . 1).

Binarized cellular response to odor concentration

Here we outline a simple argument for the effective binarization of cellular responses to
odor concentration. Since p(CO) ≡ (S(CO)−B)/δSmax is the activation probability for
a single OR at an odorant concentration CO, the probability of having ` out of L ORs
activated is described by a CO-dependent binomial distribution:
P (`;CO, L) =

(
L
`

)
p(CO)` (1− p(CO))L−`. For large number of receptors, satisfying L,

Lp(CO), L(1− p(CO))� 1, the binomial distribution is approximated to a normal
distribution with a mean `(CO) = Lp(CO) and a variance σ2

` (CO) = Lp(CO)(1− p(CO)).
Then, the probability distribution of having ` out L receptors activated is

P (`/L;CO) ' 1√
2πε2`

e−(`/L−¯̀/L)2/2ε2` (S14)

where ε2` = σ2
`/L

2 = p(1− p)/L ≤ (4L)−1. Thus, the fluctuation of the fraction of
activated ORs, 〈(δ`/L)2〉, is suppressed if the population size (L) is large. For
L ∼ 2.5× 104 [5], the size of this fluctuation is limited to less than 0.6 %:
ε` . 1/

√
L < 6× 10−3.

Meanwhile, the membrane potential Vm of a neuron is modulated by changes in the
ratio of ion concentrations inside and outside the membranes, which is related to the
fraction of open and closed ion channels (or to the fraction of activated and inactivated

ORs) (Fig 1a), such that Vm ∼ log

(
C

(out)
ion

C
(in)
ion

)
∼ log

(
1−`/L
`/L

)
≡ g(`/L) [6, 7]. The first

relation is none other than the Nernst equation. Therefore, in the small noise limit one
can map CO to ¯̀ and ¯̀ to V̄m, or vice versa, using the monotonic relationships
¯̀/L = p(CO) and V̄m = g(¯̀/L), respectively. Note that the generation of a neural spike
(action potential) is in general evoked when the membrane potential exceeds a threshold
V θm [6, 7]; thus V θm can be effectively related to a threshold in `/L, or to CO, such that
V θm = g(`θ/L) and `θ/L = p(CθO) (See Fig A).

For a given threshold potential, the firing probability of a neuron corresponds to the
probability that more than `θ receptors are activated, and it can be written as:

F (CO; `θ, L) =

∫ 1

`θ/L

P (`/L;CO) d(`/L)

' 1

2
erfc

[
`θ/L− `(CO)/L√

2ε`(CO)

]
, (S15)

where erfc is the complimentary error function, which is approximated to
erfc(z) ' 1 + sign(z) for |z| & 2. For large L, ε` ∼ 1/

√
L, which increases the precision

of `/L for a given CO. The size of the argument of the erfc in Eq S15 is greater than√
2L |`θ/L− ¯̀/L|; for large L, it is clearly in the |z| � 2 regime. Thus, the firing

probability can be approximated to the step function as in Eq 17.
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Fig A. Illustration for the binarized cellular response argument. The
sharpness of the response curve depends on the receptor copy number L (a. L = 20, b.
L = 200).
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