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Abstract

Binding of odorants to olfactory receptors (ORs) elicits downstream chemical and neural sig-

nals, which are further processed to odor perception in the brain. Recently, Mainland and

colleagues have measured more than 500 pairs of odorant-OR interaction by a high-

throughput screening assay method, opening a new avenue to understanding the principles

of human odor coding. Here, using a recently developed minimal model for OR activation

kinetics, we characterize the statistics of OR activation by odorants in terms of three empiri-

cal parameters: the half-maximum effective concentration EC50, the efficacy, and the basal

activity. While the data size of odorants is still limited, the statistics offer meaningful informa-

tion on the breadth and optimality of the tuning of human ORs to odorants, and allow us to

relate the three parameters with the microscopic rate constants and binding affinities that

define the OR activation kinetics. Despite the stochastic nature of the response expected at

individual OR-odorant level, we assess that the confluence of signals in a neuron released

from the multitude of ORs is effectively free of noise and deterministic with respect to

changes in odorant concentration. Thus, setting a threshold to the fraction of activated OR

copy number for neural spiking binarizes the electrophysiological signal of olfactory sensory

neuron, thereby making an information theoretic approach a viable tool in studying the prin-

ciples of odor perception.

Author summary

Despite the decades of research, quantitative details of human olfaction have remained

largely unexplored. However, a high-throughput measurement has recently been carried

out to produce dose-response data between a set of odorants and a repertoire of human

olfactory receptors. We characterized each pair of odorant-receptor interaction in terms

of EC50, efficacy, and basal level, a strategy often adopted in biochemical, pharmacologi-

cal sciences to describe the response of receptors to cognate ligands. The distributions of

EC50 values and efficacies acquired from the analysis provide glimpses into how human
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olfactory receptors are tuned to odorants. Specifically, the response of human ORs is opti-

mized around * 100μM of odorant. Next, the efficacies of OR responses to odorants are

bi-exponentially distributed, which indicates that the strength of odorant-OR interaction

is classified into strong and weak subgroups. By showing that the stochastic response of

individual receptor to odorant can effectively be binarized at cellular level through olfac-

tory processes, we also provide a theoretical basis for an information theoretical approach

in studying the principles of odor perception.

Introduction

Olfaction, ubiquitous among all animals, is a key sensory process that is used to detect a vast

number of chemicals in the external world [1, 2]. From the perspective of molecular recogni-

tion, the physicochemical principle germane to the early layer of olfactory process is not signif-

icantly different from that of unicellular organisms’ chemotactic response [3–5]. Similarly,

olfactory signals are initiated upon the recognition of odorants by the receptors that are

expressed in the nasal epithelium [6].

Physiological and biochemical studies of olfaction to date offer strong evidence that the

majority of mammalian OR signalings are associated with G-protein dependent pathway [7].

Thus, except for a few cases [8–10], their activation mechanism is mostly related to that of G-

protein coupled receptors (GPCRs) [11–15]. Upon binding odorants, a set of ORs adopt their

structures into active forms and catalyze G-proteins to initiate downstream signal cascades.

Although the original input signal is modified passing through multiple layers of neural cir-

cuits [16, 17], elucidating the information encoded to the pool of ORs is a key component for

understanding the principles of odor sensing. In particular, the receptor code, or the responses

of a repertoire of ORs encoding the chemical features of odorant(s), constitutes the first layer

of dataset to be mapped by the olfactory process.

Unlike the conventional GPCRs that are deemed ‘fine-tuned’ to endogenous agonists such

as hormones and neurotransmitters [14, 18–20], ORs tend to be ‘broadly tuned’ to multiple

odorant types. Conversely, a single odorant can also be recognized by multiple ORs. In fact,

there is increasing evidence indicating that even the conventional GPCRs can adopt multiple

active states and yield different signaling pathways [21, 22], replacing the old view that GPCR

activation is described by the two-state conformational selection model [23]. The many-to-

many interactions of ORs with odorants enable a limited number of ORs to efficiently encode

a huge chemical space represented by the odorants and their mixtures [24, 25]. The human

olfactory system is known to employ Nr� 330 OR subtypes [26], whereas the odors are

made of an estimated pool of M ≳ 104 monomolecular odorants [27, 28] and their m-compo-

nent mixtures. To be able to discriminate potentially a vast number of natural odors

(Nr < M � M
m

� �

), the olfactory system adopts a strategy based on combinatorial coding

[29]. In a simplifying limit of ON/OFF switch-like response, a set of Nr receptor types can, in

principle, generate 2Nr � 2330 ’ 1099 distinct receptor codes, which allow human neural sys-

tems to discriminate Mm distinct natural odors for fairly large value of m.

Traditionally, the odor perception has been interrogated by measuring the brain activity

[30] or through psychophysical tests [31]; however the associative and nonlinear nature of

neuronal codes [32] and genetic variation among human subjects [33] make it difficult to deci-

pher a direct connection between odorants and the final odor perception. Recent develop-

ments of experimental techniques using high-throughput screening [34] have compiled dose-
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response data from a set of 535 interacting pairs of odorants and ORs. The combinatorial

nature of odor coding was substantiated by the concrete, objective dataset demonstrating the

responses of 304 human ORs against 89 odorants [34].

The aim of this work is to gain more quantitative insights into the physicochemical pro-

cesses that take place in the early stage of odor sensing. More specifically, we aim to shed light

on the statistics of odorant recognition and infer its relation with a cellular response of the cor-

responding olfactory receptor neuron (ORN). To this end, we adapt a minimal kinetic model

for the activation of mammalian ORs [35], and quantitatively analyze a set of dose-response

data for human ORs [34]. Analyzing the experimental data, we characterize the statistics of

odorant-receptor interactions in terms of three empirical parameters—the half-maximum

effective concentration (EC50), efficacy, and basal activity—and obtain the distribution of

these parameter values. In particular, we relate the three parameters with the rate constants

and the binding affinities, and specify the condition to be met by the kinetic parameters of OR

activity. Because the number of ORs expressed in each ORN is large (L� 2.5 × 104 [36]) and

the signals from on average 104(� 6 × 106/350) ORNs [37] of the same type are converged to a

glomerulus [38], the response of ORN can be best understood as an outcome that integrates

stochastic OR signals over the population. Resorting to the law of large number and the con-

cept of spike firing threshold, we propose that the early stage of olfactory neural signals can be

binarized, making an information theoretic approach as a viable tool for studying the odor

sensing.

Model

Minimal kinetic model for OR activation

In order to model the OR activation we consider the following minimal kinetic scheme [35]:

ORÐ
þG;kfG

� G;kbG

ORG

Oþ ORÐ
þO

� O;KOðlÞ
OROÐ

þG;kfOGðlÞ

� G;kbOGðlÞ
OROG

ð1Þ

where the first and second lines represent binding/unbinding of the G-protein with the OR in

the absence and presence of an odorant (O) in its binding site, respectively. kfG is the rate of G-

protein (GDP-bound heterotrimeric complex) binding to OR without odorant, and kfOGðlÞ is

the rate of G-protein binding when an odorant of the type λ is bound to the OR. CG is the

intracellular concentration of G-protein. KO is the dissociation constant of the odorant from

OR that can be related to the odorant-OR binding affinity (A) as A� ΔGdiss = −kBT log KO
where ΔGdiss is the dissociation free energy associated with OROÐO + OR; KOGð¼ kbOG=k

f
OGÞ

and KGð¼ kbG=k
f
GÞ are the dissociation constants of G-protein from OR, with and without odor-

ant in the OR, respectively (see Fig 1a). In Scheme 1, the intracellular downstream signal cas-

cade is initiated by the kinetic steps marked with a “−G”, indicating a GαGTP subunit released

from a heterotrimeric G-protein complex. Even without an odorant in the binding pocket of

OR, OR can relay weak downstream signal cascades which are defined as the basal activity. For

an OR that binds a cognate odorant (ORO), the binding of G-protein is expected to be further

facilitated (kfOG � kfG), evoking a stronger downstream signal cascade (Fig 1a).

Based on the minimal signaling scheme (Scheme 1), the OR activity S(CO; λ), evoked by an

odorant of the type λ, can be shown to be a hyperbolic function of the odorant concentration
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CO [35]:

SðCO; lÞ ¼

A � CGk
f
G½1þ

kfOGðlÞ

kfG

CO
KOðlÞ
�

1þ
CG
KG
þ 1þ

CG
KG

KG
KOGðlÞ

� �
CO

KOðlÞ

n o : ð2Þ

Because the activity of each receptor in Mainland et al.’s assays [34] was measured by means of

the fluorescence emitted from cAMP-mediated luciferase activity, we assume here that the

strength of cellular (ORN) response is proportional to the amount of Gα subunit released from

the complex and consequently the cAMP-mediated gene expression. The proportionality con-

stant A reflects all of these kinetic details.

Fig 1. The minimal kinetic model for the odor response. a. A schematic of olfactory signaling cascades. Golf,

olfactory G-protein binding to and the subsequent release of GαGTP subunit from the receptor via GDP/GTP exchange

(ORG� !
� G OR) elicit downstream signal cascades: production of second messengers (cAMP) via stimulation of

adnenylyl cyclase III, followed by depolarization of membrane potential via cAMP-induced opening of ion-channels

[39, 40]. The downstream signal is stronger (the thicker arrow in purple) when odorant is bound to the OR. b. The

four-parameter model (Eq 3) to describe the dose-response data.

https://doi.org/10.1371/journal.pcbi.1006175.g001
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Fitting the dose-response data using the Hill curve

It is useful to cast the above model (Eq 2) into the following Hill equation:

SðCO; lÞ ¼ Bþ dSmax

ðCO=K1=2Þ
H

1þ ðCO=K1=2Þ
H : ð3Þ

The three key parameters of the dose-response relationship (see Fig 1b), EC50[= log10(K1/2/

[M])] where K1/2 is the half-maximum concentration in molarity unit, the efficacy (E = B +

δSmax), and the basal activity (B), are expressed in terms of the rate and dissociation constants

defined in the reaction scheme for OR signaling (Scheme 1 and Eq 2):

K1=2ðlÞ ¼ KOðlÞ
1þ

CG
KG

� �

1þ
CG

KOGðlÞ

� � ; ð4Þ

EðlÞ ¼ S
CO

KO
� 1; l

� �� �

¼ A
CGk

f
OGðlÞ

1þ CG=KOGðlÞ
; ð5Þ

B ¼ S CO ¼ 0ð Þ½ � ¼ A
CGk

f
G

1þ CG=KG
: ð6Þ

We have specified λ in the argument of parameters to make it explicit that the parameters

depend on a specific odorant-OR pair. Note that for a given receptor, K1/2 and E change with

the odorant type λ, whereas B is a property of the receptor only. Eq 3 is equivalent to Eq 2

when the Hill coefficient is fixed to H = 1. Empirically, however, we find that the dose-response

data can be best fitted by treating H as a free parameter.

Results

A universal response curve for human olfactory receptors

We fitted the dose-response data of [34] to the Hill curve partly based on our kinetic model

(Eq 3). Among 535 odorant-OR pairs in the dataset, 475 pairs showed activation (δSmax > 0),

and the rest showed deactivation (δSmax < 0). Furthermore, 317 out of 535 pairs could be fitted

to Eq 3 reliably with correlation coefficients greater than 0.9. Fig 2a–2d show examples of

odorant-OR pairs. By using the parameter values fitted for respective odorant-OR pairs, and

using the rescaled variables ĉ � ðCO=K1=2Þ
H

and f� δS/δSmax = (S − B)/δSmax we could collapse

the dose-response data on a universal curve, f ¼ ĉ=ð1þ ĉÞ (Fig 2e). This justifies our use of Eq

3 for the analysis of the odorant-OR dataset.

Distribution of the empirical parameters over the ensemble of receptors

In order to gain a rough statistical estimate of the sensitivity of human ORs we examine the

range of odorant concentration to which human ORs are responsive, and the variation in the

magnitude of intra-cellular response elicited by OR activation. The odorant-OR interaction

dataset [34] allowed us to obtain the distributions of the two key empirical parameters, the

effective concentration EC50 and the efficacy E, over the ensemble of receptors.

First, we constructed the histogram of the effective concentrations of odorants from all the

data of interacting odorant-OR pairs (see Fig 3a), and obtained the distribution ψens(EC50) by

normalizing the histogram, where the subscript “ens” indicates that the distribution was con-

structed from the entire ensemble of odorant-receptor pairs. The concentrations exhibit a fairly
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broad distribution, ranging from nM (EC50 = −9) to M (EC50 = 0), with an average hEC50i =

−4.1 and a standard deviation of sEC50
¼ 1:8. This corresponds to a range of 1 μM < K1/2 < 5

mM. Most of the odorant-OR pairs with strong affinities (EC50 < −9) are deactivating pairs, in

which the odorants act as the inverse-agonists of the respective ORs (Fig 3a). Compared to the

proportion of all the odorant types tested by Mainland et al. [34], the odorants contributing to

the deactivating pairs with strong affinities mostly belong to certain specific chemical types.

They are mainly identified to be acidic (thioglycolic acid, isobutyric acid, 3-methyl-2-hexenoic

acid), aromatic (cumarin, quinoline, 2-methoxy-4-methylphenol), acetate (n-amyl acetate,

butyl acetate), steroid (androstenone), and ester (pentadecalactone, amyl butyrate) (see S1

Fig). Presently, the molecular cause for the inverse agonism by these strongly bound odorants

is not clear, but it has been suggested that sidechains of GCPRs interacting with inverse agonist

are generally more rigid [41].

We also determined odorant-specific differential response, ψλ(log10 CO), defined as:

clðxÞ /
DStot

Dðlog
10
COÞ

�
�
�
�
ðlog10 COÞ¼x

: ð7Þ

Fig 2. Analysis of dose-response data for odorant-OR pairs. Examples of fit using Eq 3 are shown for some odorant-

receptor pairs: a. allyl phenylacetate−OR51L1 (B = 2.18, δSmax = 4.76, log10 K1/2 = −7.56,H = 0.7); b. androstenone−OR7D4

(B = 0.21, δSmax = 3.09, log10 K1/2 = −5.72,H = 1.4); c. geranyl acetate−OR14A16 Indel (B = 0.32, δSmax = 0.96, log10 K1/2 =

−3.84,H = 6.6); d. eugenol−OR10G7 (B = 3.69, δSmax = 5.21, log10 K1/2 = −8.95,H = 0.3). e. Dose-response data for 22

odorant-OR pairs collapsed onto a universal curve, f = 10ξ/(1 + 10ξ), where f = δS/δSmax and ξ = Hlog10(CO/K1/2) (orange

line). For clarity, only the data from 22 activating pairs are presented.

https://doi.org/10.1371/journal.pcbi.1006175.g002
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This measures the change of cumulative signal from all Nr receptor types (ΔStot) that can be

elicited as the log-concentration of the given odorant λ increases by Δ(log10 CO). Under an

assumption that the odorant λ activates a continuous spectrum of receptors, we calculated

ψλ(log10 CO) for each of the top five broadly-interacting odorants (cis-3-hexen-1-ol, granyl ace-

tate, eugenol, eugenol acetate, butyric acid) that have a sufficiently large number of responsive

OR partners (≳ 20). For these broadly-interacting odorants, ψλ(log10 CO)’s are sharply peaked

around an odorant concentration of C�O � 100mM (Fig 3b). Incidentally, C�O � 100mM is com-

parable to the odorant concentration of * (10 − 500) × 1014 molecules/mL used in the olfac-

tometer measurement [43].

Next, we constructed the distribution of the efficacy, ρ(E), as a histogram over the ensemble

of all odorant-OR pairs. We note that the maximum-entropy distribution of E, for an ensemble

of odorant-OR pairs characterized with an average efficacy hEi, exhibits an exponential func-

tional form ρ(E) * exp(−E/hEi), as was pointed out in [17] to explain the firing rate distribu-

tion of the glomeruli. In the case of Mainland et al.’s dataset, ρ(E) was characterized by a sum

of two exponential distributions:

rðEÞ ¼ �
e� E=hE1i

hE1i
þ ð1 � �Þ

e� E=hE2i

hE2i
; ð8Þ

with ϕ = 0.79, and with the two average efficacy values hE1i = 1.50 and hE2i = 10.06 (Fig 4a).

This double-exponential distribution implies that the population of odorant-OR pairs are

divided into two subgroups, one characterized with a low efficacy (79% of total population)

and the other with a high efficacy (21% population). On the other hand, analysis on the relative

amplitude of activation (δSmax) gives rise to qualitatively the same distribution ρ(δSmax) as Eq 8

with ϕ = 0.57, hδS1, maxi = 0.97, and hδS2, maxi = 5.77. Whether the spiking rates over the popu-

lation of human ORNs (labeled by their OR subtypes) also constitute two exponential

Fig 3. Distribution of effective odorant concentration for the activation of partner receptors. a. Histogram of EC50

calculated for all dose-response data (gray). Among the 535 interacting odorant-receptor pairs, 475 pairs exhibit

activation (δSmax > 0, red), and the remaining pairs show deactivation (δSmax < 0, cyan). Note that the red and cyan

distributions sum to make the gray (all pairs) distribution. The EC50 values for the pairs exhibiting activation can be

fitted effectively to a Gaussian N ðmc;s
2
c Þ [42] with μc = −3.6 and σc = 1.1; for all pairs, μc = −4.0 and σc = 1.8. The

skewness of the distribution is likely to be contributed from the extremal (cutoff-based) nature of the measurement,

which unavoidably eliminates the weakly interacting (high EC50) pairs from the data. The deactivating pairs are

characterized with a broader distribution of EC50 values. The super-strong binders (EC50 < −9) are exclusively

contributed by those among the odorant-receptor pairs demonstrating the deactivation. b. Odorant-specific

differential response for the top five broadly-interacting odorants.

https://doi.org/10.1371/journal.pcbi.1006175.g003
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distribution is an interesting question that may be examined by carefully designed experimen-

tal measurements.

Finally, we report the distribution of Hill coefficients. While a majority of the data are

indeed well described with H = 1, some are better fitted with larger values of H (Fig 4b). Within

our two-state activation model, the phenomenological value of H> 1 could arise from multiple

sources (See S1 Text for details): (i) a cooperative activation of the receptors, which could be

linked to the recent studies on the effect of GPCR dimers or higher-order oligomers on the sig-

naling [44–49]; (ii) the sensitivity amplified in the process of signal cascades accompanying

covalent modifications, such as GTP hydrolysis and phosphorylation/dephosphorylation [50,

51]. Given that G-protein pathway is associated with GTP hydrolysis, a scenario of the ampli-

fied sensitivity can be considered; (iii) inhomogeneity of the odorant-OR kinetics.

We note that an analytic expression for the activity can still be obtained for either of the

foregoing three mechanisms, albeit more convoluted than the Hill equation (Eq 3), and be

used to fit the data. Given the expression of the activity, its sensitivity with respect to the varia-

tion of control parameter (or the sharpness of transition) can be evaluated by using

nH ¼ 2
@ log f
@ log y

� �

f¼1=2

¼ 4
@f

@ log y

� �

f¼1=2

; ð9Þ

where f and θ are normalized response and the control parameter, respectively [51]; For the

case of Eq 3, θ = (CO/K1/2) and f = θH/(1 + θH), and it is easy to confirm that nH = H.

Determination of microscopic rate and binding constants

From Eqs 4–6, we observe that all three kinetic parameters {E, B, K1/2} depend on the concen-

tration of G-protein (CG). By eliminating the CG-dependence from these expressions, we can

relate the three parameters in pairs. For example, the efficacy E of an odorant-OR pair has a

hyperbolic dependence on B:

EðlÞ ¼
ðkfOGðlÞ=k

f
GÞB

1þ ðK � 1
OGðlÞ � K � 1

G ÞðAk
f
GÞ
� 1B

: ð10Þ

Fig 4. Distributions of efficacy and Hill coefficient. a. Probability density of efficacy ρ(E) and b. the histogram of Hill

coefficient for the ensemble of all interacting odorant-OR pairs. ρ(E) was fitted to a sum of two exponentials (Eq 8).

https://doi.org/10.1371/journal.pcbi.1006175.g004
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Similarly, B is related to K1/2:

B ¼
AkfG

K � 1
OGðlÞ � K � 1

G

KOðlÞ

K1=2ðlÞ
� 1

 !

; ð11Þ

and E to K1/2:

EðlÞ ¼
AkfOGðlÞ

K � 1
OGðlÞ � K � 1

G

1 �
K1=2ðlÞ

KOðlÞ

� �

: ð12Þ

In addition, an interesting triadic relation between the three parameters E, B, and K1/2 define a

quantity ω that can be expressed in terms of the microscopic rates kfOG, kfG, and KO:

oðlÞ � log
10
EðlÞ � log

10
B � log

10
K1=2ðlÞ

¼ log
10

kfOGðlÞ
kfGKOðlÞ

 !

:
ð13Þ

Using Eqs 10–13, we can in principle determine microscopic quantities such as kfOGðlÞ=k
f
G,

KO(λ), AkfG=ðK � 1
OGðlÞ � K

� 1
G Þ, and AkfOGðlÞ=ðK � 1

OGðlÞ � K � 1
G Þ for a given pair of odorant and

receptor types.

Here we report the odorant-specific estimates for some of these quantities, averaged over

the observed spectrum of receptors that interact with a given odorant λ. For example, we

obtained hkfOGðlÞ=k
f
Gi as the amplitude of the E(λ) versus B curve using Eq 10 (Fig 5a). It was

then plugged into Eq 13 to estimate hlog10 KO(λ)i from the knowledge of hω(λ)i, a value that

can be obtained from the histogram over all interacting pairs involving this odorant λ (Fig 5b).

The estimated average values for the top five broadly-interacting odorants are summarized in

Table 1.

Fig 5. Analysis of the top five broadly-interacting odorants. a. Fits of efficacy (E) versus basal activity data (B) for distinct odorants

(λ) using Eq 10. The name of each odorant is provided with the number of responding receptors inside the parenthesis. b.

Distributions of ω for the five broadly-interacting odorants.

https://doi.org/10.1371/journal.pcbi.1006175.g005
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From the kinetic parameters determined here, we make three points that are noteworthy:

1. We find that hkfOGðlÞ=k
f
Gi > 1 for all the five odorants tested. This is consistent with our

expectation that agonist (odorant) binding facilitates the accommodation of G-protein.

2. KO(λ), the threshold concentration of the odorant λ for binding the receptor, is greater than

K1/2(λ), the effective threshold for the odorant to eventually elicit the signal (the release of

Gα-subunit). Together with an augmented sensitivity (H> 1) discussed above, the relation-

ship of KO> K1/2 appears to be a natural outcome of signal cascade in biochemical reactions

[50].

3. Eq 4 with the condition KO> K1/2 suggests that KOG< KG; the binding of G-proteins to a

receptor is stronger when there is an odorant bound to the receptor. This is equivalent to

the condition of CG=KG ¼
KO
K1=2
� 1

� ��
KG
KOG
�

KO
K1=2

� �� �

> 0, an inequality that can be

derived by rearranging Eq 4. Therefore, it follows that

1 �
KO

K1=2

�
KG

KOG
: ð14Þ

This specifies a necessary condition to be satisfied, within our kinetic model, for the odor-

ant-evoked activity. In other words, for the odorant-dependent activation mechanism to func-

tion properly, the difference in free energies of G-protein binding for the two cases with and

without odorant in the binding site, ought to be greater than that between OR activation and

odorant binding. The data reported in Table 1 indeed confirm our analysis.

Discussion

Non-uniform sensitivity of ORs to odor concentration

Our analysis on Mainland et al.’s data [34] provides a new insight into the issue of odor sensi-

tivity. Since qualitatively similar trend is observed in the histogram for the entire ensemble of

odorant-OR pairs as shown in Fig 3a, we assume that it effectively represents a general sensitiv-

ity profile of any odorant against the pool of human ORs; in other words, we hypothesize that

the variable log10 CO displays the identical distribution ψens(log10 CO) as ψens(EC50) though

ψens was constructed as a distribution of EC50 values. The range of threshold concentration of

odorants, at which the olfactory system starts to respond, is finite. To be specific, Fig 3a sug-

gests that R ¼ ðlogCOÞmax � ðlogCOÞmin � 2 � ð2sEC50
Þ � log 10 � 16 along the natural logarith-

mic scale, where (log CO)max and (log CO)min denote, respectively, the maximum and

Table 1. OR averaged parameters determined for the top five broadly-interacting odorants.

Odorant, λ hkfOGðλÞ=k
f
Gi hlog10 KO(λ)i hlog10 K1/2(λ)i

cis-3-hexen-1-ol 4.96 −1.82 −3.72

geranyl acetate 12.32 −0.57 −4.16

eugenol 3.53 −2.91 −4.41

eugenol acetate 15.89 0.12 −3.48

butyric acid 1.93 −3.13 −4.14

Ratio of rate constants, binding free energy in kBT unit, and EC50 of the top five broadly-interacting odorant,

averaged over the multitude of partner receptors.

https://doi.org/10.1371/journal.pcbi.1006175.t001
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minimum values of log CO that constitute the distribution of EC50 and sEC50
is the standard

deviation of the distribution ψens(EC50). It has been argued previously that the minimal con-

centration change (ΔCO) that gives rise to a detectable difference, of at least one bit of the

receptor code, is dictated by the Weber ratio ΔCO/CO� R/Nr� 0.042 [52]. This is to say that,

in order for humans to be able to sense a change in odor strength, the concentration difference

should exceed 4% in the concentration range between (log CO)min and (log CO)max. However,

this estimate of the Weber ratio was obtained under an assumption that the threshold concen-

tration of odorant is uniformly distributed over the entire range R [16, 52].

As shown in Fig 3b, the differential response of receptors against each of the five broadly-

interacting odorants displays a non-uniform distribution, ψλ(log10 CO), sharply peaked at

C�OðlÞ � 100 μM. the expected number of ORs that could recognize an odorant at a concentra-

tion CO, denoted nO, would satisfy

nO
Nr
¼

Z log10 CO

log10 Cmin

censðxÞ dx: ð15Þ

Therefore, the condition for a minimal change in the odorant concentration to activate an

additional OR type (Δn� 1) can be expressed using the following inequality:

DCO

CO
≳

log 10

Nrcensðlog
10
COÞ
�

1

w
: ð16Þ

The lower bound for the Weber ratio is minimized at the peak of the sensitivity curve

(CO ¼ C�O), which in turn maximizes the sensitivity χ defined above. This implies that the

olfactory system is most sensitive at CO� 100 μM. Using Nr� 330 and sEC50
� 1:5, the mini-

mized value of the Weber ratio is DCO=CO ¼
ffiffiffiffiffiffi
2p
p

ðlog10=NrÞsEC50
� 0:03; the detectable dif-

ference at the sensitivity peak can be as small as 3%.

Response of the OR cell is effectively binary

According to our analysis of the dose-response data, the sensitivity of OR response is maxi-

mized at C�O ¼ K1=2. The full width at half maximum (FWHM) of @S/@(log10 CO) depends on

H as FWHM¼ 1

H log
10

3þ2
ffiffi
2
p

3� 2
ffiffi
2
p � 1:53=H. At the level of a single OR, a higher OR sensitivity is

attained with a greater H.

On the other hand, there is another source of “sensitization” at the level of the ORN, arising

from the fact that an ORN is activated when a sufficient number of its ORs are activated

together. It is known that a monogenic OR expression (i.e., the expression of only one out of

Nr-OR types) is ensured in each ORN, regulated by a feedback mechanism [53–56]. Therefore,

the cellular response of the ORN results from the collective action of L * 2.5 × 104 receptors

of the same type [36]. Even when the activation of individual receptors is stochastic, the collec-

tive signal from L receptors is much “sharper” at the ensemble level, effectively eliminating the

noise in the cellular response. Since the action potential of neuron is switched on and off

around a threshold membrane potential (Vy
m), which in turn can be related to a threshold value

in the fraction of activated ORs (ℓθ/L), the firing probability of the neuron is effectively binar-

ized as:

FðCO; ‘
y
; LÞ � !L�1

Y
�‘ðCOÞ

L
�
‘

y

L

� �

; ð17Þ

where Θ(z) = 1 for z> 0, and Θ(z) = 0 for z� 0 (see S1 Text for the details of derivation).

Because the condition L� 1 eliminates the fluctuations in the copy number of activated
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receptors, the mapping between the odorant concentration and the activated OR population

�‘ðCOÞ ¼ LpðCOÞ is deterministic in every practical sense. The firing probability of the neuron

can thus be written as FðCOÞ ’ YðCO � Cy
OÞ, in terms of a threshold concentration Cy

O; the

neuron fires if the odorant concentration is greater than the threshold value (CO > Cy
O).

The effective binarization of electrophysiological signals in the OR cells projects the chemi-

cal representation of the odor (response at the sub-cellular level) onto an Nr-bit digital signal

(response at the neural level). This Nr-bit information transmitted to the postsynaptic neurons

is further processed through the brain circuits for various computational tasks [1, 32, 57].

Although synaptic transmission is still subject to noise, for example due to the stochasticity in

the number of vesicles discharged at synapses [58], our argument for the binarization of ORN

responses based on the law of large number and activation threshold can still be applied to

information transmission that occurs in the upper brain.

The OR signal is almost fully exploited in odor perception

Putting together our observations so far, the maximal amount of olfactory information that

can be encoded into the ensemble of OR cells is Nr bits, corresponding to 2Nr distinct receptor

codes. Therefore, the number of distinct odors O that can be discriminated by the human

olfactory system is upper-bounded as O ≲ 2Nr . Provided that all natural odors could be repre-

sented as a mixture of non-overlapping, equal-intensity odorant components, the ability to dis-

criminate any pair of m-component odorant mixtures without ambiguity is subject to the

following condition:

log
2

M

m

 !

� log
2

Mm

m!

� �

≲Nr: ð18Þ

Using the estimated sizes for the human olfactory system, Nr� 330 [26] and M� 104 [27, 28],

we obtain mmax� 35 as the maximal size of such odorant mixtures. In other words, the space

of all odor mixtures composed of more than mmax� 35 odorants would exceed the capacity of

the human olfactory system. Taking the analogy of the visual system with three receptors (R,G,

B), one could further postulate an “olfactory white”, where well-mixed odors with more than

mmax components, each of which elicits an equal intensity response, are indistinguishable from

one another [59]. Remarkably, our rough estimate of mmax� 35 from a simple information-

theoretic argument is in reasonable agreement with an experiment [59], where it was shown

through an ingenious set of psychophysical tests that well-mixed odors of mmax� 30 odorant

components are indeed indistinguishable to humans.

Concluding remarks

Sensing of smell is ultimately a mapping from the molecular information space of odorants to

patterns of neuronal activity, which are then perceived as particular kinds of odor in the brain.

Understanding the nature of this mapping remains challenging due to factors such as the com-

plexity in the molecular space of odorants, lack of information on the molecular recognition

by ORs, and the difficulty of deciphering neuronal signal processing. The present work makes

an important step forward in this direction by analyzing the sub-cellular process of olfactory

sensing within the ORN cell, at a scale larger than the individual molecular interactions but

smaller than the multi-cell signal. Employing a minimal kinetic model for odorant-OR interac-

tion at single molecule scale, we quantified the statistics of interactions between odorants and

human ORs, and discussed how the response of individual ORNs can be effectively binarized.

Statistics of odorant-receptor interactions
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The quantitative insights provided in this work can lead to the next level of understanding of

human olfaction at multicellular scale.

While the analyses of OR responses in this study are limited to the response of single olfac-

tory receptor at the individual or population level, each odorant is in general recognized by a

finite number of multiple ORs. Thus, it is essential to study the combinatorial nature of odor

signal processing in a more systematic way based on concrete data and bring the current

understanding of olfaction to a systems level. More specifically, since Mainland et al.’s dose-

response data [34] offer such opportunity, we plan to quantify which set of ORs are sampled

for a given odorant or odorant mixture and then generate the corresponding receptor code,

and also address how discriminable these receptor codes are in the early layer of information

processing in the human olfaction. In particular, our model will enable the prediction of recep-

tor responses to mixtures of multiple odorants at possibly different concentrations, which is

typical in natural odors. Given that the sensory world through olfactory process is only two

synapses away from the cortical neurons [60], addressing these questions will provide better

glimpses into the neurobiological principle of signal processing in the human brain.

Supporting information

S1 Text. Derivations. We provide details for two observations that were mentioned in the

main text: (i) deviation from the Michaelis-Menten kinetics, (ii) binarized cellular response to

odor concentration.

(PDF)

S1 Table. Kinetic parameters determined for all interacting odorant-receptor pairs. A list

of kinetic parameters determined by fitting the dose-response curve from each interacting

odorant-receptor pair reported in the dataset of Mainland et al. [34] using our model. Table is

provided in a comma-separated values (csv) file with 8-columns: olfactory receptor index,

odorant index, basal activity (B), maximum response (δSmax), efficacy (E), EC50 (= log10(K1/2/

[M])), Hill coefficient (H), and the correlation coefficient of the fit.

(CSV)

S2 Table. List of odorants tested in the measurement and their chemical types. A list of all

odorants in the dataset of Mainland et al. [34] is provided, in a comma-separated values (csv)

file with 7 columns. The first five columns are: odorant index, CAS registry number, odorant

name, PubChem Compound Identification (CID) number, and SMILES; all as reported in the

original dataset [34]. The sixth column shows the chemical type of the odorant. The last col-

umn indicates whether this odorant was counted as a strong deactivator in our analysis (S1

Fig).

(CSV)

S1 Fig. Proportion of odorant types tested in the measurement. a. All odorants in dataset

from Mainland et al. [34] (also see S2 Table). b. Odorants with strong affinities (EC50 < −9)

contributing to the deactivating odorant-OR pairs in Fig 3a.

(EPS)
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