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Definition of dihedral angle in TIS model: While six torsion angles are, in princi-

ple, required to specify the backbone conformation from one phosphate atom (Pn) relative

to the next one (Pn+1) along the backbone, several methods for reduced representations for

RNA have been proposed [1–5]. The TIS model [4, 5] belongs to such class that repre-

sents the nucleotide backbone by using a virtual bond. The high dimensional representation

of entire nucleotide is substantially simplified so that exhaustive sampling of all conforma-

tions is possible. The dihedral angle for the TIS model is defined by the angle formed

between four successive interaction sites along the sugar-phosphate backbone (Si−1PiSiPi+1

or PiSiPi+1Si+1), which is similar to the psuedo-torsion angles η (C4′

n−1, Pn, C4′n, Pn+1) and

θ (Pn, C4′n, Pn+1, C4′n+1) used by others [2, 3] (Note that Pi, Si, and Bi in the TIS model

are the positions of the centers of the phosphate, ribose, and base groups, respectively. In

contrast, Pn and C4′n denote specific atom in the nth nucleotide). To be specific, the ith dihe-

dral angle φi, which is the angle formed between the two planes formed from ith to (i + 3)th

bead, is defined as cos φi = ($ri+1,i × $ri+1,i+2) · ($ri+2,i+1 × $ri+2,i+3) where $rm,n ≡ $rm − $rn. To

simulate as well as design the RNA molecule, we bias the φi to φo
i , where φo

i is the dihedral

angle in the native state, using the dihedral angle potential with three minima, namely,

VDIH(φi) = [Aη
1i + Bη

1i + Cη
1i

+ Aη
2icos(φi − φo

i + φη
i ) + Bη

2icos3(φi − φo
i + φη

i ) + Cη
2isin(φi − φo

i + φη
i )] (1)

where the parameters (in kcal/mol) involving dihedral angle potential are determined de-

pending on the value of φo
i as follows:
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A1i = −A2i = 1.0, B1i = B2i = 1.6, C1i = 2.0, C2i = −2.0, φg+

i = π/3 for gauche(+)

(η = g+, 0 < φo
i < 2π/3),

A1i = −A2i = 1.0, B1i = B2i = 1.6, C1i = 2.0, C2i = 2.0, φg−

i = 5π/3 for gauche(-)

(η = g−, 4π/3 < φo
i < 2π),

A1i = A2i = 1.2, B1i = B2i = 1.2, C1i = C2i = 0.0, φt
i = π for trans (η = t,

2π/3 < φo
i < 4π/3).

Computation of free energy surfaces: Multidimensional free energy surface is com-

puted by adapting the multiple histogram technique [6, 7]. For example, the two-dimensional

free energy surface can be obtained at arbitrary external conditions specified by a tempera-

ture and a force. If the conformational states are well sampled over a range of temperatures

and forces, the probability of finding the RNA conformation with order parameters (R,Φ)

at a condition (T ,f) is

P (R,Φ|T, f) =

∑

E e−(E−fR)/T
PK

k=1 hk(E,R,Φ)
PK

k=1 nke(Fk−(E−fkR))/Tk

∑

E

∑

R

∑

Φ e−(E−fR)/T
PK

k=1 hk(E,R,Φ)
PK

k=1 nke(Fk−(E−fkR))/Tk

(2)

where E is the configurational energy, K is the number of histograms, hk(E,R,Φ) is the

number of states in (E,E + δE), (R,R + δR), (Φ,Φ + δΦ) of the k-th histogram, nk =
∑

E,R,Φ hk(E,R,Φ), Tk and fk are the pair of temperature and force in the simulations

used to generate the kth histogram, respectively. The free energy Fk (or partition function

Zk [=
∑

R

∑

Φ P (R,Φ|Tk, fk)] ), that is calculated self-consistently, satisfies

Zr = e−Fr/Tr

=
∑

E

∑

R

∑

Φ

e−(E−frR)/Tr

∑K
k=1 hk(E,R,Φ)

∑K
k=1 nke(Fk−(E−fkR))/Tk

=
∑

E

∑

R

∑

Φ

e−(E−frR)/Tr

∑K
k=1 hk(E,R,Φ)

∑K
k=1 [nke(E−fkR)/Tk ]/Zk

. (3)

With a choice of the vector (Z1, . . . , Zr, . . . , ZK) = (1, . . . , 1, . . . , 1) as an initial input, Eq.3

quickly converges to a stable solution. Using the low friction Langevin dynamics, we sampled

the conformational states at the (T ,f) in the range {0 K < T < 500 K, f = 0.0 pN} and

{0.0 pN < f < 20.0 pN, T = 305 K}. Exhaustive samplings around the transition regions at

{305 K ≤ T ≤ 356 K, f = 0.0 pN} and {5.0 pN ≤ f ≤ 7.0 pN , T = 305 K} is required to
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obtain reliable estimates of the thermodynamic quantities. The two-dimensional free energy

surface, with R and Φ as order parameters, is calculated using

F (R,Φ|T, f) = F (T, f) − kBT log P (R,Φ|T, f)

= −kBT log
∑

E

e−(E−fR)/T

∑K
k=1 hk(E,R,Φ)

∑K
k=1 nke(Fk−(E−fkR))/Tk

, (4)

where F (T, f) = −kBT log Z(T, f) with Z(T, f) =
∑

E,R,Φ e−(E−fR)/T
PK

k=1 hk(E,R,Φ)
PK

k=1 nke(Fk−(E−fkR))/Tk
.

Simulations: We assume that the dynamics of the RNA molecules can be described by

the Langevin equation. The system of Langevin equations is integrated as described before

[4, 8, 9].

Sampling conformations : Low friction Langevin dynamics, including inertia term, is

performed to efficiently sample the conformational states of RNA, whose results are used to

calculate the equilibrium properties of RNA (e.g., phase diagram and free energy surface).

m
d2$ri

dt2
= −ζL

d$ri

dt
− $∇iV ({$r}) + $Γi(t) (5)

where $ri is the position vector of coarse-grained center, and $Γi(t) is the random force sat-

isfying the fluctuation-dissipation theorem, 〈$Γi(t) · $Γj(t′)〉 = 6kBTζLδ(t − t′)δij. In the TIS

representation (base B, sugar ring S or phosphate P ), the mass of a bead m = 100 − 160

g/mol (= 1.7 × 10−22 − 2.7 × 10−22 g), the average distance between the adjacent beads

a = 4.6 Å, and the energy scale εh = 1 ∼ 2 kcal/mol (= 7.0 × 10−21 − 1.4 × 10−20 J). The

natural measure for time of Eq.5 is τL = (ma2

εh
)1/2 = 1.6 ∼ 2.8 ps. One can perform stable

simulations with ζL = 0.05m/τL and a simulation time step δt = 0.0025τL. The equation

of motion is solved using Verlet algorithm. Note, however, that the purpose of the low fric-

tion dynamics simulation, in which the inertia term dominate over the friction term, is only

for the sampling purpose in the context of coarse-grained simulation of nano-scale system.

Therefore, the dynamic trajectory in low friction environment is far from realistic, nor the

natural time τL is a meaningful quantity without taking the explicit solvent environment

into account.

Kinetic simulations: To perform kinetic simulation with a realistic friction coefficient,

the over-damped simulations are performed using a Brownian dynamics algorithm

ζH
d$ri

dt
= −$∇iV ({$r}) + $Γi(t). (6)
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From Eq.6 and τ 2
L = ma2/εh, the natural measure for time for over-damped condition at

simulation temperature Ts is

τH ≈
ζHa2

kBTs
=

(ζHτL/m)εh

kBTs
τL. (7)

For the purpose of converting simulation time into real time, we choose the param-

eters as εh = 1 kcal/mol, m = 1.8 × 10−22 g, a = 4 Å, which lead to τL = 2ps,

ζH = 6πηa
(

= 6π × 0.01g · cm−1s−1 × 4Å
)

= 87m/τL. We set ζH ≈ 50m/τL for convenience.

The equations of motion using Eq.6 are stably integrated with a time step of δtL = 0.02τL.

A single simulation time step is converted to the real time as δtL → δtH = 0.02τH , hence, for

example, the 106 simulation time steps (106 × δtH) at Ts = 290 K corresponds to 3.5 µsec in

real time. The folding kinetics simulations under force-quench condition are performed over

the ensemble of equilibrated structures at f = 22pN . We switch the force f = 22pN → 0pN

and measure the folding times for 100 different trajectories. The temperature-quench

kinetics is similarly implemented from the ensemble of structure equilibrated at T = 400

K to the low temperature condition at T = 290 K. The time scale for f and T -quench

(τquench) is instantaneous (∼ 3.5 nsec) in the present work. Although this quench rate is

hard to achieve in the real experiments, our prediction will not change as long as the time

scale of folding (τfold) and time scale of quenching the external condition (τquench) are well

separated, namely τquench + τfold.
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FIG. 3: Three Interaction Site (TIS) representation of P5GA hairpin.
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FIG. 4: A detailed analysis on the force-quench dynamics of RNA hairpin formation. Force-quench

refolding of RNA hairpins undergoes two step dynamics; (i) loop formation and (ii) zipping. The

time scales of these distinct processes are designated by τloop and τzip, respectively. For most of

the RNA hairpins that are released from the rod-like state, the loop formation can be a hard-to-

achieve and heterogeneous process because of the vast number of combinatorics formed by the loop

dihedral angle degrees of freedom. The formation of correct dihedral angles in the loop region is

correlated with the base pair formation that locks the loop. The distributions of τloop and τzip are

computed for a hundred of force-quench refolding trajectories (top panel). For a very slow refolding

trajectory (the event indicated by an arrow on the top panel, τloop ! 800 µsec), the time evolutions

of end-to-end distance (R), deviations from the native dihedral angles (1 − cos(φi − φo
i )), and the

degrees of base pair formation in the stem region (fB) are shown on the bottom panel. Occasional

unsuccessful attempts for the loop formation (see green shadow around τ ∼ 750 µsec for example)

are observed before the successful loop formation and subsequent zipping event (τ ! 900 µsec).
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FIG. 5A: Time traces of f-quench dynamics probed by native base pair index. Time is in µsec.
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FIG. 5B: Time traces of f-quench dynamics probed by native base pair index (continued)
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FIG. 6A: Time traces of T-quench dynamics probed by native base pair index. Time is in µsec.
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FIG. 6B: Time traces of T-quench dynamics probed by native base pair index (continued)


