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ABSTRACT: Polymer chains composing a polymer solution in strict two dimensions (2D) are characterized with irregular domain
boundaries, whose fractal dimension ( ) varies with the area fraction of the solution and the solvent quality. Our analysis of
numerical simulations of polymer solutions finds that in good solvents changes nonmonotonically from = 4/3 in dilute
phase to = 5/4 in dense phase, maximizing to 3/2 at a crossover area fraction ϕcr ≈ 0.2, whereas for polymers in Θ
solvents remains constant at = 4/3 from dilute to semidilute phase. Using polymer physics arguments, we rationalize these
values, and show that the maximum irregularity of 3/2 is due to “fjord”-like corrugations formed along the domain boundaries
which also maximize at the same crossover area fraction. Our finding of 3/2 is, in fact, in perfect agreement with the upper
bound for the fractal dimension of the external perimeter of 2D random curves at scaling limit, which is predicted by the Schramm-
Loewner evolution (SLE).

■ INTRODUCTION
In polymer solution beyond the overlap concentration,
adaptation of the polymer configurations in 2D is dramatically
different from that in 3D. At thermodynamic equilibrium,
polymer chains in strict 2D are bound to segregate and become
territorial, forming entanglement-free polymer domains,
whereas the chains in 3D tend to interpenetrate and are
entangled to maximize the entropy of polymer solution.1 For
2D polymer solution, a multilayered 2D polymer solution with
finite thickness, called “self-avoiding trails’’,2,3 in which
polymer chains overlay on top allowing chain intersections
on a projected 2D plane, may physically be more realistic and
relevant, as it represents thin polymer films, polymers at
interfaces, or polymers under nano-confinement.4−6 Yet, there
have also been a number of studies exploring transitions in the
physical property of 2D polymer solution with decreasing
thickness of the solution, from the one with more
entanglement-rich 3D bulk-like property to the other with
entanglement-free 2D surface-like property.7−10 While there
are a limited number of experimental investigations on 2D

polymer monolayers, their physical properties are expected to
play significant roles in many practical applications.11

Furthermore, the system of many polymer chains confined in
strict 2D, especially in the dense phase, has been an abiding
theoretical interest in polymer physics.3,12−23

Here, we perform numerical simulations of strict 2D
polymer solutions consisting of polymer chains under two
distinct solvent conditions, i.e., good and Θ solvents which can
be realized by tuning the strength of intermonomer
interaction,24 at varying area fraction (ϕ), and study the ϕ-
dependent variation in the geometry of polymer domain
boundaries. The outer boundaries of the domains in 2D are
not smooth but irregular,3,21−23 and the extent of the
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irregularity can be quantified using the fractal dimension.25

Specifically, the “external perimeter” (Ep) increases with “the
root-mean-squared size of monomers constituting the

perimeter”, R r r( )p N i j
N

i j
1

2 ,
2

1/2

p

p
2

i
k
jjj y

{
zzz with ri⃗ the position

of the i-th monomer and Np the number of monomers making
up the external perimeter (∂), and the fractal (Hausdorff)
dimension of the external perimeter,3,21−23,25 [ ]1, 2 , can
be obtained from the scaling relation between the two
quantities averaged over many polymer configurations

E Rp p (1)

where ⟨...⟩ denotes the ensemble average.
Calculating through the numerics of monodisperse

polymer solutions with varying ϕ, we discover that exhibits
qualitatively different ϕ-dependences on the solvent quality.
Remarkably, in good solvents ( )SAW exhibits a non-
monotonic variation with ϕ, whereas of Θ chains ( )
remains constant over the same range of ϕ. The constant
can be understood as an outcome of the compensation
between attraction and repulsion that characterizes the nature
of the Θ chain.9,24,26−28 Despite a number of works that
analyzed the irregularity of the polymer domain boundary in
2D polymer solution,3,13,21−23,29 these studies are mainly
focused on polymer melts or dense polymer systems. Our
finding of the nonmonotonic variation of ( )SAW , especially
over intermediate concentrations, has not been reported
elsewhere.
Since long polymers (N ≫ 1) are considered as an critical

object in scaling limits (see Polymer-Magnet Analogy and
Critical Exponents section in the Appendix), the fractal
dimension of the polymer as well as the values of can be
associated with the fundamental scaling exponents. Here we
first investigate the origin of the ϕ-dependent variation of
in the language of polymers in 2D. We also examine the
problem under the hood of Schramm−Loewner evolution
(SLE), an elegant mathematical tool that utilizes the properties
of conformal invariance to offer a quantitative description for
the boundaries of 2D critical systems at their scaling
limits.30−33

■ METHODS
Generating Polymer Solution in Two Dimensions. In order

to simulate a single polymer chain composed of N segments under
two distinct solvent conditions, we used the energy potential,

= +r r r( ) ( ) ( )b nb , where r = {ri} and ri is the coordinate of
the i-th monomer (i = 1, 2, ..., N − 1) in a 2D surface. The term

r( )b models the chain connectivity using the finite extensible
nonlinear elastic (FENE) potential and a shifted Weeks−Chandler−
Anderson (WCA) potential,
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where ri,i+1 ≡ |ri+1 − ri| is the segment length and H(...) is the
Heaviside step function. The energy potential with the parameters k =

30kBT/a2, Rc = 1.5a, and εSAW/kBT = 1 equilibrates the segments
around the van der Waals distance between monomers (a). The
nonbonded interactions between two monomers (|i − j| ≥ 2) are
represented by the term r( )nb . To generate polymer chains in two
distinct solvent qualities, we used different expressions of r( )nb . For
polymers in good solvent, =r r( ) ( )nb nb

good ,
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For polymers in Θ solvent, =r( )nb nb
r( )
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where we set εΘ/kBT = 1.013 and Δs = 2 × (4/10)6 − (4/10)12, the
latter of which is introduced to connect the potential at rij = 2.5a
smoothly to =r( ) 0nb for rij ≥ 2.5a. As shown in our previous
study,24 the energy potentials with eqs 3 and 4, corresponding to the
good and Θ solvent conditions, generate polymer chains whose root
mean squared end-to-end distance (Ree ≡ ⟨Ree

2 ⟩1/2) scales as Ree ∼ N3/4

and Ree ∼ N4/7, respectively.
For efficient sampling of polymer configurations at equilibrium, we

integrated the equation of motion of a polymer chain coupled to a
Langevin thermostat in an underdamped regime: mri =

+ tr r( ) ( )i iri
, with the random force satisfying ⟨ξi(t)⟩ =

0 and ⟨ξi(t)·ξj(t′)⟩ = 4ζkBTδijδ(t − t′). A small time step δt = 0.005τ
and a friction coefficient ζ = 0.1m/τ, which yield the characteristic
time scale τ = (ma2/ε)1/2 with ε ≃ εSAW or εΘ, were employed.

For the solutions of monodisperse polymer chains with varying
lengths (N = 40, 80, 160, 320, and 640), interchain monomer
interactions were identically modeled as those for intrachain
monomers (eqs 3 and 4). The polymer solution with varying ϕ was
simulated in two steps. (i) From a condition of a dilute phase (ϕ ≈
7.85 × 10−3) that contains 36 pre-equilibrated chains, the size of the
periodic box was reduced step by step with L → ηL (η = 0.904), so
that the area fraction is increased by a factor of η−2 in each step. At
each value of ϕ, overlaps between monomers, induced by an excessive
shrinkage of the box, were eliminated by gradually increasing the
short-range repulsion part of . More specifically, the nonbonded
potential r( )nb was replaced with { }u rmin , ( )c nb , in which uc was
slowly elevated. (ii) For the production run, the system was simulated
for 500Nτ, and chain configurations were collected every 0.1Nτ. For
each combination of N and ϕ, 10 replicas were generated from
different initial chain configurations and random seeds. The
simulations were performed using the ESPResSo 3.3.1 package.34

External Perimeter of Polymer Domain and Fjord-like
Configurations. The external perimeter of a given polymer
configuration (Ep), defined as the length of the closed path on a
square lattice with the lattice spacing l, was calculated by employing
the turn-right tie-breaking rule,35,36 and its average value (⟨Ep⟩) as
well as the average gyration radius (⟨Rp⟩) was obtained over
thousands of polymer configurations. Since the polymer chains are
simulated in continuous space, the absolute size of ⟨Ep⟩ is altered by
the lattice spacing l; yet, the fractal dimension, corresponding to the
scaling exponent defined between ⟨Ep⟩ and ⟨Rp⟩ is insensitive to the l
as long as l is sufficiently small compared to other length scales, i.e., l
≪ ⟨Ep⟩, ⟨Rp⟩. For the analysis in this study, we used l = a.

Next, the “fjord”-like configuration along the perimeter discussed in
this study is identified as the “closed segment” where two segments of
the perimeter on the square lattice meet each other at a single lattice
point. Small fjords were removed from the list if they were part of
bigger fjords.
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■ RESULTS AND DISCUSSIONS

Rationalizing the Values of Using Polymer
Arguments. Simulating 2D monodisperse polymer solution
(see Methods24 and Figure 1), we study the configurations of
polymer domains. To examine the ϕ-dependent irregularity of
the domain boundary (Figure 1A), we calculate ⟨Ep⟩ and
analyze its variation against ⟨Rp⟩, and we extracted as
defined in eq 1 (see Figure 1C. Note that including Figure 1C,
we hereafter use the simplified notation Ep and Rp without ⟨...⟩
denoting the ensemble average over many polymer config-
urations). As shown in Figure 1D, in good solvents, of
polymer chains (SAW) exhibits a nonmonotonic variation with
ϕ (Figure 1D), starting from = 4/3 ( 1.33)SAW in dilute

solution (ϕ ≈ 0), maximizing to ≈3/2 at an area fraction (ϕ =
ϕcr ≃ 0.2) corresponding to a crossover point, and reaching 5/
4 (=1.25) in a dense phase (ϕ ≈ 1). On the other hand, of
chains in Θ solvents remains constant ( 4/3) over the
range of ϕ up to ϕ ≲ 0.4 and also drops to 5/4 (=1.25) at ϕ ≈
0.67. Note that our calculation of the fractal dimension of the
external perimeter confirms the Mandelbrot conjecture,37

namely, = = 4/3B for the frontier (outer boundary)
of the traces generated from planar Brownian motion (see
Hausdorff Dimension of Planar Brownian Frontier in the
Appendix and Figure 5). The values of in Figure 1D under
the limiting and the crossover conditions are rationalized
below.

Figure 1. Fractal dimension of the polymer domain boundary with varying area fraction ϕ. (A) Polymer solutions of SAW (top) and Θ chains with
N = 640 in 2D with increasing ϕ (see ref 24. for the details of simulations). Each panel, visualizing the polymer solution consisting of strictly
noncrossing polymer chains, is drawn in the 2D box of the identical size. (B) Configurations of SAW and Θ chains with varying N in dilute solution
(ϕ < ϕ*). The overlap area fraction (ϕ = ϕ*), in which the intramonomer concentration (area fraction, ϕ) is comparable to the intermonomer
concentration, i.e., ϕ*∼ Nad/RF

d ∼ N1−νd, has previously been determined at ϕ*≈ 0.018 and ϕ*≈ 0.266 for the polymer solution with N = 640
under a good and Θ solvent condition, respectively.24 External perimeter (orange) of a polymer configuration (black) is calculated based on the
turn-right tie-breaking rule.35,36 The interior of the domain enclosed by the perimeter is colored in pale blue. (C) Log−log plot of the external
perimeter of the chain (Ep) versus the gyration radius of the perimeter (Rp) is produced using the chains with five different lengths (N = 40, 80,
160, 320, and 640) for a given value of ϕ. (D) The fractal dimension was calculated from the data points in (C). The three characteristic values
of = 4/3, 3/2, and 5/4, are marked in blue. (E) Typical configurations of SAW at varying ϕ’s.
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(i) For a 2D SAW chain in dilute phase (ϕ < ϕ*), the
majority of the monomers are exposed to the solvent (see the
configurations of SAW in Figure 1B). As a result, the perimeter
of the polymer domain is expected to scale with the number of
monomers Ep(N) ∼ N. Just like the mean squared size of the
polymer and the mean squared end-to-end distance obey the
same scaling relation RF

2 ∼ ⟨Ree
2 ⟩ ∼ N2ν, Rp displays a scaling of

Rp ∼ Nν with ν = νSAW = 3/4. Hence, along with eq 1, it is
expected that Ep ∼ N ∼ N; therefore, SAW = SAW

1 = 4/3
≈ 1.33.23

(ii) The configurations of the Θ chain differ from those of
SAW (Figure 1B) in that some monomers are buried inside the
domain, whereas others are exposed to the periphery
constituting the external perimeter. Θ chains in dilute phase
obey N RF , characterized by the fractal dimension of
percolating clusters = 7/4;9,13,16,19,26,28,38−40 however,
Figure 1D indicates that the external perimeter of the Θ
chain is still self-avoiding, such that = = 4/3SAW .41−43

(iii) In dense polymer solution, the external perimeter of a
polymer domain is proportional to the number of interchain
contacts.23

×E N N f N
Z

Z
( )p

N

N
inter

,4

,2
2

(5)

where f inter, the fraction of such contacts per chain, can be
associated with the ratio of the total number of polymer
configurations between the 4-arm star polymer and the
product of two 2-arm star polymers (see Figure 2); in other

words, it is the ratio of the partition sums between 4-arm
(ZN,4) and two 2-arm star polymers (ZN, 2

2 ), i.e., f inter ∼ ZN,4/
ZN, 2
2 . As the partition sum of an L-arm star polymer with each

arm consisting of N segments is asymptotically (N ≫ 1)
related with μ, the connectivity constant, and γL, the
enhancement exponent, as ZN,L ∼ μLNNγL−1,18,44 we obtain
f inter = Nγ4−2γ2+1 and Ep(N) ∼ Nγ4−2γ2+2.3 From E N N( )p

D,
it follows that

= +1
( 2 2)D 4 2 (6)

Using the concepts of the polymer-magnet analogy, Duplantier
derived the exact expression of the enhancement exponent of a
2D L-arm star polymer as γL = 9/8 + (3 − L)L/32 (see eq 35
and the Appendix for details of the derivation).16,18 Since γ2 =
19/16, γ4 = 1, and ν = 1/2 for polymers in dense phases, we
obtain = 5/4D .

(iv) For polymer chains in the polymer solution in good
solvents, the fractal dimension of the domain boundary
changes nonmonotonically with ϕ and maximizes to

1.5SAW at ϕcr ≈ 0.2 (Figure 1D). According to the
polymer configurations visualized at the five different values of
ϕ in Figure 1E, the outer boundary of the chain at the dilute
phase (ϕ ≈ 0.018) is made of essentially all the monomers
constituting a polymer chain. However, as the ϕ increases and
the overall size of polymer domain decreases,24 some of the
monomers are engulfed inside the domain, which divides the
polymer domain into the interior (colored in pale blue) and
the exterior. In particular, the monomers constituting the
exterior of the domain are used to define the external perimeter
(a closed loop is depicted with an orange line). Remarkably, it
appears that the ruggedness (or fractal dimension) of this
external perimeter also changes nonmonotonically with ϕ and
maximizes at an intermediate value of ϕ (ϕ = 0.198 and
0.297), and it flattens out at the highest value (ϕ = 0.666).
A careful visual inspection of polymer configurations

suggests that the outer boundaries of the polymer domain
are characterized with “fjord”-like configurations with narrow
“straits”,41−43 the area of which increases up to some ϕ. When
ϕ further increases and the solution is in the dense phase, the
merging straits transform those fjords into lakes, which smooth
out the domain boundary (see Figure 3A for an illustration of a
“fjord”-like configuration in the domain boundary, a strait, and
a lake). More specifically, as shown in Figure 3B, for a given
polymer configuration (black curve), the external perimeter of
the polymer domain (orange line) is identified on a 2D square
lattice by employing the turn-right tie-breaking rule.35,36 In
Figure 3B, the “fjord”-like configuration corresponds to the
part of the perimeter forming a closed loop, and the region
enclosed by the loop is marked with the blue dots highlighting
the areas occupied by the fjords formed along the domain
boundary. We find that the total length of such fjords that
contributes to the irregularity of the domain boundaries is
short in dilute phase (ϕ < ϕ*, where ϕ* denotes the overlap
concentration), and it gradually increases up to ϕ ≈ (0.2−0.4),
which is significantly greater than ϕ*, and decreases at higher
ϕ. Explicit calculation of the average contour length of the
fjords per chain exhibits nonmonotonic variations (Figure 3C),
which is similar to that of the ϕ-dependent fractal dimension of
the domain boundary ( ( )) shown in Figure 1D. We
surmise that the gradual increase of osmotic pressure24 exerted
by the neighboring chains facilitates the folding of the
intradomain boundary to shape polymer configurations with
a rugged perimeter, reminiscent of fjords, until they are
engulfed into the interior of the domain at dense phases.
Schramm−Loewner Evolution. The Schramm−Loewner

evolution (SLE), which uses the property of conformal
invariance, is an elegant mathematical apparatus developed in
the early 2000s.30,31,33 It was conjectured to describe any
critical statistical mechanical object in the form of noncrossing
stochastic paths in 2D using a one-dimensional Brownian
motion,30,31,33 offering an entirely different perspective to
understand a number of issues in 2D critical phenomena.32

Assuming that the outer boundary of the polymer domain in
2D is a conformally invariant geometrical object, we consult
the SLE to cross-check and better understand our findings of
the ϕ-dependent 2D curve of the polymer domain boundary.
Specifically, SLE is based on a conformal map w = gt(z) that

satisfies the following differential equation

Figure 2. Illustration of 4-arm star polymer made of two 2-arm star
polymers. For the total numbers of configurations (partition sums) for
the 4-arm star polymer and 2-arm star polymer given as ZN,4 ∼
μ4NNγ4−1 and ZN,2 ∼ μ2NNγ2−1, the interpolymer contact probability f int
is expected to scale as f int ∼ Z4N/Z2N

2 .
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=g z
g z a

( )
2

( )t t
t t (7)

with g0(z) = z for z → ∞. The map gt(z) uniformizes 2D
curves, γ[0,t], in the upper half-plane =( { zIm( ) > 0;

}z ) onto the real axis such that a 2D curve at time t, γ(t),
is mapped onto the real value at in the real axis via the
conformal map, =a g t( ( ))t t .45 If the at, called a driving
function, is deterministic with κ = 0, the resulting 2D curve is a
growing stick (SLE0, the left-most panel in Figure 4), which is
the solution of the Loewner’s differential equation introduced
in 1923.46 On the other hand, if the at is stochastic, satisfying
⟨at⟩ = 0 and ⟨at2⟩ = κt with κ corresponding to the diffusivity of
the Brownian motion, the inverse mapping gt−1(ω), namely,
γ(t) = gt−1(at) can generate a 2D noncrossing random curve,
called SLEκ visualized in Figure 4 for some physically relevant

values of κ, whose behavior is decided solely by the value of a
single parameter κ.
The fractal (Hausdorff) dimension of the SLEκ is given

as31,47

= +min(2, 1 /8) (8)

Further, it has been conjectured that the outer boundary of
SLEκ for κ ≥ 4 corresponds to the curve of SLE16/κ, which is
known as the “SLE duality”.47,48 Thus, for κ ≥ 4, the fractal
dimension of the outer boundary is

= +1 2/ (9)

Eq 9 can be used to validate our results in Figure 1D.
(i) The fractal dimension of the Θ chain (κ = 6) is

= 7/4 (eq 8), and that of its outer boundary is = 4/3
(eq 9). The exponents obtained from our numerics in Figure

Figure 3. Contribution of fjords to the perimeter ruggedness. (A) Illustration of a fjord (left) transforming into a lake (right). When a narrow strait
merges, the fjord turns into a lake, which smooths out the perimeter (orange) of the domain boundary. (B) Polymer configurations (black line)
with fjords, which are defined as the closed segments of the external perimeter (orange line) calculated in the unit of the lattice spacing a on a square
lattice. The region surrounded by the fjords is demarcated using the blue dots. (C) The average length of fjords per chain (Ef) increases with
increasing ϕ. The maximal Ef is identified at ϕ = (0.2−0.3), gradually shifting toward smaller ϕ as N increases. Depicted to the right of the graph
are polymer configurations (black line) with N = 640 at varying ϕ’s (ϕ = 0.039, 0.133, 0.199, 0.364, and 0.666), which are also marked with the red
arrows on the graph.

Figure 4. 2D random curves γ(t) = gt−1(at), i.e., SLEκ, generated using the inverse mapping of the conformal map gt(z) satisfying the differential
equation given in eq 7 for various values of κ.45 All of the curves grow in time from dark blue (t = 0) to dark red (t = 104). SLEκ with κ = 0, 2, 8/3,
3, 4, 6, and 8 correspond to the growing stick, loop-erased random walk, SAW, domain wall of 2D Ising model at the critical point, Gaussian free
field, cluster boundaries in percolation, and space-filling curve, respectively.32
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1D are in perfect agreement with the values predicted by the
SLE. Notably, despite the disparate polymer configurations in
the two solvent conditions (see Figure 1B), the fractal
dimension of polymer domain boundary of the Θ chain
( ) is still identical to that of SAW, namely, = SAW . In
fact, the external perimeter of the ideal random planar walk
(Brownian motion) is also self-avoiding (Figure 5), which is
known as the Mandelbrot’s conjecture.37

(ii) From the perspective of SLE, a polymer chain in dense
solution is space-filling with the corresponding value of κ being
κ ≥ 8.30−32 In this case, we get = = 2D (eq 8) and

= = 5/4D (eq 9).
(iii) Lastly, SLE can be used to account for the ϕ-dependent

nonmonotonic variation of SAW , the origin of which we have
ascribed to the average length of fjords per chain that also
exhibits a nonmonotonic variation. A transformation ht(z) =
gt(z) − at casts eq 7 into ∂tht(z) = 2/ht(z) + ξt, where ξt is a
white noise satisfying ⟨ξt⟩ = 0 and ⟨ξtξs⟩ = κδ(t − s). If one
considers the dynamics of SLE curves projected on the real axis

=z x , ht(x) = xt, the xt is described by the 1D
stochastic dynamics, known as the Bessel process32,49

= +dx
dt x

2t

t
t

(10)

Heuristically, the nature of the dynamics xt is dictated by the
value of κ, and a crossover between a deterministic (xt2 ∼ 4t)
and a stochastic growth (⟨xt2⟩∼ κ t) occurs at κ = 4. Along with
the SLE curves depicted with varying κ in Figure 4, this means
that for κ < 4 the unprojected, original SLE curves, γ[0, t], are
simple and more deterministic and neither hit the real axis nor
have self-intersections, whereas they become more stochastic
and self-intersecting for κ > 4.30−32 The SLE curves at κ = 4
correspond to those lying precisely at the crossover point
between the two contrasting behaviors. According to the SLE
duality (eq 9), the fractal dimension of the external perimeter
of SLE curves is upper bounded by = 3/2max for κ = 4, and
this number is consistent with the maximal value of
calculated in Figure 1D, i.e., ±1.53 0.04max .

■ CONCLUSION
In summary, examining the ϕ-dependent ruggedness of the
polymer domain boundary of an individual polymer chain in a
polymer solution ( ( )), we discover the nonmonotonic
variation in the ruggedness for a 2D polymer solution in good
solvents. The values of at the crossover point as well as
under the limiting conditions are rationalized using the
fundamental critical exponents of polymer configurations in
2D (ν, γ2, and γ4) and the idea of SLE. Among them, of
particular note is the maximal ruggedness =( ) 3/2SAW max ,
which the SLE (eq 9) ensures as the universal upper bound of
the fractal dimension for a 2D interface. Interestingly, similar
values of maximal fractal dimension have been reported for the
fractal interface in bacterial biofilms.50,51 We have associated
( )SAW max with the maximal “fjord”-like corrugations that
result from the marginal folding of the domain boundary (see
Figure 3A). The adaptation of polymer configurations with ϕ,
which gives rise to the nonmonotonic variation of irregularity
in the domain boundary, is unique and fundamentally differs
from the ϕ-dependent variation of osmotic pressure (Π) in

that the latter is dictated by the exponent ν alone and displays
monotonic variation with ϕ.24,52−54

Finally, our finding of the ϕ-dependent corrugations in the
polymer domain boundary is amenable to experimental
verification which may require either a direct/indirect
visualization of polymer configurations55−57 or a careful
investigation on rheological responses of ultrathin polymer
films or polymer monolayers at the air−water interface.11,58 In
light of our finding that the ruggedness of the domain
boundary changes nonmonotonically and maximizes at a
crossover area fraction (ϕcr ≈ 0.2) that lies between ϕ* and ϕ
≲ 1, it is possible that a certain dynamical behavior, such as the
amoeba-like fluctuations of the (sub)chain contours with a
relaxation dynamics of τ ∼ N15/8 conjectured3 and explicitly
observed in a simulation study59 for a polymer domain
boundary in a dense phase monolayer, could be modulated
into a different form in less dense phases.

■ APPENDIX

Hausdorff Dimension of Planar Brownian Frontier
For the sanity check of the fractal dimension obtained from
our study, we generated the Brownian motion in the 2D plane.
First, Rp(N), the radius of gyration of the monomers
constituting the external perimeter of Brownian motion
(Brownian frontier), displays effectively an identical scaling
relation with the radius of gyration Rg(N) of the full chain as Rp
∼ Rg ∼ N1/2. Further, we examine the variation of the external
perimeter as a function of N, finding that Ep satisfies the scaling
of Ep ∼ N2/3 (Figure 5A). Therefore, from the relation of

E Rp p (eq 1), we obtain = 4/3. This indicates that the
fractal (Haudorff) dimension of the external perimeter of
planar Brownian motion ( )B is identical to the fractal
dimension of a 2D SAW =( ( ) )D

SAW SAW
2 1 , i.e., B = SAW

= 4/3.
Polymer-Magnet Analogy and Critical Exponents
Configurations of a linear polymer made of N links are
characterized by two critical exponents, ν and γ.1 The exponent
ν is associated with the size (Flory radius, RF) of a polymer
chain that scales with N as RF ∼ Nν, and γ is asymptotically
associated with the partition sum (the total number of
configurations) ZN(tot) ∼ μNNγ−1, where μ is the connectivity
constant that depends on the detail of the model. Specifically,
μ = 6 with γ = 1 for the ideal chain in a cubic lattice in 3D, and

Figure 5. Hausdorff dimension of planar Brownian frontier. (A)
Scaling relations of Rp (or Rg) with N, and Ep with N obtained from
simulations of 2D Brownian random walks with varying N. (B) Ep
versus Rp, which determines the scaling exponent of the external
perimeter of 2D Brownian random walks, = 4/3B .
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= +2 2 with γ = 43/32 for self-avoiding walk on a
honeycomb lattice in 2D44,60,61 (see also eq 30).
According to the polymer-ferromagnet analogy, which maps

the chain statistics of a polymer onto the O(n) model of a
magnetic spin system defined by the energy Hamiltonian

= ·K S S/ ( / )
i j

i j
, (11)

with the coupling constant between the neighboring spins K >
0 and ∑α=1

n Siα
2 = n,1,62 the correlation between i-th and j-th

spins, near the critical temperature τ = τc(1 + ϵ) ≃ τceϵ and at
the limit of n = 0, is equivalent to the number of self-avoiding
configurations ZN(ij) weighted by a factor (K/τ)N, i.e.,
⟨SiαSjα⟩|n=0 = ∑NZN(ij)(K/τ)N.1,62 Along with the definition
of partition sum ZN(tot) = ∑jZN(ij), the magnetic
susceptibility (or the two-point correlation) can be associated
with ZN(tot) as follows:

| =

| |

=S S Z K

dNe N

1 1
(tot)( / )M

j
i j n

N
N

N

N

0

1

0

1

(12)

where μK = τc is used in the second line. This clarifies that the
exponent γ characterizing ZN(tot) is the same exponent
associated with the susceptibility near the critical temperature.
It also shows that N is the conjugate variable of ϵ (N ∼ ϵ−1),
which enables mapping the polymer size (RF ∼ Nν) to the
correlation length of the magnetic system (ξ ∼ |ϵ|−ν) as long as
N is sufficiently large. In other words, a polymer chain with N
≫ 1 can be considered as a scale-invariant, critical object.
The foregoing argument for the linear polymer can be

extended to a polymer system with more complicated
geometry represented using a general graph . For a general
graph made of chains of an identical length N comprising
nL L-arm vertices, the partition sum ( ) scales with N as

N( ) 1, and the enhancement exponent satisfies the
following hyperscaling relation18,44

= n d1
L

L L
1 (13)

where is related to nL as = n LL L
1
2 1 , denotes the

number of loops in the graph , = ∑L≥1(L − 2)nL/2 + 1,
and σL is the exponent associated with the L-vertex.

• For L-arm star polymers (n1 = L, nL = 1, and nL≠1,L = 0)
( = L, Figure 6A), one gets = 0 and

= +L1 L1L (14)

• For a graph of the watermelon geometry (nL = 2, nL′≠L =
0, and = L 1) ( = L, Figure 6B) with L arms
of the same length, eq 13 yields

= d L1 2 ( 1)LL (15)

In fact, the enhancement exponent of an L-arm star polymer
( )L L

can be related with the scaling dimension xL via σL,
where xL is the exponent describing the algebraic decay of two-
point correlation between L-arm vertices at X and Y at the
critical point βc:

=
| |

X Y
X Y

( ) ( )
1

L L x2c L (16)

To derive the relation between σL and xL, one considers the
two-point correlation ⟨φL(X)φL(Y)⟩β at a temperature β−1 and
expresses it in terms of the partition sum of all the possible
watermelon-like configurations between X and Y,16,18,44

=
=

+ + +dN e

N N

X Y

X Y

( ) ( )

( , ..., , , )

L L

L
N N N

L L

0 1

( ... )

1

L1 2

(17)

Then, its inverse Laplace transform is written as

=

+

= =

i
d e

dN LN N

N N

X Y

X Y

1
2

( ) ( )

( , ..., , , )

i

i
LN

L L

L L

L L

0 1 1

1

i
k
jjjjjj

y
{
zzzzzz

(18)

Integrating the right hand side of eq 18 over the space ∫ dY(...)
defines the partition sum of polydisperse L-arm star polymers

N( )L
poly . Thus, at the critical point β = βc, one obtains

where we have used the Flory’s relation R ∼ Nν and obtain

N N( )L
d xpoly ( 2 ) 1L (20)

Meanwhile, the partition sum of the watermelon type graphs
with L arms of the same length Nα = N, ( )L ≡ L(N, N,
..., N), is related with N( )L

poly as44

N N

N N

( ) ( )L L
L

L

poly 1

1 1
L (21)

Therefore, the relation between σL and xL follows from eqs 20
and 21 along with eq 15

= +x L d( 1)/2L L (22)

Contact Exponent
The interchain contact probability f inter discussed in eq 5 is
calculated by means of the contact exponent θ ≡ θ2,2 of the
distribution function at small separation r ≃ a ,

( )P r( )
R

r
R

1

F
d

F

17,18 with = 0, that is,

Figure 6. Graphs of (A) a L-arm star =( )L and (B) a watermelon
geometry =( )L .
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f
a

R
N

F
inter

i
k
jjjjj

y
{
zzzzz (23)

Therefore, comparison of eq 23 with f inter = Nγ4−2γ2+1 yields

= 1
(2 1)2 4 (24)

and = 1/D from E N Np
1D , giving rise to

eq 6.
More generally, the contact exponent between L-arm and L′-

arm star polymers, θL,L′, can be related with other critical
exponents for L- and L′-arm star polymers using eqs 14 and
2218

= +

= +

=

+

+

+x x x

1
( 1)

1
( )

L L L L L L

L L L L

L L L L

,

(25)

For polymers in a dense phase, xL = (L2 − 4)/16 (see eq
33), which leads to θ2,2 = θ = x4 − 2x2 = 3/4, and hence

= =1/ 5/4D .21

The Universal Scaling Dimensions from Mapping Spin
Models onto the 2D Coulomb Gas Model
For the aforementioned O(n) model (eq 11), the correspond-
ing partition function ZO(n) = ∫ ∏kdSk∏⟨i,j⟩(1 + tSi·Sj) can be
expressed as a sum of the diagrams of closed loops,60

=Z t nO n( )
( ) ( )B C

(26)

where t ≡ eK/τ − 1 and ( )B and ( )C are the total number
of bonds and non-intersecting loops of the graph .
Considering closed loop configurations in a triangular solid-
on-solid (TSOS) model defined on a honeycomb lattice, one
can identify the condition that associates the O(n) model with
the TSOS model. Since the partition function of the TSOS
model is given as = +Z t e e( )i i

TSOS
( ) 6 6 ( )B C , where

(e6iα + e−6iα) is the factor contributed by a closed loop on the
hexagonal lattice, thus, the invariance of the partition function
of the two alternative models (ZO(n) = ZTSOS) yields the
relation n = 2 cos 6α. On a hexagonal lattice, tc = (2 + (2 −
n)1/2)−1/2 < 1 is the exact critical point of the O(n) model, and
t = 1 corresponds to the critical low-temperature phase t > tc.

60

Next, mapping the TSOS model onto the 2D Coulomb gas
model via 6α/π = (1 − g)63 allows one to relate n of the O(n)
model with the coupling strength of Coulomb gas (g), whose
action in the continuum limit is = d r( )g

4
2 2 ,16 as

follows:

=n g2 cos( ) (27)

For the case of a SAW chain (n = 0), g = 3/2 ∈ [1, 2] at dilute
phases (t = tc), whereas g = 1/2 ∈ [0, 1] at dense phases (t >
tc).

12,15,16 For the Θ chain, whose statistics is identical to the
percolation (n = 1), eq 27 leads to g = 2/3.19

For the 2D Coulomb gas model, the two-point correlation
between X and Y at the critical point, ⟨φL(X)φL(Y)⟩β dc

= |X −
Y|−2xL, is contributed by vortex configurations and spin

waves64,65 and it can be interpreted as an outcome of the
correlation due to magnetic and electric charges14,16,63,66

= | | +X Y X Y( ) ( )L L
gm m e e g/

c
X Y X Y

(28)

For the correlation between two L-arm vertices of the
watermelon geometry, the magnetic charges at X and Y are
due to a vortex and anti-vortex pair with L/2 dislocations mX =
−mY = L/2, and the electric charges at X and Y are given as eX
= eY = 1 − g, and hence the scaling dimension xL = −(gmXmY +
eXeY/g)/2 is expressed in terms of g and L14

=x
L

g
g

g8
( 1)

2L

2 2

(29)

Taken together, along with the L-arm vertex exponent (σL =
−νxL + L(νd − 1)/2 for L ≥ 1), the scaling dimensions (xL)
for L-arm star polymers under three different conditions are
obtained as follows.16,18

• SAW chain in dilute phase (n = 0, g = 3/2):

=x
L(9 4)

48L
SAW

2

(30)

Thus, from eq 22 with ν = 3/4 and d = 2, one gets the L-
arm vertex exponent44

= +L L(2 )(9 2)
64L

SAW

(31)

and from eq 14

= [ + ]L L68 9 (3 )
64L

SAW

(32)

Thus, eq 32 confirms the Nienhuis result γSAW ≡ γ1 = γ2
= 43/32.60

• Polymer solution in dense phase (n = 0, g = 1/2):

=x
L( 4)

16L
D

2

(33)

and with ν = 1/2 and d = 2

= L( 4)
32L

D
2

(34)

Since θ2,2 = x4D − 2x2D with x4D = 3/4 and x2D = 0, one gets
θ2,2 = 3/4. Thus, the relation γLD = 1 + σL

D + Lσ1
D (eq 14)

offers the enhancement exponent for an L-arm polymer
in the dense phase

= + L L9
8

(3 )
32L

D

(35)

which confirms γD = 19/16 for linear polymers.12

• Θ chain in dilute phase (n = 1, g = 2/3):

=x
L( 1)

12L

2

(36)

and with ν = 4/7 and d = 2

= +L L(2 1)( 2)
42L (37)
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