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ABSTRACT: An efficient molecular motor would deliver cargo to the target site at a high
speed and in a punctual manner while consuming a minimal amount of energy. According to a
recently formulated thermodynamic principle, referred to as the thermodynamic uncertainty
relation, the travel distance of a motor and its variance are, however, constrained by the free
energy being consumed. Here we use the principle underlying the uncertainty relation to
quantify the transport ef f iciency of molecular motors for varying ATP concentration ([ATP])
and applied load ( f). Our analyses of experimental data find that transport efficiencies of the
motors studied here are semioptimized under the cellular condition. The efficiency is
significantly deteriorated for a kinesin-1 mutant that has a longer neck-linker, which
underscores the importance of molecular structure. It is remarkable to recognize that, among
many possible directions for optimization, biological motors have evolved to optimize the
transport efficiency in particular.

Biological systems function in nonequilibrium steady states
(NESS) where the energy and material currents flow

constantly in and out of the system. Subjected to incessant
thermal and nonequilibrium fluctuations, cellular processes are
inherently stochastic and error-prone. Thus, biological systems
adopt a plethora of error-correcting mechanisms that expend
energy to fix any error deleterious to their functions. Trade-off
relations between the energetic cost and information processing
are ubiquitous in cellular processes and have been a recurring
theme for many decades.1−7

A recent study by Barato and Seifert8 has formulated the
thermodynamic uncertainty relation, which quantifies the trade-
off between free energy consumption and precision of a
dynamic process in NESS. They defined the uncertainty
measure , a product between the energy consumption (Q(t))
of the process and the squared relative error of an output
observable from the process X(t), ϵX

2(t) = ⟨δX2⟩/⟨X⟩2, and
further conjectured that cannot be smaller than 2kBT for any
chemical network described by Markov jump processes, which
is succinctly written as

= × ϵ ≥Q t t k T( ) ( ) 2X
2

B (1)

The measure quantifies the uncertainty of the dynamic
process. The proof and physical significance of this inequality
have been discussed extensively.8−13 Among others, we have
shown that the minimal bound of , 2kBT, is attained when
heat dissipated from the process is normally distributed, such

that P(Q) ≈ e−Q
2

, which is realized in special conditions.12 In
the presence of large fluctuations inherent to cellular processes,
harnessing energy into precise motion and suppressing the
uncertainty are critical for accuracy in cellular computation. The

smaller the value of , the more regular and predictable the
trajectory generated from the process.
Historically, the efficiency of the heat engine has been

assessed in terms of maximizing the amount of work or power
extracted from two heat reservoirs with different temper-
atures.14−16 In contrast to the heat engine, molecular motors
function at isothermal condition. Instead of a heat source,
chemical forces that are constantly regulated in the live cell
drive the molecules. While there are a number of different ways
to assess the “thermodynamic efficiency” of a molecular
motor,17−20 another type of efficiency, which is more relevant
for the function of the molecular motor, can be proposed. The
uncertainty measure can be used to assess the efficiency of
suppressing the uncertainty in dynamical processes by means of
energy consumption and thus is quite pertinent for evaluating
the transport ef f iciency of a motor (or motors).21 The
connection between and the transport efficiency becomes
clear by recasting eq 1 into

= ̇ ≥Q
D

V
k T

2
22 B (2)

where we selected the displacement (or travel distance) of a
motor as an output observable, substituting X = l(t) into eq 1.

is minimized by a motor that transports cargo (i) at a high
speed (V ≈ ⟨l(t)⟩/t), (ii) with a small error (D ≈ ⟨δl(t)2⟩/t) in
the displacement (or punctual delivery to a target site), and (iii)
with a small energy consumption (Q̇). Thus, a motor efficient
in cargo transport is characterized by a small with its minimal
bound 2kBT.
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Here, we assess the “transport efficiency” of several biological
motors using and study how it changes with varying
conditions of f and [ATP]. To evaluate , one should know Q̇,
D, and V of the system (see eq 2), which can be obtained by
considering a suitable kinetic model that delineates the
dynamical characteristics of the system.22 Of particular interest
is identifying a condition, if any, when the transport efficiency
of a motor is optimized. Our analyses of motors show that the
structure of f( , [ATP]) is sensitive to the design of the motor
structure as well as the motor type. The biological motors
studied here are semioptimized in terms of under the cellular
condition, which alludes to the role of evolutionary pressure
that has shaped the present forms of molecular motors in the
cell.
Chemical Driving Force, Reaction Current, Work, and Heat

Production Associated with the Dynamics of Kinesin-1 Using the
Double-Cycle Network Model. To study the transport property of
a molecular motor, we construct a suitable kinetic network
model of the motor and compare the analytic expression of V
and D in terms of a set of kinetic rates ({kij}) with the
experimental data of V and D obtained at varying f and [ATP],
which are available in the literature. Unlike V and D, Q̇ is not
immediately accessible from the time traces of the motor.
However, as long as the kinetic network model is physically
sensible enough to correctly describe the transport dynamics of
the motor, the rate constants {kij} determined by fitting the
data of V({kij( f, [ATP])}) and D({kij( f, [ATP])}) to the
network model allow us to calculate Q̇({kij( f, [ATP])})

22 and,
hence f( , [ATP]). Projection of molecular processes in a
low-dimensional space is reasonable approximation as long as
there exists a time scale separation between a slow variable of
interest and other faster variables.23 Because a series of
chemical transformations involving ATP binding and hydrolysis
followed by Pi and ADP release from the motor head domain

are the slowest events in the motor dynamics, representing the
time trajectories of molecular motors onto the chemical state
space is deemed a good approximation.
For kinesin-1, we employ the motility data analyzed in terms

of V( f, [ATP]) and D( f, [ATP]) from ref 24 (Figure S1) and
model them using the six-state kinetic network model25

consisting of two cycles and (Figure 1A). Although the
conventional (N = 4)-state unicyclic model26,27 confers a
similar result with the double-cycle model at small f (compare
Figures 1 and S3), the unicyclic model leads to a physically
problematic interpretation especially when the molecular motor
is stalled or starts taking backsteps at large hindering
load.25,28,29 As explicated previously,29 the backstep in the
unicyclic network, by construction, is produced by a reversal of
the forward cycle, which implies that the backstep is always
realized via the synthesis of ATP from ADP and Pi. More
importantly, the unicyclic network results in Q̇ = 0 under the
stall condition, which however contradicts the physical reality;
an idling car still burns fuel and dissipates heat (Q̇ ≠ 0)! To
accommodate the possibility of an ATP-induced (fuel-burning)
backstep or ATP-consuming stall into our consideration, we
extend the unicyclic network into a multicyclic one.25,29−31

The proposed double-cycle network is a minimal reaction
network model that can accommodate four different scenarios
for the kinetic paths: (i) ATP hydrolysis-induced forward step;
(ii) ATP hydrolysis-induced backward step; (iii) ATP syn-
thesis-induced forward step; (iv) ATP synthesis-induced
backward step. With the rate constants determined against
the motility data of kinesin-1 using the double-cycle model, the
kinesin-1 predominantly moves forward through the cycle
under small hindering ( f ≳ 0) or assisting load ( f < 0), whereas
it takes a backstep through the cycle under a large hindering
load. In principle, the reaction current within the cycle (J )

is decomposed into the forward ( +J ) and backward current

Figure 1. Dynamics of kinesin-1 generated from the six-state double-cycle kinetic network model. (A) Schematics of the network model for the
hand-over-hand dynamics of kinesin-1, where T, D, and ϕ denote ATP-, ADP-bound, and apo states, respectively. Through ATP binding [(1) →
(2)], mechanical step [(2) → (5)], release of ADP [(5) → (6)], and hydrolysis of ATP [(6) → (1)], kinesin moves forward in the cycle [(1) →
(2) → (5) → (6) → (1) ] and backward in the cycle [(4) → (5) → (2) → (3) → (4) ]. The arrows in the figure depict the direction of reaction
currents. In both cycles, each chemical step is reversible and the transition rate from the ith to jth state is given by kij. (B) Reaction current J , J ,

and J as a function of load. The three cartoons illustrate the amount of current along the and cycles as a function of f. f < 0 and f > 0 correspond
to the assisting and hindering loads, respectively. (C) Ratio between the forward and backward fluxes (J J/ ) as a function of f at fixed [ATP]. The

stall forces, determined at =J J/ 1 (dashed line), are narrowly distributed within f = 6−8 pN. (D−H) V, D, Q̇, Ẇ, and Ė as a function of f and
[ATP]. The white dashed lines demarcate the locus of the [ATP]-dependent stall force, and the dashed lines in magenta indicate the condition of
[ATP] = 2 mM. (I) Dependences of Ė, Q̇, and Ẇ on f at [ATP] = 2 mM.
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( −J ), satisfying = − >+ −J J J 0. Although a backstep
satisfying <J 0 could be realized through an ATP synthesis,32

a theoretical analysis29 on the experimental data33,34 suggests
that such a backstep current ( <J 0, ATP synthesis-induced
backstep) is practically negligible compared with the current
associated with an ATP hydrolysis-induced backstep ( >J 0),
so that | | ≫ | |J J .
We demonstrate the dynamics of kinesin-1 realized in the

double-cycle network in terms of J and J with increasing f
(see Figure 1B). At f = 0, kinesin-1 predominantly moves
forward ( ≫J J ). This imbalance diminishes as f increases
until it reaches f = fstall. At stall conditions, the net current J
associated with the mechanical stepping defined between states
(2) and (5) vanishes ( = − =J J J 0); however, non-
vanishing current due to ATP chemistry still persists along
the path of→ (2) → (3)→ (4)→ (5)→ (6)→ (1) → (2)→
(see Figure 1A). A further increase of f beyond fstall renders

<J J , augmenting the likelihood of backstep.
We also demonstrate the rates of heat dissipation (Q̇), work

production (Ẇ), and total energy supply (Ė). In the double-
cyclic model, the total heat generated from the kinetic cycle
depicted in Figure 1A is decomposed into two contributions
from the subcycles, Q̇ and Q̇ , each of which is the product
of reaction current and affinity8,25,35−38

̇ = ̇ + ̇ = +Q Q Q J J (3)

Here, the affinities (driving forces) for the and cycles are

μ= = −Δ −
⎛
⎝⎜

⎞
⎠⎟k T

k k k k
k k k k

fdlog ( )B
12 25 56 61

21 16 65 52
hyd 0

(4)

and

μ= = −Δ +
⎛
⎝⎜

⎞
⎠⎟k T

k k k k
k k k k

fdlog ( )B
23 34 45 51

32 25 54 43
hyd 0

(5)

The expressions of J and J in terms of {kij} are available (see
eq S25), but they are generally more complicated than that of
affinity. The above decomposition of the affinity associated with
each cycle into the chemical driving force and the work done by

the motor straightforwardly follows from the expression of {kij}
(see the Methods Section for the expressions of f-dependent
rate constants).25−27 From eqs 3−5, Q̇ can be decomposed into
the total free energy input ( μ̇ = + −ΔE J J( )( )hyd ) and

work production ( ̇ = −W J J fd( ) 0)

μ̇ = + −Δ − − = ̇ − ̇Q J J J J fd E W( )( ) ( )hyd 0 (6)

A few points are noteworthy from the dependences of V, D,
Q̇, and Ẇ on f and [ATP] (see Figure 1): (i) The stall
condition, depicted by a white dashed line in each map, divides
all of the 2D diagrams of V, D, Q̇, and Ẇ into two regions; (ii)
Q̇ and Ẇ display nonmonotonic dependences on f (Figure
1F,G); at high [ATP] (∼2 mM), Q̇ is locally maximized at f =
10 pN, whereas Ẇ is maximized at 5 pN and locally minimized
at 10 pN (see Figure 1I calculated at [ATP] = 2 mM); (iii) at f
= fstall (∼7 pN) (Figures 1B,I, black dashed line), the reaction
current of the cycle is exactly balanced with that of the
cycle ( = − =J J J 0), giving rise to zero work production
(Ẇ = f V = fd0J = 0). The numbers of forward and backward
steps taken by the motor are identical, and hence, there is no
net directional movement (V = 0).34 Importantly, even at the
stall condition, kinesin-1 hydrolyzes ATP, dissipating heat in
both forward and backward steps and, hence, rendering

μ̇ = + −ΔQ J J( )( )hyd always positive.

Quantif ication of for Kinesin-1. Unlike V, D, and Q̇, which
are maximized at large [ATP] and small f (Figure 1D−F),

f( , [ATP]) displays a complex functional dependence
(Figure 2A). (i) → k T2 B at low [ATP] and f. However,
this is a trivial outcome of the detailed balance condition where
[ATP] is balanced with [ADP] and [Pi]. The motor, without a
chemical driving force and only subjected to thermal
fluctuations (Q̇ → 0), is, on average, motionless (V → 0) but
with a finite dispersion (D ≠ 0); is minimized in this case
( → k T2 B ) (see eq 2). (ii) is generally smaller below the
stall condition, f < fstall([ATP]), demarcated by the white
dashed lines in Figure 1. In this case, the reaction current along
the cycle is more dominant than that above the stall. At the
stall, diverges because of V → 0 and Q̇ ≠ 0 (eq 2). (iii)
Notably, a suboptimal value of ≈ k T4 B is identified at [ATP]
= 210 μM and f = 4.1 pN (Figures 2). (iv) At f ≈ 4 pN, the

Figure 2. calculated based on kinesin-1 data24 using the six-state double-cycle model25 at varying f and [ATP], where f > 0 and f < 0 stand for the
hindering and assisting load, respectively. (A) 2-D contour plot of = f( , [ATP]). A suboptimal point ≈ k T4opt B is found at f = 4.1 pN and

[ATP] ≈ 210 μM. The solid lines in magenta are the loci of locally optimal at varying [ATP] for a given f (B). The dashed lines in magenta are the
loci of locally optimal at varying f for a given [ATP] (C). The star symbol indicates the cellular condition of [ATP] ≈ 1 mM and f ≈ 1 pN.
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transport efficiency of kinesin-1 ( ≲ ≲k T k T4 6B B ) remains
unchanged over the broad range of [ATP] (= 1 μM − 10 mM)
(Figure 2C).
Comparison between Dif ferent Types of Kinesins. The dynamic

property of the molecular motor differs from one motor type to
another. The effect of modifying the motor structure on the
transport properties as well as on the directionality and
processivity of the molecular motor has been of great interest
because it provides understanding into the design principle of a
motor at the microscopic level.39−43 To address how
modifications to the motor structure alter the transport
efficiency, we analyze single-molecule motility data of a mutant
of kinesin-1 (Kin6AA) and homodimeric and heterotrimeric
kinesin-2 (KIF17 and KIF3AB).
Data of Kin6AA, a mutant of kinesin-1 that has a six-residue

longer neck-linker domain, were taken from ref 31. Insertion of
six amino acid residues into the neck-linker reduces the internal
tension along the neck-linker, which disturbes chemical
coordination between the two motor heads44 and impairs the
motility of the motor. We analyzed the data of Kin6AA again
using the six-state network model (Figures 1A, S4, and S5 and
Table S2; see the Supporting Information for detail), indeed
finding reductions of V, D (Figure S5A), and fstall([ATP])
(Figure S5A, white dashed line). Of particular note is that the
rate constant k25 associated with the physical step is reduced by
2 orders of magnitude (Table S2). In f( , [ATP]) (Figure
3A), the suboptimal point observed in the wild-type (Figure
2A) vanishes (Figure 3A), and the decreased stall force makes

diverge at smaller force (∼4 pN). Overall, there is a dramatic
increase in , indicating that the trajectory of Kin6AA is less
regular and unpredictable ( ≈ k T20 B ) than that of kinesin-1
( ≈ k T7 B ). Thus, Kin6AA is less efficient than the wild-type
in cargo transport.
Next, the values of were calculated for two active forms of

vertebrate kinesin-2 class motors responsible for intraflagellar
transport (IFT). KIF17 is a homodimeric form of kinesin-2,
and KIF3AB is a heterotrimeric form made of KIF3A, KIF3B,
and a nonmotor accessory protein, KAP. To quantify their
motility properties, we digitized single-molecule motility data
from ref 45 and analyzed them again using the six-state double-
cycle model (Figures S6 and S8). f( , [ATP]) values of KIF17
and KIF3AB are qualitatively similar to that of kinesin-1 with
some variations. for KIF17 forms a shallow local minimum of

≈ k T9.2 B at [ATP] = 200 μM and f = 1.5 pN (Figure 3B),
whereas such a suboptimal condition is less clear in KIF3AB
(Figure 3C). Instead, KIF3AB displays a local valley of at
around f ≈ 4 pN and 1 μM ≲ [ATP] ≲ 10 mM in which

≈ k T4 B .
The plots of ([ATP]) at fixed f and f( ) with fixed [ATP]

in Figure 3D recapitulate the difference between different
classes of kinesins more clearly. (i) An extension of the neck-
linker domain (Kin6AA, orange lines) dramatically increases
compared with the wild-type (Kinesin WT, magenta lines). (ii)
Nonmonotonic behaviors of ([ATP]) are qualitatively similar
for all kinesin types. (iii) The movement of KIF3AB (blue

Figure 3. f( , [ATP]) calculated for (A) Kin6AA,31 (B) homodimeric kinesin-2 KIF17,45 and (C) heterotrimeric kinesin-2 KIF3AB.45 In (A−C),
the condition of [ATP] ≈ 1 mM and f ≈ 1 pN is indicated with the star symbols. (D) ([ATP]) at fixed f (upper panels) and f( ) at fixed [ATP]
(lower panels) calculated for kinesin-1 (solid magenta lines for the six-state network model and dashed magenta lines for the unicyclic model),
Kin6AA (orange lines), KIF17 (green lines), and KIF3AB (blue lines). The black dashed lines depict = k T2 B .
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lines) becomes the most regular at low [ATP] (≲10 μM). (iv)
for kinesin-1 analyzed using the (N = 4)-state unicyclic

model (dashed magenta lines) displays only small deviations as
long as 0 ≲ f ≲ 4 ≪ fstall ≈ 7 pN. The observation in (iv)
implies that in the parameter range of f and [ATP] where V and
D can be fitted well by a selected model remains largely
invariant with the choice of model. Further, f( , [ATP])
values do not show significant difference as long as f < fst (see
Figures 3D, 2A, and S3D and Table S1).
Comparison of among Dif ferent Types of Motors. We further

investigate f( , [ATP]) for other motor types, myosin-V,
dynein, and F1-ATPase, using the kinetic network models and
the corresponding rate constants proposed in the litera-
ture.46−48 The details of the kinetic model for each motor
and rate constants are provided in the Supporting Information.
Myosin-V: The model studied in ref 46 consists of a

chemomechanical forward cycle , dissipative cycle , and
pure mechanical cycle (Figure 4A). In the cycle, myosin-

V either moves forward by hydrolyzing ATP or takes a backstep
via ATP synthesis. In the cycle, myosin-V moves backward
under the load without involving chemical reactions. The
cycle places a bridge between the two cycles and . No
local minimum is found in f( , [ATP]) when it is calculated at
[ADP] = 70 μM and [Pi] = 1 mM using the rate constants from
ref 46 (see Figure S11). However, at [ADP] = 0.1 μM and [Pi]
= 0.1 μM, which is the condition used in ref 46, a local
minimum with = 6.5kBT is identified at f = 1.1 pN and
[ATP] = 20 μM (Figure S12D, Table S1). In the (N = 2)-
unicyclic model for myosin-V (Figure S15),49 has local valley
at around f ≈ 2 pN and [ATP] ≈ 10 μM.
Dynein: f( , [ATP]) for cytoplasmic dyneins was evaluated

using the (N = 7)-unicyclic model (Figure 4B) and parameters
used in a previous study.47 f( , [ATP]) calculated from the
model is locally minimized to ≈ k T5.2 B at f = 3.9 pN, [ATP]
= 200 μM (Figures 4D and S13D), the condition of which is

Figure 4. f( , [ATP]) for various motors. (A) Kinetic model for myosin-V consisting of three cycles , , and .46 f( , [ATP]) calculated at
[ADP] = 70 μM and [Pi] = 1 mM (see also Figure S11D for a 2-D heat map). (B) (N = 7)-unicyclic kinetic model for cytoplasmic dynein and the
corresponding f( , [ATP]) calculated based on the kinetic parameters provided in ref 47 at [ADP] = 70 μM and [Pi] = 1 mM (see also Figure
S13D for a 2-D heat map). (C) f( , [ATP]) at [ADP] = 70 μM and [Pi] = 1 mM (see also Figure S13D for a 2-D heat map) using the kinetic
model for F1-ATPase from ref 48. Other quantities such as V, D, and as a function of f and [ATP] are provided in Figures S11, S13, S14. (D)

([ATP]) at fixed f (upper panels) and f( ) at fixed [ATP] (lower panels) for kinesin-1 (magenta), myosin-V (orange), and dynein (green).
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compatible with the local minimum of ‐ f( , [ATP])kinesin 1
(Table S1).
F1-ATPase: F1-ATPase is a rotary molecular motor. In vivo, it

combines with the F0 subunit and synthesizes ATP by using a
proton gradient across the membrane. τ( , [ATP]) calculated
using the (N = 2)-state unicyclic model in ref 48 (also see the
Supporting Information for the detailed model description)
reveals that there is a valley at around torque τ ≈ −10 pN·nm
and [ATP] ≈ 10 μM, reaching ≈ k T4 B (Figure 4C).
Notably, for F1-ATPase is optimized at the hindering load (τ
< 0) in which ATP is synthesized, which comports well with the
biologically known role of F1-ATPase as an ATP synthase in
vivo.
To highlight the difference between the motors, we plot

([ATP]) at fixed f and f( ) at fixed [ATP] in Figure 4D,
which finds < <‐ ‐kinesin 1 dynein myosin V over the broad
range of f and [ATP]. We note that at a special condition
([ATP] = 1−10 μM and f = 1−2 pN) ‐myosin V is smaller than
the values of other motors.
We have quantified the uncertainty measure for various

biological motors, finding that f( , [ATP]) values for motors
are semioptimized near the cellular condition (star symbols
marking f ≈ 1 pN and [ATP] = 1 mM in Figures 2−4). The
value of k T/ B calculated under the cellular condition
increases in the following order: 7.2 (kinesin-1) < 7.7 (F1-
ATPase) < 9.1 (dynein) < 9.9 (KIF17, KIF3AB) < 13 (myosin-
V) < 19 (Kin6AA). Among the molecular motors studied here,
kinesin-1 is the best motor whose (∼7.2kBT) is the closest to
the theoretical bound ( = k T2 B ), whereas Kin6AA has the
worst efficiency with ≈ k T19 B , significantly greater than the
value for the wild-type.
Minimizing toward its lower bound 2kBT is equivalent to

maximizing the transport efficiency, which can be defined to
range between 0 and 1 as21

η =f
k T

f
( , [ATP])

2
( , [ATP])T

B

(7)

The structure of ηT( f, [ATP]) (equivalently f( , [ATP]))
differs significantly from that of other quantities such as the flux
J( f, [ATP])20 (equivalent to V( f, [ATP])), the work
production (power) Ẇ( f, [ATP]), and the power efficiency
η( f, [ATP]) ≡ Ẇ( f, [ATP])/Ė( f, [ATP]) (Figure 5 for
kinesin-1; see the Supporting Figures for other motors). In fact,
the thermodynamic uncertainty relation provides universal

upper bounds on the power or the power efficiency via Q̇ ≥
2kBTV

2/D.50 Of particular note is that only ηT( f, [ATP])
displays a suboptimal peak (× symbol in Figure 5A) near the
cellular condition.
To what extent can our findings on the-single motor

efficiency in vitro be generalized to those in live cells? First, the
force hindering the motor movement varies with cargo size and
subcellular location; the load or viscoelastic drag exerted on
motors varies dynamically.51,52 Yet, actual forces opposing the
cargo movement in a cytosolic environment are still ≲1 pN.53,54
Because values for microtubule-binding motors, kinesin-1,
kinesin-2, and dynein, are narrowly tuned, varying only a few
kBT over the range of 0 ≤ f ≤ 4 pN at [ATP] = 1 mM (Figures
3D, 4D), our discussion can be extended to the cargo transport
in a cytosolic environment as well. Next, a team of motors is
often responsible for cargo transport in the cell.55 Although
trajectories generated by multiple motors have not been studied
here, extension of the present analysis to such cases is
straightforward. It has, however, been shown that the extent
of coordination between two kinesin motors attached to cargo
is insignificant under the condition of small f and saturating
ATP.56

In the axonal transport, of particular importance is the fast
and timely delivery of cellular material, the failure of which is
linked to neuropathology.57,58 Because there are already
numerous regulatory mechanisms, it could be argued that the
role played by the optimized single motor is redundant and
plays a minor role. Yet, given that cellular regulations are
realized through multiple layers of checkpoints,4 the optimized
efficiency of an individual motor can also be viewed as one of
the checkpoints that ensure optimal cargo transport.
Taken together, the thermodynamic uncertainty relation, a

general principle for dissipative processes in NESSs, offers
quantitative insight into the energy−speed−precision trade-off
relation for cargo transport by molecular motors. Given that
there are many possible directions to designing the motor
structure, it is significant to find that biological motors indeed
possess a semioptimal transport efficiency under the cellular
condition. Finally, it is of great interest to extend the concept
and analysis presented here to other energy-consuming error-
correcting machineries such as molecular chaperones.59

■ METHODS SECTION
Determination of Rate Constants for a Kinetic Network. To
describe the kinetic transitions of kinesin-1 in the six-state
double-cyclic network (Figure 1A), we used the following
expressions for the rate constants: (i) Bell-like expressions,

Figure 5. Various quantities calculated for kinesin-1 at varying conditions of f and [ATP]. (A) Transport efficiency η = k T( 2 / )T B . A suboptimal
point ηT* ≈ 0.48 (indicated by the symbol × ) is formed at f = 4.1 pN and [ATP] = 210 μM. (B) Transport speed V( f, [ATP]), (C) work production
Ẇ( f, [ATP]), and (D) power efficiency calculated using η ≡ Ẇ/Ė. For f > fstall, we set η = 0 for convenience because the motor moves backward and
Ẇ < 0. At the cellular condition ( f ≈ 1 pN and [ATP] ≈ 1 mM), indicated by the star symbol in each panel, ηT = 0.28, V = 0.74 μm/s, Ẇ = 182kBT/
s, and η = 0.12.
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k25( f) = k25
o e−θfd0/kBT and k52( f) = k52

o e−(1−θ)fd0/kBT, for the
mechanical transitions between the states (2) and (5) and (ii)
kij( f) = kij

chem( f) = 2kij
o(1 + eχij fd0/kBT)−1 with χij = χji > 0 for the

other chemistry-related transitions (kij ≠ k25, k52).
25 The

functional form of kij
chem( f) models the effect of motor head

distortion elicited by a high external load that hinders the
binding and hydrolysis of ATP in the catalytic site.41,44,60 Note
that for f ≫ fstall kij

chem → 0, which also leads to Q̇ = 0 (Figure
1B,F,I).
The rate constants determined for the cycle were used for

the corresponding chemical steps in the cycle.25 For example,
the ADP dissociation rate constant k23 of the cycle is equal to
k56, corresponding to the ADP dissociation step in the cycle.
Similarly, k32 = k65, k34 = k61, k43 = k16, k45(= k45

bi [ATP]) = k12(=
k12
bi [ATP]), χ23 = χ56, χ34 = χ61, and χ45 = χ12. Because the ATP
hydrolysis free energy that drives the and cycles is
identical, (k12k25k56k61/k21k52k65k16) = (k23k34k45k52/k32k43k54k25)
; thus k54 = k21(k52/k25)

2.25 Because of the paucity of data at
high load condition24 that activates the cycle, it is not easy to
determine all of the parameters for and cycles
simultaneously. To circumvent this difficulty, we fitted the
data using the following procedure: (i) The affinity at f = 0
was determined from our previous study that employed the (N
= 4)-state unicyclic model.22 Even though the cycle is not
considered in ref 22, ≈J 0 at f ≈ 0, which justifies the use of
the unicyclic model at f ≪ fstall; (ii) the range of parameters was
constrained during the fitting procedure (Table S3) based on
the values provided in refs 25 and 29. The minimize
function with the “L-BFGS-B” method from the scipy library
was used to fit the data globally.
The set of rate constants kij( f, [ATP]) determined from the

fit allow us to calculate the reaction current (J), current
fluctuation (δJ2), affinity ( , net driving force), heat dissipation
(Q̇), and, hence, (eq 2) associated with the network.
Unlike [ATP], most experiments do not investigate the

effects of variation in [ADP] and [Pi] on the motility of motors.
In practice, the concentrations of ADP and Pi are kept constant.
Unless stated otherwise, [ADP] = 70 μM and [Pi] = 1 mM are
assumed as the conditions for the experiment or cellular
environment.
Details of kinetic network models and corresponding rate

constants used for the analyses of other motors (Kin6AA,
KIF17, KIF3AB, myosin-V, dynein, and F1-ATPase) are
provided in the Supporting Information.
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