
Thermodynamic Cost, Speed, Fluctuations, and Error Reduction of
Biological Copy Machines
Yonghyun Song and Changbong Hyeon*

Cite This: J. Phys. Chem. Lett. 2020, 11, 3136−3143 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Due to large fluctuations in cellular environments,
transfer of information in biological processes without regulation is
error-prone. The mechanistic details of error-reducing mechanisms
in biological copying processes have been a subject of active
research; however, how error reduction of a process is balanced
with its thermodynamic cost and dynamical properties remain
largely unexplored. Here, we study the error reducing strategies in
light of the recently discovered thermodynamic uncertainty relation
(TUR) that sets a physical bound to the cost-precision trade-off for
dissipative processes. We found that the two representative copying
processes, DNA replication by the exonuclease-deficient T7 DNA
polymerase and mRNA translation by the E. coli ribosome, reduce the error rates to biologically acceptable levels while also
optimizing the processes close to the physical limit dictated by TUR.

Biological copying processes, which include DNA replication,
transcription, and translation, have evolved error-reducing
mechanisms to faithfully transmit information in the genetic
code. In their seminal papers in the 1970s, Hopfield and
Ninio1,2 proposed the kinetic proofreading mechanism to show
that the energy-burning action of the mechanism can reduce
the error rate. Shortly after, Bennett showed that the difference
between kinetic barriers involving the incorporation of correct
and incorrect substrates could be capitalized on to reduce the
error rate under nonequilibrium chemical driving forces.3

Despite differences in their mechanistic details, both models
share a common feature that the reduction of copying error
incurs free energy cost. Since these pioneering works, there
have been a number of studies devoted to understanding the
relation between the error reduction, speed, and energy
consumption not only in the biological copying processes4−9

but also in more general biochemical networks, including those
related to sensory adaptation, circadian rhythm, and metabolic
control.10−15

Besides the faithful transmission of genetic information, the
primary goal of biological copying processes is to generate
biomass in the forms of DNA, RNA, and proteins. Intuitively,
however, error reduction comes at the cost of energy
dissipation or slowing down of the process. Furthermore,
fluctuations in biomass synthesis, which concomitantly
increase with heat dissipation for Michaelis−Menten type
processes,16 also have to be suppressed below a biologically
acceptable level. For instance, DNA replication in early fly
embryogenesis occurs at high speed with exquisite precision; a
modest change of 10% in replication timing could be lethal.17

Similarly, for translation, it is well-known that cells must

express genes at the right protein copy number for optimal
function in a given environment;18−20 regulatory mechanisms
are developed to suppress the copy number fluctuation in gene
expression.21 How biological processes balance these conflict-
ing requirements is a fundamental subject to explore. To
address such an issue, the recently developed thermodynamic
uncertainty relation (TUR),22 which offers a quantitative bound
for dissipative processes at nonequilibrium steady states
(NESS), is well suited.
TUR expresses the trade-off between the thermodynamic

cost and uncertainty of dynamical processes in NESS and
specifies its physical bound as follows:

= ϵ ≥q t t k T( ) ( ) 2X
2

B (1)

This form of TUR holds for most biological processes that can
be represented either by stochastic jump processes on a kinetic
network or by overdamped Langevin dynamics,23−26 though
extensions to more general conditions, which adjust the lower
bound of the original relation, have also been discussed in

recent years.14,27−34 Briefly, δϵ ≡ ⟨ ⟩ ⟨ ⟩t X t X t( ) ( ) / ( )X
2 is a

relative uncertainty (or error) in an output observable X(t)
that best represents the dynamic process at time t, and q(t)
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denotes the thermodynamic cost or heat dissipation in
generating the dynamic trajectory. The inequality in eq 1
allows one to quantitatively assess the physical limit to the
precision that a dynamical process can maximize for a given
amount of dissipation. Recently, k T2 /B , which is bounded
between 0 and 1, was suggested to quantify the “transport
efficiency” of molecular motors.25 When is written in the
form of = ̇q t D V( )(2 / )2 with D and V being the diffusivity
and velocity of a molecular motor, the motor characterized
with a small can be interpreted as an efficient cargo
transporter, because it transports cargos with high velocity (V
∼ ⟨X(t)⟩/t), small fluctuation (D ∼ ⟨δX(t)2⟩/2t), but with
small dissipation rate (q̇).35 Biosynthetic reactions that are
efficient in suppressing fluctuations in product formation can
also be characterized by small .
This work is organized into four parts. (i) We first introduce

the basics of biological copying processes by reviewing the two
distinct error reducing strategies by Bennett3 and Hopfield.1

(ii) We evaluate the error rate and of the replication process
by the exonuclease-deficient T7 DNA polymerase, a model
process reminiscent of the kinetic discrimination mechanism
by Bennett. (iii) We analyze a model of mRNA translation
where both Bennett’s kinetic discrimination and Hopfield’s
kinetic proofreading are employed to lower the error rate and
calculate for translating a codon into a polypeptide chain.
(vi) Lastly, we consider a more realistic model of mRNA
translation that explicitly accounts for 42 types of aa-tRNA and
show that kinetic proofreading can suppress the fluctuation in
the rate of polypeptide production.
Error Reducing Mechanisms by Bennett and Hopf ield. We

briefly describe the two representative error reducing
mechanisms, one by Bennett and the other by Hopfield. In a
nutshell, the essence of the two mechanisms is that the energy-
dissipating enzyme reaction endows the biological copy
machines with the power to discriminate correct substrates
from incorrect ones. Illustrated in Figure 1A is an exemplary
biological copying process where information on DNA
sequence is copied by the DNA polymerase.
When the average reaction currents along the kinetic path

associated with correct and incorrect substrate incorporation
to the copy strand are defined as ⟨Jc⟩ and ⟨Ji⟩, respectively, the
error probability, which will be discussed throughout this
paper, is given by the ratio of two reaction currents

η =
⟨ ⟩

⟨ ⟩ + ⟨ ⟩
J

J J

i

c i
(2)

Error reducing strategies of biological copying processes are at
work to minimize η to a level acceptable for the survival of an
organism.
The mechanism of the Bennett model (Figure 1)3 uses the

chemical potential of substrates, whose concentrations are kept
out of equilibrium (|Δμ| ≫ |Δμeq|), as the free energy drive. In
the model, correct and incorrect substrates are kinetically
discriminated with different kinetic barriers, but without having
to have a difference in binding stabilities of the two substrate
types. The average reaction currents, ⟨Ji⟩ and ⟨Jc⟩, are the
function of the rate constants as well as the steady state
populations (see eqs S2 and S3). At equilibrium, however, ⟨Jc⟩
= ⟨Ji⟩ = 0, and the error rate ( f = ⟨Ji⟩/⟨Jc⟩) is solely determined
by the ratio of equilibrium binding probabilities to the copying
system ( f 0 = 1), so that ηeq = f 0/(1 + f 0) =

1/2. In contrast, at
the limit of large free energy drive (|Δμ| → ∞), the error

probability converges to η0 = 1/(1 + eβδ), which is solely
determined by the difference between the kinetic barriers for
substrate binding, βδ, with β = 1/kBT being the inverse
temperature. Thus, as long as δ > 0, the mechanism can reduce
the value of η from ηeq to η0 at the expense of the free energy
drive. See the Supporting Information text for the general-
ization of Bennett model where the equilibrium error rate is
given by = β μ β μ− Δ − Δf e /e0

i c.
Meanwhile, the original Hopfield model1 (see Figure 1B)

assumes that the binding rates (E + C → EC or E + I → EI in
Figure 1B) for the correct and incorrect substrates are identical
(kon

c [c] = kon
i [i]). In discriminating correct substrates from

incorrect ones, the mechanism takes advantage of the

Figure 1. Error reducing mechanisms of Bennett and Hopfield. (A)
Cartoon illustrating a biological copying process using DNA
replication. When the sequence of template DNA is copied,
complementary (correct, c) or noncomplementary (incorrect, i)
nucleotide can be incorporated into the copy DNA. (B) (Top)
Schematic of the Bennett model.3 Substrates are polymerized through
a one-step enzyme reaction. Energetic input in the form of the
chemical potential of the substrates (Δμ) leads to a larger current of
correct substrate incorporation and reduces the error probability.
(Bottom) Schematic of the Hopfield model.1 The substrates are
polymerized through a three-state kinetic mechanism with inter-
mediate states E, EC, and EC* for correct substrate, or E, EI, and EI*
for incorrect substrate. The reactions EC → EC* and EI → EI*,
which expend the chemical energy of ATP hydrolysis, are effectively
irreversible. This allows the copy process to select against the
incorrect substrate through two chances of facilitated unbinding,
thereby reducing the error probability. For both schematics, the
thickness and color of the arrows represent the relative magnitude of
the respective rate constants.
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facilitated unbinding of incorrect substrate from the copying
system twice along the reaction path (EI→ E + I and EI*→ E
+ I in Figure 1B, bottom), assisted by the extra free energy
from molecular fuel consumption (GTP or ATP hydrolysis),
which renders the reaction paths EC → EC* and EI → EI*
effectively irreversible. The substrates complementary to the
template polymer sequence are more likely to be polymerized,
whereas the preferential unbinding of incorrect substrates from
the copying complex end up with expending the energy for
proofreading, giving rise to the futile cycle. The mechanism of
Hopfield model, called the kinetic proofreading mechanism,
reduces the error rate from f 0 down to f 0

2.1

Real biological copying processes modify or combine the
above two error-reducing strategies. More details on the
different types of error reducing strategies and their combined
effects can be found in refs 36 and 37.
Kinetic Discrimination of dNTP by the T7 DNA Polymerase.

The DNA polymerase, in the absence of exonuclease activity, is
an enzyme that adapts the kinetic discrimination mechanism to
reduce errors in replication.5,38,42 In its simplest form, the
replication dynamics of DNA polymerases can be represented
by a double-cyclic reversible three-state network consisting of
two topologically identical subcycles for the incorporation of
correct and incorrect nucleotides (Figure 2A). Following the
binding of the substrate (dNTP) ([(1) ⇌ (2)]), the
polymerase on DNA undergoes conformational change ([(2)
⇌ (3)]). Finally, the effectively irreversible polymerization
associated with dNTP incorporation ([(3) ⇌ (1)]) with kpol

c

≫ kdep
c and kpol

i ≫ kdep
i , completes the kinetic cycle. The free

energy difference between the binding of correct and incorrect
nucleotides is approximately ≈5 kBT,

43 which implies that the
error probability at equilibrium is ηeq ≈ 7 × 10−3. In the
presence of a nonequilibrium drive, the conditions of kconf,f

c ≫
kconf,f
i and kpol

c ≫ kpol
i , engendering much larger reaction current

along E(1) ⇌ c(2) ⇌ c(3) ⇌ E(1) than that along E(1) ⇌ i(2) ⇌
i(3) ⇌ E(1), allows DNA polymerases to reduce η below
ηeq.

38,42

As the total reaction current of polymerization, ⟨Jpol⟩ = ⟨Jpol
c ⟩

+ ⟨Jpol
i ⟩, is a natural output observable accessible, for instance,

in single molecule experiments,44−46 we calculate of DNA
replication as (see eq 1 and Methods)

δ
=

⟨ ⟩

⟨ ⟩

J

J
pol

2

pol (3)

Alternatively, one could conceive choosing only the current of
correct sequence incorporation, Jpol

c , as the output observable;
however, unlike that of Jpol, the measurement of Jpol

c requires
explicit knowledge of the DNA sequence being synthesized,
which is not readily accessible to an experimental observer. As
long as η is small, it is expected that ⟨Jpol

c ⟩ ≈ ⟨Jpol⟩, and
⟨(δJpol

c )2⟩ ≈ ⟨(δJpol)
2⟩; thus, choosing Jpol

c as the output
observable instead of Jpol does not significantly alter the value
of .
The free energy cost for a single step of polymerization

(affinity, ) can be written as

β β η μ η μ η η η η

β μ

= − [ − Δ + Δ ] − − − −

≡ − Δ + I

(1 ) ln (1 ) ln(1 )c i

(4)

where Δμc and Δμi are the chemical potential difference along
the correct and incorrect and polymerization cycles,
respectively. β can be decomposed into the free energy

gain (−βΔμ) and the Shannon-entropy (I) arising from the
chance of incorporating correct versus incorrect monomers in
the copy strand. It is noteworthy that although I ≤ Imax (=ln 2)
is usually small compared to −βΔμ, it represents a
fundamental thermodynamic property associated with stochas-
tic copying processes (see eq S21).47

We explore how is affected when the dNTP concentration
([dNTP]), which serves as a proxy for the chemical potential
drive (−βΔμ in eq S10), increases. We assume that the four
types of dNTPs (A, G, C, T) are maintained in solution at
equal concentrations and use experimentally determined
kinetic rates of the exonuclease-deficient T7 DNA polymerase
to calculate η and (see Table S1).38 With increasing
[dNTP], the reaction current flows predominantly in one of
the subcycles (⟨Jpol

c ⟩ ≫ ⟨Jpol
i ⟩), and η decreases monotonically

to values consistent with experimental measurements5,48

(Figure 2B); by contrast, displays nonmonotonic variation
(Figure 2C). For , two minima are identified, one at

≈ k T2 B , and the other at ≈ k T10 B ([dNTP] ≈ 100 μM),
suggesting a complex interplay between the dissipation,
current, and the current fluctuation. The suboptimal value of

with respect to substrate concentration was also observed in
models of transport motors.35 Notably, the latter minimum is

Figure 2. Error reduction of DNA replication by the exonuclease-
deficient T7 DNA polymerase. (A) Kinetic network for the dynamics
of DNA polymerase.38 [dNTPc] and [dNTPi] are the concentration
of the correct and incorrect nucleotides, respectively, where [dNTPi]
= 3[dNTPc] holds from the assumption that all four substrates are
present at identical concentrations. (B) Error probability (η) as a
function of [dNTP] = [dNTPc] + [dNTPi]. With increasing [dNTP],
relatively more reaction current flows in the subcycle associated with
correct nucleotide incorporation. (C) of T7 DNA polymerase as
functions of [dNTP]. The dash-dotted red line represents of an
analogously defined unicyclic network with rate constants correspond-
ing to the correct nucleotide incorporation pathway. The range of
dNTP concentrations in E. coli is demarcated with the purple
shade.39−41 For (B) and (C), the data points (squares) represent
results from stochastic simulations using the Gillespie algorithm (see
the Supporting Information). See Figure S5 for other related
dynamical properties.
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found near the range of the in vivo [dNTP] in E. coli (430−
1200 μM39−41) (Figure 2C).
To understand the nature of the two minima of , we

calculated of an analogously defined unicyclic three-state
model with kinetic rates identical to those of the correct
nucleotide incorporation cycle. The comparison between the

of the two models suggests (i) the global minimum is

formed near the DB condition [ ] ≈dNTP
k k k

k k k c
off
c

conf,r
c

dep
c

on
c

conf,f
c

pol
and (ii)

the other minimum at [dNTP] ≈ 100 μM arises from the
Michaelis−Menten (MM) type enzyme kinetics. For Michae-
lis−Menten enzyme reactions, is suboptimized when the
substrate concentration is near the Michaelis−Menten
constant ([S] ≈ Km), where the response of the reaction is
maximal with respect to the logarithmic variation of substrate
concentration (see the Supporting Information text).
Simplif ied Model of mRNA Translation. Since its introduction

by Hopfield and Ninio,1,2 kinetic proofreading has been the
most extensively discussed error reducing strategy.4,8,9,37 The
proofreading reduces copy error by a resetting reaction that
incurs an extra free energy. We study the effect of kinetic
proofreading on by taking mRNA translation of the E. coli
ribosome as our model system (see Figure 3).
The ribosome translates mRNA sequences into a polypep-

tide by reading codons, each consisting of three consecutive
nucleic acids (Figure 3A). When an aa-tRNA of a “matching”
codon binds to the ribosome-mRNA complex, the ribosome
undergoes the reaction cycle for the cognate aa-tRNA
incorporation (red cycle in Figure 3B). A near-cognate aa-
tRNA with a single mismatch can also be incorporated,
through a topologically identical but different kinetic pathway
(blue cycle in Figure 3B). For aa-tRNAs with two or three
mismatches, corresponding to noncognate aa-tRNAs, they can
only interact with the ribosome-mRNA complex but cannot be

incorporated into the reaction cycles (noncognate aa-tRNA
binding is depicted with the reversible pathway colored in
green in Figure 3B).49,50

Translation by the ribosome occurs via the following steps:
(i) accommodation of an aa-tRNA to the ribosome-mRNA
complex in the form of the (aa-tRNA)-(EF-Tu)-GTP complex
[(1) ⇌ (2)]; (ii) the pairing of the codon-anticodon sequence
[(2) ⇌ (3)]; (iii) GTP hydrolysis and the conformational
change of EF-Tu [(3) ⇌ (4)]; (iv) a new peptide bond
formation with the ribosome translocating to the next codon
(kpol

C and kpol
NC) or (iv′) dissociation of (aa-tRNA)-(EF-Tu)-

GDP complex from the ribosome (i.e., kPR,f
C and kPR,f

NC ). Both
steps of (iv) and (iv′) reset the system back to the state (1)
[(4) ⇌ (1)]. The cognate aa-tRNAs are differentiated from
near-cognate aa-tRNAs mainly due to the faster rates of GTP
hydrolysis and peptide bond formation (khyd,f

C ≫ khyd,f
NC and kpol

C

≫ kpol
NC). The rates associated with tRNA binding, unbinding,

and recognition are similar between the two. As a result, the
reaction current of the cognate aa-tRNA incorporation is
greater than that of the near-cognate aa-tRNA along the
network depicted in Figure 3B. Because the incorporation
current of noncognate aa-tRNA is effectively zero (⟨Jpol

N ⟩ = 0),
the error probability of the ribosome is η = ⟨Jpol

NC⟩/(⟨Jpol
C ⟩ +

⟨Jpol
NC⟩), where ⟨Jpol

C ⟩ and ⟨Jpol
NC⟩ are the currents of cognate and

near-cognate aa-tRNA incorporations, respectively.
Similar to DNA replication, the free energy cost for a single

step of translation ( ) can be written as

β β μ μ η η

η η

= − Δ +
⟨ ⟩
⟨ ⟩

Δ −

− − −

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ

J

J
ln

(1 ) ln(1 )

pol
fut

pol
fut

(5)

Here, Δμfut and Δμpol are the chemical potential difference
along the futile and polymerization cycles, respectively (see the

Figure 3. mRNA translation. (A)(B) Schematics of the catalytic cycle of the E. coli ribosome. In (B), C(i) and NC(i) (i = 2, 3, 4) represent
intermediate states of the cognate and near-cognate aa-tRNA incorporation pathway. The state N represents the binding of the noncognate aa-
tRNA. [C], [NC], and [N] represent the concentration of the cognate, near-cognate, and noncognate ternary complex substrate, (aa-tRNA)-(EF-
Tu)-GTP, respectively. [C′] and [NC′] represent the concentration of the cognate and near-cognate (aa-tRNA)-(EF-Tu)-GDP, respectively. (C)
Currents along the kinetic cycles as a function of [GTP] for codon CUG. The thickness of the lines in the inset schematic represents the relative
magnitude of the reaction currents: ⟨Jpol

C ⟩≫ ⟨Jfut
NC⟩ ≳ ⟨Jfut

C ⟩≫ ⟨Jpol
NC⟩. (D) as a function of [aa-tRNA]. (E) as a function of [GTP]. For (D) and

(E), the dotted black line represents the cellular concentration in E. coli. See Figure S6 for other related dynamical properties.
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Supporting Information for details). The kinetic proofreading
uses extra energy in the form of GTP hydrolysis (Δμfut),
engendering futile cycles, and reduces η further than that by
kinetic discrimination alone, the latter of which only capitalizes
on the thermodynamic cost of polymerization (Δμpol).
The dynamics of mRNA translation was examined as a

function of the concentration of aa-tRNA and GTP by
assuming that the ternary complex concentration was in
pseudoequilibrium with respect to the concentration of its
components, aa-tRNA, EF-Tu, GTP, and GDP (see the
Supporting Information). With increasing [GTP], the
polymerization current of all cycles increases while maintaining
their relative magnitudes: ⟨Jpol

C ⟩ ≫ ⟨Jfut
NC⟩ ≳ ⟨Jfut

C ⟩ ≫ ⟨Jpol
NC⟩

(Figure 3C). In other words, while most cognate aa-tRNAs
that reach state C(4) are polymerized, most of the near-cognate
aa-tRNAs that reach state NC(4) are rejected by the
proofreading reaction.
For all codon types, η is nearly constant for a wide range of

[aa-tRNA] and [GTP] (Figure S6A,E). In contrast, the shape
of varies depending on the codon (Figure 3D,E). For most
codons, increases monotonically with [aa-tRNA] and
[GTP]. For codons CGA and CUG, has a local minimum
at [aa-tRNA] ≈ 10 μM and [GTP] ≈ 10 μM. The
distinguishing feature of the codons CGA and CUG is their
high cognate to near-cognate aa-tRNA concentration ratios
([C]/[NC] ≈ 0.9 for CGA and [C]/[NC] ≈ 0.5 for CUG.
Figure S7), which suggests that the local minimum of occurs
when the contribution from the near-cognate incorporation
pathway is relatively low. As seen in the case of T7 DNA
polymerase (Figure 2C and Figure S5), the local minimum of

(Figure 3D,E), if any, is identified at regions where the

response of ⟨Jpol⟩ is large with respect to the logarithmic
variation of [aa-tRNA] or [GTP] (Figure S6B,F).
Multicyclic Model of mRNA Translation. To address the

mRNA translation in a more realistic fashion, we consider a
multicyclic model that translates 42 species of aa-tRNAs into
20 different amino acids (Figure 4). For each codon, the 42 aa-
tRNAs are grouped into cognate, near-cognate, and non-
cognate types (Figure S7). Using the information on the
concentration of 42 aa-tRNAs and the model illustrated in
Figure 4A, we simulated the translation of the tuf B mRNA
sequence, which encodes for the naa = 394 amino acid EF-Tu, a
highly abundant protein in E. coli51 (Figure 4).
The dynamics arising from the multicyclic model are studied

using an ensemble of trajectories generated from Gillespie
simulations (Figure 4B). The total number of translational
steps (Ntln) that complete the polymerization of the full amino-
acid sequences varies from one realization to another. Selecting
the completion time of translation ( ) as the output
observable for each dynamic process, we define TUR of
translation as

μ β
δ= [−Δ + ] ⟨ ⟩
⟨ ⟩

− I
( )1

2

2
(6)

where, similarly to all previous models, the dissipation has
contributions from the free energy drive (Δμ) and Shannon-
entropy (I). Denoting the forward and reverse rate constants of
each kinetic step by ki,f and ki,r for i = 1, ..., Ntln, we can
compute the average free energy drive by −βΔμ =
∑ = k kln( / )i

N
i i1 ,f ,r

tln , where ⟨···⟩ denotes the average over the
ensemble of 104 realizations. The entropic contribution can be

Figure 4. Reaction kinetics of translation with 42 aa-tRNA species. (A) Schematic of the translation of the tuf B mRNA sequence into EF-Tu. For
each reaction cycle, 42 different aa-tRNAs can bind to the apo state of the enzyme. Out of these, the cognate and near cognate aa-tRNAs can
undergo the reaction cycle previously defined in Figure 3B. For more detail on the simulated reaction network, refer to the Supporting Information.
(B) (Bottom) Ensemble of time traces (N = 100) generated from the numerics using Gillespie algorithm that simulates the mRNA translation (or
the synthesis of the polypeptides consisting of 394 amino acids) at different values of κPR. (Top) Histogram of translation completion times. The
inset shows a sample trajectory at the wild type condition (κPR = 1), at which a proofreading reaction occurs at around 0.3 s. The average
dissipation from the process is shown with red crosses (Δμ(t)). Whenever the proofreading takes place, the synthesis of polypeptide is stalled. (C)
Error probability and (D) of TUR plotted against κPR. The dotted lines depict the wild type condition (κPR = 1).
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computed as η η= −∑ ∑= =I lnl
n

i i
l

i
l

1 1
20aa

aa aa aa
where ηiaa

l is the

probability of incorporating one of the 20 types of amino
acids, at the lth position.
Using the multicyclic model, we evaluated η and with

respect to perturbations to the proofreading reaction, by
considering a multiplication factor κPR to the original wild-type
(WT) rate constants kPR,f

C , kPR,r
C , kPR,f

NC , and kPR,r
NC . Although the

rate constants are not experimentally tunable parameters like
[GTP], the cell can optimize them throughout the evolution
by means of mutations to the ribosome, EF-Tu, and tRNA.
This type of perturbative analysis can be used to decipher
which feature of the reaction kinetics for mRNA translation is
optimized in the cell (see the effect of other perturbations in
Figure S8).
The WT level of proofreading gives rise to an average speed

⟨Jpol⟩ ≈ 16 aa/sec and error probability η ≈ 10−3 in our
simulation, consistent with the experimental measure-
ments.52,53 While η decreases monotonically with κPR, is
nonmonotonic with κPR, minimized near the wild type
condition. At κPR = 1 we obtain ≈ k T45 B

54 (Figure 4D).
For the given kinetic parameters from WT, is minimized to
∼30 kBT when the rates of proofreading is augmented by 5
fold. In a scenario of negligibly low proofreading (κPR = 10−2),
the completion times for the translation display a much
broader distribution than that by the WT (κPR = 1). Thus, near
the WT condition, proofreading can simultaneously improve
the fidelity of translation and suppress the fluctuation of
protein synthesis in an energetically efficient way.
Importantly, fluctuations in the completion time for mRNA

translation can be critical, as it could in turn lead to significant
variation in protein copy number. Thus, our results
demonstrate that kinetic proofreading, an error reducing
strategy, can also contribute to the energetically efficient
control of protein levels.
Implications of the T7 DNA Polymerase model. In the wild

type T7 DNA polymerase, the proofreading activity of the
exonuclease further reduces η by 2 orders of magnitude.55 In
fact, in more complex systems like DNA replication of E. coli,
the combination of the actions of DNA polymerase,
exonuclease, and mismatch repair machineries achieves an
error probability as small as η ≈ 10−10.56 Although these extra
components of DNA replication could in principle be included
in our model,3,57−59 general consensus on their kinetic network
and measurement of kinetic rates are currently lacking. Thus,
we focused on the simpler, yet still experimentally realizable,
exonuclease-deficient T7 DNA polymerase, which has served
as a useful tool for sequencing technologies and for
biochemical studies of DNA polymerases.38,60

For the exonuclease-deficient T7 DNA polymerase, we
found that is suboptimized near the physiological [dNTP].
Similarly, it has recently been discovered that in metabolic
reactions, the physiological substrate concentrations are
generally close to their respective Km values.61 A systems
level analysis of yeast metabolism also showed that reaction
currents of metabolism are generally self-regulated to the
values at which their response to the change in substrate
concentration is significant.62 In light of our analysis of
Michaelis−Menten enzyme reactions (see the section
“Michaelis−Menten reactions” in the Supporting Information),
the above-mentioned condition of metabolism is closely
related with the condition of suboptimized .

mRNA Translation Combines the Strategies of Kinetic
Discrimination and Proof reading. The nonmonotonic variation
of with κPR (Figure 4D) is not a feature of the original
kinetic proofreading model, which lacks the forward kinetic
discrimination (i.e., βδ = 0). As the perturbative parameter κPR
is increased, the error rate ( f = ⟨Jpol

i ⟩/⟨Jpol
c ⟩) is reduced to

≳ = β μ μ− Δ −Δf f e0
2 2 ( )i c (Figure S9A, blue line). Furthermore,

in the original Hopfield model, the Fano factor (see eq 8) λ ≈
1 regardless of κPR (Figure S9D), which leads to ≈ , and a
monotonically increasing with κPR (Figure S9C,E).
To introduce the kinetic discrimination to the Hopfield

model, we consider a modified version, the associated kinetic
constants of which satisfy the following relations with βδ > 0:

= = = =βδe
k
k

k

k

k

k

k

k
on
c

on
i

hyd,f
c

hyd,f
i

pol
c

pol
i

PR,r
c

PR,r
i

(7)

As expected, η decreases monotonically with βδ and κPR
(Figure 5A). Qualitatively similar to mRNA translation, is

minimized over a certain range of κPR as long as eβδ ≳ 101

(Figure 5B and Figure S9E). Taken together with the modified
Hopfield model, mRNA translation in E. coli balances the
kinetic discrimination and proofreading, to attain low η and
suboptimized .
Optimality of the Speed and TUR in the E. coli Ribosome.

Recent theoretical studies on mRNA translation by the
ribosome4,6 have observed that while the error probability is
still far from its minimum, the WT value of the mean first
translation time (⟨τMFPT⟩) is close to its minimum; and hence
it was concluded that the E. coli ribosome is primarily
optimized for speed. As far as the κPR dependencies of speed
(⟨Jpol⟩ ≈ ⟨τMFPT⟩

−1) and η are concerned, our study points to
the same finding (Figure S8). In fact, recent studies, which
showed translational pausing caused protein misfolding, lend
support to the significance of optimal codon translation
speed.63,64

Fast codon translation speed, small fluctuations in total
translation time, and low thermodynamic costs could be
favorable characteristics of translation, all likely under
evolutionary selection pressure;65 however, not all of these
requirements can be fulfilled simultaneously. In this aspect, of
great significance is our finding that the TUR measure of E. coli
ribosome ( ≈ k T45 B ) for the wild type condition is in the
vicinity of its minimum with respect to κPR (∼30 kBT) (Figure
4D).

Figure 5. Modified Hopfield model with kinetic discrimination. (A)
Error probability (η) and (B) with respect to variations in δ and κPR
defined in the main text. The rate constants used to generate the plots
are given in Table S3. See Figure S9 for other related dynamical
properties plotted for βδ = 0 and βδ = ln 10.
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Signif icance of Small. . The theoretical lower bound of
TUR ( = k T2 B ) allows us to endow physical significance to
the values obtained for the two essential copy machines
( ≈ k T10 B for the T7 DNA polymerase and ≈ k T45 B for
the E. coli ribosome). For instance, we can compare of
copying enzymes to molecular clocks, in which TUR is defined
with respect to the trade-off between the energetic cost and the
uncertainty in the cycle duration. Marsland et al. have recently
demonstrated that TUR of multiple types of biochemical
oscillators severely underperform the 2kBT bound.14 For the
circadian KaiABC oscillator system, β ≳ (10 )2 . This either
implies that the precision of cycle periodicity is the key priority
over the energy expenditure, or that this synthetic biochemical
cycle is not optimally designed under the constraint of TUR. In
contrast, biological motors that transport cargo along
cytoskeletal filaments display small β ≈ −( 7 15), simulta-
neously minimizing energetic costs, fluctuation, and max-
imizing speed.35 Compared to biological motors harnessing the
thermal fluctuations along with the ATP hydrolysis free energy,
synthetic nanomachines,66 which uses ∼eV UV-light source as
the driving force, are expected to have much greater values.
While the biological function of copying enzymes is to
maintain low copying error, it is remarkable to discover that T7
DNA polymerase and E. coli ribosome are also working at
conditions close to the theoretical bound dictated by the TUR.

■ METHODS
When the number of steps taken by the enzyme is selected as
the output observable (X(t) = n(t) in eq 1), TUR in eq 1 is
modified to

δ
λ= ⟨ ⟩

⟨ ⟩
= ≥q t

n t
n t

k T( )
( )

( )
2

2

2 B
(8)

where = ⟨ ⟩q t n t( )/ ( ) and λ = ⟨δn(t)2⟩/⟨n(t)⟩ is the Fano
factor of the copying process, which can also be written as λ =
⟨δJ2⟩/⟨J⟩.
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