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Abstract
Electromagnetically induced slow-light medium is a promising system for
quantum memory devices, but controlling its noise level remains a major chal-
lenge to overcome. This work considers the simplest model for such medium,
comprised of three-levelΛ-systems interacting with bosonic bath, and provides
a new fundamental trade-off relation in light–matter interaction between the
group velocity of light and the Fano factor of photon current due to radiative
transitions. Considering the steady state limits of a newly derived Lindblad-
type equation, we find that the Fano factor of the photon current maximizes to 3
at the minimal group velocity of light, which holds true universally regardless
of detailed values of parameters characterizing the medium.

Keywords: slow light, Fano factor, Λ-system, fluctuations,
electromagnetically induced transparency, coherent population trapping

(Some figures may appear in colour only in the online journal)

1. Introduction

Quantitative characterization of fluctuations in driven quantum dynamical processes has fun-
damental implications for quantum thermodynamics [1–6], and is a central issue to address for
the development of efficient quantum information [7–9] and sensing devices [10–12]. To this
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end, significant theoretical advances have been made in recent years, for example, by identify-
ing new relations and bounds for stochastic/quantum fluctuations through quantum extensions
[1, 13–18] of thermodynamic uncertainty relations [19–21] and related quantum fluctuation
theorems [5, 6, 22]. As yet, utilizing many of these relations for actual experimental measure-
ments/developments requires further theoretical analyses for establishing concrete and exper-
imentally testable relationships between physical observables. This work provides such an
analysis for a well known process that utilizes coherent driving of laser pulses to slow down
light propagation [23], and clarifies an important trade-off relation in the process.

There have been considerable efforts to develop optical quantum memory devices employ-
ing laser control [24–30] since Hau et al [23] demonstrated extraordinary slowdown of the
group velocity of light as slow as 17m s−1 in an ultracold gas medium of sodium atoms.
The electronic states of a sodium atom constitute a Λ-type three-level system, which com-
prises two nearly degenerate ground states and a common excited state. Applying a control
pulse in resonance with the Λ-system can eliminate the linear absorption of a resonant probe
pulse via destructive quantum interference, generating a dark state where the atomic state is
effectively trapped in the two ground states without excitation (see appendix A for more pre-
cise description). Depending on the intensity of the control pulse relative to the probe pulse,
two distinct mechanisms, coherent population trapping (CPT) [31, 32] and electromagnetic-
ally induced transparency (EIT) [33], make an otherwise absorbing medium effectively trans-
parent and slow down the group velocity of the probe pulse propagating along the media of
atomic vapor [28]. While conceptually clear, realization of an actual quantum memory device
employing these phenomena has remained challenging due to a substantial level of noise [34,
35]. Although the major external sources of the noise have been identified and methods to sup-
press them have been developed over the years [28], there still exist fluctuations inherent in the
radiative transitions generating photon currents. Elucidating the origin and size of these fluc-
tuations under varying conditions could help understand the fundamental limit in achieving a
given quantum memory device.

The main objective of this work is to offer a quantitative understanding of how the relative
fluctuations of photon current associated with radiative transitions in a coherently controlled
ensemble of Λ-systems change as the group velocity of light is reduced. In a recent work on
a field-driven two-level system (TLS) weakly interacting with bosonic environment [17], we
have shown that the Fano factor (or relative fluctuations) of photon current associatedwith radi-
ative transitions is determined by the competition between the real and imaginary parts of the
steady state coherence formed between the excited and ground states, such that the imaginary
part of the coherence reduces the fluctuations, whereas the real part contributes to enhancing
them [17]. Employing a similar formalism for the Λ-system and through careful theoretical
analyses of a Lindblad-type equation while treating light–matter interaction at semi-classical
level, we discover a fundamental trade-off relation between the speed of light and the Fano
factor of photon current.

2. Theoretical model

A three-level Λ-system comprised of the electronic states |1⟩, |2⟩, and |3⟩ is coupled to a
thermally-equilibrated bosonic bath at temperature T. The system is illuminated with con-
trol (α= c) and probe (α= p) laser pulses, E⃗α(r, t) = ϵ̂αζα(e−i(kα·r−ωαt) + ei(kα·r−ωαt))≃
ϵ̂αζα(eiωαt+ e−iωαt), each with the amplitude ζα, wave vector kα, and the angular frequency
ωα. The two polarization vectors, ϵ̂c and ϵ̂p are orthogonal to each other (ϵ̂c · ϵ̂p = 0), and the
dipole approximation (kα · r≪ 1) [36] is taken at the second equality of E⃗α(r, t) since the

2



J. Phys. A: Math. Theor. 56 (2023) 015001 D Singh et al

Figure 1. Optical properties of Λ-system as a function of detuning frequency (δωp).
(A) Schematic of the system consisting of three electronic states, |1⟩, |2⟩ and |3⟩, inter-
acting with the probe and control pulses of frequenciesωp andωc. Here,ω12(≡ ω1 −ω2)
and ω13(≡ ω1 −ω3) are the resonant frequencies. Further, δωc = ωc −ω12 and δωp =
ωp −ω13 denote the detuning frequencies. The condition δωp = δωc = 0 corresponds to
the two-photon resonance. (B) Populations in |1⟩, |2⟩, and |3⟩ are shown in the panel (a).
Real and imaginary parts of the coherences ρ̃12, ρ̃13, and ρ̃23 are depicted in (b), (c), and
(d) as a function of δωp with the solid and dotted lines, respectively. Here, we have used
γ ≡ γ12/γ13 = 0.9, δωc = 0, n̄ij = 0,Ωc = 0.56, andΩp = 0.50. All the frequencies are
scaled with γ13(≈ 0.62× 108 s−1).

atomic length scale is much smaller than the wavelength of laser pulses. In addition, we sim-
plify the situation here by focusing on the linear response regime [28, 37] with respect to the
probe field and on the dilute sample limit where collective excitation or multiple atom-light
scattering does not make significant contribution. The full Hamiltonian representing this model
is provided in appendix B.

The atoms in |2⟩ and |3⟩ states are excited to a common excited state |1⟩ through interactions
of transition dipole operators, d⃗2 (between |1⟩ and |2⟩) and d⃗3 (between |1⟩ and |3⟩), with the
incident pulses (see figure 1(A)). This is represented by an interaction Hamiltonian Hint =
−d⃗2 · E⃗c − d⃗3 · E⃗p, for which two Rabi frequencies Ωc and Ωp characterizing the respective
interaction strengths can be defined (see appendix B for details). The state |1⟩ can either decay
into |2⟩ with a rate γ12 or into |3⟩ with γ13. The transition between |2⟩ and |3⟩ is effectively
spin-disallowed with γ23 ≪ γ12, γ13. Employing the standard assumptions of the weak system-
bath coupling, Born–Markov, and the rotating wave approximations (RWAs), we find that the
dynamics of the Λ-system can be described by the following Lindblad-type equation for the
reduced density matrix ρ(t) (see appendix B),

∂tρ(t) =−(i/ℏ)[HS +Hint,ρ(t)]+D(ρ(t)), (1)

where HS = ℏ(ω1|1⟩⟨1|+ω2|2⟩⟨2|+ω3|3⟩⟨3|) with ℏωi denoting the energy level of the ith
state, and D(ρ(t)) is a Lindblad-type dissipator. Note that there are multiple ways to formu-
late the phenomenon of slow light. For example, one can study the light–matter interaction by
explicitly quantizing the electric field as well as the atomic state, but either by ignoring the
effect of bath [38] or by treating the effect of bath only phenomenologically [39]. Our for-
mulation in this study rests on a Lindblad-type equation that explicitly takes into account the
effect of fast relaxing background photon bath on the system, but treats the interaction with
primary control and probe pulses at semi-classical level.

Equation (1) can be transformed to ∂tϱ̃(t) = Lϱ̃(t)where ϱ̃≡ (ρ̃11, ρ̃12, ρ̃13, ρ̃21, ρ̃22, ρ̃23, ρ̃31,
ρ̃32, ρ̃33)

T is vector representation of ρ(t) in the rotating wave frame (see appendix C), and
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L represents the Liouvillian super-operator expressed as 9× 9 matrix in the Fock–Liouville
space [40]. The steady-state value of each element ρ̃ssij is calculated from Lϱ̃ss = 0 (see
equation (E1)). Figure 1 shows the population in each state (ρ̃ssii , which satisfies

∑
i=1,2,3 ρ̃

ss
ii =

1) and coherences between the states |i⟩ and |j⟩ (ρ̃ssij = ρRij + iρIij, i ̸= j, with ρRij ≡ℜρ̃ssij and
ρIij ≡ℑρ̃ssij ) as a function of the detuning frequency of the probe pulse (δωp).

The condition of two-photon resonance (δωp = δωc = 0) and Ωc ≈ Ωp engender a special
atomic state termed a dark state: the atom is locked in the states |2⟩ and |3⟩, without populating
the excited state |1⟩, i.e. ρ̃22, ρ̃33 ̸= 0 but ρ̃11 = 0 (panel (a) of figure 1(B)). In addition, except
for the real part of the coherence between |2⟩ and |3⟩ (ρR23 ̸= 0), all the coherence terms vanish,
such that ρR12 = ρI12 = ρR13 = ρR13 = ρI23 = 0. This situation corresponds to the CPT, where the
effects of control and probe pulses are cancelled off via destructive interference, and the atomic
state is delocalized between |2⟩ and |3⟩, forming a dark state. It is also noteworthy that in the
dark state, both the photon current between the atomic states and its variance vanish; yet their
ratio corresponding to the Fano factor remains finite, which constitutes the major result of our
work. Since there is neither dispersion (ρR13 = 0) nor absorption of light (ρI13 = 0), the atomic
medium looks effectively transparent to the probe pulse (see appendix A for more complete
description of the dark state, CPT and EIT).

3. Photon current, fluctuations, and Fano factor

Laser pulse applied to the system for a time interval sufficiently longer than the decay time
(τ ≡ γ13t≫ 1) establishes steady-state current of photon absorption and emission. With the
net number of radiative transitions in the Λ-system denoted as n(τ), where n(τ)> 0 is for
emissions and n(τ)< 0 is for absorptions, the average photon current at steady state (Jph), its
variance (Dph), and the corresponding Fano factor (F) are defined as follows

Jph ≡ lim
τ≫1

⟨n(τ)⟩
τ

,

Dph ≡ lim
τ≫1

var[n(τ)]
τ

,

F =
Dph

Jph
= lim

τ≫1

var[n(τ)]
⟨n(τ)⟩

, (2)

where var[n(τ)]≡ ⟨n(τ)2⟩− ⟨n(τ)⟩2. Detailed expressions of these for the Λ-system can be
obtained by employing the method of cumulant generating function [13, 41] (see appendix D).

When the two energy gaps are identical (ω12 = ω13 = ω0), the mean number of background
thermal photons at this frequency is given by n̄12 = n̄13 = n̄= (eβℏω0 − 1)−1. Then, F simpli-
fies to (see appendices D and E)

F = coth

(
A
2

)
[1+R−I + q(·)] , (3)

where A= βℏω0, R≡ 2
∑

i ̸=j
(
ρRij
)2
, I ≡ 6

∑
i̸=j

(
ρIij
)2

with i, j ∈ {1,2,3}, and q(·) =
q(Ωc,Ωp,γ,A, δωc, δωp). Similarly to the Fano factor for the field-driven TLS [17], F of
the Λ-system is determined by the competition between the real (R) and imaginary (I)
parts of steady-state coherence; however, there is an additional factor q(·) in the expression
(equation (3)), which is absent in the TLS but could be significant in determining themagnitude
of F for the Λ-system. The full expression of q(·) is rather complicated, but at the two-photon
resonance it is greatly simplified to
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q(·) = 2(γξ6 + 2γξ4 + 2ξ2 + 1)
(ξ2 + 1)(ξ2 + γ)2

, (4)

where ξ(≡ Ωc/Ωp) is the experimentally controllable variable, and γ ≡ γ12/γ13 (see
equations (E4) and (E5)). Note that the result of TLS, i.e. q(·) = 0 is recovered under the
limiting condition of γ≫ 1.

3.1. Group velocity of probe field and Fano factor

Since the group velocity of light is defined as vg = [dk(ω)/dω]−1, where k(ω) = ωη(ω)/cwith
η(ω) denoting the real part of the refractive index and c speed of light in vacuum, a change
in the refractive index gives rise to a change in the group velocity of probe field across the
medium as follows (see appendix F)

vg = c

(
η(ω)+ω

dη(ω)
dω

)−1

=
c

1+ 2πNdρR13 + 2πωpNd(∂ρR13/∂ωp)
(5)

where Nd ≡ N|⃗d13|/ζp(= N|⃗d13|2/ℏΩpγ13) with N being the density of atoms comprising the
medium of atomic vapor.

The condition of two-photon resonance (δωp = δωc = 0) simplifies equation (5) with
(ρR13)δωp=0 = 0 (figures 1(B) and 3(A) inset, and see equation (E1)). Hence, vg is greatly
reduced by increasing the derivative term, (∂ρR13/∂ωp)δωp=0, namely, by increasing the vari-
ation of refractive index (or coherence) involving the states |1⟩ and |3⟩ with respect to the
probe pulse frequency, ωp [23]. In fact, it is straightforward to show (∂ρR13/∂ωp)δωp=0 =
Ω−1

p (ρR23)
2
δωp=0 (equation (E1)). Thus, vg in equation (5) is determined by the strength of

Raman coherence, i.e. the magnitude of the real part of coherence between the two ground
states |2⟩ and |3⟩ at two-photon resonance (δωc = δωp = 0) as follows

vg =
c

1+N (ρR23)
2
δωp=0

, (6)

whereN ≡ 2πNdωp/Ωp is a factor determined by the density of atoms comprising themedium,
the magnitude of the transition dipole moment |⃗d13|, the resonant and Rabi frequencies, ωp and
Ωp.

An important relation between vg and F for Λ-systems can be identified through ξ (see
figure 2(A) for vg = vg(ξ)). Figure 2(B) shows a curve of F versus vg parameterized with ξ at
δωp = δωc = 0 for γ= 0.9, clarifying a trade-off relation betweenF and vg for experimentally
relevant range of variable, ξ > 1. It is noteworthy that the Fano factor of photon transitions
sharply increase to F ≃ 3 when vg approaches its minimal value vg ≃ 7m s−1 (figure 2(B),
magenta line), which is even smaller than the one experimentally reported [23].

For A≫ 1 (or n̄∼ 0) with δωc = δωp = 0, the expressions of coherence terms
(equation (E1)) are greatly simplified, enabling us to further clarify a relation between vg and

F . With
(
ρR23

)2
δωp=0

= ξ2/(ξ2 + 1)2, ρI23 = ρR12 = ρI12 = ρR13 = ρI13 = 0 (equation (E1)) and the

expression of q(·) given in equation (4), the group velocity and the Fano factor read

vg =
c

1+
N

(ξ+ 1/ξ)2

(7)

and

F ≃ 1+
2(1+ γξ2)

(γ+ ξ2)
. (8)
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Figure 2. Group velocity (vg) and Fano factor (F). (A) vg = vg(ξ) in red, and vacuum
speed of light c in blue. (B) F versus vg calculated by varying ξ(= Ωc/Ωp) at two-
photon resonance (δωp = δωc = 0). Depending on whether ξ < 1 or ξ > 1, F changes
differently with vg. For the calculation, the parameters were taken from Hau et al
[23] that experimented on 23Na atom: n̄ij ≈ 0 (A≫ 1), γ(≡ γ12/γ13) = 0.9, and N =

2πNd(ωp/Ωp)≈ 1.78× 108, which is estimated from Nd = N|⃗d13|2/(ℏΩpγ13) = 0.11
with N≈ 8× 1013 cm−3, |⃗d13| ≈ 1.4× 10−29 C·m ≈ 4.2× 10−18 statC·cm, Ωp = 0.2
[42], γ13 ≈ 0.62× 108 s−1 = (16.23ns)−1, and ωp = (2πc/λp)/γ13 ≈ 2π× 8.21×
106 with λp ≈ 589 nm.

From equation (7), it is clear that vg minimizes to vmin
g = c/(1+N/4) for ξ= 1, and satur-

ates to vg = c for ξ≫
√
N or ξ≪ 1/

√
N (see figure 2(A)). Next, the term ξ in equation (7)

can be solved in terms of vg, yielding two expressions, ξ = ξ± = 1
2 [
√
N/(c/vg − 1)±√

N/(c/vg − 1)− 4]≷ 1. Insertion of ξ = ξ± to equation (8) yields F = F>(vg) for ξ =
ξ+(> 1) (magenta line in figure 2(B)), and F = F<(vg) for ξ = ξ−(< 1) (blue line in
figure 2(B)). We note that only the condition of ξ > 1 is of practical relevance to the slow-
light experiment because the current fluctuations are smaller and more controllable with
F>(vg)⩽ 3. At ξ= 1 or equivalently at vg = vmin

g , one always obtains F = 3. The universality
of this value is a key outcome of our analyses.

For more general case with δωp ̸= 0 and δωc = 0, the expression of F is complicated; yet,
F is still an even function of δωp (equation (E1)). Confining ourselves to the condition ξ > 1,
we resort to numerics to calculate F(δωp,Ωp) (figure 3), finding that F is maximized over

the transparency window ∆p, given by ∆p ∼
[
∂ρR13/∂δωp

∣∣∣
δωp=0

]−1

=Ωp(ξ
2 + 1)2/ξ2. Note

that ∆p is narrow for the case of CPT (ξ≈ 1) but is wide for EIT (ξ≫ 1). Over the nar-
row transparency window ∆p, the coherence between atomic states |1⟩ and |3⟩ vanish (ρR13,
ρI13 ≈ 0) (figure 1(B)-(c)), andR and q display maximal contribution at two-photon resonance
(figures 3(A) inset, (B) and (D)), whereas I ≈ 0, i.e. the absorption is negligible (figures 3(A)
inset and (C)).

It is worth noting that the Fano factor of radiative transitions is maximally reduced under
a detuning condition δωp ̸= 0 where I is maximized,R≈ 0, and q(·)< 0, resulting in F < 1
(figures 3(A) inset, (B), and (D)); however, such a condition is attained when the value of δωp is
beyond the transparency window, which does not correspond to the regime where absorption-
free slow light can be generated. Rather, under such condition, the absorption doublet arises
from the transitions from |0⟩ to two eigenstates |±⟩ comprised of the three electronic states
|1⟩, |2⟩, and |3⟩ [36] (see figure A1(B) and equation (A5)).
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Figure 3. Effect of detuning on the Fano factor of radiative transitions. (A) Diagram of
F(δωp,Ωp) calculated for δωc = 0 with Ωc = 0.56, γ= 0.90,A= 47. (Inset) F ,R, I,
and q as a function of δωp forΩp = 0.5. The blue vertical dashed line indicates the value
of δωp(≈ 0.8) that gives rise to the minimalF . The range of transparency window (∆p)
is indicated by the arrow. (B) Real (R) and (C) imaginary parts of coherence (I) and
(D) the factor q as a function of probe detuning δωp and driving frequency Ωp.

4. Concluding remarks

This work, which considers a model of a coherently controlledΛ-type three-level system inter-
acting with thermalized background photons, has established a fundamental trade-off relation
between the group velocity of light and the Fano factor of photon current of the radiative trans-
ition in electromagnetically induced slow light medium. In particular, the Fano factor of the
net number of radiative transitions n(τ), which dictates the relative fluctuations of the laser
power (see appendix H, ⟨(δn(τ))2⟩/⟨n(τ)⟩ ∝ ⟨(δI)2⟩/⟨I⟩), is maximized to F = 3coth(A/2)
at the slowest group velocity, vg ≈ (4/N )c. This indicates that slow light is attained at the
expense of relative fluctuations of the irreversible photon current. This trade-off, which may
be inevitable in the basic setup of CPT or EIT-based optical quantum memory device, is phys-
ically sensible in that as the light slows down, overall fluctuations in the photon current is
enhanced over the prolonged travel time of the photon inside the medium. At two-photon res-
onance, the real part of coherence between the two ground states (ρR23), which engenders slow
light (equation (6)) and increases the Fano factor of signal (equation (3)), is maximized at
the regime corresponding to CPT, where the Rabi frequencies of control and probe pulses are
identical (ξ =Ωc/Ωp = 1).

7
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Our results can also be applied to the medium consisting of 133Cs atoms, one of two major
systems being used currently for EIT quantum memory scheme [28], whose D1 line con-
stitutes the three-level Λ-system. For Cs atoms, the frequency gap between the two ground
states 62S1/2(|F= 3⟩) and 62S1/2(|F= 4⟩), where F stands for the total angular momentum
quantum number, is∼ 9.2GHz. The condition of ρR23 ̸= 0 and ρI23 = 0 signifies a Raman coher-
ence between |F= 3⟩ and |F= 4⟩ effectively with no absorption. The slowest group velo-
city achievable for the case of CPT regime (ξ≈ 1) of 133Cs vapor [43] is vg ≈ 38m s−1 with
N = 2πNd(ωp/Ωp)≈ 3.2× 107, which is estimated from Ωp = 0.5, ωp = (2πc/λp)/γ13 ≈
2.1× 107 with λp ≈ 894 nm [43] and γ13 ≈ 108 s−1, and Nd = N|⃗d13|2/(ℏΩpγ13) = 0.12 with
N≈ 1012 cm−3 and |⃗d13|= 2.7× 10−29 C·m = 8.09× 10−18 statC·cm [44]. It is important to
note that our estimate for the slowest group velocity of light in the atomic vapor of cesium is
amenable for an experimental verification.

Our main result concerning the size of the relative fluctuations (Fano factor) of photon cur-
rent (or noise level) due to radiative transitions of three-level Λ-system at the slowest group
velocity is universal (F = 3) regardless of the atomic type, which warrants experimental con-
firmation. Our theory is formulated for the storage process, but not explicit in addressing the
fluctuations of signal upon retrieval. Yet, it is still known from direct experimental measure-
ments that the photon number statistics are preserved during the storage and retrieval processes
[45]. Thus, the noise level at the storage process discussed in this study is expected to carry
over to the retrieved signal as well. The formalism of this work can be extended to other
types of systems, for example, with V and ladder structures [28, 46–48] and also to Bose–
Einstein condensates that can serve as media where the light can stop completely [25]. How-
ever, in actual experimental situations, some effects that are not accounted for by our model
may have nontrivial effects. For example, there could be cases where control or probe field
interacts with another nearby energy level [23], resulting in additional decoherence mechan-
ism. Within our model, such an effect could in principle be incorporated by modifying the
ρ23-involving term in equation (6), which would lead to an observed group velocity deviating
from the fundamental limit predicted by equation (6). More challenging cases are when the
effects of collective emission [49] or multiple scattering effects [50] are significant, for which
formulation that goes beyond our model becomes necessary. Another important theoretical
challenge is treating probe and control fields fully quantum mechanically. How the trade-off
relation is altered for the different systems and by additional effects due to non-Markovian or
strongly coupled environments [51–53] remains an important theoretical issue that requires
further investigation.
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Appendix A. Coherent population trapping (CPT) and electromagnetically
induced transparency (EIT)

A.1. CPT

The absorption and dispersion profiles of probe pulse as a function of detuning (δωp) are
calculated in figure 1(B) in the main text. At the two-photon resonance (δωp = δωc = 0),
both the coherences between the states |1⟩ and |3⟩ and between the states |1⟩ and |2⟩ vanish
(ρR13 = ρI13 = 0 and ρR12 = ρI12 = 0 in figure 1(B)), which implies that the medium is effectively
transparent to the probe and control pulses. The two light pulses interacting with the matter
vanish via the destructive interference between two pathways between |3⟩⇌ |1⟩ → |2⟩ and
|2⟩⇌ |1⟩ → |3⟩ (figure A1(A)).

To show the destructive quantum interference more explicitly, we consider an addition of
two pulses with quantum coherence,

ρ̃sum = ρ̃12 + ρ̃13. (A1)

Note that ρ̃ij = |ρ̃ij|exp(iθij) with |ρ̃ij|2 =
(
ρRij
)2

+
(
ρIij
)2

and tanθij =
(
ρIij/ρ

R
ij

)
. Numerical cal-

culation using the results in equation (E1) gives rise to figure A2, indicating that the amplitude
of ρ̃sum vanishes at two-photon resonance (δωp = δωc = 0). Thus, the excitation transfer to
the state |1⟩, and hence the photon current, is negligible, and almost all the atomic population
is trapped in the states |2⟩ and |3⟩ (figure 1(A) in the main text). The ‘coherent population
trapping’ (CPT) refers to such a trapping of atomic population in the two ground states via a
coherent superposition of the quantum states.

The destructive interference and hence population trapping in states |2⟩ and |3⟩ results in
strong coupling between these states, which is reflected in the high value of ρR23 (see figure 1(B)
in the main text).

More complete physical interpretation of CPT can be given in terms of the basis represent-
ing the dressed (or eigen) states. Under the following unitary transformation, which is equi-
valent to describing the system in the rotating frame,

|ψ⟩= U|ϕ⟩, (A2)

where U = e−iωpt|1⟩⟨1|−i(ωp−ωc)t|2⟩⟨2|, the Schrödinger equation ∂t|ψ⟩=−iH/ℏ|ψ⟩ is written
as ∂t|ϕ⟩=−iHeff/ℏ|ϕ⟩ with

Heff = U†HU − iℏU† dU
dt

=−ℏδωp|1⟩⟨1| − ℏ(δωp − δωc) |2⟩⟨2|

− ℏ(Ωp|1⟩⟨3|+Ωc|1⟩⟨2|+ h.c.) . (A3)

When δωp = δωc = δω is assumed for simplicity, the energy eigenvalues and eigenstates of
Heff are

λ̄0 = 0

λ̄± = 0.5ℏ
(
δω±

√
δω2 + 4(Ω2

p +Ω2
c)
)
, (A4)

and

|0⟩ = cosθ|3⟩− sinθ|2⟩,
|−⟩= sinθ cosϕ|3⟩+ cosθ cosϕ|2⟩− sinϕ|1⟩,
|+⟩= sinθ sinϕ|3⟩+ cosθ sinϕ|2⟩+ cosϕ|1⟩, (A5)
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Figure A1. (A) Bare state basis to show the paths involved in the destructive interference
forΩc/Ωp ≈ 1. And (B) the corresponding dressed state picture for the weak probe field
(Ωc/Ωp ≫ 1).

Figure A2. Plot of |ρ̃sum|= |ρ̃12 + ρ̃13| with varying δωp with fixed δωc = 0 for Ωc =
0.56, Ωp = 0.50, γ= 0.9, n̄ij = 0.

where the mixing angles θ and ϕ are defined as

θ = tan−1 (Ωp/Ωc)

ϕ= 0.5tan−1
(
2
√
Ω2

p +Ω2
c

/
δω

)
. (A6)

Under the two-photon resonance condition (δω = 0), the eigenstate |0⟩, a coherent super-
position between the states |2⟩ and |3⟩, of the effective Hamiltonian (equation (A3)) has zero
eigenvalue. Hence, the state |0⟩ is a dark state that does not evolve with time, and is decoupled
from the applied fields. Now the spontaneous emission from the state |1⟩ always populates the
quantum states |2⟩ and |3⟩. Therefore, irrespective of the initial condition, the atomic popula-
tion is trapped in the dark state |0⟩ for an extended period of time, t≫ 1/γ. This corresponds
to the CPT.

A.2. EIT

For a strong control field (ξ =Ωc/Ωp ≫ 1) and δω = 0, a coherent superposition of states |1⟩
and |2⟩, produces the dressed states |±⟩, without affecting the state |3⟩(= |0⟩) (figure A1(B)).
The three energy eigen-states and corresponding eigenvalues (inside parenthesis) are obtained
as

|0⟩ = |3⟩ (λ̄0 = 0),

|±⟩= 1√
2
(|2⟩± |1⟩) (λ̄± =±ℏΩc). (A7)
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In this case, the transition amplitude at the resonant probe frequency (δωp = 0) between
the ground state |0⟩= |3⟩ to the dressed states |±⟩ can be written as ⟨3|⃗d|+⟩+ ⟨3|⃗d|−⟩ ≃
d⃗32 + d⃗31 + d⃗32 − d⃗31 = 2⃗d32 = 0 because of the electric dipole selection rule that disallows
the transition between |2⟩ and |3⟩ (⃗d32 = 0). Consequently, all the population is effectively
confined in the dark state |0⟩. At δωp = 0, the media is transparent to the pulse, and does not
absorb the probe pulse. This strong control field-induced (Ωc ≫ Ωp) conversion of an absorpt-
ive medium to a transparent one is termed the EIT [36]. The EIT creates the destructive inter-
ference between the transition pathways |3⟩⇌ |1⟩ and |2⟩⇌ |1⟩ → |3⟩.

The energy gap between the dressed states is 2ℏΩc. Then, the conditions for the perfect
resonance between |0⟩ and |±⟩ appears when δωp =±Ωc, resulting in the complete absorption
of probe pulse, giving rise to the Autler–Townes absorption doublet [36]. The off-resonant
probe pulse (δωp ≈ 1) engenders the absorption doublet where again the dispersion becomes
zero (ρR13 = 0), but this time the absorption (ρI13) is maximized.

Appendix B. Evolution equation

The total Hamiltonian in the presence of an external field is expressed as [36, 54]

H= HS +Hint +HB +HSB, (B1)

where

HS = ℏ(ω1|1⟩⟨1|+ω2|2⟩⟨2|+ω3|3⟩⟨3|)
Hint =−d⃗2 · E⃗c − d⃗3 · E⃗p

HB =
∑
k,λ

ℏωk,λb
†
k,λbk,λ

HSB =
∑
k,λ

ℏ
[(
g∗k,λ

)
12
b†k,λ|2⟩⟨1|+(gk,λ)12 bk,λ|1⟩⟨2|

+
(
g∗k,λ

)
13
b†k,λ|3⟩⟨1|+(gk,λ)13 bk,λ|1⟩⟨3|

]
, (B2)

with HS denoting the Λ-system, HB background quantized radiation, and HSB the interaction
between the system and radiation. The control and probe fields, E⃗α(t) = êαζα(eiωαt+ e−iωαt)
with α= c and p where êα is the unit vector representing the direction of polarization and
ζα denotes the amplitude, interact with the Λ-system via the interaction energy Hamilto-
nian Hint =−d⃗2 · E⃗c − d⃗3 · E⃗p, inducing the excitations of |2⟩ → |1⟩ and |3⟩ → |1⟩, respect-
ively. The transition dipole operator is given by d⃗= d⃗2 + d⃗3 =

(
d⃗12|1⟩⟨2|+ d⃗21|2⟩⟨1|

)
+(

d⃗13|1⟩⟨3|+ d⃗31|3⟩⟨1|
)

with the dipole matrix elements, d⃗ij. Since the transition between

|2⟩ and |3⟩ is effectively forbidden, d⃗23 = d⃗32 ≈ 0. The summation
∑

k,λ extends over the

wavevector k and polarization λ. The symbols, b†k,λ and bk,λ denote the creation and anni-
hilation operators of the harmonic oscillators of angular frequency ωk constituting the reser-
voir. The dipole coupling constant, (gk,λ)1j ≡−i

√
ωk/2ℏε0Vêk,λ · d⃗1j for j ∈ 2,3, contains the

information of polarization êk,λ, quantization volume V and vacuum permittivity ε0.
The density matrix for the total system, ρtot(t), evolves with time, obeying the vonNeumann

equation, dρtot(t)/dt=− i
ℏ [H,ρtot]. In the framework of Lindblad approach, the reduced dens-

ity matrix after tracing out the bath degrees of freedom obeys the following evolution equation

11
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dρ(t)
dt

=− i
ℏ
[HS +Hint,ρ]

+ γ12(n̄12 + 1)

(
|2⟩⟨1|ρ|1⟩⟨2| − 1

2
{|1⟩⟨1|,ρ}+

)
+ γ12n̄12

(
|1⟩⟨2|ρ|2⟩⟨1| − 1

2
{|2⟩⟨2|,ρ}+

)
+ γ13(n̄13 + 1)

(
|3⟩⟨1|ρ|1⟩⟨3| − 1

2
{|1⟩⟨1|,ρ}+

)
+ γ13n̄13

(
|1⟩⟨3|ρ|3⟩⟨1| − 1

2
{|3⟩⟨3|,ρ}+

)
, (B3)

where γ1j = 4ω3
1j|d1j|2/(3ℏc3) is the spontaneous decay rate from the excited state |1⟩ to the

ground state |j⟩ (j= 2,3), n̄1j = (eβℏω1j − 1)−1 is the mean number of thermal photons with
β = 1/kBT, and {A,B}+ ≡ AB+BA denotes the anti-commutator.

After eliminating the terms violating the energy conservation [36], which amounts to taking
the RWA, the energy Hamiltonian for the light–matter interaction is simplified to

Hint ≃ −ℏΩc
(
e−iωct|1⟩⟨2|+ eiωct|2⟩⟨1|

)
− ℏΩp

(
e−iωpt|1⟩⟨3|+ eiωpt|3⟩⟨1|

)
(B4)

where Ωc = ζc|êc · d⃗12|/ℏ and Ωp = ζp|êp · d⃗13|/ℏ corresponds to the driving (Rabi) frequen-
cies. With HS in equation (B2), Hint in equation (B4), and transformations into rotating
frame which lead to ρii → ρ̃ii, ρ12 → ρ̃12e−iωct, ρ13 → ρ̃13e−iωpt, and ρ23 → ρ̃23e−i(ωp−ωc)t (see
appendix C), the transformed matrix elements ρ̃ij’s evolve with time as follows

dρ̃22
dτ

= γ(n̄12 + 1)ρ̃11 + iΩcρ̃12 − iΩcρ̃21 − γn̄12ρ̃22

dρ̃33
dτ

= (n̄13 + 1)ρ̃11 + iΩpρ̃13 − iΩpρ̃31 − n̄13ρ̃33

dρ̃12
dτ

=−iΩcρ̃11 +

[
iδωc −

γ

2
(2n̄12 + 1)− (n̄13 + 1)

2

]
ρ̃12 + iΩcρ̃22 + iΩpρ̃32

dρ̃13
dτ

=−iΩpρ̃11 +

[
iδωp −

γ

2
(n̄12 + 1)− (2n̄13 + 1)

2

]
ρ̃13 + iΩcρ̃23 + iΩpρ̃33

dρ̃23
dτ

= iΩcρ̃13 − iΩpρ̃21 +

[
i(δωp − δωc)−

(γn̄12 + n̄13)
2

]
ρ̃23, (B5)

where the equations are rescaled with γ13, redefining the parameters and variables, such that
τ ≡ γ13t, γ ≡ γ12/γ13. Hereafter, we implicitly assume that all the rates includingΩc,Ωp, δωc,
and δωp are those scaled with γ13, e.g. Ωc/γ13 → Ωc, (ωc −ω12)/γ13 → δωc and so forth. The
equations for the remaining elements are obtained from the constraints

∑
i ρii = 1 and ρji = ρ∗ij

for i ̸= j.

Appendix C. Transformation to the rotating frame

The following operation transforms the state vector |ϕ⟩ in the rotating frame into the one in
the stationary frame (|ψ⟩)

|ψ⟩= U(t)|ϕ⟩, (C1)
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with U(t) = e−iωpt|1⟩⟨1|−i(ωp−ωc)t|2⟩⟨2|. Then, the density matrix ρ̃= |ϕ⟩⟨ϕ| in the rotating
frame is transformed into the one in the stationary frame via |ψ⟩⟨ψ|(= ρ) = U|ϕ⟩⟨ϕ|U†(=
U ρ̃U†).

The Baker–Campbell–Hausdorff formula,

esÂB̂e−sÂ = B̂+
s
1!
[Â, B̂] +

s2

2!
[Â, [Â, B̂]] · · ·

enables one to rewrite the diagonal elements as ρ̃jj = ρjj, and the off-diagonal elements as
ρ̃12 = ρ12eiωct, ρ̃13 = ρ13eiωpt, and ρ̃23 = ρ23ei(ωp−ωc)t.

Appendix D. The method of cumulant generating function

In order to calculate the current (⟨n(τ)⟩) and its fluctuations (var[n(τ)]), we employ the method
of cumulant generating function.

We start by defining the cumulant generating function G(z, τ) as follows:

G(z, τ) = ln⟨ezn⟩= ln
∑
n

P(n, τ)ezn, (D1)

which allows one to calculate the kth cumulant

⟨⟨nk⟩⟩(τ) = ∂kG(z, τ)
∂zk

∣∣∣
z=0
. (D2)

Here, P(n, τ)≡ ρ̃11(n, τ)+ ρ̃22(n, τ)+ ρ̃33(n, τ) with a normalization condition∑∞
n=−∞P(n, τ) = 1 denotes the probability that n net photons have been processed by the

three states of the Λ-system and eventually emitted to the environment for the time duration τ .
The terms, ρ̃11(n, τ), ρ̃22(n, τ), and ρ̃33(n, τ) are the population terms of the reduced density
matrix ρ̃(n, τ) that satisfies the n-resolved master equation, which is explained below (see
equation (D4)).

The vectorized form of the reduced density matrix in Fock–Liouville space, ϱ̃=
(ρ̃11, ρ̃12, ρ̃13, ρ̃21, ρ̃22, ρ̃23, ρ̃31, ρ̃32, ρ̃33)

T obeys the Liouville equation

∂τ ϱ̃(τ) = Lϱ̃(τ), (D3)

where L is the Liouvillian super-operator expressed as 9× 9 matrix, and formally evolves
with time as ϱ̃(τ) = eLτ ϱ̃(0). The vector ϱ̃(τ) is decomposed into ϱ̃(n, τ), such that ϱ̃(τ) =∑∞

n=−∞ ϱ̃(n, τ) with ϱ̃(n, τ) satisfying the n-resolved master equation [41]

∂τ ϱ̃(n, τ) = L0ϱ̃(n, τ)+L+ϱ̃(n− 1, τ)+L−ϱ̃(n+ 1, τ), (D4)

where the generators L+ and L− are the off-diagonal element of the L corresponding to
the emissions (L22,11, L33,11) and absorption (L11,22, L11,33), respectively, and L0 is for
the rest of the elements. Discrete Laplace transform ϱ̂z(τ) =

∑
n ϱ̃(n, τ)e

zn, which satisfies
limz→0 ϱ̂z(τ) = ϱ̃(τ), casts equation (D4) into

∂τ ϱ̂z(τ) = L(z)ϱ̂z(τ) (D5)
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with the modified super-operator in Laplace space L(z)≡ L0 + ezL+ + e−zL−. Specifically,

L(z) ≡



−A1 −iΩc −iΩp iΩc γn̄12e
−z 0 iΩp 0 n̄13e

−z

−iΩc iδωc − A2 0 0 iΩc 0 0 iΩp 0

−iΩp 0 iδωp − A3 0 0 iΩc 0 0 iΩp

iΩc 0 0 −iδωc − A2 −iΩc −iΩp 0 0 0

γ(n̄12 + 1)ez iΩc 0 −iΩc −γn̄12 0 0 0 0

0 0 iΩc −iΩp 0 iδωpc − A6 0 0 0

iΩp 0 0 0 0 0 −iδωp − A3 −iΩc −iΩp

0 iΩp 0 0 0 0 −iΩc −iδωpc − A6 0

(n̄13 + 1)ez 0 iΩp 0 0 0 −iΩp 0 −n̄13



, (D6)

with δωpc = δωp − δωc, A1 = γ(n̄12 + 1)+ (n̄13 + 1), A2 = γ(2n̄12 + 1)/2− (n̄13 + 1)/2,
A3 = γ(n̄12 + 1)/2− (2n̄13 + 1)/2, and A6 = (γn̄12 + n̄13)/2. Note that L(z) at z= 0 reduces
to the original Liouvillian super-operator L of the Liouville equation (equation (D3)), namely,
L(0) = L.

The ϱ̂z(τ) can be formally solved, and it can be approximated using the largest eigen-
value λ0(z) of the modified super-operator L(z), which satisfies λ0(z)> λ1(z)> · · ·> λ8(z),
as follows

ϱ̂z(τ) =
∞∑

n=−∞
ϱ̃(n, τ)ezn = eL(z)τ ϱ̂z(0)≈ eλ0(z)τ ρ̃ss+ · · · . (D7)

Therefore, it follows from equation (D7) that for τ ≫ 1, ln ϱ̂z(τ) = ln
∑∞

n=−∞ ρ̃(n, τ)ezn ∼
λ0(z)τ , and hence

G(z, τ) = ln
∞∑

n=−∞
P(n, τ)ezn ∼ λ0(z)τ. (D8)

Therefore, equation (D8) along with equation (D2) offers the kth cumulant of the current at
steady states

lim
τ→∞

⟨⟨nk⟩⟩(τ)
τ

=
∂kλ0(z)
∂zk

∣∣∣
z=0
. (D9)

In principle, equation (D9) can be evaluated by calculating the largest eigenvalue λ0(z) of
L(z) explicitly. However, drastic simplification in algebra can be made by using the follow-
ing two properties: (a) along with λk(z) (k= 1,2, . . . ,8), λ0(z) is a root of the characteristic
polynomial (or the secular equation) of L(z)

0= det |λ(z)I −L(z)|=
9∑

n=0

an(z)λ
n(z)

= a0(z)+ a1(z)λ(z)+ · · ·a9(z)λ9(z); (D10)

(b) λ0(0) = 0, albeit λk ̸=0(0) ̸= 0, since ρ̂z(τ)
∣∣∣
z=0

should converge to the steady state

value at τ ≫ 1, i.e. ρ̂z(∞)
∣∣∣
z=0

∼ ρ̃ss. Equation (D10) differentiated with respect to z and

evaluated at z= 0 yields a ′
0(0)+ a1(0)λ ′

0(0) = 0, and a ′ ′
0 (0)+ a ′

1(0)λ
′
0(0)+ a1(0)λ ′ ′

0 (0)+
2a2(0)(λ ′

0(0))
2 = 0. Therefore, the average photon current and fluctuations due to radiative

transitions can be expressed in terms of the coefficients of the characteristic polynomial, a0(z),
a1(z), a2(z) and their derivatives at z= 0 as follows [55]
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Jph = lim
τ→∞

⟨n⟩(τ)
τ

= λ ′
0(0) =−a ′

0(0)
a1(0)

Dph = lim
τ→∞

⟨⟨n2⟩⟩(τ)
τ

= λ ′ ′
0 (0) =−

[
a ′ ′
0 (0)+ 2a ′

1(0)λ
′
0(0)+ 2a2(0)(λ ′

0(0))
2
]

a1(0)

F =
Dph

Jph
=
a ′ ′
0 (0)
a ′
0(0)

[
1+

2(a ′
0(0))

2a2(0)− 2a ′
0(0)a1(0)a

′
1(0)

a ′ ′
0 (0)(a1(0))

2

]
. (D11)

Appendix E. Populations, coherences, and Fano factor

The general expressions for the density matrix elements at steady states are too lengthy to
display; however, for the case of resonant control pulse (δωc = 0) withA≫ 1 (or n̄∼ 0), they
are significantly simplified at steady state and written in a manageable form

ρ̃11 =
4(γ+ 1)Ω2

cΩ
2
pδω

2
p

D

ρ̃22 =
Ω2

p

[
γ
{
(γ+ 1)2 + 4Ω2

c

}
δω2

p + 4(Ω2
c +Ω2

p)(Ω
2
c + γΩ2

p)
]

D

ρ̃33 =
Ω2

c

[
4δω4

p +
{
(γ+ 1)2 − 8Ω2

c + 4Ω2
p

}
δω2

p + 4
(
Ω2

c +Ω2
p

)(
Ω2

c + γΩ2
p

)]
D

ρR12 =−
4ΩcΩ

2
p

(
Ω2

c + γΩ2
p

)
δωp

D

ρI12 =
2γ(γ+ 1)ΩcΩ

2
pδω

2
p

D

ρR13 =
4Ω2

cΩp
(
Ω2

c + γΩ2
p − δω2

p

)
δωp

D

ρI13 =
2(γ+ 1)Ω2

cΩpδω
2
p

D

ρR23 =
4ΩcΩp

[
Ω2

cδω
2
p −

(
Ω2

c +Ω2
p

)(
Ω2

c + γΩ2
p

)]
D

ρI23 =−
2(γ+ 1)

(
Ω2

c + γΩ2
p

)
ΩcΩpδωp

D
(E1)

with D = 4Ω2
cδω

4
p +

[
γ(γ+ 1)2Ω2

p +(γ+ 1)
(
γ+ 1+ 8Ω2

p

)
Ω2

c − 8Ω4
c

]
δω2

p + 4
(
Ω2

c +Ω2
p

)2(
Ω2

c + γΩ2
p

)
.

The coefficients of the characteristic polynomial of L(z) (equation (D10)) at z= 0, which
are required for evaluating the quantities in equation (D11), are obtained as follows

a ′0(0) = a ′ ′0 (0) = (γ+ 1)3Ω2
cΩ

2
pδω

2
p ,

a1(0) =−(γ+ 1)
[
Ω2
cδω

4
p +

{
(γ+ 1)Ω2

c

(
γ+ 8Ω2

p + 1
)
− 8Ω4

c + γ(γ+ 1)2Ω2
p

}
×(δω2

p/4)+
(
Ω2
c +Ω2

p

)2(
Ω2
c + γΩ2

p

)]
,

a ′1(0) = (γ+ 1)
[
γΩ2

cδω
4
p +

{
γΩ2

c

(
(γ+ 1)2 − 8Ω2

c

)
+(γ+ 1)Ω2

p

(
20Ω2

c + γ+ 1
)}

(δω2
p/4)+

(
Ω2
c +Ω2

p

)2(
γΩ2

c +Ω2
p

)]
,
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a2(0) =
1
16

[
−4

{
8(γ+ 2)Ω2

c +(γ+ 1)3
}
δω4

p

+
{
64(γ+ 2)Ω4

c − 8Ω2
c

(
3(γ+ 1)2 + 4(6γ+ 7)Ω2

p

)
−(γ+ 1)

(
(γ+ 1)4 + 8(4γ+ 1)(γ+ 1)Ω2

p + 16Ω4
p

)}
δω2

p

− 4
(
Ω2
c +Ω2

p

){
8(γ+ 2)Ω4

c +(γ+ 1)Ω2
c

(
(γ+ 1)(γ+ 5)+ 24Ω2

p

)
+8(2γ+ 1)Ω4

p +(γ+ 1)2(5γ+ 1)Ω2
p

}]
. (E2)

It can be shown that

2(a ′
0(0))

2a2(0)− 2a ′
0(0)a1(0)a

′
1(0)

a ′ ′
0 (0)(a1(0))

2
= 2

∑
i<j

(ρ̃Rij)
2 − 6

∑
i<j

(ρ̃Iij)
2 + q(Ωc,Ωp, δωp,γ) (E3)

where

q(Ωc,Ωp, δωp,γ) =
2qn
qd

(E4)

with

qn = 16γΩ4
cδω

8
p − 8γΩ2

c

[
8Ω4

c −
{
(γ+ 1)2 + 2Ω2

p

}
Ω2

c +(γ+ 1)2Ω2
p

]
δω6

p

+
[
96γΩ8

c − 16γΩ6
c

(
(γ+ 1)2 − (γ+ 2)Ω2

p

)
+(γ+ 1)Ω4

c

(
γ(γ+ 1)3

+4γ(γ+ 1)Ω2
p − 32Ω4

p

)
− 2γΩ2

cΩ
2
p

(
(γ+ 1)4 + 6(γ+ 1)2Ω2

p + 16Ω4
p

)
+γ(γ+ 1)4Ω4

p

]
δω4

p − 4
[
16γΩ10

c − 2γΩ8
c

{
(γ+ 1)2 − 2(2γ+ 7)Ω2

p

}
+Ω6

cΩ
2
p

{
γ
(
−γ3 + 3γ+ 2

)
+ 4

(
3γ2 + γ+ 1

)
Ω2

p

}
+ 2Ω4

cΩ
4
p

{(
γ2 + γ+ 1

)
(γ+ 1)2 + 2((γ− 3)γ+ 1)Ω2

p

}
+Ω2

cΩ
6
p

(
γ
(
γ(2γ+ 3)− 4Ω2

p

)
− 1

)
− 2γ(γ+ 1)2Ω8

p

]
δω2

p

+ 16
(
Ω2

c +Ω2
p

)2 (
Ω2

c + γΩ2
p

)(
γΩ6

c + 2γΩ4
cΩ

2
p + 2Ω2

cΩ
4
p +Ω6

p

)
qd =

[
4Ω2

cδω
4
p −

{
8Ω4

c − (γ+ 1)(γ+ 1+ 8Ω2
p)Ω

2
c − γ(γ+ 1)2Ω2

p

}
δω2

p

+4
(
Ω2

c +Ω2
p

)2 (
Ω2

c + γΩ2
p

)]2
.

For δωp = 0,

q(·) |δωp=0 =
32

(
Ω2

c +Ω2
p

)2 (
Ω2

c + γΩ2
p

)(
γΩ6

c + 2γΩ4
cΩ

2
p + 2Ω2

cΩ
4
p +Ω6

p

)[
4
(
Ω2

c +Ω2
p

)2 (
Ω2

c + γΩ2
p

)]2
=

2(γξ6 + 2γξ4 + 2ξ2 + 1)
(ξ2 + 1)(ξ2 + γ)2

. (E5)

Whereas q= 0 in a coherently driven TLS [17], q(Ωc,Ωp, δωp,γ) ̸= 0 in the Λ-system contrib-
utes to the Fano factor of the transition current.
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Although the expressions for a0(z) and a1(z) are lengthy and complicated, the total average
photon current Jph is straightforwardly decomposed into the two parts, Jph = Jph,12 + Jph,13
with

Jph,12 = γ(n̄12 + 1)ρ̃ss11 − γn̄12ρ̃
ss
22 = 2Ωcρ̃

I
12 (E6)

and
Jph,13 = (n̄13 + 1)ρ̃ss11 − n̄13ρ̃

ss
33 = 2Ωpρ̃

I
13. (E7)

The first equalities of equations (E6) and (E7) are consistent with the definition of reaction cur-
rent between two discrete states in classical Markov jump system, and this can also be related
with the imaginary part of coherence between the two quantum states, which is called current-
coherence relation [56]. Note that at two-photon resonance (δωp = δωc = 0) that engenders
the dark state, the mean current as well as its variance along the two channels vanishes, i.e.
Jph = 0 andDph = 0 due to ρI12 = ρI13 = 0 (equation (E1)) or a ′

0(0) = a ′ ′
0 (0) = 0 and λ ′(0) = 0

(equation (E2))); yet the their ratio, the Fano factor of the photon current, F = Dph/Jph,
remains finite with its maximal bound, Fmax = 3.

Appendix F. Coherent control of dispersion of media

The probe pulse-induced polarization of the Λ-system is quantified with the dipole moment
between |1⟩ and |3⟩ per unit volume as P⃗13 = N⟨⃗d3⟩= χ13E⃗p, where N is the num-
ber density of atoms. P⃗13 = êpζpχ13e−iωpt+ c.c., where χ13 is the linear susceptibility
of the medium [36]. Since ⟨⃗d3⟩= Tr(ρ̃d⃗) = ρ̃13d⃗31 + ρ̃31d⃗13 = ρ13eiωptd⃗31 + ρ31e−iωptd⃗13 ≃
eiωptρ13d⃗31 = ρ̃13d⃗31, the linear susceptibility can be expressed as χ13 = |P⃗13|/|E⃗p|= Ndρ̃13
with Nd ≡ N|⃗d31|/ζp. For the medium with |χ13| ≪ 1, the refractive index, dielectric constant
and linear susceptibility for the probe field are related with one another in Gaussian units as

η13(=
√
ϵ13) =

√
1+ 4πχ13 ≃ 1+ 2πχR13 + i2πχI13 (F1)

where χR and χI are the real and imaginary parts of the susceptibility. When the probe field,
E⃗p ∼ eikpz ∼ eiβze−αz/2, passes across the dielectric medium with a wave vector kp,

kp =
ωp

c
η13 =

ωp

c

(
1+ 2πχR13

)
︸ ︷︷ ︸

=β

+
i
2
ωp

c
4πχI13︸ ︷︷ ︸
=α

, (F2)

it moves through the medium with a phase velocity c/(1+ 2πχR13), and is also attenuated
by the medium with an absorption coefficient α. Since χ13 = Ndρ̃13, the real and imaginary
parts of the susceptibility is linked to the dispersion and absorption profiles of the medium,
respectively, as χR13 = Ndρ

R
13 and χ

I
13 = Ndρ

I
13.

Appendix G. Relation between vg and F

For the case of resonant control pulse (δωc = 0) with A≫ 1 (or n̄≈ 0), when
(∂ρR13/∂ωp)δωp=0 =Ω−1

p ξ2/(ξ2 + 1)2 is inserted to equation (6), we get an expression of
the group velocity in terms of ξ

vg =
c

1+
N ξ2

(ξ2 + 1)2

(G1)

with N ≡ 2πNdωp/Ωp.
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For the two-photon resonance (δωc = δωp = 0), the Fano factor is contributed only by the
real part of coherence between |2⟩ and |3⟩ (ρR23 ̸= 0) while others vanish (ρR12 = ρI12 = ρR13 =
ρR13 = ρI23 = 0), which simplifies F into

F = 1+ 2
(
ρR23

)2 ∣∣∣
δωp=0

+ q(ξ,γ) (G2)

with (
ρR23

)2 ∣∣∣
δωp=0

=
ξ2

(ξ2 + 1)2

q(ξ,γ)
∣∣∣
δωp=0

=
2(ξ6γ+ 2ξ4γ+ 2ξ2 + 1)

(ξ2 + 1)2(ξ2 + γ)
. (G3)

Insertion of equation (G3) into equation (G2) yields equation (8).

Appendix H. Laser power and Rabi frequency

For a plane wave the average intensity can be expressed as

⟨Iα⟩=
c
8π
ζ2α α ∈ c,p. (H1)

Now by considering the polarization of incident light parallel to the dipole, we can write ζα =
ℏΩα/|dij| which yields

⟨Iα⟩=
cℏ2Ω2

α

8π|dij|2
, (H2)

and from the spontaneous decay we know (ℏ/|dij|)2 = 16π2h/3γijλ3α. Thus, we obtain the rela-
tionship between the average intensity of the laser pulse (⟨Iα⟩), reported in the literature [23],
and other quantities,

⟨Iα⟩=
2πhcΩ2

α

3γijλ3α
. (H3)
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