Confinement-induced glassy dynamics distinguishes chromosome organization across organisms

Supplemental Material

Hongsuk Kang,¹ Young-Gui Yoon,² D. Thirumalai,¹ and Changbong Hyeon³

¹Institute for Physical Sciences and Technology, University of Maryland, College Park, MD 20742 ²Department of Physics, Chung-Ang University, Seoul 156-756 ³Korea Institute for Advanced Study, Seoul 130-722

Model. In order to assess the conditions describing the onset of glassy dynamics of a confined flexible polymer we introduce a model in which the potential energy is given by

$$U(\vec{r}_{1},...,\vec{r}_{N}) = \sum_{i=1}^{N-1} U_{i}^{\text{bond}} + \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} U_{i,j}^{\text{ex}} + \sum_{i=1}^{N} U_{i}^{\text{surf}}$$
$$= \frac{k}{2} \sum_{i=1}^{N-1} \frac{(|\vec{r}_{i+1} - \vec{r}_{i}| - a)^{2}}{a^{2}}$$
$$+ \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \epsilon \left(\frac{a}{|\vec{r}_{i} - \vec{r}_{j}|}\right)^{12}$$
$$+ \sum_{i=1}^{N} 4\epsilon \left(\frac{a}{R_{s} - |\vec{r}_{i}|}\right)^{12}, \qquad (1)$$

where a is a bond length, $k = 80 k_{\rm B}T$, $\epsilon = 2 k_{\rm B}T$, $\vec{r_i}$ is the position of the *i*th monomer. To model the effect of confinement we placed the polymer chain in a sphere surface of radius R_s . The interaction between the monomers and the sphere surface is repulsive, given by the last term in Eq.(1).

We performed Brownian dynamics simulations of a self-avoiding polymer under spherical confinement with N = 50, 75, 100, 125, 150, 200, 250, and 300 by integrating the following equations of motion,

$$\zeta \frac{d\vec{r}_i}{dt} = -\nabla_{\vec{r}_i} U(\vec{r}_1, \cdots, \vec{r}_N) + \vec{\Gamma}_i(t), \qquad (2)$$

where $\vec{\Gamma}_i(t)$ is the Gaussian random force satisfying the fluctuation-dissipation theorem, $\langle \vec{\Gamma}_i(t) \cdot \vec{\Gamma}_j(t') \rangle = 6k_{\rm B}T\zeta\delta(t-t')\delta_{ij}$. With the Brownian time defined as $\tau = a^2/D$ where $D = k_BT/\zeta$, we chose the integration time step $\delta t = 8.6 \times 10^{-6} \tau$ as a compromise between accuracy and computational cost.

For eukaryotic genome, $D = \frac{k_B T}{6\pi \eta(a/2)} = \frac{4.14pN \cdot nm}{6\pi \times (0.89 \times 10^{-3} N/m^2 \cdot sec) \times 10nm} \approx 250 \ \mu m^2/s$ with $\eta = 0.89 \times 10^{-3} Pa \cdot s$ and $a \approx 20$ nm; and hence we set $\tau = a^2/D \approx 1.6 \ \mu s$ and $\delta t \approx 13.7$ ps.

We gradually reduced R_s from $4R_g$ to the value at which τ_{α} or χ_4^{max} (see Eqs. (2) and (3) in the main text)

starts to diverge. Although the detailed procedure of reducing the confinement size R_s varies with N, the rate of R_s reduction $r = \Delta R_s / \Delta t \sim 0.15 \ (R_s/a) / (2 \times 10^8 \times \delta t)$ is almost identical for all N when R_s approaches to the point of dynamical arrest. The R_s values varied in the simulations are listed in Table I, and the time-dependent protocol of reducing R_s is plotted in Fig. S1. At each $R_s^{(i)}$, we simulated for $2 \times 10^8 \ \delta t$ and took the last conformation from the previous simulation at $R_s^{(i-1)}$ as the initial conformation for simulation in $R_s^{(i)}$. We reduced $R_s \ from \ R_s^{(i-1)}$ to $R_s^{(i)}$ linearly for $2 \times 10^4 \ \delta t$, allocated the next $2 \times 10^6 \ \delta t$ for an equilibration, and used the rest of $2 \times 10^8 \ steps$ to calculate $F_{q_{\text{max}}}(t)$ and χ_4^{max} . We generated 10 independent trajectories for $N \leq 150$ and 25 for $N \geq 200$ to improve the quality of statistics.

It is worth emphasizing that the critical volume fraction ϕ_c is robust and insensitive to the range of confining speed. To show this, we used two different confining speeds for a polymer with N = 150: one is $r_f = -0.30(R_s/a)/\text{step}$, 2 times faster than r and the other is $-0.10(R_s/a)/\text{step}$, 1.5 times slower than r. Both from τ_{α} using $F_q(t)$ and χ_4^{max} , we obtained $\phi_c = 0.383$ for both quenched and annealed cases, which is in full agreement with the regular case (see Fig.S2).

Volume fraction of a confined polymer. When a polymer is confined to a sphere with radius R_s , the size of the polymer R_g^c can be related to the radius of gyration for polymer in free space (R_g^o) via the following scaling relation with $x = R_g^o/R_s$:

$$R_q^c = R_q^o f(x). aga{3}$$

(i) Under weak confinement $(x \ll 1)$, corresponding to large R_s , the chain statistics will be unaltered $R_g^c \sim R_g^o \sim N^{\nu}$ with $\nu = 3/5$, and thus $f(x) \sim$ constant. (ii) In contrast, a strong confinement $(x \gg 1)$ induces polymer collapse, so that $R_g^c \sim N^{1/d}$ and $f(x) \sim x^p$. From $N^{1/d} \sim N^{\nu} (N^{\nu}/R_s)^p$, the exponent p ought to be $p = (d\nu)^{-1} - 1$. Therefore, substituting $R_g^o = aN^{\nu}$ where a is the Kuhn length, one gets $R_g^c = R_s (a/R_s)^{1/d\nu} N^{1/d}$.

A definition of polymer volume fraction (ϕ) using the ratio between R_g^c and R_s , $\phi = (R_g^c/R_s)^d$ gives distinct

N	50	75	100	125	150	200	250	300
i = 1	$R_s = 10a$	10a	10a	10a	10.8a	13.3a	13.3a	13.3a
2	9.2a	9.2a	9.2a	9.2a	9.2a	11.7a	11.7a	11.7a
3	8.3a	8.3a	8.3a	8.3a	8.3a	10.8a	10.8a	10.8a
4	7.5a	7.5a	7.5a	7.5a	7.5a	9.2a	9.2a	9.2a
5	6.7a	6.7a	6.7a	6.7a	6.7a	8.3a	8.3a	8.3a
6	5.8a	5.8a	6.2a	6.2a	6.2a	7.5a	7.5a	7.5a
$\overline{7}$	4.3a	4.3a	5.8a	5.8a	5.8a	6.7a	6.7a	6.7a
8	4a	4a	5.5a	5.5a	5.5a	6.3a	6.3a	6.3a
9	3.7a	3.7a	5a	5a	5a	6a	6a	6a
10	3.3a	3.3a	4.7a	4.7a	4.7a	5.7a	5.7a	5.7a
11	3a	3a	4.3a	4.3a	4.3a	5.3a	5.3a	5.3a
12	2.7a	2.7a	4a	4a	4.2a	5a	5a	5a
13	2.5a	2.5a	3.7a	3.7a	3.8a	4.7a	4.7a	4.7a
14	2.3a	2.3a	3.3a	3.3a	3.3a	4.3a	4.3a	4.3a
15	2.2a	-	3a	3a	3.2a	4.2a	4.2a	4.2a
16	2a	-	2.7a	2.8a	3a	4a	4a	4a
17	-	-	-	2.5a	-	3.7a	3.7a	3.8a
18	-	-	-	-	-	-	-	3.7a

TABLE I: R_s values used for the simulations with various N. In the table, a is the monomer-monomer distance. R_s was sequentially reduced from i = 1 to $i = i_{\text{max}}$ according to the procedure described in the SI text. The initial conformation was taken from the last conformation of the previous run except i = 1 where we generated unconstrained chain conformation. We set $R_s^{(0)}$ to four times the R_g of the unconstrained chain, and slowly decreased $R_s^{(0)}$ to $R_s^{(1)}$.

FIG. S1: The protocol used to reduce the confinement size (R_s) for different N. The reduction rate of confinement size near the dynamical arrest point is similar for all N as $r \sim -0.15(R_s/a)/\text{step}$.

FIG. S2: Robustness of ϕ_c value for different reduction rate of confinement size. In the legend, "Fast" denotes the faster confining speed; "Slow" is for the slower one; and "Regular" is the speed used in Table 1. Black lines are the fits for the values obtained at the regular speed. In all cases, we obtained $\phi_c = 0.383$ for N = 150.

FIG. S3: Mean spatial distance of polymer with N = 300 as a function of intersegmental separation s for varying volume fraction ϕ . Log-log plot is shown on the right panel with the dotted line expected for the scaling of SAW ($R(s) \sim s^{0.6}$). Note that the condition of confinement ($R_g^o > R_s$) trivially gives rise to the plateauing of R(s) [1, 2].

scaling of ϕ with N, depending on the strength of confinement:

$$\phi = \left(\frac{R_g^c}{R_s}\right)^d = \begin{cases} \left(\frac{a}{R_s}\right)^d N^{\nu d} : (\text{weak}, R_g^o \ll R_s) \\ \left(\frac{a}{R_s}\right)^{1/\nu} N : (\text{strong}, R_g^o \gg R_s) \end{cases}$$
(4)

where $1/\nu = d$ for the case of strong confinement. Note that this definition of ϕ is invariant under coarsegraining.

Radial distribution function. We used

$$g(r) = \frac{2}{N(N-1)} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \delta(|\vec{r_i} - \vec{r_j}| - r) \quad (5)$$

to capture the extent of packing between monomers in Fig.1c.

Contact probability. Contact probability as a function of genomic separation |i - j| = s in Fig.1d is given

FIG. S4: β value from the fit of $F_{q_{\max}}(t) \sim e^{-(t/\tau_{\alpha})^{\beta}}$ for the confined polymer (N = 300) as a function of ϕ . It is noteworthy that the decrease of β , the phenomenological stretching exponent that characterizes the extent of glassiness, is consistent with our observation that the polymer dynamics becomes more glassy with increasing ϕ .

by,

$$P(s) = \frac{\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \delta(|i-j|-s)\Theta(a-|\vec{r_i}-\vec{r_j}|)}{\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \delta(|i-j|-s)}$$
(6)

where $\Theta(\ldots)$ is the Heaviside step function. $\Theta(x) = 1$ for $x \ge 0$; otherwise $\Theta(x) = 0$.

FIG. S5: (a) Snapshots of polymer under strong confinement ($\phi = 0.402$). Monomers, colored based on the energy value, underscore the spatial heterogeneity of stress in the organization of the polymer. (b) Monomer energy distribution, $P(\varepsilon)$, at $\phi = 0.402$ for different range of r: $r/R_s < 0.5$ for core and $0.5 < r/R_s < 1$ for the surface. Together with the snapshot displaying the interior of the globule on the right, $P(\varepsilon)$ for the different range of r highlights that the spatial heterogeneity of the monomer energy is present in the interior as well as on the surface of globule.

. . .

3

Scaling relationship of contact probability for SAW. In the absence of confinement, the chain statistics should obey that of self-avoiding walk. Given the distance distribution $P_s(r)$ between two interior points separated by s along the contour, the contact probability is defined as $P(s) \approx P_s(r = 0)$. From $P_s(r) \sim (1/s^{\nu})^d f(r/s^{\nu}) \sim (1/s^{\nu})^d (r/s^{\nu})^g$ for $r \ll s$, where g is the correlation hole exponent and $q = \theta_2$ for two interior points [3]. The scaling exponent should be similar to the probability of two interior points of a SAW chain to be in contact, $P(s) \sim s^{-(d+\theta_2)\nu} \approx s^{-2.18}$ with $d = 3, \theta_2 = 0.71, \nu = 0.588$ [3–5]. In accord with this expectation, our simulation shows $\alpha = 2.18$ in the absence of confinement $(R_s/a \rightarrow \infty)$. Note that for Gaussian chain (or polymer melt) $g = 0, \nu = 1/2$, and d = 3, so that we retrieve the scaling relation for an equilibrium globule $P(s) \sim s^{-1.5}$ in the above.

FIG. S6: Formation of fractal-like globules from self-avoiding chain with increasing extent of confinement ($\phi = 0 \rightarrow 0.402$). At $\phi = 0.402$, the globules display segregated domains with ultra-slow mobility.

J. Mateos-Langerak, M. Bohn, W. de Leeuw, O. Giromus, E. M. Manders, P. J. Verschure, M. H. Indemans, H. J. Gierman, D. W. Heermann, R. Van Driel, et al., Proc. Natl. Acad. Sci. U. S. A. **106**, 3812 (2009).

- [2] M. Barbieri, M. Chotalia, J. Fraser, L.-M. Lavitas, J. Dostie, A. Pombo, and M. Nicodemi, Proc. Natl. Acad. Sci. U. S. A. **109**, 16173 (2012).
- [3] J. des Cloizeaux, J. Phys. 41, 223 (1980).
- [4] S. Redner, J. Phys. A: Math. Gen. 13, 3525 (1980).
- [5] N. Toan, P. Greg Morrison, C. Hyeon, and D. Thirumalai, J. Phys. Chem. B 112, 6094 (2008).