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Model. In order to assess the conditions describing
the onset of glassy dynamics of a confined flexible poly-
mer we introduce a model in which the potential energy
is given by
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where a is a bond length, k = 80 kBT , ε = 2 kBT , ~ri
is the position of the ith monomer. To model the ef-
fect of confinement we placed the polymer chain in a
sphere surface of radius Rs. The interaction between
the monomers and the sphere surface is repulsive, given
by the last term in Eq.(1).

We performed Brownian dynamics simulations of a
self-avoiding polymer under spherical confinement with
N = 50, 75, 100, 125, 150, 200, 250, and 300 by inte-
grating the following equations of motion,

ζ
d~ri
dt

= −∇~riU(~r1, · · · , ~rN ) + ~Γi(t), (2)

where ~Γi(t) is the Gaussian random force satisfying

the fluctuation-dissipation theorem, 〈~Γi(t) · ~Γj(t′)〉 =
6kBTζδ(t − t′)δij . With the Brownian time defined as
τ = a2/D where D = kBT/ζ, we chose the integration
time step δt = 8.6 × 10−6 τ as a compromise between
accuracy and computational cost.

For eukaryotic genome, D = kBT
6πη(a/2) =

4.14pN ·nm
6π×(0.89×10−3N/m2·sec)×10nm ≈ 250 µm2/s with

η = 0.89× 10−3Pa · s and a ≈ 20 nm; and hence we set
τ = a2/D ≈ 1.6 µs and δt ≈ 13.7 ps.

We gradually reduced Rs from 4Rg to the value at
which τα or χmax

4 (see Eqs. (2) and (3) in the main text)

starts to diverge. Although the detailed procedure of re-
ducing the confinement size Rs varies with N , the rate of
Rs reduction r = ∆Rs/∆t ∼ 0.15 (Rs/a)/(2× 108 × δt)
is almost identical for all N when Rs approaches to the
point of dynamical arrest. The Rs values varied in the
simulations are listed in Table I, and the time-dependent
protocol of reducing Rs is plotted in Fig. S1. At each

R
(i)
s , we simulated for 2× 108 δt and took the last con-

formation from the previous simulation at R
(i−1)
s as the

initial conformation for simulation in R
(i)
s . We reduced

Rs from R
(i−1)
s to R

(i)
s linearly for 2 × 104δt, allocated

the next 2 × 106 δt for an equilibration, and used the
rest of 2× 108 steps to calculate Fqmax

(t) and χmax
4 . We

generated 10 independent trajectories for N ≤ 150 and
25 for N ≥ 200 to improve the quality of statistics.

It is worth emphasizing that the critical volume
fraction φc is robust and insensitive to the range of
confining speed. To show this, we used two different
confining speeds for a polymer with N = 150: one
is rf = −0.30(Rs/a)/step, 2 times faster than r and
the other is −0.10(Rs/a)/step, 1.5 times slower than
r. Both from τα using Fq(t) and χmax

4 , we obtained
φc = 0.383 for both quenched and annealed cases, which
is in full agreement with the regular case (see Fig.S2).

Volume fraction of a confined polymer. When
a polymer is confined to a sphere with radius Rs, the
size of the polymer Rcg can be related to the radius of
gyration for polymer in free space (Rog) via the following
scaling relation with x = Rog/Rs:

Rcg = Rogf(x). (3)

(i) Under weak confinement (x � 1), corresponding to
large Rs, the chain statistics will be unaltered Rcg ∼
Rog ∼ Nν with ν = 3/5, and thus f(x) ∼ constant.
(ii) In contrast, a strong confinement (x � 1) induces
polymer collapse, so that Rcg ∼ N1/d and f(x) ∼ xp.

From N1/d ∼ Nν(Nν/Rs)
p, the exponent p ought to be

p = (dν)−1−1. Therefore, substituting Rog = aNν where

a is the Kuhn length, one gets Rcg = Rs(a/Rs)
1/dνN1/d.

A definition of polymer volume fraction (φ) using the
ratio between Rcg and Rs, φ = (Rcg/Rs)

d gives distinct
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N 50 75 100 125 150 200 250 300

i = 1 Rs = 10a 10a 10a 10a 10.8a 13.3a 13.3a 13.3a

2 9.2a 9.2a 9.2a 9.2a 9.2a 11.7a 11.7a 11.7a

3 8.3a 8.3a 8.3a 8.3a 8.3a 10.8a 10.8a 10.8a

4 7.5a 7.5a 7.5a 7.5a 7.5a 9.2a 9.2a 9.2a

5 6.7a 6.7a 6.7a 6.7a 6.7a 8.3a 8.3a 8.3a

6 5.8a 5.8a 6.2a 6.2a 6.2a 7.5a 7.5a 7.5a

7 4.3a 4.3a 5.8a 5.8a 5.8a 6.7a 6.7a 6.7a

8 4a 4a 5.5a 5.5a 5.5a 6.3a 6.3a 6.3a

9 3.7a 3.7a 5a 5a 5a 6a 6a 6a

10 3.3a 3.3a 4.7a 4.7a 4.7a 5.7a 5.7a 5.7a

11 3a 3a 4.3a 4.3a 4.3a 5.3a 5.3a 5.3a

12 2.7a 2.7a 4a 4a 4.2a 5a 5a 5a

13 2.5a 2.5a 3.7a 3.7a 3.8a 4.7a 4.7a 4.7a

14 2.3a 2.3a 3.3a 3.3a 3.3a 4.3a 4.3a 4.3a

15 2.2a - 3a 3a 3.2a 4.2a 4.2a 4.2a

16 2a - 2.7a 2.8a 3a 4a 4a 4a

17 - - - 2.5a - 3.7a 3.7a 3.8a

18 - - - - - - - 3.7a

TABLE I: Rs values used for the simulations with various
N . In the table, a is the monomer-monomer distance. Rs
was sequentially reduced from i = 1 to i = imax according
to the procedure described in the SI text. The initial confor-
mation was taken from the last conformation of the previous
run except i = 1 where we generated unconstrained chain

conformation. We set R
(0)
s to four times the Rg of the un-

constrained chain, and slowly decreased R
(0)
s to R

(1)
s .
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FIG. S1: The protocol used to reduce the confinement size
(Rs) for different N . The reduction rate of confinement size
near the dynamical arrest point is similar for all N as r ∼
−0.15(Rs/a)/step.
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FIG. S2: Robustness of φc value for different reduction rate
of confinement size. In the legend, “Fast” denotes the faster
confining speed; “Slow” is for the slower one; and “Regular”
is the speed used in Table 1. Black lines are the fits for
the values obtained at the regular speed. In all cases, we
obtained φc = 0.383 for N = 150.
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FIG. S3: Mean spatial distance of polymer with N = 300 as
a function of intersegmental separation s for varying volume
fraction φ. Log-log plot is shown on the right panel with the
dotted line expected for the scaling of SAW (R(s) ∼ s0.6).
Note that the condition of confinement (Rog > Rs) trivially
gives rise to the plateauing of R(s) [1, 2].

scaling of φ with N , depending on the strength of con-
finement:

φ =

(
Rcg
Rs

)d
=


(
a
Rs

)d
Nνd : (weak, Rog � Rs)(

a
Rs
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N : (strong, Rog � Rs)

(4)

where 1/ν = d for the case of strong confinement.
Note that this definition of φ is invariant under coarse-
graining.

Radial distribution function. We used

g(r) =
2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

δ(|~ri − ~rj | − r) (5)

to capture the extent of packing between monomers in
Fig.1c.

Contact probability. Contact probability as a func-
tion of genomic separation |i− j| = s in Fig.1d is given
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FIG. S4: β value from the fit of Fqmax(t) ∼ e−(t/τα)β for the
confined polymer (N = 300) as a function of φ. It is note-
worthy that the decrease of β, the phenomenological stretch-
ing exponent that characterizes the extent of glassiness, is
consistent with our observation that the polymer dynamics
becomes more glassy with increasing φ.

by,

P (s) =

∑N−1
i=1

∑N
j=i+1 δ(|i− j| − s)Θ(a− |~ri − ~rj |)∑N−1
i=1

∑N
j=i+1 δ(|i− j| − s)

(6)
where Θ(. . .) is the Heaviside step function. Θ(x) = 1
for x ≥ 0; otherwise Θ(x) = 0.
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FIG. S5: (a) Snapshots of polymer under strong confinement
(φ = 0.402). Monomers, colored based on the energy value,
underscore the spatial heterogeneity of stress in the organiza-
tion of the polymer. (b) Monomer energy distribution, P (ε),
at φ = 0.402 for different range of r: r/Rs < 0.5 for core and
0.5 < r/Rs < 1 for the surface. Together with the snapshot
displaying the interior of the globule on the right, P (ε) for
the different range of r highlights that the spatial heterogene-
ity of the monomer energy is present in the interior as well
as on the surface of globule.

Scaling relationship of contact probability
for SAW. In the absence of confinement, the chain
statistics should obey that of self-avoiding walk. Given
the distance distribution Ps(r) between two interior
points separated by s along the contour, the contact
probability is defined as P (s)(≈ Ps(r = 0)). From
Ps(r) ∼ (1/sν)df(r/sν) ∼ (1/sν)d(r/sν)g for r � s,
where g is the correlation hole exponent and g = θ2
for two interior points [3]. The scaling exponent should
be similar to the probability of two interior points of a
SAW chain to be in contact, P (s) ∼ s−(d+θ2)ν ≈ s−2.18

with d = 3, θ2 = 0.71, ν = 0.588 [3–5]. In accord with
this expectation, our simulation shows α = 2.18 in the
absence of confinement (Rs/a → ∞). Note that for
Gaussian chain (or polymer melt) g = 0, ν = 1/2, and
d = 3, so that we retrieve the scaling relation for an
equilibrium globule P (s) ∼ s−1.5 in the above.
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FIG. S6: Formation of fractal-like globules from self-avoiding
chain with increasing extent of confinement (φ = 0→ 0.402).
At φ = 0.402, the globules display segregated domains with
ultra-slow mobility.
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