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S1 Appendix

Gaussian polymer network for modeling chromosomes

Here we provide additional justifications for the use of harmonic potentials in the
effective Hamiltonian, and consequently, a gaussian distribution for pairwise distances
(Eq 2).

Even in the interphase that displays less amount of activity than mitotic phase,
continuous events of free energy consumption break the detailed balance condition,
driving the chromosome out of equilibrium [1–5]. However, chromosome dynamics in
each phase during the cell cycle is slow enough [6–9] that the system remains in local
mechanical equilibrium over an extended time period, as captured by the stable
patterns in the Hi-C data [10]. Although the notion of cell-to-cell variation in a
population of cells is appreciated in the literature [7,9,11–16], fluorescence measurement
still indicates that the spatial distances between pairs of chromatin segments can be
well described by the gaussian distribution [17–20] (S1 Fig). This motivates us to
model the chromosome structure using a gaussian polymer network whose configuration
fluctuates around a mechanically equilibrated local basin of attraction [10,21–24].

The concept of an effective Hamiltonian consisting of harmonic potential terms is
not new; it has been widely employed to study a variety of systems, including the phase
transition of vulcanized macromolecules with increasing numbers of crosslinks [25, 26],
and the fluctuation dynamics of native proteins (gaussian network model, [27]).
Furthermore, a slightly modified, but essentially identical, form of Hamiltonian was
used to study the dynamics of folding/unfolding transitions of a single RNA molecule
under external force in the name of generalized Rouse model [28].

Whereas the success of the gaussian polymer network model does not necessarily
guarantee its extension to the modeling of chromosomes, our use of a gaussian
distribution for the pairwise distance between two segments in the polymer is
empirically justified. The Gaussian-like pairwise distance distributions reported by
fluorescence measurements of the chromosome (S1 Fig), and the agreement of the 3D
structural properties inferred by modeling approaches [10, 23,24] that share the same
philosophy, with particular emphasis on our recent approach of heterogeneous loop
model (HLM) [10,29], suggest that Gaussian polymer networks provides a reasonable
approximation of the energy landscape for the mixture of those subpopulations.

As a side note, it is worth highlighting the versatility of the Gaussian polymer
network model in representing the complex topology of chromosome conformation. For
the conventional Rouse chain whose monomers along the backbone are constrained by
an energy hamiltonian H = (k/2)

PN�1
i (ri+1 � ri)2 with a uniform spring constant k,

it is straightforward to show that hr2iji ⇠ |i� j|. Furthermore, if two monomers are in
close proximity to form a contact (rij < rc), then one can obtain the contact probability
between monomers i and j in the chain backbone as pij =

R rc
0 drijP (rij) ⇠ |i� j|�3/2.
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Fig A. Heterogenous loop model [10] to compare the contact probabilities

of Gaussian polymer networks. (a-d) Four examples of polymer models composed
of 20 monomers with different interaction strength matrix [kij ] (top row), and the
corresponding contact probability matrices [pij ] (second row) calculated with rc = 1.
(e) the mean square distance and (f) the contact probability p(s) are calculated as a
function of the genomic distance, s, for the four different models (a-d). Scaling results
in (e) and (f) show that even the Gaussian polymer network model can produce rich
multi-scale structure with domains.

However, adding just a few non-nearest-neighbor interactions to the Rouse model makes
the results highly nontrivial. To illustrate this, we explicitly compared the contact
probability map of a linear Gaussian chain (Rouse chain), and those of Gaussian
polymer network models with varying numbers of non-nearest-neighbor interactions,
which were calculated from the HLM-generated structural ensemble [10] (Fig A). The
statistical behavior of Gaussian polymer network model differs from that of the linear
“Gaussian” chain. The mean square distance hr2iji no longer scales linearly with the
separation s ⌘ |i� j| (Fig A), and the contact probability pij (or p(s)) is no longer
described with a simple scaling relation (Fig A). The simple modification to the Rouse
model, resulting in the Gaussian polymer network model, allows one to explore many
different issues of chromosomes. In fact, our recent work based on HLM [10]
demonstrated several case studies, substantiating the various experimental
measurements on chromosome conformation by solving the inverse-problem of inferring
chromosome structures from Hi-C data.
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S2 Appendix

Derivation of the likelihood function

Here we derive the likelihood function, Eq 14.

Problem: We want to compute

p(x|s,g) =
⌦
�N (x� f(⌘, ✏))

↵
⌘,✏

(S2-1)

with the following assumptions:

• x 2 RN
is a sequence of normalized and uncorrelated observations, with zero

mean hxi = 0N and unit covariance Cov(x) = IN .

• s = (s1, · · · , sN ) is a clustering map that assigns each site i 2 {1, · · · , N} to a

cluster index si 2 {1, · · · ,K}. Without loss of generality, we can assume that

si  sj whenever i < j (ordered indexing).

• ⌘ ⇠ N (0N ,⇤) and ✏ ⇠ N (0N ,⌃) are i.i.d. gaussian random variables, where ⇤

and ⌃ are N ⇥N covariance matrices. The cluster-dependent covariance is a

block diagonal matrix ⇤ = [⇤s] = [1ns1
>
ns
], defined element-wise as (⇤)ij = �si,sj .

The site-wise variation is assumed to be uncorrelated, with a unit covariance

matrix ⌃ = IN , or (⌃)ij = �ij .

• The clustering strength g = (g1, · · · , gK) parameterizes the target function f ,
defined element-wise as

fi(⌘, ✏) =

p
gsi⌘i + ✏ip
1 + gsi

, i = 1, · · · , N. (S2-2)

Two lemmas will be useful. The Gaussian integral lemma:

Z

RN

dz N (z|µ,M) eia
>z

= exp

✓
�1

2
a>Ma

◆
, a 2 RN

; (S2-3)

and the Sherman-Morrison formula:

(A+ uv>
)
�1

= A�1 � A�1uv>A�1

1 + v>A�1u
. (S2-4)

1/3



Solution: Let us abbreviate the coefficients as ↵s ⌘
p
gs/(1 + gs) and

�s ⌘ 1/
p
1 + gs, such that fi = ↵si⌘i + �si✏i. Further define A ⌘ diag(↵si) and

B ⌘ diag(�si), to write f = A⌘ +B✏. Taking the inverse Fourier transform of the Dirac

delta function, we can write �N (x� f) =
R

dk
(2⇡)N ei(x�f)>k

=
R

dk
(2⇡)N ei(x�A⌘�B✏)>k

,

where
R
=

R
RN unless otherwise specified. Now we can rewrite Eq S2-1, and evaluate

the gaussian integrals using the lemma (Eq S2-3):

p(x|s,g) =
Z

dk

(2⇡)N
eix

>k

Z
d⌘ N (⌘) e�iA⌘>k

Z
d✏ N (✏) e�iB✏>k

=

Z
dk

(2⇡)N
exp

✓
ix>k� 1

2
(Ak)>⇤(Ak)� 1

2
(Bk)>⌃(Bk)

◆

=

Z
dk

(2⇡)N
exp

✓
ix>k� 1

2
k>Qk

◆
, (S2-5)

where Q ⌘ (A⇤A+B⌃B). Recognizing that this is another (unnormalized) gaussian

integral with covariance matrix Q�1
, we use the lemma (Eq S2-3) once again:

p(x|s,g) =
q

(2⇡)N detQ�1

Z
dk

(2⇡)N
N (k|0, Q�1

) eix
>k

= exp

✓
�1

2
x>Q�1x� 1

2
log detQ

◆
. (S2-6)

With uncorrelated ✏, both Q and Q�1
are block diagonal matrices, the exponent is

completely separable by clusters:

log p(x|s,g) = �1

2

KX

s=1

�
x>
s Q

�1
s xs + log detQs

�
, (S2-7)

where xs is the corresponding ns-dimensional subset of x, and
Qs = As⇤sAs +Bs⌃sBs = ↵2

s⇤s + �2
s⌃s, is the ns ⇥ ns block matrix corresponding to

cluster index s; element-wise, (Qs)ij = ↵2
s + �2

s�ij .
We now simplify the two terms in the summand of Eq S2-7, and show that the

resulting expression corresponds to Eq 14. First, the quadratic term can be expanded

by using the Sherman-Morrison formula (Eq S2-4):

Q�1
s = (�2

sIns + (↵s1ns)(↵s1ns)
>
)
�1

=
1

�2
s

✓
I � (↵2

s/�
2
s )11

>

1 + (↵2
s/�

2
s )1

>1

◆
. (S2-8)

The quadratic form is

x>
s Q

�1
s xs = (1 + gs)

✓
ns �

gscs
1 + gsns

◆
, (S2-9)

where x>
s xs =

PN
i=1(xi)

2�si,s ⇡ hx2
i i

PN
i=1 �si,s = ns, and

x>
s (11

>
)xs =

PN
i,j=1 xixj�si,s�sj ,s ⌘ cs.

Second, the log-determinant term can be calculated by considering the eigenvalues of

the matrix Qs. Solving for Qsz = �sz for an arbitrary ns-dimensional vector z,

�sz = ↵s
s(1

>z)1+ �2
sz; (S2-10)

there are two types of solutions. The first possibility is to have the eigenvector z / 1, in
which case �s,1 = ↵2

sns + �2
s = (1 + gsns)/(1 + gs). The other possibility is to have
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(�s � �2
s )z vanish, where �s,2 = · · · = �s,ns = �2

s = 1/(1 + gs); the degenerate

eigenvectors span the remaining (ns � 1)-dimensional subspace. Therefore

det(Qs) = (↵2
sns + �2

s ) · (�2
s )

ns�1
=

1 + gsns

(1 + gs)ns
, (S2-11)

and

log det(Qs) = log(1 + gsns)� ns log(1 + gs). (S2-12)

Substitution of Eq S2-9 and Eq S2-12 into Eq S2-7 yields Eq 14.
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The inference algorithm

Sampling Markov chain Monte Carlo (MCMC) sampling was employed to find the

minimum value of the total cost function H. At each trial move from the current state s

to the next state s
0
, the move is accepted with a probability min(1,↵), where

↵(s, s0) = exp [�(H(s
0
|C)�H(s|C))/T ]. In sampling the space of CD solutions, a move

from a state s to another state s
0
is defined such that the two CD solutions (s, s0) differ

only by one genomic segment. More precisely, because a CD solution is invariant upon

permutations of the domain indices, the distance between s and s
0
is uniquely defined as

the minimal number of mismatches over all possible domain index permutations.

To ensure that the sampling is properly conducted, we continue the sampling until

each chain collects ttot � 5⌧⇤ samples in the CD solution space. The “relaxation time”

⌧⇤ is defined as the number of steps at which the autocorrelation function R(⌧), drops
significantly (< 1/e). The autocorrelation function is calculated as

R(⌧) =
1

�2
h(H(st|C)� µ)(H(st+⌧ |C)� µ)it, (S3-1)

where st is the t-th sample in the chain, and µ and � are the mean and standard

deviation of H. The average h·it is taken over all pairs of samples with a delay of ⌧ .

Simulated annealing The simulated annealing process is described below. Also see

Fig A for an example of simulated annealing in our Multi-CD algorithm.

Initialization. An initial configuration s
(0)

is generated in two random steps. First,

the total number of CDs, K, is drawn randomly from the set of integers {1, · · · , N}.

Then, each genomic segment i 2 {1, · · · , N} is allocated randomly into one of the CDs,

k 2 {1, 2, · · · ,K}. The initial temperature T0 is determined such that the acceptance

probability for the “worst” move around s
(0)

is 0.5.

Iteration. At each step r, the temperature is fixed at Tr. We sample the target

distribution pr(s|C) / exp(�H(s|C)/Tr), using the Metropolis-Hastings sampler

described above. For the next step r + 1, the temperature is lowered by a constant

cooling factor ccool 2 (0, 1), such that the next temperature is Tr+1 = ccool · Tr. We

used ccool = 0.95 in this study.

Final solution. The annealing is repeated until the temperature reaches Tf . We used

Tf = 0.03. Then we quench the system to the closest local minimum by performing

gradient descent. Because there is still no guarantee that the global minimum is found,

we tried a batch of at least 10 different initial configurations and chose the final state s
⇤

that gives the minimal H(s
⇤
|C).
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Robustness of solutions over data subset choices The domain solutions

reported by Multi-CD are robust over different choices as to which subsets of Hi-C data

we solve from. We showed that Multi-CD is practically locality-preserving, in the

following sense. Suppose that S1, S2 ⇢ {1, 2, · · · , N} be two subsets (specifically,

consecutive intervals) of the genomic range, and both include the two genomic segments

i, j. At a given �, if the pair (i, j) belongs to the same domain according to a domain

solution based on the subset of data CS1 , most of the times it also belongs to the same

domain when solved for the other subset CS2 . Also see Fig B for an example from the

real data.

Computational cost Repeated sampling in the simulated annealing is the

computational bottleneck for the current method. Whereas our final choice of

parameters for the simulated annealing was on the conservative side, to prioritize

accurate solutions over speed, it is often useful to adjust the parameters to enable lighter

runs, especially for pilot studies. For the MCMC sampling at each fixed temperature,

the chain length (set adaptively by the stopping condition; we used 5⌧⇤ throughout this

study) could be reduced, for example to 3⌧⇤. In general, one can trade off the number

of independent simulated annealing runs (try a larger number of initial configurations),

which is readily parallelized, for a shorter sampling per run. For the simulated

annealing, the temperature schedule can be accelerated by adjusting the cooling rate

ccool (currently 0.95); a smaller ccool, such as 0.9, results in a faster annealing.

In addition to adjusting the simulated annealing parameters listed above, one can

also use smaller data subsets (with smaller subset size N) for faster test runs. More

specifically, we used a smaller data subset and adjusted simulated annealing parameters

(shorter chain length, accelerated cooling rate, etc.) to perform pilot runs to determine

a rough range of � values that is meaningful for the given data. Then we performed a

more thorough run to obtain the actual results. The full set of parameters that we used

for the main analysis, as well as for the shorter test runs, can be found in our public

code repository.
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Fig A. Finding the best domain solution through simulated annealing. (a)

A subset of Hi-C data, covering 10-Mb genomic region on chr10 of GM12878. (b) CD

solutions, obtained from the Hi-C data in (a), at three values of T for � = 0. The CD

solution at each T was constructed by 2, 000 sample trajectories being equilibrated.

(c-e) We plot three quantities over varying T , where the simulated annealing from high

to low T (right to left in figure) was used as a sampling protocol. (c) The effective

energy hamiltonian H(s|C). (d) The heat capacity Cv = h�H2
i/T 2

. (e) The

normalized mutual information (nMI) between the domain solution and Hi-C matrix

(log10 M). (f-i) Same analyses repeated for � = 10.
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Fig B. Robustness of clustering solutions over different subsets of Hi-C

data. The Hi-C data demarcated by the purple squares on the top panels are the input

data used for Multi-CD analysis. The three panels from left to right on the bottom are

the domain solutions from 10-Mb, 20-Mb, and 40-Mb Hi-C inputs. (a) For � = 0, the

correlation coefficients of 20-Mb Hi-C and 40-Mb Hi-C generated domain solutions with

respect to the 10-Mb Hi-C generated one is 0.95 and 0.84, respectively. (b) Same

calculations were carried out for �=10.
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