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Goldbeter-Koshland zero-th order ultrasensitivity and deriva-

tion of c∗T in Eq. 1

The key expression of this study, c∗T (Eq. 1), is derived from the balance between the GEF and

GAP activity-mediated processes. The expression bears the same mathematical structure

with that of the phosphorylation-dephosphorylation cycle, formulated by Goldbeter and

Koshland, which is known to yield ultrasensitive responses of substrates to the relative

amount of two opposing enzymes.1,2

Here we derive a general expression equivalent to c∗T by considering the chemical state
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of a receptor catalyzed by phosphatase (P ) with concentration Po and kinase (K) with

concentration Ko. When a large number of substrates (receptors) are present, such that the

total concentration of phosphorylated (Zp) and unphosphorylated receptors (Z) is greater

than Ko and Po, i.e., Ztot � Ko, Po with Ztot = [Z] + [Zp], we can assume that the system is

in the Michaelis–Menten (MM) regime. The interconversion of the receptor between Zp and

Z is written as

Zp
k1−⇀↽−
k2
Z. (S1)

Zp is dephosphorylated with the rate

r1 =
k1Po[Zp]

K1 + [Zp]
=

v1(1− z)

J1 + (1− z)
(S2)

where z = [Z]/Ztot with v1 = k1Po, and J1 = K1/Ztot. Z is phosphorylated with the rate

r2 =
k2Ko[Z]

K2 + [Z]
=

v2z

J2 + z
(S3)

where v2 = k2Ko and J2 = K2/Ztot. The concentration of unphosphorylated receptor at

steady state, z∗ = [Z]ss/Ztot, is decided from r1(z∗) = r2(z∗),

v1(1− z∗)
J1 + (1− z∗)

=
v2z
∗

J2 + z∗
. (S4)

The state of the receptor changes in the range of 0 ≤ z∗ ≤ 1 in response to the relative

rate of dephosphorylation and phosphorylation (or the relative amount of kinase and phos-

phatase) in the cell (v1/v2 = k1Po/k2Ko). Physically, it is expected that the receptors are in

the unphosphorylated state when the rate of dephosphorylation is greater than that of phos-

phorylation, and vice versa. This switch-like transition of z∗ between z∗ ≈ 0 and z∗ ≈ 1 is
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Figure S1: Plots of z∗ versus v1/v2 for varying J (Eq. S5). This demonstrates the ultrasen-
sitive response of substrate to the two opposing enzymes, especially at small J .

further clarified by rewriting Eq. S4 in the following form with an assumption of J1 = J2 = J ,

v1

v2

=
z∗(J + 1− z∗)

(1− z∗)(J + z∗)
≈


ε(J+1)
J

for v1/v2 � 1

(1−ε)(J+ε)
ε(J+1)

for v1/v2 � 1

(S5)

with ε � 1, and can more explicitly be demonstrated by plotting z∗ as a function of v1/v2

(Fig. S1). The first and the second derivatives at the transition point v1/v2 = 1

(
dz∗

d(v1/v2)

)
v1
v2

=1

=
1

4

(
1 +

1

2J

)
(S6)

and

∣∣∣ d2z∗

d(v1/v2)2

∣∣∣
v1
v2

=1
=

1

4

(
1 +

1

2J2

)
(S7)

indicate that small J value sharpens the transition between z∗ = 0 and z∗ = 1.

Solving Eq. S4 for z∗ yields the Goldbeter’s formula for the zero-th order ultrasensitivity:

z∗ =
2v1J2

B +
√
B2 − 4(v2 − v1)v1J2

(S8)
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where B = v1J2 + v2J1 + v2− v1. Note that only one of the two solutions from the quadratic

equation is physically relevant since 0 ≤ z∗ ≤ 1. The term inside the square root of Eq. S8

∆ ≡ B2 − 4(v2 − v1)v1J2

= (J2 + 1)2︸ ︷︷ ︸
≡a

v2
1 + (J1 + 1)2︸ ︷︷ ︸

≡b

v2
2 + 2 {J1J2 − (J1 + J2)− 1}︸ ︷︷ ︸

≡c

v1v2

= a
(
v1 +

c

a
v2

)2

+

(
ab− c2

a

)
v2

2 (S9)

is positive for all values of v1, v2, J1, J2 > 0, because a, b > 0 and ab−c2 = 4J1J2(J1+J2+1) >

0.

Along with the inequalities
∣∣∣4(v2−v1)v1J2

B2

∣∣∣ < ∣∣∣ 4(v2−v1)v1J2
(v1J2+v2−v1)2

∣∣∣ ≤ ∣∣∣ 2
v1J2(v2−v1)

∣∣∣, if the system is

either in the dephosphorylation or phosphorylation dominant regime (v1/v2 � 1 or v1/v2 �

1),
∣∣∣4(v2−v1)v1J2

B2

∣∣∣� 1 is guaranteed, which simplifies the expression of z∗ to

z∗ ≈ v1J2

B
=

v1J2

(J2 − 1)v1 + (J1 + 1)v2

. (S10)

Derivations of δS† and Ro(cL; t)

First, using the condition of
∣∣∣4(vAE−1)

Kf
Ay

2

∣∣∣ < ∣∣∣ 4Kf
A

(vAE−1)

∣∣∣� 1 for vAE � 1 andKf
A ≈ 10−2 (Table 1),

we obtain

δS ∝ 1/y =

[
κAE

Kf
E + 1

Kf
A

RGSo
cL[R]ss

+
Kf
A − 1

Kf
A

]−1

(S11)

Second, a condition of
∣∣∣4ωp(1+cL)cLRo/Kπ

Γ2

∣∣∣� 1, which is valid for cL � 1, further approximates

Eq. 17 as

[R]ss ≈ ωpRo/Γ. (S12)
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This simplifies δS to

δS ∝

[
κAE

Kf
E + 1

Kf
A

RGSoΓ

cLωpRo

+
Kf
A − 1

Kf
A

]−1

. (S13)

By rewriting Eq. S13 along with Eq. 18,

δS(cL; t) ∝ cLωpRo[
κAE

Kf
E+1

Kf
A

RGSo(1 + c−1
β + ωp −Ro/Kπ) +

Kf
A−1

Kf
A

ωpRo

]
cL + κAE

Kf
E+1

Kf
A

RGSoωp

∝ cLωpRo[
(1 + c−1

β + ωp) +
(
Kf
A−1

Kf
E+1

ωp
κAE

Kπ
RGSo

− 1
)

Ro
Kπ

]
cL + ωp

, (S14)

we obtain the expression of δS†(cL; t) (Eq. 20).

Next, the evolution equation of Ro (Eq. 3) can be approximated as

dRo

dt
≈ −[LR∗P · βA]ss + rs

≈ −k(cL)Ro + rs, (S15)

which, along with the relations [LR∗P · βA]ss = cβf([R]ss) ≈ f(ωpRo/Γ) and Eq. 6, yields

Ro(cL; t) = Ri
oe
−k(cL)t +

rs
k(cL)

(1− e−k(cL)t). (S16)

with k(cL) = kdcL/[(1 + c−1
β + ωp)cL + ωp].

Receptor population, Ro(cL; τ )

For cβ � 1 and ωp � 1, Ro(cL; τ) with k(cL) ≈ kdcL/(cL + ωp) (Eq. 24) is approximated at

short and long time limits as follows:
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(i) For short incubation time, τ(= kdt) ∼ O(1),

Ro(cL; τ) ≈ Ri
o

(
1− cLτ

cL + ωp

)
+ (rs/kd)τ +O(τ 2)

≈


Ri
o (1− cLτ/ωp) + (rs/kd)τ +O(τ 2) (cL � ωp)

Ri
o − (Ri

o − rs/kd)τ +O(τ 2) (cL � ωp)

(S17)

(ii) For long incubation time, τ � 1,

R0(cL; τ) ≈ rs(cL + ωp)

kdcL
=


rsωp
kdcL

(cL � ωp)

rs
kd

(cL � ωp)

(S18)
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