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Many biological functions are executed by molecular machines, which like man-made motors are
powered by chemical energy, released by adenosine triphosphate hydrolysis. They have evolved to
transport cargo, facilitate folding of proteins and ribonucleic acids, remodel chromatin, and replicate
DNA. Biological machines also serve as the most natural systems for illustrating emergent
phenomena in nonequilibrium active systems, thus providing a great impetus to illustrate the general
principles governing their functions. Despite their architectural diversity, physics-based theories
have provided unifying themes of the inner working of nanoscale biological machines. The theories
address questions such as how the trade-off between precision, energetic costs, and optimal
performances are balanced. However, many complexities associated with biological machines
require molecular level descriptions. Simple point mutations in the enzyme could drastically alter
functions, result in unexpected diseases, or dramatically restrict the capacity of molecular
chaperones to help proteins fold. These examples are reminders that, while the search for principles
of generality in biology is intellectually stimulating and necessary, molecular details must be
accounted for to develop a deeper understanding of their functions.
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I. INTRODUCTION

The opening sentence of a perspective by Bustamante,
Cheng, and Mejia (2011) on the workings of nucleic acid
translocases begins with the following quote, “The operative
industry of Nature is so prolific that machines will be
eventually found not only unknown to us but also unimagi-
nable by our mind,” attributed to Marcello Malpighi, who is
considered the founder of microscopic anatomy, histology,
and embryology. This statement, made over three centuries
ago, is even more relevant today. It is a reminder that
mechanical forces must play a fundamental role in biology.
In modern times, this vast subject falls under the growing
field of mechanobiology. The pervasive role of mechanics in
living systems controls motility on all length scales, from the
motion of a single cell on a substrate and collections of cells
to dynamics at the molecular level. Cooperative interactions
between various modules at the molecular level are thought
to control functions at the mesoscale. A number of complex
dynamical processes such as transcription, translation, trans-
port of vesicles and organelles, folding of proteins and
ribonucleic acid (RNA), and chromosome segregation
control the sustenance and growth of cells. At some level,
all of these biologically important processes involve molecu-
lar machines, whose ability to perform their functions, often
but not always with high efficiency, in a noisy crowded
environment is remarkable. It is worth remembering that the
ability to execute a variety of functions distinguishes living
and abiotic systems. Because of functional demands in
living systems, which also includes adaptation to changing
environmental conditions, it is virtually impossible to
fully describe biology without evolutionary considerations.
Although not the focus of our perspective, the role of
evolutionary constraints must also be integrated with physical
models to discover general principles governing the functions
of biological machines.
What are the characteristics of biological machines? First,

there are many varieties of machines, all of which should be
thought of as enzymes, which consume energy and perform
mechanical work to carry out specific tasks. A few of the
machines that we consider here are kinesin, myosin, and
dynein, which are collectively referred to as molecular motors
(Vale and Milligan, 2000; Block, 2007; Sun and Goldman,
2011; Belyy et al., 2014; Reck-Peterson et al., 2018). These
cytoskeletal motors transport cargo by walking, almost always
unidirectionally, on filamentous actin and microtubules
(MTs). Under in vivo conditions, the motors cooperate or
there could be a tug of war in the process of transport; see
Fig. 1 (Gross et al., 2002; Levi et al., 2006). To illustrate the
diversity of motorlike functions and point out certain emerg-
ing general principles, we also provide theoretical descriptions
for the functions of molecular chaperones, which assist in the
folding of proteins and ribozymes (RNA enzymes) that cannot
do so spontaneously, and helicases with multiple functions
that include separation of strands in the double-stranded (ds)
DNA. Neither molecular chaperones nor helicases bear any
structural resemblance or sequence similarity to molecular

motors. Nevertheless, we are convinced that by comparing the
characteristics of these seemingly unrelated machines, inte-
grating theory and experiments, unifying themes and
differences between them could be elucidated. Second, all
of these motors and others not covered here (for example,
polymerases, ribosomes, and packaging motors) are all multi-
domain proteins, whose architectures are spectacularly differ-
ent. Despite the vastly different sequences, structures, and
evolutionary origins, it is indeed the case that all of these
machines utilize some form of chemical energy [generated by
adenosine triphosphate (ATP) or guanosine triphosphate
(GTP) hydrolysis] in order to amplify the small local con-
formational changes through their structural linkages to
facilitate large conformational changes for functional pur-
poses. Such conformational amplifications are examples of
remarkable allostery or action at a distance, and they could
also be couched in terms of information transfer between
structural subunits that are spatially well separated, which in
some cases [dynein, for example (Bhabha et al., 2014)] can be
as large as 25 nm.
A large number of experiments have unveiled many of the

details of how these machines move by converting chemical
energy into mechanical work [see, for example, De La Cruz
and Ostap (2004), Holzbaur and Goldman (2010), Spudich
and Sivaramakrishnan (2010), Sweeney and Houdusse
(2010), and Hartman et al. (2011)]. A remarkable number
of experimental methods have been developed to address
various aspects of biological machines. These include, but
are not restricted to, ensemble experiments (stopped flow
and fluorescent labeling) that provide the much needed data
on ATP hydrolysis and adenosine diphosphate (ADP) release
rates, single-molecule experiments that yield dwell time
distributions, processivity, and velocity as a function of
external loads in motors and helicases. In addition, a
combination of ensemble experiments and determination of

FIG. 1. Illustration of the complexity of transportation of
melanosomes, which are vesicles containing melanin. Both
dynein and kinesin-2 compete for the same binding site on
dynactin mediated by p150Glued. Depending on the function (the
aggregation of melanosomes or their dispersion throughout the
cell), one or the other wins. When melanosomes are dispersed in
the cell, they are transported by kinesin-2 and myosin V, whereas
when they aggregate dynein moves the cargo. Adapted from
Soldati and Schliwa, 2006.
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structures using x-ray crystallography and cryogenic electron
microscopy experiments has produced a vivid picture of the
molecular basis of chaperone function. Of particular note are
optical trap experiments, which have been used to obtain
mean motor velocity as a function of a resistive force and
ATP concentration in kinesin, myosin, and dynein, and the
dependence of velocity and processivity in a number of
helicases. No point would be served in reviewing the detailed
results from these experiments, as there are many articles that
the interested reader might consult.
Our focus here is to describe theoretical approaches that are

rooted in a number of areas in physics to understand principal
outcomes of in vitro experiments. The theoretical approaches
in these studies were developed, and continue to be the focus
of current research, to quantitatively explain the experimental
observations, and to shed light on new puzzles that seem to
arise with ever improving advances in experimental tech-
niques. Perhaps, the most detailed view of how biological
machines operate might be obtained from molecular dynamics
simulations. Although atomically detailed molecular dynam-
ics simulations have been performed to get a molecular picture
of certain aspects of the functions of kinesin (Hwang, Lang,
and Karplus, 2008, 2017) and other machines [see, for
example, Ma et al. (2000), Stan, Brooks, and Thirumalai
(2005), and Elber and West (2010)], the current limitations of
such approaches prevent them from making direct contact
with experiments. Improvements in the development of
accurate energy functions (also known as force fields) and
enhancement in computer capacity to enable simulations for
long times will in the future bridge the gap between what is
currently possible and what is needed for a realistic descrip-
tion of molecular machines.
The actions of molecular machines, like all biological

processes, are complicated, involving cooperative dynamics
on multiple timescales. This is illustrated using the typical
timescales involved in a single step of myosin V; see Fig. 2.
In many problems in physics, it is the hope that simple models
capturing the essence of the problem can be created and can be
solved, to obtain insight into highly nontrivial systems. This
strategy is hard to implement for biological machines because

the interaction energies are highly heterogeneous (like in
spin glasses), thus making it hard to construct a reasonable
coarse-graining strategy. Nevertheless, to make progress, one
has to devise tractable coarse-grained models, which can be
either simulated or solved analytically (at least approxi-
mately). The efficacy of such approaches can then be assessed
by direct comparisons with experimental results, and their
abilities to provide insight into the mechanisms of their
functions. Inspired by advances in experiments in the last
decade, several theoretical models have been proposed that
have greatly contributed to our understanding of molecular
machines. These developments have occurred in different
contexts, which belies the underlying unifying principles.
To bring these issues to the fore, we provide our perspectives
on the application of these models, which should be thought of
as coarse-grained network models or their generalizations.
Such models have been created for explaining not only the
motility of motors but also the functions of molecular
chaperones and helicases. We focus on the applications of
these theoretical ideas to account for the functions of these
intrinsically nonequilibrium systems. Collectively, these
approaches show that, by examining in detail the workings
of many machines, universal principles, at both the conceptual
and practical levels, might emerge.
The literature on the functions of biological machines is

vast. Therefore, we restricted ourselves to only a few topics
that focus on theoretical approaches, which are sufficiently
general that they can be applied to an array of problems in the
field. Rather than describe many results in detail, we walk the
reader through a selection of theoretical methods, which is
necessarily biased, so that she or he can access the literature
readily. Before getting to the details of this review, we would
be remiss if we did not point out one prescient monograph
(Howard, 2001) and two forward looking reviews (Jülicher,
Ajdari, and Prost, 1997; Kolomeisky and Fisher, 2007). The
monograph by Howard, written nearly 20 years ago, covers all
aspects of cytoskeletal motors and is a landmark in this field. It
provides conceptual and practical guidelines needed to under-
stand the fundamentals of motor mechanics. Questions of
generality, such as describing the movement of a generic
motor either in isolation or as a collection, were principally
addressed by using the Brownian ratchet model by Jülicher,
Ajdari, and Prost (1997), whereas Kolomeisky and Fisher
(2007) summarized the development and practical applica-
tions of stochastic kinetic models. Here our focus is on the
more recent developments and applications of physical
principles that have started to provide a unified perspective
not only for molecular motors but also for a large of class of
machines with vastly different functions. This new insight has
become possible by expanding the scope of traditional
stochastic chemical kinetics models for motors, helicases,
and molecular chaperones, incorporation of polymer physics
concepts to account for the architecture of motors, and use of
coarse-grained models in simulating the stepping kinetics of
motors and the dynamics of large-scale allosteric transitions.

II. STRUCTURES

The structures of the biological machines that we consider
in our perspective (kinesin, myosin, dynein, the E. coli

FIG. 2. Significant physical timescales associated with myosin
V dynamics. From the coarse-grained polymer theory model of
Hinczewski, Tehver, and Thirumalai (2013).
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GroEL-GroES chaperonin machinery, and helicases) are
shown in Fig. 3. Inspection of the figure shows that there
are considerable variations in the architectures, although
kinesin-1 (or conventional kinesin) and myosin V share some
structural similarities.

A. Molecular motors

Let us first consider the three motors whose structures are
schematically shown in Figs. 3(a)–3(c). Although there are
differences between them, the parts list is roughly the same.
These motors are dimeric. The nucleotide binding sites are in
the two motor heads, which are connected through a mobile
linker (the lever arm in myosin) to a tail domain involved in
dimerization and cargo binding. Changes due to nucleotide
binding and hydrolysis in the motor heads result in conforma-
tional changes in the linker that propel the motor on the
cytoskeletal filaments. For the motors to be processive, which
means they take multiple steps before disengaging from the
track, one head has to be bound till the detached head rebinds
to a site on the track. This involves communication between
the heads and is referred to as gating, the origin of which is
still not fully understood at the molecular level.
Kinesin: There are at least 45 members belonging to the

kinesin superfamily in mouse and human genomes (Hirokawa
et al., 2009). They are all MT-bound motors, which walk
unidirectionally toward the plus end of the MT (for example,
kinesin-1) or to the minus end (Ncd motor). Kinesin-1 takes
precisely 8.2 nm steps, which corresponds to the distance
between two adjacent α=β tubulin dimers, which are the

building blocks of the MT. The size of kinesin-1 is a few
nanometers, whereas the length of the stalk is in the range
30–40 nm. The kinesin-1 velocity depends on the concen-
tration of ATP, saturating at high values. The motor moves
toward the plus end of the MT with maximal velocity of
approximately 800 nm=s (Visscher, Schnitzer, and Block,
1999) and is capable of resisting forces on the order of
7 pN (Visscher, Schnitzer, and Block, 1999; Carter and Cross,
2005) (kBT ¼ 4.1 pN nm, where kB is the Boltzmann constant
and T is the temperature).
Myosin: The number of genes encoding for myosin motors

exceeds 35 (Sellers, 2000). The phylogenetic analysis of
myosin motor domain revealed that the myosin superfamily
is divided into ∼31 classes (Sebe-Pedros et al., 2014).
Functional considerations indicate that there are five types of
motors within the superfamily (Heissler and Sellers, 2016). The
superfamily of the actin-bound myosins are divided into 15
classes (Sellers, 2000; Hartman and Spudich, 2012). With the
exception of myosin VI, all members of this family walk toward
the plus end of actin. The structure of myosin V (Fig. 3) shows
that the motor heads are connected to the lever arms, which are
made up of six IQ motifs. The lever arm alone is an ≈ 23− 27
nm long stiff unit (the persistence length exceeds 100 nm),
whose size is roughly commensurate with half the helical repeat
length of F-actin. The maximal velocity of myosin V, whose
motor head is larger than kinesin-1, is roughly 500 nm=s
(Baker et al., 2004) with a stall force between 2 and 3 pN
(Mehta et al., 1999; Veigel et al., 2002; Uemura et al., 2004;
Kad, Trybus, and Warshaw, 2008).
Dynein: Cytoplasmic dynein, discovered over 50 years ago

(Gibbons and Rowe, 1965) and pictured in Fig. 3(b), walks
somewhat erratically with a broad step-size distribution
(Reck-Peterson et al., 2006; DeWitt et al., 2012) on the
MT toward the minus end. The structural features of dynein
are different when compared with other cytoskeletal motors;
see Fig. 3. First, the motor head belongs to the class of
AAAþ family, which means that dynein must have evolved
from a different lineage compared with myosin and kinesin.
Second, other AAAþ enzymes, such as bacterial chaperonin
GroEL [Fig. 3(d)] and protein degradation machines, are
oligomeric assemblies. In contrast, the hexameric ring that
constitutes the motor domain assembles from a single poly-
peptide chain. Third, the size of the dynein motor head is
significantly larger than that of kinesin and myosin. The
length of the motor head of dynein along its longest axis is
about 25 nm, in contrast to the diameter of kinesin, which is
only about 5 nm. Finally, although there are in principle six
nucleotide binding sites in dynein, hydrolysis in only two
(perhaps three) is relevant for its motility. The velocity of
dynein at 1 mM ATP is roughly 800 nm=s, with a stall force
that is ≈7 pN (Toba et al., 2006; Gennerich et al., 2007).
Chaperonins: The beautiful and unusual structure with

sevenfold symmetry of the E. coli chaperonin machinery,
consisting of a complex between GroEL and GroES, resem-
bles an American football; see Fig. 3(d). The GroEL and
GroES machine helps in the folding of recalcitrant proteins
that do not fold spontaneously. The structure in Fig. 3(d)
[reported by Fei et al. (2014)] is the functional state of this
stochastic machine that is one of the populated states during
the catalytic cycle of GroEL in the presence of misfolded

8 nm 20 nm

35 nm

Kinesin Dynein

Myosin V

(a) (b) (c)

14 nm

23 nm

GroEL-GroES(d)

Helicase

10 nm

(e)

FIG. 3. Schematic representations of the structures of five bio-
logical machines. Molecular motors, like (a) conventional
kinesin, (b) dynein, and (c) myosin V, show great variation in
structure and size. The motor heads in kinesin and myosin V,
shown in dark blue, bind directly to the microtubule and actin,
respectively (not shown), but in dynein the microtubule binding
domain (light blue) is separated from the motor domain
(hexameric ring structures) by nearly 25 nm. Adapted from Vale,
2003a. (d) Structure of the GroEL in the symmetric state [Protein
Data Bank (PDB) code 4PKO (Fei et al., 2014)], which is the
functional state in the presence of misfolded proteins. The blue
and aqua areas represent the sevenfold symmetric GroEL rings.
The red and pink areas correspond to the cochaperonin GroES.
(e) Structure of the DnaB helicase with six subunits assembled as
a ring. The figure was created using the coordinates in the PDB
code 4ESV (Itsathitphaisarn et al., 2012).

Mugnai et al.: Theoretical perspectives on biological machines

Rev. Mod. Phys., Vol. 92, No. 2, April–June 2020 025001-4



substrate proteins (SPs). There are two chambers in which the
SPs could be sequestered. The volume of each of the chambers
in the structure in Fig. 3(e) is about 185 000 Å3, which is
about twice the volume in the relaxed structure in the absence
of nucleotides and GroES, the cochaperonin. The spectacular
change in the chamber volume that occurs during the catalytic
cycle, with accompanying alterations in the chemical nature of
the cavity interior, changing from hydrophobic to polar, is the
mechanism of annealing action for this machine (Todd,
Lorimer, and Thirumalai, 1996).
Helicases: Helicases, which are involved in all aspects of

nucleic acid metabolism (Lohman, 1992; Lohman and
Bjornson, 1996), function by coupling nucleoside triphosphate
(NTP) hydrolysis, to help translocate on single strand nucleic
acids (ssNAs) or unwind dsDNA. Depending on their sequen-
ces, they are classified into six superfamilies (SFs). The
structural diversity of helicases can be appreciated by noticing
that sequences classified under the SF1 and SF2 families are
nonring forming, whereas those in SF3–SF6 form ring struc-
tures. The hexametric structure (Itsathitphaisarn et al., 2012) of
the replicative helices (DnaB) from bacteria, which does belong
to the AAAþ family, is shown in Fig. 3(e). However, unlike
GroEL [see Fig. 3(d)], DnaB has the expected crystallograph-
ically allowed sixfold symmetry. How the NTP chemistry is
coupled to translocation and unwinding remains an outstanding
unsolved theoretical problem.

B. Catalytic cycle

All machines undergo a catalytic cycle, not unlike man-
made motors, in which fuel, usually in the form of ATP, bound
to a nucleotide binding site or sites, is hydrolyzed. These
events trigger conformational changes that produce motion,
which in motors and helicases results in stepping on the polar
tracks or translocation on single-stranded nucleic acids. In
chaperones, the nucleotide chemistry is linked to conforma-
tional changes, which in turn perform work on the protein or
ribozyme to be folded. The link between ATPase cycle and
function is somewhat different in GroEL, which we describe
later. The catalytic cycle for myosin V in the simplest form,
which suffices for our purposes, is reproduced in Fig. 4. There
are five crucial steps; see Fig. 4. In the initial state, ATP binds
to the trailing head (TH), with ADP in the leading head (LH).
The premature release of ADP from the LH is slowed by
rearward tension, which is an example of gating. Upon ATP
binding to the TH, the interaction with F-actin is weakened,
resulting in its detachment from F-actin. During the diffusive
search by the TH for the forward binding site, ATP is
hydrolyzed, producing ADP and the inorganic phosphate
Pi. In this state, the TH binds to F-actin after which Pi is
released from the new LH followed by ADP release from the
TH, and the cycle continues till the processive run ends. Of
course, this simple description is incomplete because the rates
for nucleotide binding vary depending on the nucleotide
concentration. Nevertheless, this simple reaction cycle, whose
main features hold for all myosin motors, is sufficient to
nearly quantitatively characterize many experimental observ-
ables (see the following). The catalytic cycle for kinesin is
similar, except that the interaction between the MTand kinesin
is weakest if the motor head contains ADP. All other

nucleotide states (the no nucleotide apo, ATP-bound state,
the state with ADP and Pi) bind strongly to the MT.

III. BIOLOGICAL MACHINES ARE ACTIVE SYSTEMS

Biological machines are nonequilibrium systems that are
driven by nonconservative forces requiring a constant supply
of energy. Therefore, it is not surprising that the detailed
balance relation and the fluctuation-dissipation theorem (FDT)
are violated (Battle et al., 2016; Gladrow et al., 2016).
Consequently, molecular machines can be thought of as active
systems, and hence a note on diffusive motion is warranted.
Chemical free energy released upon hydrolysis of ATP or GTP
is the driving force for directed motion of molecular motors.
However, if the energy source is not explicitly modeled in the
description of the associated dynamics, molecular motors
could be regarded as self-propelled active particles. To our
knowledge, such an approach has not been pursued to calculate
experimentally measurable quantities, such as the force-veloc-
ity relation or the distribution of run lengths of motors.
The dynamics of active particles is fundamentally different

from passive particles at equilibrium or moving under the
influence of a conservative external field. For example, the
mean drift velocity of a spherical colloidal particle with a drag
coefficient γ, and charge q subject to a constant electric field E
is VD ¼ qE=γ. This relation is readily obtained by balancing
the Stokes force γVD and the force exerted by the field qE.
The diffusion constant is D ¼ kBT=γ, which is the Stokes-
Einstein relation. Hence, the distribution of the particle
position is given by the probability density,

Pðx; tÞ ∼ exp

�
−
ðx − x0 − VDtÞ2

4Dt

�
: ð1Þ

Starting from an initial position x0, the particle moves on
average at velocity VD, and the distribution of positions

FIG. 4. A simple representation of the catalytic cycle of myosin
V describing the stepping of the trailing head toward the plus end
of actin, which is the dominant pathway in the absence of
resisting force. The main text describes the details. As described
later in this perspective, there are four other pathways that have to
be accounted for to produce a quantitative theory of the stepping
kinetics of this motor. From Vale, 2003b.
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spreads with time as hðδxÞ2i ¼ 2ðkBT=γÞt. Of particular note
is that D is defined independently of the particle velocity VD
so that the magnitude ofD is not altered by increasing the field
strength. Conversely, the velocity of the particle does not
depend on the ambient temperature T, assuming that the
viscosity is a constant. Thus, VD and D are mutually
independent of one another.
In stark contrast, for an active particle whose motion is

powered by the internal fuel, the diffusivity is no longer
independent from the driving velocity. The effective diffusion
constant Deff , defined as limt→∞hðδxÞ2i=2t, depends on
a set of nonthermal parameters and violates the FDT
(Tailleur and Cates, 2008; Liu et al., 2011). For transport
motors exhibiting one-dimensional movement along the
cytoskeletal filament, both V ¼ limt→∞ dhxðtÞi=dt and
D ¼ ð1=2Þ limt→∞ dhδxðtÞ2i=dt can be measured directly
using a given time trace of a motor, which can be obtained
using single-molecule optical tweezer experiments. Indeed,
such measurements on kinesin-1 (Visscher, Schnitzer, and
Block, 1999) were used to obtain the velocity V and diffusion
coefficient D from the global analysis of the stepping
trajectories. These values were used (Visscher, Schnitzer,
and Block, 1999) to estimate the randomness parameter
r ¼ 2D=d0V, where d0 ð≈ 8.2 nmÞ is the step size of kine-
sin-1. When the diffusion constant D is calculated from the
randomness parameter with the knowledge of V and d0, andD
is compared with V measured under the same conditions, it
can be shown that D increases monotonically with V (Hwang
and Hyeon, 2017), in contrast to passive diffusion. This result
is a consequence of the enzyme catalytic turnover (Hwang and
Hyeon, 2017). As already discussed, the effective diffusivity
D for kinesin-1, which is an active particle whose dynamics is
fueled by ATP-hydrolysis free energy, does not obey the FDT.
This illustration shows that these energy-consuming enzymes
operate out of equilibrium.

IV. STOCHASTIC KINETIC MODELS

In this section, we discuss the development of stochastic
kinetic models (SKMs) as a means of describing the function
of different types of molecular machines. As stated previously
and shown explicitly in Fig. 4 for myosin V, all molecular
machines go through cycles during which they hydrolyze
ATP (or GTP) and perform some function. Bulk kinetics,
single-molecule experiments, and structural studies have
shown that the intermediates explored by the molecular
machines during the cycle have distinguishable structural or
kinetic features, and they have provided the rate for going
from one state to the next. The temporal resolution in these
studies is on the order of milliseconds [although new
techniques enable the exploration of timescales as fast as
≈55 μs (Isojima et al., 2016)]. It follows that the dynamics of
the molecular machine can be described as a discrete-state (the
distinguishable intermediates should be experimentally
observed), continuous-time Markov model, a framework that
falls under the rubric of the “master equation.” In this model,
the cycle of a molecular machine is reduced to a network of
states connected by edges that identify the available transitions
between the intermediates. Thus, by solving the dynamics

associated with an appropriate network, it is possible, in
principle, to account for experimental observables in terms of
the underlying network parameters.
SKMs have a number of appealing features: (i) they have a

direct connection with the biochemistry associated with the
molecular machines, (ii) the rates that constitute the model are
measurable, (iii) it is sometimes possible to find an analytical
solution, (iv) more complex networks may be solved numeri-
cally, and, finally, (v) SKMs can be directly related to
thermodynamics, which makes the model instructive and
appeals to the interests and intuition of a vast scientific
community.
Nevertheless, SKMs also have some shortcomings: first and

foremost, they often have a large number of parameters. For
instance, a simple model for a molecular machine performing
mechanical work against a fixed load and described by a
single-cycle network with N intermediate states has 4N − 2
independent parameters, which have to be determined by
fitting to appropriate experiments. However, typically the
number of observables are very few, making matching the
predictions of the SKM to experiments difficult. Furthermore,
it is often difficult to interpret the physical meaning of the
extracted parameters in terms of the underlying motor
architecture and the underlying biochemical cycle. As a
consequence, it is necessary to strike a balance between the
“minimality” of a model, which reduces the risk of overfitting
and increases the generality of SKMs and the predictive
power, and the “comprehensiveness” of the network consid-
ered. This comes at some risk; for instance, one may be
tempted to neglect certain transitions that are “fast” compared
to others, and therefore are not expected to contribute to the
overall phenomenology of the machine. In addition, it may
seem reasonable to ignore off-pathway, slow, and rare tran-
sitions. On the other hand, to understand the function of
molecular machines, experimentalists often probe their
response to changes in the environment (for instance, modi-
fying the ATP concentration) or by applying mechanical
perturbations and studying the response of the motor. As
the environment or perturbations change, the nature of the
“rate-limiting” step as well as the likelihood of alternative
stepping pathways might change. Therefore, a simplified
description that ignores certain intermediate states might only
work for a limited set of experimental conditions, thereby
reducing the number of measurements that can be used to train
the parameters or to falsify the predictions. Finally, we note
that the determination of an appropriate catalytic cycle is
predicated on a few experimental observables only, and it may
not be complete enough for all of the states that a machine
might sample during its function.
Another issue with SKMs is that structural information is

incorporated into the model only in an approximate way,
normally by introducing a parameter that allows the rate
to depend on the load applied according to the Bell model
(Bell, 1978). This reduces the capability of the model to
incorporate the wealth of experimental structural information
and decreases the predictive power of the proposed paradigm.
However, in some cases, a tractable analytical theory that
incorporates lever-arm structural information into a kinetic
model is possible (Hinczewski, Tehver, and Thirumalai,
2013), as discussed in more detail later. Despite these
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limitations, the framework underlying SKMs not only pro-
vides a convenient way to analyze experiments but also
has been used to address conceptual questions related to
the efficiency of biological machines. For these reasons, the
theory underlying SKMs is an integral part of describing the
function of molecular motors.

A. The master equation

We assume that the system is described by N distinguish-
able intermediate states. The probability of being in state i at
time t is given by piðtÞ, and the time evolution of this
probability is governed by the master equation

dpiðtÞ
dt

¼
X
j

pjðtÞwji −
X
j

piðtÞwij; ð2Þ

where wij ≥ 0 is the rate for the transition i → j, subject to the
constraint

P
i piðtÞ ¼ 1. Because of microscopic reversibility,

if wij ≠ 0, then wji ≠ 0. As t → ∞, the probabilities piðtÞ
become independent of time. This stationary solution of the
master equation describes an equilibrium system peq

i if
detailed balance holds, that is, if across all of the edges of
the network the net flux is zero: peq

i wij − peq
j wji ¼ ΔJij ¼ 0.

However, dpi=dt ¼ 0 is also satisfied by the less stringent
relation

P
jðpss

i wij − pss
j wjiÞ ¼

P
j ΔJij ¼ 0. Under these

conditions, the system could be in a nonequilibrium steady
state (NESS). An isolated system is expected to reach an
equilibrium state, whereas coupling with an external energy
source enables the creation and persistence of a NESS.
From a mathematical standpoint, given a kinetic network

described by the master equation, the stationary probabilities
pss
i or peq

i can be obtained using graph-theoretical arguments.
The details may be found in Hill (1966, 2005) and Hill and
Chen (1975). Briefly, one may construct the set of partial
diagrams such that all the states are visited but no cycles are
formed; see Fig. 5(b). The stationary probability of being in
state i is proportional to the sum of all of the partial graphs
oriented in such a way that the fluxes converge toward state i
or σi. The normalization factor is Σ ¼ P

i σi, so the stationary
probability is

pss
i ¼ σi

Σ
: ð3Þ

The stationary flux along one edge may be written as a sum
of contributions from all of the cycle fluxes of the system.
Each cycle can be completed in two directions: one, counter-
clockwise, labeled as þ, and the other, clockwise, termed −.
The cycle fluxes in the þ and − directions are given by the
following relationships (Hill, 2005):

Jν� ¼ ΣνΠν�

Σ
; ð4Þ

where Σν is a combination of rates that are specific for cycle ν,
Πν� is the product of the rates of the cycle performed in the
þ Πνþ or − Πν− direction, and the denominator Σ was defined
previously; see Fig. 5(c). It follows that

Jνþ

Jν−
¼ Πνþ

Πν−
¼ eβAν ; ð5Þ

where Aν or βAν has been termed the action functional
(Lebowitz and Spohn, 1999) or affinity (Schnakenberg,
1976) of the cycle ν. Note that the net direction of completion
of cycle ν is given by the sign of ΔJν ¼ Jνþ − Jν− . It is easy to
show that (Hill and Simmons, 1976)

ΔJνAν ≥ 0: ð6Þ

This equality holds only when Jν;þ ¼ Jν;−. In other words,
ΔJν and Aν have the same sign, which means that the value of
the affinity dictates the direction of the cycle (Hill and
Simmons, 1976).
To identify the physical interpretation of these mathemati-

cal identities, we need to connect the rates with thermody-
namic quantities, such as energy, entropy, and the chemical
potential. Following three different approaches, we show
that the affinity [Eq. (5)] is related to the entropy produced
during a cycle. The first two strategies involve the Shannon
entropy (Schnakenberg, 1976; Liepelt and Lipowsky, 2007b;
Lipowsky and Liepelt, 2008) and fluctuation theorems
(Crooks, 1998; Seifert, 2005a, 2005b, 2012), and they will
be discussed without specifically referring to the experimental
hallmarks for motor velocity described in the previous
sections. The last method, which is based on establishing a
connection between pseudo-first-order rate constants and the
chemical potential (Hill, 2005), will be developed in the
context of molecular motors.

B. Thermodynamics

Molecular machines are enzymes (E) that catalyze the
chemical transformation of substrate molecules (S → P),

1

2

3 4

5

6(a)

(b) (c)

FIG. 5. Example of a kinetic network. (a) The network has six
states and seven edges. (b) The partial graphs oriented to extract
the stationary probability of state 1. (c) There are three cycle
fluxes, F (upper three panels), B (bottom three panels), and D
(central panel). From the figure, we extract the values of Σν in
Eq. (4) for the three cycles. These are given by the product of
the rates flowing toward the cycle [see Hill (2005) for details]:
ΣF ¼ w32w45 þ w43w32 þ w34w45, ΣB ¼ w12w65 þ w61w12þ
w16w65, and ΣD ¼ 1.
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which in general can be described by the Michaelis-Menten
kinetics Eþ S ⇌ ES → Eþ P. Of course, the process is
reversible, and the enzyme also catalyzes the reverse reaction,
the transformation of P into S. In the case of molecular
machines, the substrate is ATP, and the products of ATP
hydrolysis are ADP and orthophosphate (Pi). (Some molecu-
lar machines catalyze the hydrolysis of GTP; mutatis muta-
ndis, our considerations do not change.)
We imagine the following experimental setup: a molecular

machine operates in a solution containing ATP, ADP, and Pi.
The chemical potentials of these three species are given by
(Hill, 2005)

μATP ¼ μ0ATP þ kBT ln ½ATP�;
μADP ¼ μ0ADP þ kBT ln ½ADP�;
μPi ¼ μ0Pi þ kBT ln ½Pi�;
X ¼ −Δμhyd ¼ μATP − μADP − μPi

¼ kBT ln
Keq½ATP�
½ADP�½Pi�

; ð7Þ

where μc (μ0c) is the standard chemical potential of species c,
[c] is the concentration in solution, and Keq ≈ 4.9 × 105 M
(Howard, 2001) is the equilibrium constant for ATP hydroly-
sis. [Note that we should use activities ac in Eq. (7) instead of
concentrations [c]; throughout the review, we assume that
ac ≈ ½c�.] At equilibrium, ð½ADP�½Pi�=½ATP�Þeq ¼ Keq, and
Δμhyd ¼ 0. On the other hand, if ½ATP�Keq ≫ ½ADP�½Pi�,
then Δμhyd < 0, and the hydrolysis of ATP is a spontaneous
reaction. We exclude uncatalyzed hydrolysis or synthesis of
ATP, as it occurs over timescales beyond our interest (Hulett,
1970); as a consequence, in the absence of molecular
machines, the concentrations [ATP], [ADP], and [Pi] are
constant. The presence of the molecular machine does not
alter the equilibrium features of ATP hydrolysis (namely,
Keq); however, it accelerates the rate of ATP synthesis or
hydrolysis. Let the initial concentrations of ATP, ADP, and Pi
make ATP hydrolysis a spontaneous reaction. After each
catalytic cycle, the enzyme attains the same conformation that
it had at the start. However, the solution conditions have
changed as a substrate (ATP) has been consumed and products
(ADP and Pi) have been created. Thus, in the presence of the
molecular machine, the solution approaches the equilibrium
ratio of concentrations of ATP, ADP, and Pi, and monitoring
the dynamics under these conditions corresponds to studying
the time-dependent relaxation toward equilibrium. At equi-
librium, the rate of hydrolyzing and synthesizing ATP is
the same.
However, this is not what happens in a cell, where the

concentration of ATP is maintained under homeostatic control
(Wang et al., 2017) far from equilibrium; typical concen-
trations are ½ATP� ≈ 1 mM, ½ADP� ≈ 10 μM, and ½Pi� ≈
1 mM (Howard, 2001), resulting in a chemical potential X ¼
−Δμhyd of ≈ 25kBT (Howard, 2001), which makes ATP
hydrolysis a spontaneous reaction (Δμhyd < 0). This means
that the enzymatic cycle of the molecular machine will be
driven in the direction that consumes ATP, and ATP hydrolysis
provides the driving force that enables the molecular machine

to perform work. Without accounting explicitly for the whole
cellular apparatus involved in dictating and maintaining the
set-point ATP level, in the simplest theoretical model the
system is assumed to be in contact with some devices referred
to as chemostats capable of maintaining the initial concen-
trations of ATP, ADP, and Pi (Qian and Beard, 2005;
Lipowsky and Liepelt, 2008; Lipowsky, Liepelt, and
Valleriani, 2009; Seifert, 2011b). After each cycle, the
chemostat removes the products from solution and replenishes
the substrates, thereby ensuring that after each enzymatic
cycle the initial condition is reset, which enables the creation
of a NESS for t → ∞.
The system is also in contact with a thermal reservoir with

which it exchanges heat (Lipowsky and Liepelt, 2008;
Lipowsky, Liepelt, and Valleriani, 2009; Seifert, 2011b).
We assume that the thermal reservoir operates “quasistati-
cally” on the timescale of the heat exchange, and the
combination of the system and the thermal reservoir is
energetically isolated. Since after a cycle the motor has not
changed, the total entropy produced is equal to the ratio
between the heat absorbed by the thermal reservoir Q and the
constant temperature T. We exclude pV work from our
formulation, but we include the possibility that the molecular
machine performs work against a fixed load so that for a
forward (backward) step Wmech ¼ fd0 (Wmech ¼ −fd0),
where the choice of sign implies that a positive force opposes
forward movement. Note that the load f is assumed to be
clamped, so at every step, regardless of the position of the
motor, the cycle is repeated under identical conditions.
The energy X ¼ −Δμhyd > 0 consumed during a cycle is

partitioned into work performed by the motor Wmech and heat
released Q; that is,

Δμhyd þQþWmech ¼ 0; ð8Þ

implying that the total change of entropy of the system plus
environment over one cycle is given by

ΔS ¼ Q
T
¼ −Δμhyd − fd0

T
≥ 0: ð9Þ

(For backward steps, the sign in front of fd0 is the opposite.)
The inequality is due to the second law of thermodynamics,
which states that we should find an increase in entropy during
the cycle because the combination of system and environment
is isolated. Equation (9) leads us to the observation that the
maximum amount of force that the motor can resist is given by

fmax ¼
−Δμhyd

d0
: ð10Þ

Many have discussed variations of this thermodynamic
framework. In particular, Seifert (2011b) elucidated the
contribution of the thermodynamic contribution of chemo-
stats; Qian and Beard (2005) discussed a network of reactions
in which some metabolites are clamped, while others are
introduced at a constant rate.
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C. Rate of entropy production

Let the entropy of the motor be (Lipowsky and Liepelt,
2008)

Sm ¼ −kB
X
i

pi lnpi; ð11Þ

where the sum extends over all of the available conformations
of the system. Let us take a time derivative of Sm, and after
imposing the conservation of probability (

P
i dpi=dt ¼ 0)

condition and plugging in the master equation, we get

dSm
dt

¼ kB
X
i

X
j

ðpiwij − pjwjiÞ lnpi: ð12Þ

Note that, in a NESS,
P

jðpiwij − pjwjiÞ ¼
P

j Jij ¼ 0, and
as a consequence dSm=dt ¼ 0, as expected. We first symme-
trize the result with respect to the indices i and j, then add and
subtract ð1=2ÞkB

P
i

P
jðpiwij − pjwjiÞ lnðwij=wjiÞ, which

leads to (Schnakenberg, 1976; Lipowsky and Liepelt, 2008)

dSm
dt

¼ kB
1

2

X
i

X
j

Jij ln
piwij

pjwji
− kB

1

2

X
i

X
j

Jij ln
wij

wji
:

ð13Þ

The first of the two terms on the rhs of Eq. (13) is always non-
negative, and it has been identified as the rate of entropy
production dS=dt (Schnakenberg, 1976; Lipowsky and
Liepelt, 2008). We note parenthetically that some (Hill and
Simmons, 1976) do not include the factor 1=2, as they
interpret the summation to be carried out over the edges of
the network and not over the states. Since in a NESS
dSm=dt ¼ 0, it follows that the second term of the rhs of
Eq. (13) is the rate of entropy outflux, and

dS
dt

¼ kB
1

2

X
i

X
j

Jij ln
piwij

pjwji

¼ kB
1

2

X
i

X
j

Jij ln
wij

wji
≥ 0: ð14Þ

Consider now a cyclic network of N states; the only
transitions allowed from state i are i ⇌ iþ 1 and
i ⇌ i − 1. (The cyclic nature of the network implies
periodic boundary conditions, so i ¼ 0 and i ¼ N are the
same states). In a NESS, the condition

P
j Jij ¼ 0 becomes

ΔJi;iþ1 ¼ ΔJi−1;i, so the net flux across all of the edges is the
same and is equal to the net cycle flux ΔJ ¼ Jþ − J−. It
follows that

dS
dt

¼ kBΔJ ln
YN−1

i¼0

wi;iþ1

wiþ1;i
¼ ΔJA

T
; ð15Þ

where wi;iþ1 and wiþ1;i are the forward and backward rates,
respectively. The term

A ¼ kBT ln
YN−1

i¼0

wi;iþ1

wiþ1;i

is the affinity; see Eq. (5), which Hill refers to as a
thermodynamic force driving the system out of equilibrium
and imposing a NESS (Hill, 2005). Liepelt and Lipowsky
(2007b) identified the thermodynamic force with the entropy
production; if the rate for completing the cycle in the direction
d is Jd, one can integrate over a time 1=Jd the rate of entropy
production and identify the entropy ΔSd produced during one
cycle in the d direction as

TΔSþ ¼ kBT ln
YN−1

i¼0

wi;iþ1

wiþ1;i
¼ −TΔS−; ð16Þ

and, therefore, from Eq. (17) we get

dS
dt

¼ ΔJΔSþ: ð17Þ

The argument can be extended to the case in which the kinetic
network is characterized by multiple cycles (Liepelt and
Lipowsky, 2007b; Lipowsky and Liepelt, 2008). If ΔJ−1ν is
the average time for completing a cycle ν and ΔSν is the
entropy produced with that cycle, we can write

dS
dt

¼
X
ν

JνΔSν ≥ 0: ð18Þ

Equation (6) indicates that each term in the summation is non-
negative (Hill and Simmons, 1976).
To summarize, in this section we showed how the action

functional (or affinity) can be identified with the entropy
produced. We now present a different argument based upon
fluctuation theorems leading to the same conclusions.

D. Fluctuation theorems

Let the probability density of taking a forward path of n
steps be PFði0; t0; i1; t1;…; in; τÞ, in which the system is in
state i0 at t0, transitions to state i1 at t1, etc., until it reaches
state in at time τ; see Fig. 6(a). We use the subscript F to
indicate that the transitions are completed forward in time.
Using the Markov property, we can rewrite this joint prob-
ability as (Crooks, 1998)

PFði0; t0; i1; t1;…; in; τÞ
¼ pi0ðt0ÞPði1; t1ji0; t0Þ � � �Pðin; τjin−1; tn−1Þ: ð19Þ

Assuming that the system is in a steady state at t ¼ t0, we
replace pi0 ¼ pss

i0
. The conditional probabilities are given by

Pðj; tjji; tiÞ ¼ wije−Wiðtj−tiÞ, where Wi ¼
P

j wij. The condi-
tional probability Pðj; tjji; tiÞ is the product of two proba-
bilities. The first is wij=Wi, the probability of making a
transition to state j among all of the other possibilities when
starting in state i. The second is Wie−Wiðtj−tiÞ, the probability
that this transition happens after time tj − ti. The reason for
the Wi in the exponent is that the mean waiting time to
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transition from state i to any other state isW−1
i , independent of

state j. This independence is a well-known property of escape
times in Markov networks, which may be computed through
well-known methods (Van Kampen, 2007). Therefore, the
joint probability density becomes (Seifert, 2012)

PFði0; t0; i1; t1;…; in; τÞ

¼ N −1pss
i0

Yn−1
α¼0

wiα;iαþ1
e−Wiα ðtαþ1−tαÞ; ð20Þ

where tn ¼ τ and N ðt0; τÞ is a normalization factor to ensure
that

P
i0;i1;…;in

R
τ
t0
dt1

R
τ
t1
dt2 � � �

R
τ
tn−1

dtnPF ¼ 1. The probabil-
ity of completing the time-reversed path [Fig. 6(b)] is

PBðin; τ̃; in−1; t̃n−1;…; i0; t̃0Þ

¼ Ñ −1pss
in

YN−1

α¼0

wiαþ1;iαe
−Wiα ðt̃α−t̃αþ1Þ; ð21Þ

in which we start in state in at time t̃n ¼ τ − tn and retrace
the forward path until we reach state i0 at time t̃0 ¼ τ − t0.
Note that the initial probability is now pss

in
and, because each

path could be performed forward or backward in time, the
normalization factor N ¼ Ñ . Following Seifert (2005b), we
define R as the logarithm of the ratio between the probability
for forward and backward paths, and for simplicity we
consider only cyclical pathways in which i0 ¼ in. Therefore,

R ¼ ln
PF

PB
¼ ln

Yn−1
α¼0

wiα;iαþ1

wiαþ1;iα

: ð22Þ

Note that the time-dependent terms in the joint probabilities
cancel out, so we neglect them in the following. (As an
alternative, we may consider the time at which these jumps
occur to be fixed.) Here R has a structure analogous to that of
the affinities introduced in the previous sections. More
precisely, given a set of states visited we can rewrite as

R ¼
X
ν

nνβAν; ð23Þ

where nν is the net number of times the cycle ν has been
completed during the n-step path associated with R. To justify
this expression, note that every time a cycle is not completed

during the path, the path retraces itself, and those branchlike
excursions do not contribute to R. If we average over all paths
that complete a cycle of length n, we find the following
sequence of identities (Seifert, 2005b):

he−Ri ¼
X
paths

PFe−R ¼
X
paths

PB ¼ 1: ð24Þ

Using Jensen’s inequality he−Ri ≥ e−hRi leads to

hRi ≥ 0: ð25Þ

From Eq. (23), we obtain

hRi ¼
X
ν

hnνiβAν ≥ 0: ð26Þ

We now introduce an Arrhenius-type relationship between
the rates wij=wji ¼ e−βΔFij , where ΔFij ¼ Fj − Fi is the free-
energy difference between state i and state j. The free-energy
difference accounts for three contributions: (i) the intrinsic
free energy of a state may change; (ii) the motor may bind or
release ATP, ADP, and Pi; and (iii) the motor may perform
work against an external load. After a cycle, the motor returns
to the initial state, and as a consequence the intrinsic free
energy does not carry any contribution to the cycle. The
hydrolysis of ATP contributed with the release of energy is
equal to −Δμhyd, and the work performed per each displace-
ment of size d0 against a load f is equal to −fd0. It follows
that (Lipowsky and Liepelt, 2008)

Y
ji;ji∈ν

kij
kji

¼ e−nν;ATPβΔμh−βflν ¼ eΔSν=kB ; ð27Þ

where, following the notation of Lipowsky and Liepelt (2008),
ji; ji corresponds to a directed edge from state i to j and the
sum is extended over all of the directed edges belonging to
cycle ν. Here nν;ATP is the net number of ATP hydrolyzed
during cycle ν, and lν is the net displacement along the track, a
multiple of d0. The last identity follows from Eq. (9) and from
Eq. (26) gives

kBhRi ¼
X
ν

hnνiΔSν ≥ 0: ð28Þ

V. MOLECULAR MOTORS: MODELS WITHOUT
DETACHMENT

In this section, we develop models of molecular motors
with increasing complexity, from one-state models to uni-
cyclic models, ending with multicycle kinetic networks. We
show that experimental evidence and thermodynamic insights
suggest that the introduction of multiple cycles creates models
that are physically more sensible. We discuss in more detail
the efficiency of the motors, and we conclude the section by
describing models that account for the detachment of the
molecular motor from the track.

t̃0 t̃1 t̃3

0

1

3

2

t̃2t0 t1 t2 t3

0

1

3

2

(a) (b)

i

i

i

i

i

i

i

i

FIG. 6. Path in state space executed (a) forward and (b)
backward in time. The starting point is the dot, waiting times
at a fixed state are in black, and transitions are in blue.
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A. Molecular motors are processive enzymes

The catalytic cycle of kinesin, dynein, and myosin proceeds
via multiple steps, in which ATP binding, hydrolysis, and
release of ADP and Pi lead to substantial changes in the motor
conformation. The presence of the cytoskeletal filament (CF)
(F-actin in the case of myosin, microtubules for dynein and
kinesin) increases the rate of ATP hydrolysis (Hackney, 1988;
De la Cruz et al., 1999; De la Cruz, Ostap, and Sweeney,
2001; Homma and Ikebe, 2005; Ori-McKenney et al., 2010).
When the structural changes are properly rectified under the
specially designed interactions with the appropriate CFs, the
conformational fluctuations in the molecular motor are trans-
duced to a predominantly unidirectional motion along the
track and generate mechanical forces against an external load.
The free-energy source necessary to perform this movement or
work is provided by the hydrolysis of ATP.
Enzymes that work in conjunction with substrates (as is the

case for molecular motors and CFs) are said to be processive if
they perform multiple catalytic cycles without fully disen-
gaging from the CFs (Schnitzer and Block, 1995). Processive
motors move long distances along the CFs by hydrolyzing one
ATP molecule per step without dissociating from the CF. In
general, although with some exceptions (Inoue et al., 2002;
Post et al., 2002), processive movement requires the co-
operation of multiple enzymes: some members of the ensem-
ble proceed forward, while the others hold tight onto the CF.
From here on, we focus our discussion exclusively on dimeric
processive motors made of two identical enzymes of the same
family, which we refer to as heads. With this, we may identify
the LH as the one that is in front of the dimeric complex,
while the other is the TH. We reserve the word motor for the
motile construct, which is a dimer in the case of myosin V
(Mehta et al., 1999), VI (Rock et al., 2001), and X (Sun et al.,
2010), conventional kinesin (kinesin-1) (Howard, Hudspeth,
and Vale, 1989), and cytoplasmic dynein (Reck-Peterson
et al., 2006).
In the well-accepted hand-over-hand stepping mechanism

(Yildiz et al., 2003; Ökten et al., 2004; Yildiz, Park et al.,
2004; Yildiz, Tomishige et al., 2004; Toba et al., 2006; Sun
et al., 2010), the TH of the motor detaches from the
filament, overcomes the bound head, and advances the
motor by reaching a forward target binding site (TBS).
After the step is completed, the role of the two heads is
reversed, and the process is repeated identically until the
motor detaches from the CF. A few key ingredients are
necessary for processive, hand-over-hand movement to occur.
First, to prevent a premature end of the processive run, the
head that remains bound to the track during a step should not
dissociate from the CF at least until the detached head reaches
the TBS. Second, the two heads should go through their
catalytic cycles out of phase (Block, 2007) so that the TH is
more likely to detach from the CF than the LH. This
requirement necessarily implies that the two heads ought to
communicate with one another through action at a distance,
which may be viewed as a complex form of allostery
(Thirumalai et al., 2019). Third, during a step, a combination
of conformational transitions in the two heads biases the
diffusive motion of the free head toward the TBS unless a
large resistive force is applied.

Meeting the first two conditions requires specific features
of the hydrolytic cycles that the two heads must undergo.
For instance, if the rate-limiting step occurs in a CF-bound
conformation, the chances of prematurely ending the proc-
essive run are diminished. In addition, the interaction between
the two heads is believed to be key in ensuring that the TH
steps first, and that the LH is unlikely to detach during a step.
This is possible if the interplay between the two heads slows
down (or “gates”) some of the steps of the LH catalytic cycle,
or accelerates them in the trailing head (also referred to
as gating) (Block, 2007; Sweeney and Houdusse, 2010;
Hancock, 2016). The structural bias toward the TBS is
provided by a conformational transition of the CF-bound
motor that projects the stepping head forward. For the three
classes of motors mentioned previously, the lever-arm swing
in myosin, the neck-linker docking in kinesin, and the bent →
straight transition of the linker domain in dynein provide the
requisite forward bias. Recently, there have been both theo-
retical (Mugnai et al., 2020) and computational studies
(Goldtzvik, Mugnai, and Thirumalai, 2018; Wang et al.,
2018) that have focused on the gating mechanism, which
could depend on both ATP and the hydrolysis product ADP.
Despite considerable work, a full understanding of how gating
occurs in motors has not been quantitatively elucidated. It is
remarkable that these structural transitions, induced by ATP
binding and hydrolysis, which occur on relatively small
length scales, are amplified by responses in other structural
elements. The terms power stroke (Dominguez et al., 1998)
and Brownian ratchet (Rice et al., 1999) have been used to
schematize this forward bias, depending on whether the
emphasis is placed on the mechanistic (order → order) or
stochastic (disorder → order) nature of the conformational
transitions.
In the simplest cases, the step size of a motor is commen-

surate with the filament repeat: for motors moving along the
MT, d0 ≈ 8.2 nm, whereas d0 ≈ 36 nm for actin-based motors
(myosins). However, not all motors walk precisely by follow-
ing this rule: myosin VI and dynein, for instance, display a
broad step-size distribution, in which hand-over-hand steps
are intertwined with inchwormlike movements and frequent
backward steps (Reck-Peterson et al., 2006; Nishikawa et al.,
2010). Of course, the variability in the step sizes is also a
consequence of the architecture of the motor. Thus, both the
structural design of the motor and the coupling to catalytic
cycles determine not only the stepping kinetics but also the
precision of the step sizes.

B. Processive motor velocity

A variety of single-molecule techniques are able to inform
us about the motile properties of molecular motors. The motor
or the track may be labeled with a fluorescent (Yildiz et al.,
2003; Nishikawa et al., 2010) or refractive (Mickolajczyk
et al., 2015; Isojima et al., 2016) probe. Monitoring the time-
dependent changes in the location of such probes enables the
determination of the velocity of the motor as a function of
nucleotide concentration. Alternatively, optical trapping tech-
niques may be used to follow the displacement of the motor or
the filament, and to investigate the motor response to the
external load (Howard, Hudspeth, and Vale, 1989; Block,
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Goldstein, and Schnapp, 1990; Finer, Simmons, and Spudich,
1994). Much of our current knowledge about kinesin comes
from single-molecule experiments (Howard, Hudspeth, and
Vale, 1989; Block, Goldstein, and Schnapp, 1990), which
were developed approximately at the time of the discovery of
kinesin (Brady, 1985; Vale, Reese, and Sheetz, 1985). It has
been shown that each step of kinesin motors along MTs is
tightly coupled with hydrolysis of one ATP molecule, that is, a
single event of ATP hydrolysis by kinesin leads to an ∼8 nm
step along MTs (Schnitzer and Block, 1997). Thus, within the
Michaelis-Menten (MM) scheme, the velocity of kinesin
associated with enzyme turnover rate is

V ¼ d0
kcat½ATP�

KM þ ½ATP� ; ð29Þ

where d0 ¼ 8 nm is the step size of the kinesin, and kcat and
KM are the rate of catalysis and the Michaelis constant,
respectively. For kinesin-1, the typical experimental value for
the Michaelis constant is KM ≳ 50 μM, and for ½ATP�≳
1 mM the velocity of kinesin is saturated to its maximum
value Vmax ¼ d0kcat ≈ 8 nm=10 ms ¼ 0.8 μm=s (Visscher,
Schnitzer, and Block, 1999; Kolomeisky and Fisher, 2007).
Similar single-molecule studies have been conducted on other
motors, showing that the Michealis-Menten scheme provides
a good paradigm to rationalize the ATP concentration
dependence of velocity. However, the parameters of the fit
depend on the motor: for myosin V, it was found that
Vmax ≈ 0.55 μm=s, with KM ≈ 163 μM (Baker et al., 2004),
whereas the slower myosin VI has Vmax ≈ 0.16 μm=s and
KM ≈ 274 μM resulting from the fit of Eq. (29) to data from
Elting et al. (2011).
Experiments employing optical tweezers have shown that

external loads affect the ATP chemistry in the catalytic site as
well as the motility of the motor (Visscher, Schnitzer, and
Block, 1999; Block et al., 2003; Veigel et al., 2005; Oguchi et
al., 2008). Thus, the resulting force-velocity-ATP relationship
has been a landmark measurement that used as a constraint
to decipher the mechanism underlying kinesin motility, and
to construct the appropriate SKMs. Incorporation of the effect
of load into the MM model was suggested by making the
parameters kcat and KM force dependent (Schnitzer, Visscher,
and Block, 2000),

VðF; ½ATP�Þ ¼ d0kcatðFÞ½ATP�
kcatðFÞ=kbðFÞ þ ½ATP� ; ð30Þ

where kcatðFÞ ¼ kocat=½pcat þ ð1 − pcatÞeFδcat=kBT � and kbðFÞ ¼
kob=½pb þ ð1 − pbÞeFδb=kBT �. The fit of the F-dependent
velocity data of motor using Eq. (30) is reasonable as long
as the magnitude of load F is small (Schnitzer, Visscher, and
Block, 2000). However, the conventional MM model has an
intrinsic drawback when the external load approaches the stall
force value (≈7 pN for kinesin) and becomes greater than the
stall force. An increase of load ought to induce backward
stepping (V < 0); yet no modification of Eq. (29) produces a
negative velocity. One possible fix for the failure of the MM
model at large load is to permit in the model a reverse reaction
current, which is realized by rendering every elementary

reaction step within the kinesin cycle “reversible.”We discuss
later how such models have been constructed in the context of
Markov jump processes.

C. Periodic lattice model

In a molecular motor, (i) binding, release, and chemical
transformations of ATP, ADP, and Pi from the motor head
domain, and (ii) the advancement along the track occur over
much slower times (millisecond to second) compared to the
fluctuations of molecular conformations (nanosecond to
microsecond). The timescale separation enables the construc-
tion of a Markov jump process in which the state of the system
is defined by two coordinates: (i) one of the N intermediates
defining the chemical state of the substrate, and (ii) the location
l along the track. The probability density of the ith state
(i ¼ 1; 2;…; N) at the filament site l obeys the master equation

dPiðl; tÞ
dt

¼
Xlþ1

l0¼l−1

X
j

½wj;l→i;l0Pjðl0; tÞ − wi;l→j;l0Piðl; tÞ�; ð31Þ

where
P

l

P
i Piðl; tÞ ¼ 1 and wj;l→i;l0 is the rate for going

from state j in location l to state i on CF site l0 ¼ l; l� 1.
Under the assumption that the track is infinite and periodic, that
is, that the rates do not depend on l, and one may sum the rhs
and the lhs of the master equation and eliminate l. As a result,
we obtain the master equation in Eq. (2), and we can use the
theoretical framework presented before.
Periodic one-dimensional models, which were originally

suggested by Derrida (1983) to study the mean velocity and
diffusion constant of random systems, have been widely
adopted in describing the dynamics of molecular motors.
In particular, Fisher and Kolomeisky (Fisher and Kolomeisky,
1999a, 2001; Kolomeisky and Fisher, 2007) pioneered this
approach and specifically used the reversible kinetic model to
describe the motility of kinesin-1 and myosin V. Numerous
other studies have used variants of these models to discuss
the thermodynamic features of stochastic motors. We review
the main successes and shortcomings of these models in the
context of molecular motors as their complexity is increased.

1. One-state models

In the simplest possiblemodel, themotor is defined by a single
(N ¼ 1) chemical state at each site along the track [Fig. 7(a)].
The rate of forward stepping u depends on the concentration of
ATP. Microscopic reversibility demands that the backward
transition is possible as well, which is then nominally associated
withATP synthesis. The rates of forward and backward stepping
are modeled as pseudo-first-order processes,

u ¼ u�½ATP�; w ¼ w�½ADP�½Pi�; ð32Þ

leading to u=w ¼ ðu�=w�Þ½ATP�=ð½ADP�½Pi�Þ. In equilibrium,
the probability of going forward is identical to the probability of
backward stepping, which implies that ðu=wÞeq ¼ 1. From
Eq. (7), at equilibrium, Δμhyd ¼ 0 and ð½ADP�½Pi�=½ATP�Þeq ¼
Keq. As a consequence, using Eq. (7), we obtain that the ratio
between forward and backward rates is given by
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u
w
¼ u�

w�
½ATP�

½ADP�½Pi�
¼ eβX; ð33aÞ

u�

w� ¼ Keq; ð33bÞ

where we recall that X ¼ −Δμhyd. The average stationary
velocity is given by the step size times the difference between
the forward and backward rates,

v ¼ d0ðu − wÞ ¼ d0wðeβX − 1Þ: ð34Þ

The crucial insight from this expression pertains to the interplay
between the NESS homeostatically maintained by the cell and
themolecularmotor function: in the cytosol,X > 0; thus,v > 0.
At equilibrium, X ¼ Δμhyd ¼ 0, implying that v ¼ 0.
In the absence of applied load, the motor moves without

performing any work. In this case, the entire free energy
extracted from the hydrolysis of ATP is dissipated into heat,
Q ¼ −Δμhyd. From Eq. (17), the rate of heat dissipation per
step is given by

_Q ¼ kBTðu − vÞ ln u
v
¼ ðu − vÞð−ΔμhydÞ ≥ 0: ð35Þ

_Q ≥ 0, and the equality holds in equilibrium, where u ¼ v. If
instead the motor is subjected to a force f opposing its
movement, at each step, the motor performs mechanical
work W ¼ fd0. In this case, the free energy released by
ATP hydrolysis is partitioned between work and heat,
Q ¼ −Δμhyd −W. To account for the presence of applied
load, the rates may be modified using the Bell model (Fisher
and Kolomeisky, 1999b),

uðFÞ ¼ u�½ATP�e−βθfd0 ; ð36aÞ

wðFÞ ¼ w�½ADP�½Pi�eβð1−θÞfd0 ; ð36bÞ
u
w
¼ eβðX−fd0Þ. ð36cÞ

Here the coefficient θ indicates how the load is partitioned
between the forward and backward steps, and it identifies the
position of the transition state along the direction of motion
(Fisher and Kolomeisky, 2001). For θ ¼ 0, the forward step is
unaffected by force, whereas backward steps are insensitive to
load if θ ¼ 1. These two extreme cases have been referred to
as a power stroke and a ratchet, respectively, (Howard, 2006).
In a power stroke, the chemical step crossing the transition
state occurs before the forward movement of the motor. In
contrast, in the case of a ratchet, the motor fluctuates between
the sites l and lþ 1 until it is captured in the forward site by
ATP hydrolysis. In the presence of backward load, the velocity
becomes

v ¼ d0wð0Þeβð1−θÞfd0ðeβX−βfd0 − 1Þ: ð37Þ

It is clear that the motor stalls under a resistive load of

fstall ¼
X
d0

¼ −
Δμhyd
d0

; ð38Þ

at which the mean motor velocity becomes v ¼ 0. Evidently,
fstall ¼ fmax for this model; see Eq. (10). Using Eq. (38)
together with the value of Δμhyd in the cell and the average step
size of a motor, one can predict the value of fstall: fstall ≈
12.5 pN for kinesin, fstall ≈ 2.8 nm for myosin V. In the case of
myosin V, fstall approximates the value of the stall force
measured experimentally; for kinesin, the fmax value is about
twice as large as the stall force. Note also that, according to
Eq. (38), Fs depends on [ATP]; a few experiments have
suggested that this is not the case for a variety of motors
(Nishiyama, Higuchi, and Yanagida, 2002; Uemura et al.,
2004; Carter and Cross, 2005; Toba et al., 2006; Gennerich
et al., 2007), although other studies have observed such a
dependence (Visscher, Schnitzer, and Block, 1999). The inde-
pendence of Fs on [ATP] might be reasonable because each
head has only one binding pocket for ATP, and hence [ATP]
should not determine Fs. This assumption is valid only if the
experiments are performed by continuously regenerating ATP
and removing the products. Otherwise, it would be difficult to
prove that Fs would be independent of [ATP]. The relationship
vðf;ΔμÞ also allows one to compute the power output of the
motor, defined as P ¼ vF, and the motor efficiency,

ηðf; XÞ ¼ fd0
X

; ð39Þ

that is, the ratio of the work produced over the energy released
by the hydrolysis of ATP. Note that the power is zero when
f ¼ 0 and at the stall force, where v ¼ 0; thus, for some force
0 < f� < Fs, it reaches a maximum P�. The force-velocity
curve, power output, efficiency, and efficiency at maximum
power η� are used to compare ratchetlike motors θ ¼ 1 with
power-stroke-driven θ ¼ 0. Given a value of the driving force

FIG. 7. Example of simple kinetic networks. (a) The network
has only one state, N ¼ 1. The forward rate is given by
u ¼ u�½ATP�, the backward rate is w ¼ w�½ADP�½Pi�. Both
forward and backward rates are pseudo first order, with units
mM−1 s−1 and mM−2 s−1, respectively. (b) Multistate model. Here
the rates u1 and w1 are arbitrarily chosen to depend on [ATP] and
½ADP�½Pi�, respectively. The network is shown as a cycle.
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X, power strokes result in larger velocity at fixed F and display
higher efficiencies and exert more power at a given velocity
(Wagoner and Dill, 2016). Furthermore, both η� and P� at fixed
X increase as θ → 0 (Schmiedl and Seifert, 2008). Finally, from
Eq. (17), we write

_Q ¼ ðu − wÞ ln u
w
¼ ðu − wÞð−Δμhyd − fd0Þ; ð40Þ

where we use Eqs. 90 and (37). Note that, again, _Q ≥ 0, and the
equality holds at equilibrium (u ¼ w).
One-state models are appealing because of their simplicity;

for instance, they have only two fitting parameters with
straightforward physical interpretations: w� sets the timescale
[see Eq. (34)], and θ establishes the location of the transition
state during a step. However, these models fail in reproducing
the dependence of the velocity on ATP concentration observed
in experiments [Eq. (29)]. According to Eq. (34), v grows
without saturating as [ATP] increases, which is not physical. To
solve this problem, one must use kinetic models with N > 1.

2. Multistate, unicycle models

Figure 7(b) shows a kinetic model for molecular motors
with N > 1 intermediates. Assuming that the filament is
periodic, we can drop label l and construct an equivalent
unicycle in Fig. 7(c), where the rate uN is associated with a
forward step, and w1 is associated with a backward displace-
ment. From Eq. (4), we obtain the following relationships,

Jþ ¼
Q

N
i¼1 ui

Σðfu; wgÞ ; J− ¼
Q

N
i¼1 wi

Σðfu; wgÞ ; ð41aÞ
Q

N
i¼1 uiQ
N
j¼1 wj

¼ Jþ

J−
¼ eβX; ð41bÞ

u�1
Q

N
i>1 ui

w�
1

Q
N
j>1 wj

¼ Keq; ð41cÞ

where Jþ and J− are the fluxes to complete a cycle in the
clockwise and counterclockwise directions, respectively, and
Σðfu; wgÞ is a function of all of the rates; see Eq. (3). The
connection with thermodynamics is provided by Eq. 91,
which is equivalent to Eq. 89; Eq. 91 holds because in
equilibrium X ¼ 0; see Eq. 89 for the N ¼ 1 case. For the
case of unicyclic network models, the net steady-state flux
(ΔJ ¼ Jþ − J−) along the cycle is obtained by calculating
ΔJ ¼ wi;iþ1pss

i − wiþ1;ipss
iþ1 at any edge between the two

neighboring chemical states along the cycle. Therefore, the
velocity, which is obtained as the flux across edge

N⇄
uN

w1

1;

is given by

v ¼ d0ΔJ ¼ d0J−ðeβX − 1Þ ¼ d0

Q
N
i¼1 wi

Σðfu; wgÞ ðe
βX − 1Þ. ð42Þ

The similarity between Eqs. (34) and (42) is clear: both of the
expressions relate the velocity to the exponential of the free
energy released upon the hydrolysis of ATP, and in both cases
at equilibrium the motor does not move. However, the

expression in Eq. (42) saturates at large [ATP], in agreement
with experiments; see Eq. (29).
Compared to the case of a single chemical state, new

load distribution factors are necessary for each transition
rate, i.e.,

uiðfÞ ¼ uið0Þe−βθþi fd; wiðfÞ ¼ wið0Þeβθ−i fd: ð43Þ
The distribution factors obey the relationship

P
N
i¼1ðθþi þ

θ−i Þ ¼ 1 (Fisher and Kolomeisky, 1999b). It follows thatQ
N−1
i¼0 uiðfÞQ
N−1
i¼0 wiðfÞ

¼ JþðfÞ
J−ðfÞ ¼ eβX−βfd0 ; ð44Þ

and givenΔJðfÞ ¼ JþðfÞ − J−ðfÞ, the force-velocity relation
is

vðfÞ ¼ d0ΔJðfÞ ¼ d0

Q
N
i¼1 wiðfÞ
ΣðfÞ ðeβX−βfd0 − 1Þ: ð45Þ

Although vðFÞ is a complicated function of all of the
parameters (Fisher and Kolomeisky, 1999b; Wagoner and
Dill, 2016), the expression for a theoretical estimation of the
stall force is the same as the one found for N ¼ 1, given by
Eq. (38), and it is again equal to fmax in Eq. (10).
In principle, one could design kinetic networks with an

arbitrary number of intermediates. However, since the number
of free parameters becomes 4N − 2, it is desirable to establish
the minimal N that enables an accurate description of
the experimental data as accurately as possible. Let D ¼
limt→∞ðd=dtÞ½hxðtÞ2i − hxðtÞi2� be the dispersion, and let v ¼
limt→∞ðd=dtÞhxi be the velocity; the randomness parameter
for a quantity x is defined as

r ¼ 2D
d0v

: ð46Þ

It can be shown that N ≥ 1=r (Koza, 2002; Kolomeisky and
Fisher, 2007), and therefore r−1 sets a lower bound to N that is
needed to account for measurements. Note that r is a function
of ATP concentration and external load.
Following Eq. (17), the rate of heat released during a cycle

(Hill, 2005; Qian and Beard, 2005; Qian, 2007; Toyabe et al.,
2010; Zimmermann and Seifert, 2012) is

_Q¼ΔJkBT ln
Jþ

J−
¼ΔJð−Δμhyd−fd0Þ¼ _Eþ _W≥0; ð47Þ

where _E is the rate of free energy expended per cycle. Note
that in unicyclic network models, _W ¼ −ΔJðfÞFd0 ¼ 0 at
either f ¼ 0 or, if the motor is subject to an opposing stall
force, f ¼ Fs, where ΔJðFsÞ ¼ 0; thus, the work production
( _W) is a nonmonotonic function of f, whereas _E and _Q
decrease monotonically with F.
Although the conventionalN-state unicyclic models (Fisher

and Kolomeisky, 1999a, 2001; Kolomeisky and Fisher, 2003)
appear to be successful in describing the motility and
thermodynamics of molecular motors, unicyclic models
encounter two serious problems, especially when the molecu-
lar motor is stalled or starts taking backward steps at large
hindering loads (Astumian and Bier, 1996; Liepelt and
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Lipowsky, 2007a; Hyeon, Klumpp, and Onuchic, 2009). First,
the backward step in the unicyclic network, by construction, is
produced by a reversal of the forward cycle, which implies
that the backward step is always realized via the synthesis of
ATP from ADP and Pi. This is the case for rotary ATP
synthases, which function as transducers of electrochemical
potential into the synthesis of ATP in the mitochondria
(Alberts et al., 2008). Depending on the sign of Δμhyd and
the environmental conditions (e.g., the presence and strength
of a proton gradient and applied load), these spectacular
motors can reverse their function (Turina, Samoray, and
Gräber, 2003; Itoh et al., 2004). Although ATP hydrolysis
is reversible for linear molecular motors (Bagshaw and
Trentham, 1973; Hackney, 2005), backstepping has not been
associated with ATP synthesis. Rather, it is associated with
ATP-independent “slippage” or coupled to fuel consumption
just as forward stepping (Carter and Cross, 2005; Gebhardt et
al., 2006; Clancy et al., 2011; Ikezaki, Komori, and Yanagida,
2013). This requires an update of the kinetic network.
In addition, the unicyclic network models lead to _Q ¼ 0

under stall conditions [Eq. (47)], which contradicts physical
reality. For example, an idling car still burns fuel and dissipates
heat ( _Q ≠ 0). There certainly exist fundamental differences
between molecular world and macroscopic counterparts in that
the former is subject to a large degree of fluctuations, which
permit the reverse process of ATP hydrolysis (i.e., synthesis) or
negative heat dissipation for a subensemble of the entire
realizations. Yet, the mean of entropy production _Q=T is still
bound to be positive, as demanded by thermodynamics, and the
probability of a local violation of this principle becomes
vanishingly small as the system size grows. To ameliorate
the aforementioned physically problematic interpretation asso-
ciated with the backward step mechanism, it has been proposed
to extend the unicyclic network into a network with multiple
cycles (Liepelt and Lipowsky, 2007a; Yildiz et al., 2008;
Hyeon, Klumpp, and Onuchic, 2009; Clancy et al., 2011) so
that the kinetic pathway of an ATP-induced (fuel-burning)
backward step or ATP-consuming stall can naturally be
considered in the model.

3. Multicycle models

The (N ¼ 6)-state double-cycle network in Fig. 8(b) is
discussed here as a minimal kinetic model to account for
subtleties in the physics of kinesin under external load. In the
model, the rate constants at the edges between the adjacent
chemical states are given as

k25ðfÞ ¼ ko25e
−θfd0=kBT;

k52ðfÞ ¼ ko52e
ð1−θÞfd0=kBT;

kijðfÞ ¼ 2koijð1þ eχijfd0=kBTÞ−1; for ij ≠ 25 or 52. ð48Þ

For simplicity, it is assumed that ð2Þ ⇌ ð5Þ, the step asso-
ciated with the switching of the trailing and leading head
positions [the yellow arrow in Fig. 8(b)], obeys the Bell-like
force dependence. When f > 0, the force exerted on the motor
hinders the forward step and enhances the backward step.
Other steps ij ≠ 25 or 52 are abolished (kij → 0) at large
fð> 0Þ, which corresponds to the physical situation where the

large external force impedes chemical steps such as ATP
binding, hydrolysis, and ADP release by deforming the
conformation of molecular motor. The model consists of
two subcycles F [ð1Þ ⇌ ð2Þ ⇌ ð5Þ ⇌ ð6Þ ⇌ ð1Þ] and B
[ð2Þ ⇌ ð3Þ ⇌ ð4Þ ⇌ ð5Þ ⇌ ð2Þ]. At small (f ≈ 0) or assist-
ing force (f < 0), which renders k25 ≫ k52, the reaction
current is mainly formed along the counterclockwise direction
of the F cycle (Fþ); in contrast, at large hindering force
(f > 0) above the stall condition (f ¼ fs), the current flow
along the counterclockwise direction of the B cycle (Bþ),
which corresponds to the ATP-hydrolysis-induced backstep.

FIG. 8. Schematics of the network model representing the
dynamics of double-headed kinesin-1. T, D, and ϕ denote
ATP, ADP-bound, and apo states, respectively. (a) (N ¼ 4)-state
single-cycle network model of kinesin-1. (b) (N ¼ 6)-state
double-cycle network model of kinesin-1. Through ATP binding
[ð1Þ → ð2Þ], mechanical step [ð2Þ → ð5Þ], release of ADP
[ð5Þ → ð6Þ], and hydrolysis of ATP [ð6Þ → ð1Þ], kinesin moves
forward in the F cycle [ð1Þ → ð2Þ → ð5Þ → ð6Þ → ð1Þ], and
backward in the B cycle [ð4Þ → ð5Þ → ð2Þ → ð3Þ → ð4Þ]. The
arrows in the figure depict the direction of the major counter-
clockwise reaction current in each cycle. In both cycles, each
chemical step is reversible and kij defines the transition rate from
the ith to jth states. (c) Reaction currents JF , JB, and J as a func-
tion of load. The three sketches illustrate the amount of current
flowing along the F and B cycles as a function of f. f < 0 and
f > 0 are the assisting and hindering loads, respectively.
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Owing to the microscopic reversibility, each cycle can, in
principle, be performed in both the counterclockwise (þ, Fþ,
Bþ) and clockwise (−, F−, B−) directions. Forward (back-
ward) steps occur via the ð2Þ → ð5Þ [ð5Þ → ð2Þ] transition; the
edges ð1Þ → ð2Þ [ð2Þ → ð1Þ] and ð4Þ → ð5Þ [ð5Þ → ð4Þ] are
associated with ATP binding (dissociation); the edges ð6Þ →
ð1Þ [ð1Þ → ð6Þ] and ð3Þ → ð4Þ [ð4Þ → ð3Þ] are associated with
ATP hydrolysis (synthesis). (The cyan arrows in F and B
cycles highlight ATP hydrolysis.) The model, in principle,
accommodates four different pathways: (i) ATP-hydrolysis-
induced forward step Fþ, (ii) ATP-hydrolysis-induced back-
ward step Bþ, (iii) forward step that synthesizes ATP B−, and
(iv) backward step that synthesizes ATP F−. The reaction
currents JF flowing through ð6Þ ⇌ ð1Þ and JB through
ð3Þ⇄ð4Þ can be calculated by using the generating function
technique by Koza (Koza, 1999; Hwang and Hyeon, 2017) or
by utilizing the approach based on large deviation theory
(Lebowitz and Spohn, 1999). The expressions of JF and JB in
terms of fkijg for the double-cycle network are generally
lengthy and too complicated to be shown here; see Eq. (S25)
in Hwang and Hyeon (2017).
In the double-cyclic network model, the total heat generated

from the kinetic cycle depicted in Fig. 8(b) is decomposed into
two contributions from the subcycles _QF and _QB, each of
which is the product of reaction current and affinity (Qian,
2004; Qian and Beard, 2005; Liepelt and Lipowsky, 2007a;
Ge and Qian, 2010; Seifert, 2012; Barato and Seifert, 2015),

_Q ¼ JFAF þ JBAB; ð49Þ
where the two driving forces (affinities) A are given by

AF ¼ kBT log

�
k12k25k56k61
k21k52k65k16

�
¼ −Δμhyd − fd0; ð50aÞ

AB ¼ kBT log

�
k23k34k45k52
k32k43k54k25

�
¼ −Δμhyd þ fd0; ð50bÞ

Note that at f ¼ 0 the chemical driving forces for F and B
cycles are identical to be −Δμhyd. The previous decomposition
of affinity associated with each cycle into the chemical driving
force and the work done by the motor follows naturally from
the f-dependent expression of fkijg given in Eq. (48) (Fisher
and Kolomeisky, 1999a, 2001; Liepelt and Lipowsky, 2007a).
The entropy production from the double-cycle model is
expressed as the sum of entropy produced from the two
subcycles F and B.

β _Q ¼ βðJFAF þ JBABÞ

¼ JF log

�
k12k25k56k61
k21k52k65k16

�
þ JB log

�
k23k34k45k52
k32k43k54k25

�

¼ JF log

�
k12k56k61
k21k65k16

�
þ JB log

�
k23k34k45
k32k43k54

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

chemical

þ ðJF − JBÞ log
�
k25
k52

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

mechanical

. ð51Þ

Or simply from Eqs. (49) and (50), _Q can be recast into the dif-
ference between the total free-energy input [ _E ¼ ðJF þ JBÞ×
ð−ΔμhydÞ] and work production [ _W ¼ ðJF − JBÞfd0]:

_Q ¼ JFAF þ JBAB

¼ ðJF þ JBÞð−ΔμhydÞ − ðJF − JBÞfd0
¼ _E − _W: ð52Þ

Notice that, to reiterate our earlier remark that the mechani-
cal equilibrium at the stall condition does not correspond to
the thermodynamic equilibrium, the last line of β _Q [Eq. (51)]
is decomposed into the contributions by chemical and
mechanical processes. In the proposed double-cycle kinetic
model, the average velocity of the motor is given by
V ¼ d0ðJF − JBÞ. Thus, if the numbers of forward and
backward steps taken over time are balanced with each other,
satisfying JF ¼ JB (Carter and Cross, 2005), we expect no net
directional movement of the motor [hxðtÞi ¼ 0], which is
equivalent to, say, V ¼ 0. It is important to recognize that
displacement (or travel distance) xðtÞ would be the most direct
observable to an external observer if one were to use optical
tweezers or fluorescence dyes. In the stall condition
(JF ¼ JB ≡ Js ≠ 0), however, because the chemical proc-
esses associated with two ATP hydrolysis events, one along
the forward and the other along the backward step, are still at
work, the heat production is finite ( _Q > 0):

β _Q ¼ Js log

�
k12k23k34k45k56k61
k21k32k43k54k65k16

�
¼ 2Jsð−ΔμhydÞ: ð53Þ

This is a point of great importance, which cannot be capture
by the unicyclic network model [Fig. 8(a)].
Figure 8(c) depicts the currents flowing through the two

subcycles JF and JB calculated from the set of rate constants
fkijðfÞg determined against the motility data of kinesin-1.
Under small hindering (f ≳ 0) or assisting load (f < 0),
kinesin-1 predominantly moves forward through the F cycle,
whereas it starts taking more backsteps through the pathway
Bþ as the load increases further. At stall conditions, the net
current associated with the mechanical stepping defined
between states (2) and (5) vanishes (J ¼ JF − JB ¼ 0);
however, nonvanishing current along the futile cycle hydro-
lyzing ATP still persists along the reaction path of
ð1Þ ⇌ ð2Þ ⇌ ð3Þ ⇌ ð4Þ ⇌ ð5Þ ⇌ ð6Þ ⇌ ð1Þ; see Fig. 8(b).
A further increase of f beyond fs leads to JF < JB, increasing
the chance of backsteps via ATP hydrolysis. Although a
backward step satisfying JF < 0 could be realized through an
ATP synthesis, a theoretical analysis (Hyeon, Klumpp, and
Onuchic, 2009) of the experimental data (Nishiyama, Higuchi,
and Yanagida, 2002; Carter and Cross, 2005) suggest that such
an event (JF < 0, ATP-synthesis-induced backstep) is practi-
cally negligible compared with the one associated with an
ATP-hydrolysis-induced backstep (JB > 0), so jJBj ≫ jJF j.
This is in agreement with energetic analysis suggesting that
backward and forward steps are not the reverse of each other
(Hackney, 2005).
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D. Additional remark on nonequilibrium nature of motors

It is worth mentioning a couple of recent studies that further
highlight the nonequilibrium aspect of molecular motors.
First, the Harada-Sasa equality (Harada and Sasa, 2006)
quantifies the heat generated from Langevin processes out
of equilibrium as follows:

_Q ¼
XN
i¼1

γi

�
v̄2i þ γ

Z
∞

−∞
½C̃iiðωÞ − 2kBTR̃0

iiðωÞ�
dω
2π

�
: ð54Þ

It equates the total heat dissipation rate from the system _Q
with the expression in terms of friction coefficient γi of an ith
variable xi, the Fourier component of autocorrelation of the
velocity fluctuation CiiðtÞ≡ h½_xiðtÞ − v̄i�½_xð0Þ − v̄i�i0, and the
real part of the response function R̃0

iiðωÞ. At equilibrium, when
the detailed balance condition is satisfied v̄i ¼ 0, which leads
to the standard fluctuation-dissipation theorem C̃iiðωÞ ¼
2kBTR̃0

iiðωÞ. Thus, the heat dissipation is zero. Therefore,
the equality relates the extent of violation of the fluctuation-
response relation in a NESS with the rate of energy dissipation
from the system into the bath. At least two studies have thus
far used this equality to experimentally assess the heat
dissipation from molecular motors, one for kinesin and the
other for F1-ATPase. Ariga, Tomishige, and Mizuno (2018)
adapted this equality in the form

_Qx ¼ γx

�
v̄2x þ

Z
∞

−∞
½C̃vvðωÞ − 2kBTR̃0

vvðωÞ�
dω
2π

�
; ð55Þ

where the displacement of kinesin motor xðtÞ was experi-
mentally monitored, and the Fourier component of the
autocorrelation function and the response function of velocity
fluctuation were directly calculated using the time traces
obtained from single-molecule measurements. They showed
that the total heat dissipation assessed using Eq. (55) and the
work done by the kinesin do not add up to the total chemical
free-energy input to the motor. They suggested that there are
other elements of heat dissipation that do not involve the
dynamics of the motor along the direction of motion xðtÞ that
can be monitored by their experiment. Although the proposed
double-cycle model in Fig. 8(b) has already accommodated
other possibilities, such as ATP hydrolysis involving a futile
cycle without stepping, other scenarios such as slippage
induced by mechanical force without a chemical process
(Yildiz et al., 2008) are not included. Further elements of heat
dissipation could be included in kinetic models to describe the
function of the motors.
The finding by Ariga, Tomishige, and Mizuno should be

contrasted with another experimental study using the Harada-
Sasa equality on a single F1-ATPase. Toyabe et al. (2010)
showed that the total free-energy input to the enzyme was
partitioned to the heat and work production with little loss.
This indicates that the cycle of ATP synthesis corresponds to
the reversed cycle of the hydrolysis-driven motor rotation.
However, a recent careful theoretical analysis by Sumi and
Klumpp (2019) on F1-ATPase suggested that the reversibility
(100% efficiency) of the rotary motor is attained only under
certain conditions. Mechanical slip can occur in the presence

of high external torque without chemomechanical coupling,
the effect of which is amplified at low ATP and ADP
concentrations. This reduces the previously estimated 100%
free-energy transduction efficiency. It was argued that in
addition to the viscous dissipation of the probe, heat dis-
sipation could occur from the rotary motor itself as the torque
applied to the biological nanomachine-induced mechanical
slip. This occurs as a result of deformation of molecular
conformation, which is best optimized to function in the
absence of torque.

E. Applications

1. Myosin V and kinesin-1

SKMs have been successfully used to model the function of
molecular motors. Some time ago, Leibler and Huse (1993)
devised a model to investigate the differences between motors
that act as “porters” and those that function as “rowers.” The
former, like the processive molecular motors described thus
far, work in small groups to transport cargoes; myosin II and
axonemal dynein are examples of the latter and work in large
teams to slide or bend filaments.
In two landmark papers, Fisher and Kolomeisky analyzed

the data for kinesin-1 (Fisher and Kolomeisky, 2001) and
myosin V (Kolomeisky and Fisher, 2003) to train the
parameters in their SKMs. A two-state and a four-state model
for kinesin-1 accurately described the motor velocity as a
function of ATP and resistive load [see Figs. 9(a) and 9(b)];
although the two-state model was also used to describe the run
length of kinesin (see Sec. VI for details about the run length),
the analysis of the randomness parameter as a function of
[ATP] and f highlighted the need for a N ¼ 4 model. In the
case of myosin V, Kolomeisky and Fisher considered the data
for ATP and load-dependent dwell time before a forward step
(Mehta et al., 1999); they fitted the parameters of their two-
state model [Fig. 9(c)] and predicted the value of the random-
ness parameter as a function of [ATP] and f. The analysis of
the parameters trained with the experimental data revealed in
both circumstances the existence of a substep, and that most of
the load dependence on the rates was carried by the reverse
processes, indicating that the transition states are closer to the
initial state than they are to the final state.
Liepelt and Lipowsky (2007a) devised a multicycle model

[see Fig. 8(b)] that allowed them to incorporate backward
steps fueled by ATP hydrolysis. The experimental results
of Carter and Cross (2005) and Visscher, Schnitzer, and
Block (1999) were recovered with a dicyclic, N ¼ 6 model
(see Fig. 10), although Liepelt and Lipowsky showed
that another state and a new cycle were necessary to account
for the velocity as a function of ADP concentration (Schief
et al., 2004).
A further development was put forth by Hyeon, Klumpp,

and Onuchic (2009), where a more sophisticated network was
proposed to consider an alternative pathway for backward
stepping based upon known structural features of the kinesin-1
dimer. Clancy et al. (2011) proposed yet another cycle for
kinesin, in this case to fit the data for a mutant with an
extended neck linker; the model successfully recovered the
velocity, randomness parameter, and ratio between the
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numbers of forward and backward steps as a function of ATP
and resistive load, even in the superstall regime.

2. Dynein: An erratic motor

In part due to its complex architecture and the paucity of
details of the nucleotide chemistry, much less is known about
the kinematics of dynein stepping kinetics. We note that, from
the perspectives of both structure determination (Schmidt
et al., 2015) and single-molecule experiments (Reck-Peterson
et al., 2006; DeWitt et al., 2012; Belyy et al., 2014), there
have been spectacular advances in recent years that could be
used to create new theories. A theoretical model different from
those described here that, by necessity, treated the structural
and transition kinetics between pre-power-stroke and

post-power-stroke states approximately was introduced by
Tsygankov et al. (2011) to calculate the distribution of step
size. Despite several untested approximations, experiments
(Reck-Peterson et al., 2006) and kinetic Monte Carlo simu-
lations of the model were in fair agreement; see Fig. 3A in
Tsygankov et al. (2011). A much more elaborate model that
couples structural aspects of dynein with a model for the
catalytic cycle, which is similar in spirit to the theory for
myosin V (Hinczewski, Tehver, and Thirumalai, 2013), was
proposed more recently (Šarlah and Vilfan, 2014). The
predictions of the model, which has a large number of
parameters, were successful in obtaining the step-size dis-
tribution as well as an estimate of the stall force. However,
simple theories that can account for the unusually broad step-
size distributions reflecting the erratic nature of this motor,
force-velocity curves as a function of ATP concentration, as
has been done for kinesin and myosin V, are lacking.

VI. MOLECULAR MOTORS: MODELS WITH
DETACHMENT

All molecular motors take only a finite number of steps
along their tracks before detaching. Therefore, prominent
features of motor motility are the run length L and the
run-time T, which correspond to the distance covered during
a processive run, and the amount of time spent bound to the
filament before detaching, respectively. In addition, the ratio
between L and T constitutes an alternative and intuitive
definition of velocity v ¼ L=T, which is simply the ratio
between the spatial displacement of a motor and the amount of
time taken to complete the movement. Processive motors take
many steps along the filament before dissociating from the
track. The number of steps depends on the motor, and on a
number of parameters such as the concentration of nucleo-
tides, and the value of the applied load. This underscores the

FIG. 9. Unicycle models for kinesin-1 and myosin V. (a),
(b) Comparison for kinesin-1 of the results of a unicycle model
with experiments from Visscher, Schnitzer, and Block (1999).
Adapted from Fisher and Kolomeisky, 2001. (c) Myosin V,
comparison between a N ¼ 2 model for myosin V and the
velocity from experiments obtained from the mean dwell times
τ (Mehta et al., 1999) via the relationship v ¼ 36 nm=τ. Adapted
from Fisher and Kolomeisky, 2001 and Kolomeisky and
Fisher, 2003.

FIG. 10. Fit of experimental data for kinesin-1 with a dicycle
N ¼ 6 model. The data in (a) and (b) are from Carter and Cross
(2005), whereas the experiments considered in (c) and (d) are
from Visscher, Schnitzer, and Block (1999). From Liepelt and
Lipowsky, 2007a.
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importance of accounting for the end of the processive run
in a way that is consistent with the enzymatic cycle of a
specific motor and the experimentally determined run length,
run-time, etc.
The models described in the previous sections assume

that the motor is permanently attached to the track and
ignore the end of the processive run. We discuss here a
number of strategies that have been used to account for the
detachment from the filament. (i) The most direct way is to
increase the number of states by Nd, the number of
detached states, and to introduce the rates of releasing
and attaching to the filament. This method, which was
used to model the function of kinesin-1 with Nd ¼ 1
(Liepelt and Lipowsky, 2007a), enables a steady-state
treatment of the corresponding Markov jump process but
requires an increase in the number of states, the number
of edges, and the number of cycles. (ii) Alternatively, it is
possible to enforce a new stationary state in the Markov
jump process by diverting the flux into the detached state
toward the filament-bound conformations. Although this
approach does not require any other states (Nd ¼ 0), it is
necessary to increase the number of edges, which results in
the creation of new cycles. A theoretical description of this
steady-state approach can be found in Hill (2005). It is
unlikely that the methods described by Hill could be
used to calculate velocity and run-length distribution.
However, one could calculate their averages as a function
of nucleotide concentration or external load. (iii) It is also
possible to account for the detached trajectories by
renormalizing quantities such as the average velocity over
the decreasing number of bound motors. This strategy
was described by Kolomeisky and Fisher (2000) and
has been used to test an approximate equation for kinesin
run length (Fisher and Kolomeisky, 2001). (iv) One
could define the average run length as the ratio between
the average velocity v and the rate of detachment γ
(L ≈ v=γ). To do so, γ could be estimated as the product
between the stationary probabilities of occupying the
“vulnerable” states and newly introduced detachment rates
(γ ¼ P

i∈vulnerable p
S
i ki;det) (Fisher and Kolomeisky, 2001;

Maes and Van Wieren, 2003). (v) Finally, the detached
state could be treated as an absorbing state. A stationary
solution is not possible: after a sufficient time (t ≫ γ−1),
all of the motors will be absorbed into the detached state.
However, one may account for all of the possible trajec-
tories leading to absorption and perform averages over the
ensemble of these paths. In the remainder of this section,
we focus on the last method.

A. Velocity distribution

The simplest model of molecular motor with detachment
is shown in Fig. 11, in which forward (backward) steps
occur with rate kþ (k−), and the detachment rate is γ. For this
model, it is possible to determine analytically the probability
distribution pðv̄Þ, where the velocity v̄ is the ratio between the
net number of steps taken (n ¼ m − l, where m is the number
of forward steps and l is the number of backward steps)
divided by the run-time (v̄ ¼ n=T ¼ v=d0). Vu et al. (2016)
showed that

pðv̄≷0Þ ¼ γ

jv̄j
X∞
n¼0

�
n
jv̄j

�
nþ1 1

n!
ðk�e−kT=jv̄jÞn

× 0F1

�
; nþ 1;

n2kþk−

jv̄j2
�
; ð56Þ

where 0F1ð; nþ 1; n2kþk−=jv̄j2Þ is a hypergeometric function
and kT ¼ kþ þ k− þ γ. For an alternative derivation, see the
more recent study by Zhang and Kolomeisky (2018). This
model was adopted to describe the stepping mechanism of
kinesin-1; the parameters kþ and k− were established from
experiments, and the run length and velocity distribution
(Walter et al., 2012) were fitted using only one parameter, γ.
The result in Eq. (56) holds also in the presence of force,
which increases the probability of backstepping and detaching
from the microtubule. Using this model, a number of note-
worthy results were obtained (Vu et al., 2016): (i) even at zero
load, the velocity distribution is not Gaussian, although it
approaches a normal distribution if the run length is large (that
is, kþ=γ ≫ 1 and kþ=k− ≫ 1); (ii) the probability distribution
of the instantaneous velocity (the size of the step divided by
the dwell time) differs from Eq. (56) and does not match the
experimental distribution (Walter et al., 2012), suggesting that
it is not the correct way to compute velocity; and (iii) the
velocity distribution is bimodal, with distinct peaks for v̄ > 0

and v̄ < 0. The prediction that pðvÞ is bimodal, becoming
most prominent at stall force, was unexpected. At f ¼ fstall,
the naive expectation is that pðvÞ would have a peak at v ¼ 0,

(a)

(d) (e)

(b) (c)

FIG. 11. One-state model for kinesin motility with detachment.
(A) Kinesin walks along the MT, subject to an external load F.
(B) The MT is represented as a linear discrete set of sites
separated by d0 ¼ 8.2 nm; the motor advances toward the þ end
with rate kþ, backsteps with rate k−, and at every site γ establishes
the detachment rate. (C) Load affects the rates according to
the Bell model, which in turn corresponds to a modification
of the energy profile: kþ diminishes as load increases, whereas
the resistive force favors backstepping (increases k−). The
transition state location with respect to the starting state,
θ ¼ jd−j=ðjd−j þ jdþjÞ. (D) The velocity distribution displays
a markedly bimodal shape at a variety of resistive forces, with the
negative peak that increases as the load approaches stall.
(E) Simulations performed assuming an experimentally moti-
vated error on the determination of d0 maintain the bimodal
structure of PðvÞ. Adapted from Vu et al., 2016.
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and the area under pðvÞ with v > 0 and v < 0 would be the
same. The bimodal distribution is a consequence of the
discrete nature of kinesin step size, and it is exaggerated at
large f, when the probability of taking backward steps and the
probability of detaching are larger.
The model in Fig. 11 was recently extended to include an

intermediate step (Fig. 12), which was used to describe the
kinetics of a molecular motor as a combination of an ATP-
dependent and an ATP-independent transition (Takaki et al.,
2019). The resulting velocity distribution is

pðv̄≷0Þ ¼ γ

v̄

X
m;l
m≷l

m − l
v̄

ffiffiffi
π

p
m!l!

knþ1ðkþÞmðk−Þl
jk − ðkþ þ k− þ γÞjnþ1=2

×

�
m − l
v̄

�
nþ1=2

× e−
kþkþþk−þγ

2
m−l
v̄ Inþ1=2

×

�jk − ðkþ þ k− þ γÞj
2

m − l
v̄

�
; ð57Þ

where I is a modified Bessel function of the first kind. The
bimodal structure of the velocity distribution is robust to
changes of the nucleotide concentration, and it is independent
of which step (1 → 2 or 2 → 1) is ATP dependent. Therefore,
an experiment aimed at testing the predicted multimodality of
pðvÞ may be conducted under arbitrary ATP concentrations
and resisting loads.
The model in Fig. 12 was used to tackle a vexing

conundrum concerning the stepping mechanism of kinesin
(Takaki et al., 2019). Recently, two groups performed similar
experiments in which they monitored the movement of one
kinesin head conjugated with a gold nanoparticle (AuNP) by
tracking the position of AuNP (Mickolajczyk et al., 2015;
Isojima et al., 2016). From the analysis of the trajectories, one
group proposed that ATP binds to kinesin when the trailing
head is still bound to the MT (or at least in the vicinity of the
prestepping site) (Mickolajczyk et al., 2015). The other group
suggested that the dissociation from the MT and the forward
movement of the trailing head detachment precede ATP
binding (Isojima et al., 2016). Using the model in Fig. 12,
Takaki et al. (2019) predicted that the ATP-dependent profile
of the randomness parameter may be used to determine
whether ATP binds to the two-head-bound or one-head-bound
conformation of the kinesin-1 dimer.

B. Alternate models with detachment

More complicated kinetic schemes that include motor
detachment have been used to compute the processivity
and velocity of molecular motors. Elting et al. (2011) found
an analytical solution for an eight-state model of myosin VI
that they proposed to investigate the nature of the gating
mechanism. This model did not account for the possibility of
backward stepping, which was instead included by Caporizzo
et al. (2018) in a kinetic model that was devised to investigate
the motility of myosin X as a function of the structure of the
filament (individual versus bundled actin) and the geometry of
the tail of the dimer (parallel versus antiparallel). More
recently, a new theoretical framework capable of extracting
motility characteristics such as average velocity, average and
distribution of number of steps, and probability of backward
stepping for a kinetic network of arbitrary geometry was
proposed by Mugnai et al. (2020). The dynamics of the
motors is described in terms of the following Markov chain:

P⃗xþ1 ¼ ðŜþ F̂ þ B̂ÞP⃗x ¼ M̂P⃗x; ð58Þ

where the N-dimensional vector P⃗x contains the probability of
occupying any of the N filament-bound states of the motor
after x transitions have occurred, and Ŝ, F̂, and B̂ are the
N × N transition probability matrices for undergoing a tran-
sition at a fixed location, stepping forward or backward,
respectively; see Fig. 13. Equation (58) holds under the
assumption that the track is periodic, which makes Ŝ, F̂,
and B̂ independent on the location of the motor along the
filament. By accounting for all of the possible stepping
pathways, it is found that the probability of taking n steps
(forward or backward) before detaching is

PðnÞ ¼ 1⃗
⊺ðÎ − P̂stepÞðP̂stepÞnP⃗0; ð59Þ

where 1⃗
⊺ is the transpose of an N-dimensional vector of

1s, P⃗0 is the initial probability (appropriately normalized,

1⃗
⊺ · P⃗0 ¼ 1), and P̂step ¼ ðF̂ þ B̂ÞðÎ − ŜÞ−1. This expression
is a generalization of a well-known result for N ¼ 1 in which
PðnÞ ¼ ð1 − πÞπn, where π < 1 is the probability of stepping

1l 1l+11l−1

k

detached state

2l k+k−

FIG. 12. Two-state model with detachment. The forward and
backward stepping rates are kþ and k−, respectively, and they
connect state 2 to state 1. The 1 → 2 transition occurs with rate k.
Detachment occurs only from state 2, with rate γ.

l l + 1l − 1

FB

detachment

S

FIG. 13. Model for a processive motor moving on a periodic
track. From each site l of a filament, the motor can change its
conformation (e.g., the chemical state) within the same location
(transitions included in the matrix Ŝ, in black), move forward (the
matrix F̂, in red, accounts for these steps) or backward (the matrix
B̂, in blue, refers to these displacements) along the track, or
detach (magenta).
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and1 − π is the probability of detaching.The average number of
steps hnimay be computed using simple linear algebra, as well
as the distribution and average number of forward andbackward
steps hmi and hli, respectively, with hmi þ hli ¼ hni. The
average run length is then hLi ¼ d0ðhmi − hliÞ, and by using a
classical result for the mean-first-passage time to absorption,
it is possible to compute hτi (Oppenheim et al., 1977) and to
define an average velocity v ¼ hLi=hτi. With kinetic
Monte Carlo simulations, it is possible to show that hLi=hτi
differs from hL=τi, which was adopted by Vu et al. (2016) and
Takaki et al. (2019). On the other hand, it was shown
empirically that the differences become smaller as the average
number of steps taken by the motor increases (Mugnai et al.,
2020). The advantages of this theoretical framework are its
flexibility (it works with any network) and ease of implemen-
tation (it requires matrix algebra only). Therefore, it can be used
to fit complicated models against experimental data. Themodel
was used to solve a complicated model for myosin VI motility
inspired by a model of Yanagida and co-workers (Nishikawa
et al., 2010; Ikezaki et al., 2012; Ikezaki,Komori, andYanagida,
2013),which accounted for amotor taking both hand-over-hand
and inchwormlike steps (Mugnai et al., 2020) and predicted the
gating mechanism [in agreement with Dunn et al. (2010) and
Elting et al. (2011)], the size of the backward steps [matching
experimental observations by Altman, Sweeney, and Spudich
(2004) and Nishikawa et al. (2010) within discrepancies likely
related to fluctuations and the site of the probe attachment], the
pathway for backward stepping [as suggested by Ikezaki,
Komori, and Yanagida (2013)], and the importance of foot
stomping in breaking the tight coupling of myosin VI stepping.

VII. POLYMER PHYSICS-BASED APPROACHES
INCORPORATING STRUCTURAL FEATURES INTO
KINETIC THEORIES

Even with coarse-grained numerical models like the
one proposed by Craig and Linke (2009), which is described
in Sec. VIII, collecting statistics from multiple simulations
covering entire motor trajectories (i.e., for myosin V, each run
averaging tens of steps until detachment) can be computa-
tionally expensive. To more comprehensively explore how
motor architecture affects stepping dynamics, particularly in
light of experiments that perturb structural features like lever-
arm length (Sakamoto et al., 2005; Oke et al., 2010),
alternative approaches are needed. We focus on one example,
an analytical theory for myosin V dynamics (Hinczewski,
Tehver, and Thirumalai, 2013), that also highlights several
aspects discussed earlier: the starting point of the theory is a
six-state stochastic kinetic network model consisting of
multiple cycles that explicitly includes detachment of the
myosin V dimer from the actin filament. Incorporating
detachment allows us to model finite run lengths of the motor
on actin, while the multicycle network topology captures the
dominant pathways of myosin V dynamics under load forces
below or near stall (≲2–3 pN): these include both forward and
backward steps as well as so-called stomps, where either the
trailing or leading head detaches and then reattaches near its
original binding location. Stomps are challenging to detect
with single-molecule fluorescence techniques, but they have

been observed experimentally using high-speed atomic force
microscopy (Kodera et al., 2010).
However, unlike the kinetic models treated so far, the force-

sensitive transition rates will not be described through a
phenomenological Bell-like exponential dependence as in
Eq. 90. Instead, the goal of the approach by Hinczewski,
Tehver, and Thirumalai (2013) is to model the structural
mechanics underlying this force dependence through a coarse-
grained polymer theory for the myosin V dimer. This replaces
the discrete semiflexible polymer description of Craig and
Linke (2009) (interacting monomers representing the motor
head and lever-arm IQ domains) with an even simpler
construct: a single continuous semiflexible polymer that
represents the combined motor head and lever-arm domains.
Thus, the dimer becomes two polymer “legs” attached at a
flexible junction. The load force transmitted through the cargo
domain is modeled by an effective force F applied at the
junction. Because the load force changes the ensemble of
conformations for the two polymer legs, and hence the three-
dimensional distribution of positions explored by the unbound
motor head (see Fig. 14), it affects the rates at which the
unbound head reaches potential binding sites.
The most direct advantage of this simpler coarse-grained

description is that the effects of force on stepping dynamics
become (to an excellent approximation) analytically tractable.
It is also readily generalized to more complex contexts. For
example, while the model we focus on here considers only a
flexible junction, backward load forces parallel to the actin
axis, and restricts steps to actin binding sites separated at actin
helical half lengths (the most probable step separation for
myosin V), all of these assumptions can be relaxed. A recent
extension of the polymer theory approach by Hathcock et al.
(2019) explores the effects of a possible structural constraint at
the junction [inspired by experimental evidence (Andrecka
et al., 2015)], considers off-axis forces, and incorporates the
full distribution of steps at all possible actin binding sites. This
allows us to understand previously observed step distributions
of mutant myosins with various lever-arm lengths (Sakamoto
et al., 2005; Oke et al., 2010), as well as the robustness of
myosin V dynamics in experiments where various off-axis
load forces are applied to the motor via optically trapped cargo
(Oguchi et al., 2010). Moreover, the polymer approach is not
limited to myosin V: an analogous treatment of dynein, with
the two motor domains approximated as rigid rods (the large
stiffness limit of semiflexible polymers), can successfully
reproduce the complex details of dynein step distributions on
microtubules (Goldtzvik, 2017). For both myosin V and
dynein, each half of the dimer is modeled as a single polymer
or rod, and this description is likely to be applicable to other
dimeric processive motors with fairly stiff lever arms, like
myosin XI (Tominaga and Nakano, 2012). However there are
cases, like myosin VI or X, where the lever-arm structure is
more heterogeneous, mixing stiff and flexible domains (Sun
and Goldman, 2011). Here any future attempt to apply coarse-
grained polymer modeling would need to represent each lever
arm as a series of polymer chains with different bending
rigidities.
To understand the basic details of the polymer theory for

myosin V in its simplest form, we first summarize the
underlying six-state kinetic model, which is illustrated in
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Fig. 15(a). State 1 is the waiting state, where both motor heads
have bound ADP and are strongly attached to actin. The lever
arms for both heads are in the post-power-stroke conforma-
tion: in other words, in the absence of other constraints, the
lever arms would orient in the forward direction (toward the
plus end of actin), but because the junction pulls the lever arm
of the leading head backward, the entire structure is in a
strained state known as the telemark or reverse arrowhead
stance (Walker et al., 2000; Kodera et al., 2010). State 10 is
also a waiting state, but with the entire motor displaced
forward by one half helical length of actin (Δ ¼ 36 nm). The
possible kinetic pathways are as follows:

1. Forward step (1 → 2 → 3 → 4 → 10): ADP release
from the trailing head is followed by ATP binding,
which leads to detachment of the head from actin
(1 → 2). We assume saturating ATP conditions, so
ATP binding is fast compared to ADP release, and
hence the entire process is subsumed into a single
transition described by a rate t−1d1 . Here td1 is the mean
detachment timescale, dominated by the waiting time
for the ADP release td1 ∼ 12 s−1 (De la Cruz et al.,
1999). The next transition (2 → 3) involves ATP
hydrolysis into ADPþ Pi, along with a recovery
stroke where the head or lever-arm orientation
changes from post–power stroke to pre–power stroke.
This transition occurs at a rate t−1h ¼ 750 s−1 (De la
Cruz et al., 1999).While there are scenarioswhere the
reverse hydrolysis rate is significant [for example, in
motors with modified light chain composition (Dunn
and Spudich, 2007)], for this discussion we make the
typical assumption that the forward hydrolysis rate

dominates. In general, while every transition arrow in
Fig. 15 has an associated reverse transition in prin-
ciple, here we make the simplifying assumption that
the reverse rates are negligible relative to the forward
rates. This assumption captures the dominant kinetic
pathways of the motor (our focus here), but wewould
need to explicitly consider reverse rates to look at
thermodynamic features of the system (like entropy
production). Once ATP is hydrolyzed, the motor head
has the ability to associatewith actin again. The three-
dimensional diffusive search can result in binding to
either the forward site (36 nm ahead of the bound leg)
or the original binding site. The rate at which it binds
to the forward site is ðtþfpÞ−1, which depends on the
mean first-passage time tþfp to the forward site. The
dependence of tþfp on the load force is related to how
the force biases the diffusive search, and the under-
lying physics is discussed in more detail next.
A binding to the forward site (3 → 4) is quickly
followed by Pi release and a power stroke (4 → 10),
which occurs with a rate t−1ps . We assume that this step
is rapid relative to the others in the network such that
tps ≪ td1, t

þ
fp, and th, and hence tps will not enter

explicitly into our following estimates for motor
properties.

2. Trailing stomp (1 → 2 → 3 → 5 → 1): This path-
way starts in the same way as the forward step, with
unbinding of the trailing head (1 → 2) followed by
hydrolysis and the recovery stroke (2 → 3), but the
diffusive search now ends at the original binding site

forward step backward step

F

(a) (b)

FIG. 14. Examples of the diffusive search trajectory of the detached myosin V head for two different values of backward load force:
(a) F ¼ 0 and (b) F ¼ 2 pN. The actin filament lies along the z axis, and the trajectories are projected onto the radial distance

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
away from the actin axis. The colors represent time, with lighter colors (yellow) occurring earlier than darker colors (red). In (a), the
trajectory ends in a forward step, with the detached head going from the backward binding site at z ¼ −36 nm to the forward binding
site at z ¼ 36 nm. In contrast, (b) shows a backward step, which becomes increasingly favored as a kinetic pathway under larger load
forces. Superimposed on the trajectories are cartoon snapshots of the two polymer legs (with each leg representing a lever arm plus head)
of the coarse-grained model for myosin Vat a time shortly after detachment. The white dot is the junction of the two legs, and the cyan
dot is the location of the detached head at that time step. The contours correspond to the equilibrium probability distribution PðrÞ of the
detached head, calculated from the analytical polymer theory (darker contours correspond to higher probabilities). As load force is
increased, the attached leg and junction are pulled backward, biasing the entire distribution away from the forward binding site, and thus
increasing the chance of backward versus forward steps [see also the corresponding experimental data of Fig. 16(a)]. Adapted from
Hinczewski, Tehver, and Thirumalai, 2013.
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from where the head detached (3 → 5). The mean
first-passage time to this site is t−fp (which also
depends on force, as we shall describe). However,
the head no longer binds in the same configuration
as before because the lever arm has undergone a
recovery stroke and is now in the pre-power-stroke
orientation. Thus, binding requires not only first
passage to the site but also overcoming the energetic
barrier of an unfavorable geometric orientation. We
effectively model this through a factor 0 < b < 1
that reduces the rate so that the overall rate from
3 → 5 is given by bðt−fpÞ−1. From fitting to exper-
imental data, described later, the value of b ≈ 0.065.
As in the forward step, binding is followed by Pi
release and a power stroke (5 → 1) occurring at a
fast rate t−1ps .

3. Leading stomp (10 → 6 → 10): This pathway is
initiated when the leading head detaches with
ADP still bound (10 → 6). The reason for this
alternative head detachment mechanism is an asym-
metry that arises from the strain in the myosin V
dimer in the waiting state. The backward tension on
the leading lever arm in the telemark stance [esti-
mated to be at around 2.7 pN (Hinczewski, Tehver,
and Thirumalai, 2013)] inhibits ADP release by a
factor of 50–70 (Rosenfeld and Lee Sweeney, 2004;
Kodera et al., 2010). Rather than releasing ADP and
binding ATP to detach from actin, the dominant
pathway for a head under backward load is direct
detachment retaining the ADP. This has been ob-
served experimentally in single-headed myosin V,
where backward loads of around 2 pN lead to a

detachment rate t−1d2 ¼ 1.5 s−1 (Purcell, Sweeney,
and Spudich, 2005) independent of ambient ATP
and ADP concentrations. We thus take t−1d2 as the
transition rate from 10 → 6. The difference between
the overall detachment rates for the trailing and
leading heads, with t−1d1 8 times larger than t−1d2 ,
underlies the gating (Veigel et al., 2002; Purcell,
Sweeney, and Spudich, 2005; Veigel et al., 2005)
mechanism: the trailing head is much more likely to
detach first. Since detachment of the leading head
occurs with the ADP still bound, the head can
directly reattach back to the forward binding site,
with one caveat: the post-power-stroke configuration
creates an energy barrier to reattachment due to
geometry (since the lever arm has to adopt a strained
stance), so, as before, we introduce a factor b to scale
the rate to the forward site. Thus, the overall
reattachment rate from 6 → 10 is bðtþfpÞ−1.

4. Backward step (10 → 6 → 1): This pathway starts
with leading head detachment (10 → 6) like the
leading stomp, but the detached head after diffusion
finds the backward binding site. The post-power-
stroke conformation with ADP bound is geometri-
cally favorable for binding to this site (because the
lever arm does not have to be bent), and hence the
rate from 6 → 1 is ðt−fpÞ−1. Note that this description
of backward stepping is approximately valid for load
forces near or below stall but does not include
additional features that may become important for
larger superstall forces (F > 3 pN), such as power-
stroke reversal (Sellers and Veigel, 2010).
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FIG. 15. (a) Six-state kinetic model for myosin V that underlies the coarse-grained polymer analytical theory of Hinczewski, Tehver,
and Thirumalai (2013). States 1 and 10 are identical waiting states, with both motor heads bound to ADP and actin, except that 10 is
displaced 36 nm (a half helical length of actin) toward the plus end of the filament. Arrows are marked by inverse timescales that denote
the transition rates, the details of which are described in the text. Colored arrows are transitions that belong to specific kinetic pathways:
forward step (dark blue), trailing stomp (green), leading stomp (purple), backward step (red), termination (light blue). Gray arrows are
transitions that are shared between multiple pathways. (b) Predicted pathway probabilities from the model, using the kinetic network
together with mean first-passage times for the diffusive search step t�fp from polymer theory. Adapted from Hinczewski, Tehver, and
Thirumalai, 2013.

Mugnai et al.: Theoretical perspectives on biological machines

Rev. Mod. Phys., Vol. 92, No. 2, April–June 2020 025001-23



5. Termination: For the kinetic pathways described
previously, if the motor is in one of the three states
where only one head is bound to actin (2, 3, or 6),
then detachment of the second head (with rate t−1d1 )
will lead to dissociation of the entire motor from the
actin filament, terminating the run.

In the previously described kinetic network, mechanical
forces enter in two ways: the first is through the internal strain
that leads to the gating mechanism, and the second is through
the external load on the junction that affects the diffusive
search and hence the first-passage times t�fp. We have already
taken into account the asymmetry due to internal strain by
using experimentally estimated values for td1 and td2, but the
force dependence of t�fp has not been specified. This is
precisely what the coarse-grained polymer description allows
us to do. We take advantage of a separation of timescales:
when either head detaches, the equilibration time tr over
which the polymer legs relax to an approximately equilibrium
distribution of conformations is fast compared to the first-
passage times tr ≪ t�fp. Brownian dynamics simulations and
analytical arguments (Hinczewski, Tehver, and Thirumalai,
2013) show that tr ≲ 5 μs, while the fastest first-passage times
are at least t�fp ∼Oð0.1 msÞ. A summary of all the timescales
in the problem is shown in Fig. 2. Thus, to an excellent
approximation, the detached head fully explores some equi-
librium distribution of positions PðrÞ before reaching either of
the binding sites. In this case, the first-passage time to reach
the forward (þ) or backward (−) binding site at position r� is
inversely proportional to Pðr�Þ, the probability density of
finding the detached head at that position (Hinczewski,
Tehver, and Thirumalai, 2013):

t�fp ≈
1

4πDhaPðr�Þ
. ð60Þ

Here Dh is the diffusion coefficient of the detached head
[which can be estimated as Dh ≈ 5.7 × 10−7 cm2=s from the
crystal structure using HYDROPRO (Ortega, Amorós, and de La
Torre, 2011)]. The capture radius a ≈ 1 nm is the distance
between the head and binding site for which the interactions
become strong enough that binding occurs, comparable to the
Debye screening length under physiological conditions.
Equation (60), which can be derived from standard first-
passage-time analytical approaches like the renewal method
(Van Kampen, 2007), is extremely useful: it converts the
dynamical problem of finding mean first-passage times of a
complex diffusion process into the more tractable problem of
calculating the equilibrium distribution PðrÞ of the end point
of a two-legged semiflexible polymer system. The latter can be
found analytically by extending an earlier mean-field theory
for semiflexible polymers (Thirumalai and Ha, 1998), incor-
porating the orientational constraint of the bound leg due to the
post-power-stroke conformation of the lever arm with respect
to the motor head. Only a handful of structural parameters
enter into the theory, determining PðrÞ: the contour length
L ¼ 35 nm and persistence length lp ≈ 310 nm of the polymer
leg, the angle of the orientational constraint with respect to the
actin filament θc ≈ 60°, and a parameter νc describing the

strength of the orientational constraint. The first three are all
known from earlier experimental estimates (Moore et al.,
2004; Dunn and Spudich, 2007; Craig and Linke, 2009). νc is,
along with b, one of the two free parameters in the entire
theoretical description, and it can be estimated based on fitting
to the experimental data.
The full expression for PðrÞ and its derivation can be found

in Hinczewski, Tehver, and Thirumalai (2013). The contours
in Fig. 14 illustrate PðrÞ for two different values of backward
load force: F ¼ 0 pN [Fig. 14(a)] and F ¼ 2 pN [Fig. 14(b)].
Superimposed are sample trajectories of the detached end
point, corresponding to a forward and a backward step,
respectively, along with snapshots of the polymer conforma-
tion at a time shortly after detachment. The actin filament lies
along the z axis, with z ¼ 0 corresponding to the location of
the attached head, and the forward or backward binding sites
for the detached head at z� ¼ �Δ. At zero force, the peak of
the distribution is at z > 0 due to the post-power-stroke
orientational constraint on the bound leg. Thus, the end-point
probabilities are biased toward the forward binding site and
PðrþÞ ≫ Pðr−Þ. When F ¼ 2 pN, the situation is reversed:
the load force pulls the junction backward, counteracting
the post-power-stroke constraint, and the distribution is
shifted such that Pðr−Þ ≫ PðrþÞ. The dependence of PðrÞ
on the load force translates into corresponding changes in t�fp
through Eq. (60).
Once t�fp as a function of F is known, a variety of physical

quantities can be calculated directly from the kinetic network
model (Hinczewski, Tehver, and Thirumalai, 2013). For
example, both forward steps and trailing stomps have the
same mean duration: the average time from the detachment of
the trailing head to its subsequent reattachment at either the
forward or backward site. Similarly, both backward steps and
leading stomps have a mean duration tLb associated with how
long the leading head takes to reattach. These two timescales
are given by

tTb ¼ th þ
tþfp

1þ bα
; tLb ¼

tþfp
bþ α

; ð61Þ

where α≡ tþfp=t
−
fp. Note that tTb is bounded from below by th

because hydrolysis is a necessary intermediate step after
trailing head detachment, whereas it is not involved after
leading head detachment. The probabilities that the motor
takes a forward step Pf, trailing stomp PTs, leading stomp
PLs, and backward step Pb are

Pf ¼ g
1þ g

t2d1
ð1þ bαÞðtd1 þ thÞðtd1 þ tTb − thÞ

;

PTs ¼ bαPf; PLs ¼
1

1þ g
btd1

ðbþ αÞðtd1 þ tLbÞ
;

Pb ¼ b−1αPLs; ð62Þ

where g≡ td2=td1 ¼ 8 quantifies the strength of gating.
These are plotted as a function of load force for the substall
regime in Fig. 15(b), along with the termination probability
Pt ¼ 1 − Pf − PTs − PLs − Pb. Forward steps predominate
at small forces but are overtaken by trailing stomps as F
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approaches the stall value Fstall ≈ 1.9 pN, defined as when
Pf ¼ Pb. The force dependence of stomp probabilities has
not yet been measured and thus constitutes a prediction of the
theory, but there is experimental data on the backward-to-
forward ratio Pb=Pf (Kad, Trybus, and Warshaw, 2008). This
is shown in comparison to the theoretical curve in Fig. 16(a)
and exhibits excellent agreement. Other experimentally
observable quantities are compared in the remaining panels
of Fig. 16: the mean run length zrun along the actin before
termination, from Sakamoto et al. (2000), Baker et al. (2004),
Clemen et al. (2005), and Pierobon et al. (2009) [Fig. 16(b)];
and the mean velocity vrun ¼ zrun=trun, where trun is the mean
run duration, from Mehta et al. (1999), Uemura et al. (2004),
Clemen et al. (2005), Gebhardt et al. (2006), and Kad, Trybus,
and Warshaw (2008) [Fig. 16(c)]. The theoretical expressions
for these are

zrun ¼ vruntrun; vrun ≈
Δ
td1

�
1

1þ bα
−

α

gðbþ αÞ
�
;

trun ≈
gt2d1

tLb þ gtTb
: ð63Þ

The theory curves in Fig. 16 are simultaneous best fits with
only two free parameters, νc and b, and overall show that the
theory quantitatively captures the main features of the motor
dynamics (within experimental uncertainties evident in the
scatter of data points collected under different buffer and ATP
conditions). The theory also provides insight into how motor
properties depend on both kinetic parameters (the gating ratio
g, the reduction in binding rates described by b due to
unfavorable lever-arm conformations) and structural param-
eters (L, lp, θc, and νc, which control the distribution during
the diffusive search). This allows clear connections to muta-
tion experiments that perturb the latter, for example, by
extending or shortening lever-arm length to change L
(Sakamoto et al., 2005; Oke et al., 2010); see Hathcock
et al. (2019) for a fuller discussion.

VIII. SIMULATIONS USING COARSE-GRAINED MODELS

Several models that can be simulated readily (Hyeon and
Onuchic, 2007a, 2007b; Tehver and Thirumalai, 2010; Zhang
and Thirumalai, 2012; Mukherjee and Warshel, 2013; Nam
and Epureanu, 2016; Alhadeff and Warshel, 2017; Mugnai
and Thirumalai, 2017; Mukherjee, Alhadeff, and Warshel,
2017; Zhang, Goldtzvik, and Thirumalai, 2017; Goldtzvik,
Mugnai, and Thirumalai, 2018) have been introduced to
address a variety of issues related to stepping kinetics.
These include but are not restricted to the mechanism of
stepping of conventional kinesins on microtubules, the gating
mechanism, and allosteric transitions by which the motor
heads communicate with each other and the cytoskeletal
filaments. The simulations have to be based on coarse-grained
models (Hyeon and Thirumalai, 2011) because of the long
timescales and the interplay of multiple length scales involved
in the motor motility.
Rather than survey the findings in all these studies, which

vary greatly in both detail and focus, we describe a particularly
illuminating minimal coarse-grained (CG) mechanochemical

model (Craig and Linke, 2009) for myosin V, which illustrates
a strain-mediated gating mechanism (required for maintaining
processivity) as well as characteristics such as speed and stall
force. The CG model (see Fig. 17), which takes the archi-
tecture of myosin V into account, was constructed using the
following assumptions. First, the level arm is treated as a
semiflexible polymer by representing the six IQ motifs by
three interacting moieties. In this sense, the model is similar to
the subsequent analytical polymer model (Hinczewski, Tehver,
and Thirumalai, 2013) described previously. Second, the

(a)

(b)

(c)

FIG. 16. Best-fit theoretical results (solid curves) from
the coarse-grained polymer theory for myosin V (Hinczewski,
Tehver, and Thirumalai, 2013) compared to experimental results
(symbols) for the following dynamical quantities: (a) the ratio of
backward-to-forward steps Pb=Pf, (b) the mean run length zrun
on actin before detachment, and (c) the mean velocity vrun. The
sources of the experimental data are listed in the legends (Mehta
et al., 1999; Sakamoto et al., 2000; Baker et al., 2004; Uemura
et al., 2004; Clemen et al., 2005; Gebhardt et al., 2006; Kad,
Trybus, and Warshaw, 2008; Pierobon et al., 2009), with buffer
conditions in parentheses (the first value is ATP concentration,
the second value is KCl concentration). Where the KCl value is
not listed, the concentration is 25 mM. All experiments and
theory are for saturating ATP conditions except Gebhardt et al.,
2006 in (c), where the theory has a modified t−1d1 detachment rate
to account for low ATP. Adapted from Hinczewski, Tehver, and
Thirumalai, 2013.
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junction between the head and the adjacent IQ motifs (points 2
and 8 in Fig. 17) was treated as a semiflexible joint with
equilibrium angles that depend on the nucleotide state of the
motor. Such an assumption is justified by comparison to
electron microscopy images. The forward rotation of the lever
arm, which changes the angle from ΘA to ΘB, is taken to be
dependent on phosphate release, a crucial step in the reaction
cycle ofmyosinV. Third, the joint between the two lever arms is
assumed to fully flexible, which would imply that the tethered
head diffuses freely about this joint; see also Hinczewski,
Tehver, and Thirumalai (2013). It should be noted that recent
experiments suggest that this may not be the case. It has been
pointed out that the angle between the lever arms is constrained

(Andrecka et al., 2015), which has to be taken into account in
describing the diffusive search (Hathcock et al., 2019). Fourth,
the filamentous actin is treated as a passive one-dimensional
track with binding sites that are roughlyΔ ¼ 36 nm apart, as
was also assumed in the analytical theory (Hinczewski, Tehver,
and Thirumalai, 2013). If the tethered head, which has under-
gone hydrolysis, diffuses close to a binding site, it interactswith
the binding site with an attractive electrostatic interaction to
complete a step.
A potential energy function based on the mechanical model,

which can be simulated using Brownian dynamics, is coupled
to the catalytic cycle in one of the motor heads. To produce
realistic dynamics, various rates in the cycle were taken from
experiments; see Table 1 in Craig and Linke (2009). The
simulations were successful in reproducing the run-length
distribution and the value of the stall force (fS ≈ 2–3 pN).
One of the advantages of the CG simulations is that the stiffness
of the head-neck and neck-neck joints encoded by the terms
VHN and VNN could be changed to assess the effect on the
motor properties. For example, they discovered that thevalue of
fS depends on the stiffness of the lever arm. It has to be stiff,
but not overly so, to reproduce the experimental data, which
was later confirmed theoretically (Hinczewski, Tehver, and
Thirumalai, 2013).
The strategies used in the models described in this section

and the Sec. VII are the following. First, the domains that
execute mechanical movements are modeled using available
structural data. Second, the mechanical model is coupled to
the catalytic cycle, which allows one to predict the depend-
ence of measurable quantities on control parameters such as
ATP concentration and external load. The level of coarse
graining in the first step is largely guided by intuition. In
Hinczewski, Tehver, and Thirumalai (2013), the use of
polymer representation afforded an analytic solution, whereas
by discretizing the level arm using discrete connected links
Craig and Linke (2009) had to resort to numerical simulations.
It is this general strategy that is likely to be successful in
tackling the nuances of dynein stepping and perhaps motor
functions in vivo.

IX. COST-PRECISION TRADE-OFF AND EFFICIENCY OF
MOLECULAR MOTORS

A. Cost-precision trade-off and its physical bound of molecular
motors

From the perspective of thermodynamics, biological sys-
tems are clearly in nonequilibrium, which means energy is
constantly injected and dissipated as heat. Because they are
subject to incessant thermal and nonthermal fluctuations,
cellular processes are inherently stochastic and error prone.
Thus, a plethora of energy-consuming machines have evolved
to fix any error that may be deleterious to biological functions.
In the presence of large fluctuations inherent to cellular
processes, harnessing energy into precise motion and sup-
pressing the uncertainty are critical for accuracy in cellular
computation. Trade-off relations between the energetic cost
and information processing have been a recurring theme for
many decades in biology (Hopfield, 1974; Ehrenberg and
Blomberg, 1980; Bennett, 1982; Alberts et al., 2008; Lan

FIG. 17. Illustration of a general strategy to construct and
simulate a coarse-grained model for myosin V (Craig and Linke,
2009). The strategy involves making a coarse-grained model
based on the structure [see (a) and (b)], which is coupled to the
enzyme chemistry given in (c). (a) The lever arm is represented
using three rigid segments that are connected to each other. The
two lever arms meet at point 5, which rotates freely during
the stepping process. (b) The angle between the lever arm and the
head (points 2 and 8) is assumed to change from ΘA to ΘB upon
phosphate release. (c) The reaction cycle with various rates
indicated in the figure is coupled to the mechanical model.
Brownian dynamics simulations were used to calculate the
observable quantities. From Craig and Linke, 2009.
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et al., 2012; Mehta and Schwab, 2012; Banerjee, Kolomeisky,
and Igoshin, 2017). Recently, a concise and fundamental
relationship relating cost-precision trade-off and its physical
bound, which is called the thermodynamic uncertainty relation
(TUR), was first conjectured by Barato and Seifert (2015) and
extensively studied in the statistical physics community.
Barato and Seifert (2015) formulated the TUR, such that a

productQ between the heat dissipation QðtÞ and the square of
relative error associated with a time-integrated output observ-
able XðtÞ of the process, ϵ2XðtÞ ¼ hδX2i=hXi2, is independent
of measurement time. Based on numerical results that exten-
sively sampled the rate constants kij defining the diverse
kinetic networks and the linear response theory. They further
conjectured that Q cannot be smaller than 2kBT for any
chemical kinetic network described by Markov jump proc-
esses, which is succinctly written as [see Fig. 18(a)]

Q ¼ QðtÞϵ2XðtÞ ≥ 2kBT: ð64Þ

The trade-off parameter Q quantifies the energetic cost for a
given error and is bounded below by 2kBT. The time-
integrated output observable XðtÞ can be selected such that
it can best represent the dynamic process of interest. For
enzyme reactions that catalyze substrate to product, XðtÞ
could be the product concentration cðtÞ. For molecular motors
moving along a one-dimensional track, displacement (travel
distance) xðtÞ is a natural output observable to represent their
dynamic processes.
For motors, the relative error associated with the motor

displacement decreases with time as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½δxðtÞ�2

p
=hxðtÞi ∝

1=
ffiffi
t

p
. Thus, if one were to decide the displacement of a

motor precisely, a longer time trace should be generated,
which demands more free-energy injection (ATP hydrolysis)
and heat dissipation. The greater the heat dissipated from the
process, the smaller the error. For molecular motors with
output observable xðtÞ, Eq. (64) can be written in terms of
three quantities (heat dissipation rate _Q, diffusivity D, and
velocity V) that depend on control parameters such as ATP
concentration and external load:

Q ¼ QðtÞ hδxðtÞ
2i

hxðtÞi2 ¼ _Q
2D
V2

≥ 2kBT: ð65Þ

Notice that Q depends on a specific type of motor as well as
the conditions of [ATP] and f.
Since Barato and Seifert’s original conjecture, there has

been impressive progress in the field. The TUR has been

reinterpreted as the inequality relation between generalized
current and total entropy production rate (σtot ¼ dS=dt),
which can be written as

σtot
VarðjÞ
hji2 ≥ 2: ð66Þ

General and elegant proofs for the TUR not only have been
given for the case of Markov jump processes on kinetic
networks by employing large deviation theory (Gingrich et al.,
2016) but also can be deduced from the equality relation for
the Fano factor of entropy production for overdamped
Langevin processes (Pigolotti et al., 2017).
More recently, Dechant and Sasa (2018b) generalized

Eq. (66) to underdamped processes in the following form:

σtot ≥ Bhji2; ð67Þ
where Bð> 0Þ is a model-dependent parameter that can be
reduced to 2=VarðjÞ for overdamped Langevin systems or
Markov jump processes on networks. In fact, the right-hand
side of the inequality is always greater than zero; namely, it
recovers the second law of thermodynamics σtot ≥ 0.
Therefore, one interpretation of Eq. (67) is that it provides
a tighter bound to the entropy production in terms of the
square of the generalized current. Although B is not specific
but model dependent, Dechant and Sasa (2018b) employed
the previous relation to derive a power-efficiency trade-off for
an engine operating between two heat sources with temper-
ature T1 > T2,

_W ≤ χ1
T2
1

T2
2

ηðηC − ηÞ; ð68Þ

where η ¼ _W= _Q1 and ηC ¼ 1 − T2=T1 are the thermody-
namic efficiency and the Carnot efficiency. The inequality
gives the upper bound to the power generated using the two
heat sources; see Fig. 18(b). But when η approaches ηC, _W
approaches 0 as well if the model-dependent parameter χ1 is
finite.
For pedagogical purpose, it is worthwhile to consider

simple examples that can demonstrate the significance of
the physical bound of the TUR.
(i) In the context of the foregoing one-state hopping model

to which dynamics of molecular motors can be mapped, the
rate of heat dissipation from the process is bounded as

_Q
kBT

¼ ðu − wÞ log u
w
≥
2ðu − wÞ2
uþ w

; ð69Þ

where the inequality was discussed by Shiraishi, Saito, and
Tasaki (2016). Given a single step displacement d0, the
velocity and diffusivity of the particle moving along the
reaction coordinate are V ¼ d0ðu − wÞ and D ¼ ðd20=2Þ×
ðuþ wÞ, respectively. Therefore, inserting the expressions of
_Q, V, and D into Eq. (65) it is easy to see thatQ ≥ 2kBT. The
lower bound ofQ in this model is attained when u ¼ w, which
corresponds to the detailed balance equilibrium condition.
Provided that u ¼ u�½S� and v ¼ v�½P�, namely, the forward
and backward rate constants vary with the substrate S and

(a) (b)

FIG. 18. (a) Cost-error trade-off relation and its physical bound
Q ¼ Qϵ2X > 2kBT. The accessible region for Q is in cyan.
(b) Power-efficiency trade-off. The accessible region for power
_W is demarcated in cyan.
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product P concentrations, the detailed balance condition is
attained when ½S�=½P� ¼ ½S�eq=½P�eq with u�=v� ¼ ½P�eq=½S�eq.
(ii) Hyeon and Hwang (2017) studied the overdamped

Langevin motion on the tilted washboard potential, which
obeys

γ _xðtÞ ¼ f − U0ðxÞ þ ξðtÞ; ð70Þ

with Uðxþ LÞ ¼ UðxÞ and hξðtÞi ¼ 0, hξðtÞξðt0Þi ¼
2γkBTδðt − t0Þ, where the driving of the quasiparticle on
the potential is controlled by the nonconservative force f.
They showed that the TUR parameterQðfÞ for this problem is
a nonmonotonic function of f, attaining its physical bound
2kBT at both f ≪ jU0ðxÞj (near equilibrium) and f ≫ jU0ðxÞj
(far from equilibrium). For f ≪ jU0ðxÞj, the quasiparticle
undergoes diffusion on a rough surface. On the other hand, for
f ≫ jU0ðxÞj, the particle slides along a smooth gradient
without feeling the effect of confining potential, dissipating
energy with a rate _Q ¼ γV2 against friction. Since the
diffusivity of the particle in this case follows the Stokes-
Einstein D ¼ kBT=γ together with the velocity V, one can
obtain Q ¼ 2kBT. QðfÞ reaches its maximum value near the
critical point where the potential barrier confining the particle
is about to vanish.
(iii) As far as the specific models in (i) and (ii) are concerned,

the minimal uncertainty condition Qmin ¼ 2 kBT is attained
not only under the detailed balance condition but also when
there is no confining potential. It has been suggested thatQmin
is attained when the heat dissipated from the process is
normally distributed as PðQÞ ∼ e−ðQ−hQiÞ2=ð2hδQ2iÞ and that
the TUR measures the deviation of heat distribution from
Gaussianity (Hyeon and Hwang, 2017).

B. Transport efficiency

There are a number of ways to assess the efficiency of
engines ormachines (Brown and Sivak, 2017). Historically, the
efficiency of heat engines has been discussed in terms of the
thermodynamic efficiency, the aim of which is to maximize
the amount of work extracted from two heat sources with
different temperatures (Callen, 1985). For nonequilibrium
machines driven by chemical forces that are constantly regu-
lated without shortage in the live cell, the power production
could be a more pertinent quantity to maximize. Meanwhile,
for transport motors in the cell, the TUR parameter Q can be
used to assess the efficiency of suppressing the uncertainty in
dynamical process by means of energy consumption, and thus
it is quite pertinent for evaluating the transport efficiency of a
motor or motors (Dechant and Sasa, 2018a). The connection
between Q and the transport efficiency is clear. If a motor
transports cargos at a high speed [V ∼ hxðtÞi=t] with small
fluctuations [D ∼ hδxðtÞ2i=t, which leads to punctual delivery
to a target site] but consuming only a small amount of energy _Q,
such a motor would be considered efficient for cargo transport.
A motor efficient in the cargo transport would be characterized
by a small Q with its minimal bound 2kBT or, as originally
suggested by Dechant and Sasa (2018a), one can consider
using the definition ηT ¼ 2kBT=Q, which is bounded between
0 and 1.

Q can be used to assess the “transport efficiency”
of biological nanomachines and to study how it changes
with varying conditions of f and [ATP]. To evaluate Q,
measurement should first be carried out for _Q, D, and V; see
Eq. (65). While V and D are straightforward to calculate
(V ¼ limt→∞ dxðtÞ=dt and D ¼ limt→∞ð1=2Þd½δxðtÞ�2=dt),
experimental measurements of _Q may be nontrivial.
Although there are some reports on direct measurements
of the heat dissipation rate at the single cell level (Rodenfels,
Neugebauer, and Howard, 2019; Song et al., 2019), direct
measurements of heat dissipation at the single-molecule level
are not yet known. Nevertheless, _Q can be estimated by
considering a physically suitable minimal kinetic network
model. For a given cyclic kinetic network defined by multiple
chemical states i ¼ 1; 2;…N and the transition rates fkijg
connecting them, there are straightforward methods (Koza,
1999; Lebowitz and Spohn, 1999; Hwang and Hyeon, 2017)
to associate the measured V andDwith fkijg. As long as all of
the rate constants fkijg defining the kinetic network are
known, it is then straightforward to calculate the _Q value
as discussed in detail in the early part of this review.
For conventional kinesin, whose chemomechanical proper-

ties were extensively studied by several groups, motility data
for varying [ATP] and load conditions are available in the
literature. The double-cycle network model, depicted in
Fig. 8(b), with the form of rate constant for each edge can
be used to analyze those data, which allows one to determine
the dependence of fkijg on [ATP] and f and, finally, to build a
diagram of Qðf; ½ATP�Þ, as shown in Fig. 19. The TUR

FIG. 19. (a) Analysis of motility data to determine the param-
eters for rate constants fkijg in Eq. (48) for the double-cycle
network model. (b) Diagram of Q as a function of [ATP] and f.
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diagram Qð½ATP�; fÞ (Fig. 19) exhibits several features that

are worthwhile to explore:
(i) In terms of the load direction, assisting (f < 0) and

hindering (f > 0), Qð½ATP�; fÞ is asymmetric. This
result differs from that of the one-state hopping
example for the TUR calculated in Fig. 20(a). The
fundamental difference arises from the asymmetric
effect of the force on the kinetic rate, particularly on
k25 and k52 with θ ≠ 1=2.

(ii) Q is locally minimized first at a condition of small
load (f ≳ 0) and low [ATP] (indicated by cyan
ellipse), and second at f ≈ 3 pN and ½ATP� ≈
300 μM (indicated by the yellow arrow). The first
minimum is closer to the 2kBT bound; yet, this
minimum was attained near the detailed balance
condition where [ATP] concentration is small and
balanced with [ADP] and [Pi]. It does not have much
biological relevance given that a molecular motor
works out of equilibrium. In fact, the second local
minimum is of particular interest given that the
condition is not far from the cellular condition
½ATP� ≈ 1 mM and f ≈ 1 pN, indicated with a
yellow arrow. (Here note that f ≈ 1 pN is a rough
estimate of the cellular environment replete with
obstacles such as cytoskeletal filaments and road
blocks.) The second local minimum is the very point
at which the transport efficiency defined in terms of
Q is optimized.

(iii) The high Q region (Q > 100kBT) at f ≈ 3–7 pN is
due to the stall condition. As explained in detail in
rationalizing the double-cycle network model, en-
ergy should still be consumed and heat should be
dissipated ( _Q > 0) at stall conditions (V ≈ 0). This
particular condition renders Q divergent at stall
conditions.

Finally, the structure of Qðf; ½ATP�Þ is sensitive to the
design of the motor structure as well as the motor type.
First, the diagram of Qðf; ½ATP�Þ for a kinesin construct
Kin6AA, whose neck linker is engineered longer than that of
wild-type kinesin-1 via insertion of six amino acids

(AEQKLT) (Clancy et al., 2011), exhibits great deviation
from that of the wild type (WT); see Fig. 21(a). In all, the
values ofQ increase, the stall forces are reduced, and the local
minimum observed in the WT is missing. KIF17 and KIF3AB
(Milic et al., 2017) show qualitatively similar structures of
Qðf; ½ATP�Þ; however, there are differences in terms of
quantitative details from that of the WT. Next, myosin V,
dynein, and F1-ATPase were analyzed to calculate
Qðf; ½ATP�Þ. Bierbaum and Lipowsky (2011) employed a
tricyclic network model to describe the chemomechanics of
myosin V in which cycles for forward steps, energy-consum-
ing futile steps, and force-induced mechanical slippage steps
were considered. The resulting Qðf; ½ATP�Þ [Fig. 21(d)]
shows ATP-insensitive stall condition where Q is divergent
with no local minimum, as in WT kinesin-1. For dynein
[Fig. 21(e)], the unicyclic chemomechanical network model
adopted for construction of Qðf; ½ATP�Þ is, in principle, not
satisfactory since it would be able to account for the physically
correct behavior of dynein dynamics at stall and super-
stall conditions. In particular, the Qðf; ½ATP�Þ diagram
shows minimization to 2kBT at the stall. Nevertheless,
a suboptimal local minimum is found at f ≈ 3 pN and
½ATP� ≈ 300 μM. Finally, Qðτ; ½ATP�Þ (torque τ instead of
load f) for F1-ATPase is shown in Fig. 21(f) calculated based
on the unicyclic kinetic network model (Gerritsma and
Gaspard, 2010). For F1-ATPase, which shows near revers-
ibility and hence is characterized by high efficiency (Toyabe
et al., 2010), use of the unicyclic network model would be
reasonable, although this conclusion should be reached with
care; see Sumi and Klumpp (2019).
Some of the biological motors, kinesin family and dynein,

studied here are found to be semioptimized in terms of Q
under the cellular condition, which alludes to the role of
evolutionary pressure that has shaped the present forms of
molecular motors in the cell. In addition, the efficiency

(a) (b)

FIG. 20. Two case studies for the TUR. (a) One-state hopping
model with forward and backward rate constants u and w.
(b) Brownian motion in the tilted washboard potential. QðfÞ
was evaluated as a function f using a specific periodic function,
UðxÞ ¼ U0 sin 2πx=L with L ¼ 6 nm for U0 ¼ 5kBT and
10kBT.

FIG. 21. Qðf; ½ATP�Þ for (a) Kin6AA (kinesin-1 mutant),
(b) KIF17, (c) KIF3AB, (d) myosin V, (e) dynein, and
(f) F1-ATPase. The diagrams were calculated by directly analyz-
ing the motility data available in Clancy et al. (2011) for (a) and
in Milic et al. (2017) for (b),(c), and by using the same double-
cycle network model as is used for kinesin-1. For other motors in
(d)–(f), the kinetic network and rate constants are used as in
Bierbaum and Lipowsky (2011) for myosin V, as in Šarlah and
Vilfan (2014) for dynein, and as in Gerritsma and Gaspard (2010)
for F1-ATPase.
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quantified in terms of Q for various molecular machines
presented here range between 7kBT and 20kBT (Fig. 22).
Given that all of these machines function out of equilibrium, it
is of great interest to discover that the value ofQ calculated at
the working cellular condition is not significantly far from its
physical bound 2kBT. This may arise from the fact that the
molecular machine analyzed here is a tightly coupled
machine, meaning that ATP hydrolysis is almost always
transduced to a mechanical step, even though energy-wasting
futile steps still remain a possibility.
As long as the underlying mechanism, which offers a clear

model for a chemomechanical kinetic network, is known, the
TUR can be studied for any time trace generated from the
cyclic process in a NESS. Other energy-intensive processes,
for example, error-correction processes, circadian cycle, and
chaperonin action, would exhibit high Q.

X. MOLECULAR CHAPERONES

Chaperones are another class of cellular molecular
machines that expend free-energy change associated with
ATP binding and catalysis to facilitate the folding of certain
proteins and RNA that cannot fold spontaneously under
cellular conditions. Because they serve a key function in
maintaining protein homeostasis, they are deemed essential
for the survival of the organisms. Among a large class of
molecular chaperones, the function of the heat-shock GroEL-
GroES machinery found in E. coli, referred to as chaperonin,
is now quantitatively understood thanks to experimental and
theoretical advances. The in vivo function of GroES-GroEL
machinery in E. coli is to rescue substrate proteins that are
otherwise destined for aggregation. Just like molecular
motors, GroEL undergoes a catalytic cycle involving a series
of large-scale structural changes in response to ATP binding,
hydrolysis, and release of ADP and phosphate. GroEL-GroES
machinery anneals the population of misfolded proteins,
driving them to the folded state by repeatedly going through
rounds of the catalytic cycle, which has been referred to as the
iterative annealing mechanism (IAM) (Todd, Lorimer, and
Thirumalai, 1996; Tehver and Thirumalai, 2008).
A minimal kinetic network model of chaperonin-assisted

protein folding can be constructed, based on considerable
experimental evidence, by assuming that a protein exists in
either an intermediate (I), misfolded (M), or folded (native) (N)
state, as illustrated in Fig. 23. The unfolded state, a transient
state right after the protein is synthesized, collapses to the I

2
7.2

7.7

9.1
9.9

13

19physical bound 
(2kT)

FIG. 22. Q values for various transport motors calculated at
½ATP� ¼ 1 mM and f ¼ 1 pN (except for F1-ATPase calculated
at ½ATP� ¼ 1 mM and τ ¼ 0 pN nm).

(a)

(b)

(d)

(c)

FIG. 23. Chaperone-assisted folding of substrate. (a) Schematic
of the iterative annealing mechanism (IAM) illustrated for
the hemicycle of GroEL. The T ⇌ R transition starts when
ATP and the substrate protein (SP) bind. GroES binding and
ATP hydrolysis engenders the R0 → R00 transition with a fraction
of the SP partitioning to the folded structure. Subsequently,
ADP and Pi and the SP (folded or not) are released and the
R00 → T transition completes the cycle. In the presence of the SP,
the machine turns over in about a second and ADP release is
accelerated by about a 100 times. The rapid turnover comports
well with the predictions of IAM (Todd, Lorimer, and Thirumalai,
1996). (b) A minimal kinetic network model for chaperone-
assisted folding of a substrate molecule. Transitions between
three manifolds of collapsed intermediate (I), misfolded (M),
and native (N) states are represented in terms of rate constants.
Folding, misfolding, and chaperone-assisted unfolding pathways
are depicted in blue, red, and magenta, respectively. (c) Schematic
of a folding landscape of substrate molecules. Upon spontaneous
folding, the ensemble of intermediate states collapsed from an
unfolded ensemble reach the native and misfolded basins of
attractions with the proportion of Φ and 1 −Φ, respectively.
(d) Schematic of the generalized iterative annealing mechanism
of chaperone-assisted substrate folding, from which the recursion
relation for the native yield from the nth annealing process was
derived. Ni andMi denote the proportion of native and misfolded
states from the ith annealing process. The blue and red arrows
represent the pathways leading to the native and misfolded states,
respectively.

Mugnai et al.: Theoretical perspectives on biological machines

Rev. Mod. Phys., Vol. 92, No. 2, April–June 2020 025001-30



state, and it further undergoes a spontaneous folding process
via the kinetic pathways with rates denoted by kIM and kIN .
Only a fraction (Φ) of the entire population folds correctly to
the N state, and the remaining fraction (1 −Φ) is misfolded to
theM state. The process of the initial population of molecules
withΦ (1 −Φ) reaching the folded (misfolded) state is termed
the kinetic partitioning mechanism (KPM). The KPM, which
was first theoretically proposed byGuo and Thirumalai (1995),
has been used to explain the folding of proteins (Kiefhaber,
1995) as well as RNA (Pan, Thirumalai, and Woodson, 1997;
Thirumalai andHyeon, 2005). Typically, SPs or ribozymes that
require assistance from chaperonin action are characterized by
extremely small values of Φ (≪ 1), which implies that the
majority of population without chaperones are trapped in the
misfolded states, which could potentially aggregate unless they
are rescued by the chaperones.
The function of the GroEL machine is quantitatively

explained by the IAM according to which the chaperone
recognizes and acts on the misfolded substrate preferentially.
Typically, the SPs have exposed hydrophobic residues, which
make them prone to aggregation unless they are recognized by
the GroEL-GoES machine. When the SPs bind to GroEL, they
become disordered as a result of domain movements in
GroEL, which imparts a mechanical force ≈10 pN that is
sufficiently large to unfold (at least partially) the SPs
(Thirumalai and Lorimer, 2001). As the catalytic cycle
proceeds, the SPs are encapsulated for a brief period of
roughly about 2 s, during which a small fraction folds rapidly
during the time they are in the cavity. It is worth remarking
that if they fold (the probability being Φ), they do so while
being encapsulated in the cavity of GroEL. When the catalytic
cycle is complete, the SP is ejected from the cavity regardless
of whether it is folded. If the SP is misfolded, then it once
again recognized by GroEL, and the cycle is iterated until
sufficient yield of the folded state is obtained. A key require-
ment of the GroEL-SP interaction is that hydrophobic residues
of the SPs must be exposed, which does not typically occur in
folded states. It is this ability of chaperone not to recognize
native proteins that enables the GroEL-GroES machinery to
drive the misfolded states to the native state over repeated
iterations of the catalytic cycle. More specifically, when the
annealing process, corresponding to one catalytic cycle, is
iterated n times, the total amount of population that reaches
the native state (or native yield) grows as

Nn ¼ 1 − ð1 −ΦÞn; ð71Þ

with n ≥ 1. As n → ∞, Nn → 1.
While it is known that GroEL recognizes misfolded SPs

only, the IAM concept has to be generalized to RNA
chaperones, which act on both the N and M states, but which
act more favorably on M (Bhaskaran and Russell, 2007;
Chakrabarti et al., 2017). If the proportion of N identified by
chaperones in comparison with the M state is defined as κ
(0 ≤ κ ≤ 1), the total yield of the native state after n rounds of
folding (annealing) in the presence of chaperone can be
calculated using the following mathematical formulation:

(i) Let Nn andMn be the yields of native and misfolded
state, respectively, after the nth round of the

annealing process. Note that the total amount of
substrate proteins is conserved at all times, which
implies that Nn þMn ¼ 1 for all n. In the first round
of annealing, a fraction N1ð¼ ΦÞ folds to the N
state, and M1ð¼ 1 −ΦÞ partitions to the M state.

(ii) In the nth round of annealing, the chaperones re-
cognize Nn−1 and Mn−1 differentially by the
factor κ. Whereas ð1 − κÞNn−1 is left unrecognized
by the chaperones, κNn−1 is unfolded, and Φ of
them refold to yield κΦNn−1 native states and
κð1 −ΦÞNn−1 misfolded states. On the other hand,
the entire population of Mn−1 is unfolded, and Φ
of them refold to yield ΦMn−1 native states and
ð1 −ΦÞMn−1 misfolded states. Therefore, after the
(n − 1)th round of chaperone action, the native yield
Nn is determined to be Nn ¼ 1 − Mn ¼ 1−
ð1 − ΦÞMn−1 − κð1 − ΦÞNn−1.

(iii) From the resulting recursion relation of Nn ¼
ð1 − κÞð1 −ΦÞNn−1 þΦ with N1 ¼ Φ, we obtain
the following expression:

Nn ¼ Φ
1 − ð1 − κÞnð1 −ΦÞn

κ þ ð1 − κÞΦ ; ð72Þ

the native yield after n iterations. After a sufficient
number of iterations (n → ∞), the system reaches
steady state N∞ → Φ=½κ þ ð1 − κÞΦ�. In the case of
GroEL, only the misfolded state is recognized by
chaperones (κ ¼ 0). Therefore, the GroEL-GroES
machinery drives the entire population of substrate
proteins to the native state N∞ → 1; see Eq. (71).

As described for molecular motors, the thermodynamic
aspects of chaperonin-assisted folding can be succinctly
captured by mapping the folding process of substrate mol-
ecule onto a kinetic network model. A unicyclic reversible
kinetic network model consisting of the previously mentioned
three states I,M, and N suffices to capture the nonequilibrium
nature of chaperone-assisted protein folding. The relevant
master equation describing the network is

∂tPðtÞ ¼ WPðtÞ ð73Þ

where PðtÞ ¼ (PIðtÞ; PNðtÞ; PMðtÞ)T and

W ¼

0
BB@

−ðkIN þ kIMÞ kNI kMI

kIN −ðkNI þ kNMÞ kMN

kIM kNM −ðkMI þ kMNÞ

1
CCA.

The probability PiðtÞ of each state i evolves with time as

PðtÞ ¼ Pss þ c1u⃗1e−λ1t þ c2u⃗2e−λ2t ð74Þ

with λ2 > λ1 > 0, and it reaches the steady-state value Pss
i at

t → ∞. The steady-state population Pss
i and steady-state

current along the reaction cycle J ¼ kijPss
i − kjiPss

j can be
expressed solely using the rate constants, as already discussed
in depth in the foregoing Sec. IV describing the general
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aspects of the various cycles. Because the function of the
chaperones is to promote the formation of the folded state, our
primary interest is the steady-state yield of the native state,
which is given by

Pss
N ¼ kMIð½C�; ½T�ÞkIN þ kMNðkIM þ kINÞ

Σð½C�; ½T�Þ ; ð75Þ

where

Σð½C�; ½T�Þ ¼ kMIð½C�; ½T�ÞkNIð½C�; ½T�Þ
þ kNIð½C�; ½T�ÞðkMN þ kIMÞ
þ kMIð½C�; ½T�ÞðkIN þ kNMÞ
þ ðkIM þ kINÞðkNM þ kMNÞ: ð76Þ

The partition factor Φ can be expressed in terms of rate
constants as Φ ¼ kIN=ðkIN þ kIMÞ. Because of chaperone
action, kIN and kMI can be significant (in particular,
kIN ≫ kNI), whereas kNM and kMN are negligible. Under this
condition, the native yield simplifies to

Pss
N ≃

kMIkIN
kMIkNI þ kNIkIM þ kMIkIN

≃
kIN

ðkNI=kMI ÞkIM þ kIN
¼ Φ

κ þ ð1 − κÞΦ ¼ N∞. ð77Þ

In the absence of either a chaperone or ATP that redistrib-
utes the population of proteins into a NESS, [C]-, [T]-
dependent rate constants vanish (kijð½C�; ½T�Þ ¼ 0). In this
case, the steady-state population of the N state becomes

Pss
N ð½C� ¼ 0 or ½T� ¼ 0Þ ¼ 1

1þ kNM=kMN

¼ 1

1þ e−ΔGNM=kBT

¼ Peq
N . ð78Þ

Replacing the two [C]-, [T]-dependent rate constants (kIN and
kIM) to zero is tantamount to blocking the chaperone action
and placing theM andN states in isolation. As long as they are
isolated for a long enough time greater than k−1NM and k−1MN , the
system finally reaches the equilibrium native yield (Peq

N ), as
dictated by Eq. (78), assuming that the aggregation reaction
can be neglected. However, equilibrating the M and N states
via the transition paths ofM ⇌ N is impractical in the light of
the timescale of cellular processes because k−1NM and k−1MN far
exceed the biologically meaningful timescale. These argu-
ments suggest that chaperones drive the substrates out of
equilibrium. In the process, they optimize the yield of the
folded SPs or RNAs per unit time, which we discuss
further next.

XI. UNIVERSAL CHARACTERISTICS OF HELICASES

Helicases, which are molecular motors found in all organ-
isms, unwind dsDNA and dsRNA when they encounter a
junction between single strand (ss)-ds nucleic acids (Lohman,

1992; Lohman and Bjornson, 1996; Delagoutte and Von
Hippel, 2002, 2003). Separation of dsDNA strands is required
for DNA replication as well as DNA repair. Malfunction of
helicases causes genomic instability and is also implicated in
cancer. In addition, certain RNA chaperones are also deemed
to have helicase activity, which means they are able to unwind
helices in RNA to facilitate its folding (Mohr, Stryker, and
Lambowitz, 2002; Russell, Jarmoskaite, and Lambowitz,
2013). We refer the interested reader to a number of articles
that describe a variety of cellular functions associated with
helicases (Venkatesan, Silver, and Nossal, 1982; Dong,
Gogol, and von Hippel, 1995; Velankar et al., 1999;
Bianco and Kowalczykowski, 2000; Marians, 2000; Pang
et al., 2002; Rocak and Linder, 2004; Lohman, Tomko, and
Wu, 2008; Pyle, 2008; Bustamante, Cheng, and Mejia, 2011).
Helicases, classified into six superfamilies based on their
sequences (Gorbalenya and Koonin, 1993; Iyer et al., 2004),
are described as active or passive (Lohman, 1992). Active
helicases destabilize the base pairs of the dsDNA, perhaps by
exerting a force, thus separating the two strands. If the helicase
is passive, it binds to the ssDNA whenever thermal fluctua-
tions transiently open the base pairs. As the strands of the
dsDNA are separated, the helicase translocates along the
ssDNA. This strand separation and translocation are inti-
mately related. Several ensemble experiments have provided
glimpses into the stepping mechanism (Wong and Lohman,
1992; Ali and Lohman, 1997; Levin and Patel, 2002; Lucius
et al., 2003; Jeong, Levin, and Patel, 2004) of the helicases. In
addition, these experiments have also been insightful in
deciphering how helicases interact with ss-ds junctions, and
how often they dissociate from their track. The most detailed
picture of the functions of a number of helicases have come
from single-molecule laser optical tweezer and magnetic
tweezer experiments. These experiments provided the kinetics
of stepping and nucleic acid unwinding (Patel and Picha,
2000; Dessinges et al., 2004; Perkins et al., 2004; Lionnet et
al., 2006). Such measurements are instrumental not only in
formulating theories and simulations but also in refining them
as additional high precision experiments become available.
In an influential paper, Betterton and Jülicher (BJ)

(Betterton and Jülicher, 2003, 2005a, 2005b) presented a
theory that quantitatively describes the coupling between
translocation and strand separation. The framework used in
this theory, which is another illustration of the SKM, has been
most instrumental in understanding the differences between
active and passive helicases. The BJ model assumes that the
helicase moves forward (backward) at a rate kþ (k−) when it is
far from the ss-ds junction. This aspect of the motor move-
ment is similar to Fig. 5, with γ ¼ 0. When the motor is far
from the ss-ds junction, the helicase merely translocates along
the ss nucleic acids. Similarly, in isolation, a nucleic acid base
opens at a rate α and closes at a rate β. Depending on whether
it is an A-T or a G-C base pair, the rates are different, but the
inequality β ≫ α holds in both cases. Since isolated base pair
opening rates are due to thermal fluctuations, they satisfy
α=β ¼ e−ΔGbp=kBT , where ΔGbp is the stability of the base pair.
However, interactions with base pairs modify these rates. Let
n be the position of the helicase on the track, and let m be the
location of the ss-ds junction; see Fig. 24. Upon approaching
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the ds-ss junction, the helicase interacts with NA, which was
modeled using a variety of potentials, all based on some
combination of square-well-like potentials. Passive helicases,
characterized by U0 → ∞, opportunistically step when the
base is open. For active helicases, which forcibly rupture the
base pair interactions, U0 is finite but depends on j ¼ m − n.
The rates kþ and k− and α and β are modified when the
helicase interacts with the NA (Betterton and Jülicher, 2005b).
To describe the action of the helicase, one has to keep track of
its position on the track as well the ss-ds location. Helicase-
NA interactions modify all of the relevant rates, making them
position j dependent. Using the model with detachment rate
set to zero, the velocity of the helicase, assuming that it steps
one base pair at a time, is given by

V ¼ 1

2

X
j

ðkþj þ αj − k−j − βjÞPj; ð79Þ

where Pj is the probability of observing the helicase and
junction that are separated by j, and αj is the rate at which the
junction opens when the helicase and junction are at sepa-
ration j. The corresponding rates for base pair closing and
forward and backward stepping rates of the helicase are βj,
kþj , and k−j , respectively.
Although experiments [see, for example, Manosas et al.

(2010)] have been analyzed using the theory sketched
previously, the BJ model has to be generalized to make
precise comparison with experiments. (1) To account for the

average helicase processivity hδmi, which was not addressed
in the original formulation, the consequences of detachment of
the motor have to be considered. As pointed out previously,
almost all of the chemical kinetics models ignore detachment,
which, of course, is unrealistic because the run length in the
motors or the number of base pairs that are disrupted is finite.
(2) A theory that allows for arbitrary step size s is needed
rather than the assumption that s is unity. Helicases such as
PcrA and NS3 interact with and possibly destabilize several
base pairs that are downstream of the ss-ds junction (Velankar
et al., 1999; Cheng et al., 2007). In other words, the step size s
exceeds unity. (3) Experiments also apply external force
and measure the changes in the processivity and velocity as
a function of force f. A viable theory should produce
tractable expressions for both the mean velocity and hδmi
as a function of quantities. (4) Finally, how the sequence of the
NA affects hδmi and V needs to be considered to draw general
conclusions.
An analytically solvable model that accounts for the

first three previously stated effects was proposed recently
(Chakrabarti, Jarzynski, and Thirumalai, 2019), which was
preceded by a less general theory in which s was set to unity
(Pincus, Chakrabarti, and Thirumalai, 2015), investigates
sequence effects of the mean velocity and hδmi. These studies
produced a number of unexpected predictions for the helicase
velocity and processivity as a function of external force and
DNA sequence. (i) It was predicted that, regardless of the
underlying architecture and unwinding kinetics of the helicase
or the precise DNA sequence, processivity will exhibit a
universal increase with applied external force. This finding,
which has subsequently been validated experimentally
(Li et al., 2016; Bagchi et al., 2018), was used to suggest
that helicases may have evolved to maximize processivity
rather than velocity. (ii) The theory, which quantitatively
accounts for the experiments for force-dependent V and
hδmi for T7 replisome [Fig. 6 in Chakrabarti, Jarzynski,
and Thirumalai (2019)], shows that s ¼ 2 base pairs.
(iii) Normally, when analyzing experimental data, NTP-
dependent stepping rates are neglected. This is justified while
the helicase translocates along ssNA. For instance, in T7
helicase, the ratio of the forward to backward stepping rate is
∼270, a value that is not that different from kinesin at zero
resistive force. The probability of backstepping is ≈0.3%.
However, when T7 unwinds dsDNA, the probability of
backstepping increases to 26%. This estimate is not dissimilar
to observations in XPD helicases belonging to a different
family SF2, where it was shown that at 1 mM ATP concen-
tration the backstepping probability is ∼10%. (iv) Many
helicases do not function in vitro unless an external force
is applied. Under in vivo conditions, partner proteins that bind
to single strands and impart a force at the ss-ds junction
to destabilize the base pairs (Pincus, Chakrabarti, and
Thirumalai, 2015) are needed. That this is the case has been
shown for the UvrD helicase (Comstock et al., 2015), which
behaves as a processive motor only when 2 pN force is
applied. It was noted previously that even though these
associated proteins may not increase the unwinding velocity
of a helicase, they should universally increase the processivity
of the helicase.

(a)

(c)

(d)

(b)

(e)

FIG. 24. Helicase model. (a)–(d) Schematic of a model showing
the unwinding of nucleic acids by helicases. (a) Translocation
process of a helicase, with kþ, k−, and γ being the rates of
forward, backward, and detachment, respectively; n is the
position on the nucleic acid. (b) Opening (α) and closing (β)
rates of a base pair. (c) Interactions between helicase and nucleic
acids modify the stepping kinetics of the helicase and the opening
and closing rates of the base pair. The base pair location is m and
j ¼ m − n. (d) A model for the interaction with U0 being the
strength. For a passive helicase, U0 is zero. (e): Simultaneous fits
of the force dependence of the velocity and processivity (given in
the inset) of T7 helicase as a function of an external load. The
blue and red lines are the results using a theory described
elsewhere (Chakrabarti, Jarzynski, and Thirumalai, 2019) and
the data points in circles are taken from experiments (Johnson
et al., 2007).
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The theories for helicase stepping are not complete because
they do not resolve many of the challenging problems. First,
there is no quantitative explanation for the broad velocity
distribution (Johnson et al., 2007) measured during unwind-
ing of the weakly active ring-shaped T7 helicase. It is
challenging to calculate PðvÞ for the recent model of
Chakrabarti, Jarzynski, and Thirumalai (2019), which is the
minimal one that accounts for the F-dependent mean velocity
and hδmi accurately. Second, there is little understanding of
the structural basis of the universal increase in hδmi as a
function of F and the underlying dramatic variations in the
sequence and architectures of the motor. Perhaps carefully
designed simulations may shed light on this issue (Yu, Ha, and
Schulten, 2006; Ma et al., 2018). Third, a recurring theme in
many aspects of motors is that the dynamics is heterogeneous,
exhibiting characteristics reminiscent of glasses. It was dis-
covered that there are substantial molecule-to-molecule var-
iations in the unwinding speed of E. coli RecBCD helicase
even if all of the enzymes are prepared under the same
condition. To account for this observation, it has been
suggested that the functional landscape is likely partitioned
into a number of metastable states and that the initial
preparation quenches the enzyme into a specific substate
(Kirkpatrick and Thirumalai, 2015) The helicase ergodically
explores all of the conformations within a single metastable
state, but the transitions to other states could be achieved
only by resetting the ATP concentration (Liu, Baskin, and
Kowalczykowski, 2013). The emergence and relevance of
glasslike heterogeneous behavior under ambient conditions is
not understood theoretically, and it remains a challenge not
only in the context of helicases but also in other biological
systems (Altschuler and Wu, 2010; Solomatin et al., 2010;
Hyeon et al., 2012).

XII. DISCUSSION

The combination of excellent experiments and a few
theoretical approaches touched on here have greatly advanced
our understanding of how biological machines work.
However, we still do not have a complete understanding of
how these machines work even in in vitro conditions. This
should not be a surprise because some believe that the link
between allosteric communication in hemoglobin (Hb) and
oxygen transport is not fully understood despite over 50 years
of intensive study. It is unclear if at present there is an analog
of Hb, considered the hydrogen molecule for allostery, in
molecular machines. The investigation of these machines, one
at a time in vitro, seems to raise unsolved problems in each
individual case. We outline a few of the challenging problems.
The list is far from exhaustive.

A. Sometimes details matter

Here we have described only coarse-grained theoretical
methods, which are impervious to the molecular details. There
are several examples (we mention two) in which spectacular
changes occur by a single or a few amino acid substitutions.
(i) About 20 years ago, Endow and Higuchi (2000) made a
single amino acid substitution in the neck-linker (NL) region
of an Ncd, a motor that is related to kinesin. The wild-type

Ncd walks toward the minus end of the microtubule, in
contrast to conventional kinesin. Upon substituting an aspara-
gine (a polar amino acid residue) to lysine (positively charged)
in the NL, an element that is responsible for the motor walking
predominantly on a single protofilament of the MT, it was
found that Ncd moves in both the plus and minus directions on
the MT. (ii) Myosin VI, unlike myosin V, walks toward the
filamentous actin minus end and is the only known member
belonging to the myosin superfamily with this property. In
humans, there are reports of three mutations that cause
deafness. A point missense mutation, a replacement of
aspartic acid by tyrosine (D179Y) in the so-called U50
domain of the motor, leads to deafness in mice (Hertzano
et al., 2008). It has been suggested (Pylypenko et al., 2015),
using a variety of experimental methods, that the D179Y
mutation leads to a premature release of the phosphate Pi, a
product of ATP hydrolysis, from the detached head, thus
preventing it from rapidly binding to F-actin. Meanwhile, ATP
does bind to the leading head, which detaches the motor from
actin, thus preventing processive motion. Besides these
examples, there are many others, such as the link between
mutations in β-cardiac myosin and hypertrophic cardiomy-
opathy. None of these observations are amenable to the
theoretical treatments exposed here, in which molecular
details are ignored. Detailed simulations, if possible, could
provide biophysical insight, but linking such studies to
functions is a daunting task. These anecdotal examples should
remind us that, in the search of principles of generality in
biology, one should not forget that molecular details matter
and could dramatically influence functions.

B. Molecular basis of ATP hydrolysis

In all of the molecular machines, hydrolysis of ATP is
required to generate mechanical movements. However, the
detailed molecular mechanisms by which the chemical free-
energy release from ATP or GTP hydrolysis is converted to
conformational changes in the motor protein and eventual
directed motion remain unsolved. Elucidating these mecha-
nisms remains an active area of research, for example, using
hybrid quantum mechanical–molecular mechanical (QM-
MM) approaches to describe the ATP-hydrolysis reaction in
the active site of myosin (Grigorenko et al., 2007; Kiani and
Fischer, 2014). While these approaches have provided insight
into the first few steps of the energetic mechanism, the full
molecular picture of what transpires in the myosin head
posthydrolysis, eventually culminating in a power stroke after
rebinding to F-actin, remains incomplete. There was an
intriguing suggestion by Ross (2006), supported by QM-
MM calculations (Kamerlin and Warshel, 2009; Takahashi
et al., 2017), that electrostatics may play a key role: in the
immediate aftermath of hydrolysis, both ADP and Pi remain in
the binding pocket, despite the strong Coulombic repulsion
between them. One can imagine the following scenario: the
separation of these negatively charged ions in the pocket may
deform the surrounding protein, similar to cocking a spring.
These deformations propagate allosterically into conforma-
tional changes that induce greater affinity between the myosin
head and actin. A later round of allosteric changes upon actin
rebinding leads to freeing the phosphate from the pocket
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and thus relieving the repulsive interaction: the “spring” is
released, initiating a sequence of conformational rearrange-
ments that ends in the power stroke. Considerable work will
be needed to determine how the molecular details of ATP
hydrolysis, on a molecular length scale, are magnified to
motility on a several nanometer length scale.

C. Efficiency and optimality

A naive assessment of efficiencymay bemade by estimating
the theoretical maximum force, based on the available free
energy due to ATP hydrolysis, and comparing it to the
measured stall force (Kolomeisky and Fisher, 2007).
Consider F1-ATPase, for example. This is part of the
F0F1-ATP synthase responsible for synthesizing ATP. This
rotary motor undergoes precise 120° rotations in the absence of
an external applied torque τtor at low ATP concentrations. By
controlling τtor using the electrorotation method and the
chemical potential by choosing appropriate ATP, ADP, and
Pi concentrations, it is possible tomeasure the probabilityps of
rotation in the synthetic direction. ADP and Pi are consumed to
generate ATP, and the probability ph in the reverse hydrolytic
direction could be measured; see, for example, Toyabe et al.
(2011). From the linear dependence of kBTlnðps=phÞ, it was
found that the output energy at stall is roughly equal to the
chemical potential. This implies that F1-ATPase operates at
near 100% efficiency.
For myosin motors, which take roughly a d ¼ 36 nm step,

the maximum force that can be exerted is fmax ≈ ΔGATP=d,
which is approximately 2.5 pN assuming that ΔGATP ≈
22kBT. The measured stall force fstall is roughly in this
ballpark, which suggests that myosin motors operate effi-
ciently; η ¼ fstall=fmax is very high. A similar argument for
kinesin (d ¼ 8.1 nm) yields fmax ≈ 12 pN, whereas measure-
ments report values close to 8 pN. Thus, there is about a 30%–
35% decrease in η for kinesin motors. A precise computation
of efficiency should be undertaken by considering the network
for a given motor that captures many aspects of motor motility.
The arguments given previously hold roughly if the motility
can be described in a periodic one-dimensional tilted potential
with two equivalent sites with a transition state, which is close
to the initial site. Treatments using more elaborate models
(Schmiedl and Seifert, 2008; Seifert, 2011a; Golubeva,
Imparato, and Peliti, 2012; Wagoner and Dill, 2019) indicate
that the motor efficiency would be much less and would
depend on the details of the network dynamics.
A question that is related to efficiency is optimal perfor-

mance. In the context of the biological machines discussed
here, performance should be measured by velocity of move-
ment, processivity, and, for molecular chaperones, the time-
dependent production of the folded state. As mentioned,
studies in the last decade have addressed how biological
machines might optimize speed by considering models that
are used to analyze force-velocity curves in motors. One of the
lessons is that speed might be optimized if the motor takes
many substeps instead of a single step (Wagoner and Dill,
2016). These studies have not considered processivity (run
length) as a function of ATP and external force. For helicases,
it appears that maximization of velocity is not as relevant as
optimization of processivity. In addition, for GroEL, it appears

that the rate of production of the folded state per unit time is
maximized even at the consumption of a lavish amount of
energy, which would render this machine highly inefficient.
Whether questions pertaining to optimal performance, given
the available free energy, must simultaneously consider many
functional requirements remains an open problem. It is
possible that optimality could depend on the specific function
carried out by a class of machines.

D. Specificity versus promiscuity

The E. coli chaperonin has evolved to be a promiscuous
machine in that it facilitates the folding of a variety of
misfolded substrate proteins (even those that are not in the
E. coli proteome) that are unrelated by sequence, size, or the
structure of the folded state. Using directed evolution meth-
ods, a mutated GroEL or GroES, referred to as GroEL3−1 was
constructed by Wang et al. (2002). The altered GroEL3−1
contained a single mutation in GroES (tyrosine was replaced
by histidine) and two mutations (valine was substituted for
alanine and glycine for aspartic acid) in GroEL. It was found
that GroEL3−1 had enhanced ATPase activity compared to
the wild type. It was found that GroEL3−1, with a highly
polar environment in the cavity compared to the wild type,
dramatically increased the folding of green fluorescent protein
(GFP). However, the enhanced specificity of folding GFP with
ease came at the expense of a substantial reduction in the
capacity of GroEL3−1 to facilitate the folding of several other
proteins. Thus, in this instance, nature has solved the tension
between specificity and promiscuity by evolving an all-
purpose E. coli chaperonin that can process the folding of
a large class of proteins, albeit not as efficiently. In eukaryotes,
there has been a great expansion in the number of chaperone
classes, possibly to enable the larger and more complex
proteome. This example suggests that evolutionary constraints
might have to play a part in addressing issues related to
optimality. This might imply that the simple network used to
explain the out-of-equilibrium performance of GroEL and
GroES has to expand to describe optimality in the functions of
chaperone networks in eukaryotes.

E. Biological complexity

We circle back to Fig. 1, which is a schematic illustration of
the transport of melanosomes, vesicles containing the light
absorbing pigment melanin found in amphibians. In fish and
amphibians (Barlan and Gelfand, 2017), vesicles either are
dispersed throughout the cytosol or aggregate near the cell
center. The transportation of melanosomes is clearly complex
and is controlled by the interplay of multiple motors involving
kinesin-2, a plus end directed MT motor, and dynein, which
walks toward the minus end of the MT. In addition, actin-
bound myosin V is also involved in the transport. It is
suspected that a low number of motors (about one to two
kinesin-2 motors and roughly one to three dyneins) move
melanosomes during aggregation (Levi et al., 2006). In
contrast, pigment dispersion is mediated by kinesin-2 [about
one to two motors (Levi et al., 2006)] as well as assistance by
myosin V. Different stimuli, involving hormones and regu-
lators such as dynactin p150Glued, which was shown to bind
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kinesin-2 and dynein [see Fig. 1 and Deacon et al., (2003)],
might contribute to dictate the number of active motors on the
melanosome surface (Gross et al., 2002; Levi et al., 2006).
The resulting transport mechanism shows coordinate function
of MT motors, and tug-of-war with myosin V (Gross et al.,
2002). Because both dynein and kinesin-2 compete for the
same attachment site (p150Glued on dynactin; see Fig. 1), it
follows (Levi et al., 2006) that myosin V is released during
aggregation and vesicle transport is dominated by dynein. The
need to change movement of melanosomes, powered by
multiple motors, is thus determined by function, which in
this case is related to their dispersion or aggregation.
Although individual motors predominantly move unidirec-

tionally on cytoskeletal filamentous tracks there are reports
that motors could change direction as well. An impressive
in vitro illustration of bidirectional motility of the complex of
dynein with dynactin, a complex that is attached to the cargo
and activates dynein (Fig. 1), was reported some time ago by
Ross et al. (2006). It was found that the complex moves
processively in both directions on MT with ATP-dependent
velocities that are not significantly different in either direction
(Ross et al., 2006). Although Ross et al. provided a qualitative
picture of the mechanism of bidirectional transport, a theory
for such unexpected behavior is lacking. It is not even clear, at
least to us, what level of coarse graining is needed to construct
such a theory, which is clearly needed to unveil the complexity
of vesicle transport.
We have not discussed how groups of motors move on

cytoskeletal structures. It is likely that under most physiologi-
cal conditions motors operate in groups. As is often the case in
physics, the consequences of collective effects of motors
cannot be easily described using the behavior of individual
motors alone. Typically, new and unexpected behaviors
emerge. To shed light on this important topic, several theo-
retical studies (Klumpp and Lipowsky, 2005; Campas et al.,
2006; Beeg et al., 2008; Guerin et al., 2010; McLaughlin,
Diehl, and Kolomeisky, 2016; Malgaretti, Pagonabarraga, and
Joanny, 2017) have been proposed. Some of the new effects that
are predicted to emerge include not only tug-of-war but also
bidirectional movements, spontaneous oscillations, and pos-
itive as well as negative cooperativity. Although considerable
work has already been done in this field, understanding the
in vivo operation ofmotorswill require scrutinizing howgroups
of different kinds of motor function.

XIII. A FINAL REMARK

The eventual goals of understanding biology through the
lenses of physics are to create theoretical tools that are capable
of describing biological functions under crowded and noisy
cellular conditions, and in the process to discover general
physical principles that control life processes. It is likely that,
as the scale at which living systems are examined increases, it
may be possible to describe cellular processes using functional
modules (Hartwell et al., 1999), which is a coarse-grained
view of biology. However, it would be hard to anticipate the
functions of such modules from their components, which are
the molecules of life. Furthermore, interactions between
modules could lead to new functions not encoded in isolated
modules, as illustrated by many examples described in our

perspective. After all, “more is different” (Anderson, 1972).
Because “[n]ature is an excellent tinkerer, not an engineer”
(a quote attributed to Francois Jacob) and tinkering in biology
involves stochastically altering existing modules to evolve
new functions without time constraints or any ultimate design
as a goal (Jacob, 1977), it is likely that concepts in many fields
of science would have to be used to develop an integrated view
of biology.
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