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ABSTRACT

G-protein coupled receptors (GPCRs), a major gatekeeper of extracellular signals on plasma membrane, are unarguably one

of the most important therapeutic targets. Given the recent discoveries of allosteric modulations, an allosteric wiring dia-

gram of intramolecular signal transductions would be of great use to glean the mechanism of receptor regulation. Here, by

evaluating betweenness centrality (CB) of each residue, we calculate maps of information flow in GPCRs and identify key

residues for signal transductions and their pathways. Compared with preexisting approaches, the allosteric hotspots that our

CB-based analysis detects for A2A adenosine receptor (A2AAR) and bovine rhodopsin are better correlated with biochemical

data. In particular, our analysis outperforms other methods in locating the rotameric microswitches, which are generally

deemed critical for mediating orthosteric signaling in class A GPCRs. For A2AAR, the inter-residue cross-correlation map,

calculated using equilibrium structural ensemble from molecular dynamics simulations, reveals that strong signals of long-

range transmembrane communications exist only in the agonist-bound state. A seemingly subtle variation in structure,

found in different GPCR subtypes or imparted by agonist bindings or a point mutation at an allosteric site, can lead to a

drastic difference in the map of signaling pathways and protein activity. The signaling map of GPCRs provides valuable

insights into allosteric modulations as well as reliable identifications of orthosteric signaling pathways.
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INTRODUCTION

G-protein coupled receptors (GPCRs), a major gate-

keeper on the cell surface, mediate various physiological
processes, such as vision, olfaction, cardiovascular func-
tion, and immune responses, which makes GPCRs one
of the most important therapeutic targets1. Consisting of
seven a-helical transmembrane (TM) domains, extracel-
lular and intracellular loops (ECLs and ICLs), GPCRs
relay extracellular signals to the cytoplasmic domain and

activate proteins associated with signal transduction
pathways.1,2 The activity of GPCRs is highly selective to
the type of extracellular signals,3 and is sensitively
modulated by point mutations,4,5 the latter of which is
closely related to the development of drug resistance as
well.6,7 Because agonist binding to orthosteric sites ena-
bles accommodation and activation of G-protein by reg-
ulating the conformational change in cytoplasmic
domain,1 developing antagonist or agonist drugs target-
ing at orthosteric sites has been a straightforward strat-
egy of drug design. Such strategy, however, has often

shown limited success due to the high sequence conser-
vation among the members of a GPCR subfamily.
Instead, there have been several reports on the efficacy of
allosteric modulators in ion-channels8 and other sys-
tems9 as well as GPCRs,10 which highlights the role of
allosteric sites in regulating the orthosteric signaling.

Both orthosteric signaling and allosteric modulation

are associated with long-range communications between

two remote sites in the receptor structure. Such commu-

nications, which are altogether referred to as allostery,
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could be a consequence of a special balance of intramo-

lecular forces formed in the network of the inter-residue

contacts. Even though overall backbone topologies are

similar between two different receptors belonging to the

same subfamily, the sequence variation alters the connec-

tivity map or local packing, which could be led to drastic

differences in the allosteric signaling map. Despite long

history of study on protein dynamics and even with the

atomistic details of three-dimensional structure at hand,

the structural basis of protein allostery still remains elu-

sive and stubbornly resists revealing its microscopic

underpinnings. While protein mutagenesis is a standard

experimental method to identify key residues for protein

function, the associated experiments are laborious and

time-consuming. To overcome this experimental diffi-

culty, there has been a growing interest in the use of the-

oretical/bioinformatics analysis. Careful statistical

evaluations of multiple sequence alignment (MSA) of a

protein family can be used to detect a set of evolutionally

correlated residues.11–14 In addition, variants of normal

mode analysis have been proposed to identify key resi-

dues that control “functional” motion of enzymes and

molecular motors.15–18 Although a complementary use

of these methods with molecular simulations would hold

good promise to decipher the allosteric network of resi-

dues that are critical for the functional dynamics of pro-

teins,19 a certain class of residues are still difficult to

identify if the sequence conservation of the residues is

too strong, or if the residues, deeply buried at the core

regions of proteins, show only a minor conformational

change along with the global conformational dynamics

of protein. For instance, in class A GPCRs, 18 key resi-

dues buried in the TM region, called microswitches (or

rotamer toggle switches)1,20 belong to such a class (see

below).

Here, we propose a simple but powerful method to

calculate the map of allosteric signal flow within protein

structure, which identifies core allosteric sites including

the above-mentioned microswitches. For a protein struc-

ture represented as a network of residues, we used a

measure in the network theory called “betweenness cen-

trality” (CB)21,22 to evaluate the importance of each res-

idue from the perspective of the flow of information (see

Materials and Methods). By adopting A2A adenosine

receptor (A2AAR) and other GPCRs as model systems,

we decide residues important for the allosteric signaling

and pathways of signal flow. The comparison of the

results from our analysis with those from other methods

shows that the CB-based network analysis of protein

structure is much simpler, but is more reliable in identi-

fying the allosteric hotspots that includes microswitches.

Furthermore, allosteric hotspots are identified from

another analysis adapting the concept of network vulner-

ability;23,24 and explicit calculation of individual multi-

ple pathways linking the clusters of long-range correlated

residues across transmembrane shows that majority of

paths pass through the hotspot residues we predicted.

The predictions from the CB-based network analysis of

protein structure should be of great use not only to com-

plement mutagenesis study but also to elucidate the ori-

gin of subtype selectivity as well as the activation and

regulation mechanisms of GPCRs.

MATERIALS AND METHODS

Quantification of sequence conservation

For a given multiple sequence alignment (MSA) of a

protein family, the following statistical free energy-like

function scaled by an arbitrary energy scale kBT� quanti-

fies the extent of sequence conservation:13,19

DGi=kBT�5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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a51
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i
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where Ci is the number of amino acid types at position i

along the sequence, a denotes amino acid species, pa
i is

the frequency of an amino acid a at the position i, and

pa is the frequency of an amino acid a in the full MSA,

which serves as the background frequency. Note that the

quantity “S5
P20

a51 pa
i log ðpa

i =paÞ” is the relative

entropy; S 5 0 if pa
i is no different than pa for all a. The

larger the value of DGi , the sequence at the position i is

better conserved. In this article, we computed

DGðGPCRÞ=kBT� and DGðAR Þ=kBT�, each of which is

evaluated using different MSA. To obtain the MSAs of

AR and GPCR families, we collected the sequences of

adenosine receptor family (219 sequences) and class A

GPCR family (26,655 sequences) from UniProtKB and

Pfam database, respectively. After filtering the redun-

dancy, we obtained 208 sequences and 24,507 sequences

for AR and GPCR family, respectively. For GPCR,

sequence clustering was performed with 40% identity to

reduce the sequence space size, and 2,471 sequences were

obtained. Based on these sequences, the multiple

sequence alignment (MSA) was produced using the log-

expectation (MUSCLE) program.25

Generating the minimal energy structures and
conformational ensemble of the human A2A adenosine
receptor

The conformational flexibility of GPCRs makes it diffi-

cult to obtain high-resolution X-ray crystal structures,

particularly, in the active state. Although several X-ray

crystal structures of the A2AAR are determined in their

antagonist or agonist-bound forms,26,27 structural infor-

mation in the apo form or fully active state is not yet

available.28 To prepare the human A2AAR models (resi-

dues from I3 to Q310) including all the loop regions,

homology modeling was performed using MODELER
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program implemented in Discovery Studio v.3.1

(Accelrys Inc., San Diego, CA, USA). We used the struc-

tures with PDB IDs, 3EML,27 and 3QAK26 as templates

for the apo and agonist-bound forms, respectively, and

2YDV29 and 3PWH to generate models for the loop

regions that were not determined in 3EML and 3QAK.

Conserved disulfide bridges, C71-C159, C74-C146, C77-

C166, and C259-C262, were retained, and the agonist

ligand was inserted to the agonist-bound-form model.

The models were optimized with simulated annealing

and selected based on the DOPE score. The final homol-

ogy structures were obtained under GBSW implicit sol-

vent hamiltonian by using conjugate gradient method.

To generate the minimum energy structures and thermal

structural ensemble of the A2AARs, we performed molec-

ular dynamics simulation for 300 nsec with the NAMD

v2.8 package using the CHARMM22/CMAP force

field.30 To construct an explicit membrane system, the

TM region of the A2AAR was predicted based on the

Orientations of Proteins in Membranes (OPM) database

and the palmitoyloleoylphosphatidylcholine (POPC)

membrane was placed around the TM region of the recep-

tor. Then, the receptor in membrane system was solvated

with the explicit water molecules and ionized with 150

mM KCl. The whole system was energy minimized in the

order of lipid membrane, waters, and the entire molecules,

followed by the heating, equilibration and production runs

for 300 nsec under NPT ensemble. The trajectories of pro-

duction run were monitored in terms of total conforma-

tional energy, tilt angle of TM6, and root mean square

deviation relative to the initial (t50) structure. In accord

with the common notion for GPCR dynamics, the tilt

angle of TM6 varied between 135� and 150� for the apo

form, and between 120� and 145� for agonist-bound form

[Figs. 1(B,C)]. Finally, the minimal energy conformations

from the simulated trajectories were obtained for the apo

and agonist-bound forms. Our minimal energy conforma-

tion for the agonist-bound form has a tilt angle 133� in

TM6, whereas the agonist-bound crystal structure 3QAK

has a tilt angle of 142�

Figure 1
Structure and dynamics of A2A adenosine receptor. (A) Seven TM helices and the intra- and extracellular loops. (B, C) Total conformational energy,
TM6 tilt angle (h) measured between three points defined along the center of helix using three group of residues (255–258, 244–247, 219–222),

and RMSD in reference to the minimum energy structure from the MD trajectories of the (B) apo and (C) agonist-bound forms. Analysis was car-
ried out for the boxed time interval, which excludes the first 50 nsec trajectories. (D) The minimum energy structures of the A2AARs in the apo

and agonist-bound forms are overlaid to show that the most significant difference between the two forms is in the cytoplasmic region of TM5-

ICL3-TM6. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Statistical assessment of a prediction
method

Since there are 18 microswitches in class A GPCRs, the

probability (pm) of correctly identifying at least one

microswitch out of 308 residues of GPCRs is given by

pm5 18
308
� 0:06. Then the expectation value of identifying

microswitches by randomly selecting n residues is

hnirand5n 3 pm. Thus, if Nm microswitches are identified

with a certain method, one can evaluate prediction effi-

ciency of the method by calculating the ratio between

Nm and hnirand , i.e.,

um5
Nm

hnirand

: (2)

Construction of the residue interaction
network

We constructed the residue interaction network by

representing each amino acid residue as a single node.

To take into account the effect of side chain, we consid-

ered two coarse-grained centers per residue, i.e., Ca car-

bon for backbone and a farthest heavy atom from Ca

for the side chain. By doing so, we included the cases of

backbone-backbone, backbone-side chain, side chain-side

chain contacts. In our network model, a link was estab-

lished between two Ca-carbons when any pair of back-

bone and side chain of two residues is less than 7 Å,31

thus the side chains are implicit in the network.

Network centralities

Simplifying architecture of complex system into a net-

work (graph), which is represented with “nodes” (verti-

ces) and “links” (edges), can be used as a powerful tool

to extract key properties of the system topology and its

components.32 Originally devised for analyzing social

phenomena and later actively extended to reveal hub

proteins central to the cellular, regulatory, metabolic

networks as well as network property of each orga-

nism,33–35 network analysis can be carried out for

studying protein structures as well. In the last decade,

much attention has been paid in this direction. As a gen-

eral statistical property of protein structure networks,

networks of folded proteins display small-worldness, but

are not scale-free.36–38 By quantifying key network

properties for monomeric protein structures, one can

address issues such as the plasticity of protein structures,

folding of protein domains, and identify key residues

along the folding pathways.39–42 In fact, the network

analysis of protein structures can be extended further to

identify key residues for allostery and their wiring dia-

gram. Several studies have recently been carried out to

address the microscopic mechanism of protein allostery

by applying the strategies of network or community

analysis in conjunction with molecular dynamics simula-

tion on model systems43,44 including GPCRs.45 To

address the issue of allostery, we utilized the betweenness

centrality, one of the most fundamental concepts in net-

work analysis explained below, in identifying allosteric

hotspots by surmizing that allosteric hotspots are the

mediators of information flow in a network topology of

a given protein structure.

Here the definitions are given for the three representa-

tive types of centrality for a node in a network: (1) The

degree centrality CDðvÞ measures the number of edges

linked to a node v.

CDðvÞ5degðvÞ: (3)

Note that CDðvÞ is identical to the number of contacts

with its neighboring residues. (2) The closeness centrality

CCðvÞ, an inverse of mean geodesic distance (shortest

path length) from all other nodes to the node v, meas-

ures how fast a signal from the node v can be transmit-

ted to other nodes.

CCðvÞ5
XN

i51

dði; vÞ=ðN21Þ
 !21

; (4)

where dði; vÞ is the minimal number of edges that bridge

the nodes i and v. For a given network topology, dði; jÞ
can be calculated by using Dijkstra’s algorithm.46 (3)

The betweenness centrality is the measure of the extent

to which a node has control over transmission of infor-

mation between the nodes in the network, which is

defined as:22

CBðvÞ5
2

ðN21ÞðN22Þ
XN21

s51

XN

t5s11

rstðvÞ
rst

; (5)

where s 6¼ t 6¼ v. In the above definition, rst is the num-

ber of shortest paths linking the nodes s and t, and

rst ðvÞ is the number of shortest paths linking the nodes

s and t via the node v.22 The factor
ðN21ÞðN22Þ

2
is the

normalization constant. To calculate CBðvÞ, we used

Brandes algorithm,47 which can reduce the computa-

tional cost of Eq. (5) substantially. The significance of

betweenness centrality is succinctly illustrated in Figure 2

using a graph where both CD and CB values are com-

puted at each node. The node x has a greater connectiv-

ity (CD56) to other nodes but its removal from the

network does not destroy the communication among

other nodes. In contrast the node y has less connectivity

(CD54) than x; yet upon removal of y the whole graph

would be split into three pieces. In the light of commu-

nication or the flow of information the node y is most

critical. Note that y has the highest CB value among the

whole nodes. Although a few studies24,48–50 might

appear similar in spirit to our work in that they also use

Y. Lee et al.
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centrality measures and shortest paths to decipher the

allostery, it should be noted that different centrality mea-

sure has different assessment of each node. The between-

ness centrality, which evaluates the importance of each

node based on the amount of traffic or the amount of

inter-node communication, is one of the most ideal

measures to identify allosteric hotspots for a given pro-

tein structure.

RESULTS AND DISCUSSION

Microswitches: Benchmarks for prediction
tools on GPCR allostery

The activation mechanism of receptors belonging to

class A GPCRs, which include adenosine, b1;2-adrenergic,

rhodopsin, chemokine, dopamine, histamine receptors, is

believed to be accompanied by a global rearrangement of

TM helices that helps accommodate the binding of

G-proteins. In particular, the newly resolved X-ray crystal

structure of the active form of b2-adrenergic receptor

complexed with heterotrimeric G-protein51 has lent

strong support on such proposal by clearly demonstrat-

ing that 10o outward tilt of the intracellular part of TM6

helix is essential for the full activation of the receptor.

For the class A GPCRs, it has been suggested that the

activation mechanism is regulated by 18 microswitches

(N24, D52, D101, R102, Y103, W129, P189, Y197, E228,

C245, W246, P248, N280, S281, N284, P285, Y288,

F295),20,52 which consist of DRY (D1013.49, R1023.50,

and Y1033.51 in TM3), CWxP (C2456.47, W2466.48, and

P2486.50 in TM6), and NPxxY (N2847.49, P2857.50, and

Y2887.53 in TM7) motifs53,54 (where “x” stands for any

amino acid residue and the numbers in the superscript

of residues are based on the Ballesteros Weinstein num-

bering system55), and others. Historically these residues

were first identified either by evaluating the sequence

conservation among the class A GPCR family or by com-

paring the two structures of GPCR subtype in different

states; and the functional importance of the selected resi-

dues was subsequently confirmed by mutagenesis stud-

ies.1,20 Thus, a receptor belonging to the class A GPCRs

is expected to utilize many of these 18 microswitches for

allosteric signaling. Although one should still be mindful

of the fact that the functional role of these microswitches

have not been verified for all the GPCR subtypes, the 18

microswitches can be used as benchmark residues to

assess the performance of a prediction tool on allosteric

hotspots in GPCRs (see Materials and Methods). The

extent of sequence conservation in class A GPCRs, quan-

tified by evaluating the sequence conservation free

energy DG [Eq. (1)] indicates that 15 out of 18 micro-

switches (except for P189, S281, and E228) are highly

conserved, satisfying DGðGPCR Þ=kBT� � 0:2 [Fig. 3(A,B)].

Figure 3(C) visualizes how rotameric transition is made

from the inactive to active state and highlights the differ-

ence in the orientation of the side chain in some of the

microswitches by contrasting the apo and agonist-bound

states.

The allosteric hotspots of A2A adenosine receptor
mediate the flow of information

As a tool for studying protein allostery, the network

centrality, a measure that quantifies the degree of central-

ization of a node in network theories, can be employed

to unravel the hotspot residues of a given protein net-

work. Among the popular centrality measures in network

theories21 (degree (CD), closeness (CC), and betweenness

(CB) centralities, whose definitions are given in Materials

and Methods), the betweenness centrality, CBðvÞ, evalu-

ates the extent to which the node v has control over the

information flow in the network.22 Conceptually, it

could be argued that a node of high CB value is the spot

mediating the allosteric signal flow (Materials and Meth-

ods). By using the minimum energy structures obtained

from MD simulations we constructed the residue interac-

tion network for the apo and agonist-bound states of the

A2AAR by taking into account the presence of side chains

[Fig. 4(A), see Materials and Methods], and calculated

Figure 2
An example of graph showing the difference between the degree and
betweenness centralities. (A) Degree centrality, (B) betweenness central-

ity. The calculated centrality value is marked in each node. [Color fig-

ure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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Figure 3
Microswitches in GPCRs. (A) Sequence conservation free energy (DG=kBT�) computed for the class A GPCR family. The specification of GPCR
inside the parenthesis of DGðGPCRÞ in the figure indicates that DG=kBT� value was calculated for a multiple sequence alignment for the class A

GPCR family. The residues with DG � 0:2 are annotated; and among them 15 residues identified as microswitches in literatures are highlighted in
magenta. (B) Residues of DG=kBT� � 0:2 are depicted with spheres on A2AAR structure. Among them, microswitches are colored in magenta, and

others with DG=kBT� > 0:2 are in light-blue. The residues P189, E228, and S281, that are proposed as microswitches in literatures but have
DG=kBT� less than 0.2, are depicted using stick representation. (C) Conformational changes of the key structural motifs and microswitch residues

are depicted using the minimal energy structures of apo (grey) and agonist-bound forms (cyan) obtained from our MD simulations. It is proposed

that the rotameric transitions of microswitches are critical for the intra-molecular signal transmission of GPCRs.

Y. Lee et al.
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CDðvÞ, CCðvÞ, and CBðvÞ [Fig. 4(B)]. The overall correla-

tions between the different centrality measures are not

that strong (correlation coefficient 5 0:6620:72) (Sup-

porting Information Fig. S1); thus a residue with high

CD (or equivalently with a large number of contacts) or

CC does not necessarily retain a high CB value. Among

the three network centralities, CB exhibits the highest

selectivity [Fig. 4(B)]. As depicted on the A2AAR struc-

ture, the residues with CB � 0:05 (the top 10% of the

CB-distribution), which are deemed important for

Figure 4
Network centrality analysis of A2A adenosine receptor. (A) Network representation of the A2AAR in apo form built by taking into account the pres-

ence of side chain in each residue (see Materials and Methods). (B) Degree (CD), closeness (CC), betweenness centralities (CB) for each residue of
the A2AAR (blue: the apo form; red: the agonist-bound form) and the sequence conservation free energy (DG=kBT�) calculated for AR family. (C)

Scatter plot of (DG=kBT�, CB) (blue: apo form; red: agonist-bound form). Based on CBðiÞ and DGi=kBT� values, the residues of A2AAR were cate-
gorized into four groups from I to IV. The residues with high CBð� 0:05Þ (group I and II) and with high sequence conservation (DG=kBT� � 1:5Þ
in AR family (group I and III) are depicted on the apo structure of the A2AAR in Supporting Information Figure S2A and S2B, respectively. (D)
Among the residues that belong to the groups I and II with C

Apo
B � 0.05, key residues confirmed from the previous biochemical studies for class A

GPCRs are marked on the A2AAR structure using different colors (magenta for the microswitches (see Supporting Information Fig. S3 for the top

and bottom views): cyan for the residue important for agonistic binding; pale green for the residues important for ligand binding; blue for the resi-
dues in hydrophobic barrier); the underlined residues satisfy the condition jCApo

B 2C
Ago
B j � 0:02; and the residues marked with asterisks are those

whose mutation data is available in GPCRDB for A2AAR.

Intramolecular Signal Transduction of GPCR
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controlling information flow from the definition of CB, are

distributed contiguously, bridging the extracellular (EC)

and intracellular (IC) parts of TM helices [Fig. 4(D)].

The 39 allosteric hotspots of A2AAR predicted using

CB � 0:05 [the residues are listed in the groups I and II

in Fig. 4(D)] include many important residues suggested

from biochemical studies for class A GPCRs in general

and A2AAR in particular. Among the 18 residues sug-

gested as general microswitches for class A GPCRs, 11 of

them (N24, D52, D101, R102, W129, Y197, E228, W246,

N284, P285, Y288) are identified by the simple condition

of CB � 0:05. Since the probability of correctly identify-

ing at least a single microswitch from random drawing is

pm518=308 � 0:06, the expectation value of identifying

microswitches by selecting 39 residues is 393pm � 2:3
(see Materials and Methods). Given that we identified as

many as 11 residues the performance of our CB-based

analysis should be considered significant. Among the res-

idues identified by this condition other than micro-

switches, F442.42, L482.46, L953.43, I983.46, and V2396.41

[blue in Fig. 4(D)] compose a region called the hydro-

phobic barrier that separates CWxP and NPxxY motifs

from DRY motif;56 F168 in ECL2, H2787.43, and T883.36

[green in Fig. 4(D)] are the residues known to be impor-

tant for ligand binding in AR family.26 F168 can poten-

tially interact with adenine ring of nucleoside ligands via

p-p stacking. T883.36 in the TM3 helix that can form a

hydrogen bonding with an agonist is important for sens-

ing the agonist binding and transmitting signals to the

intracellular G-protein binding site;26,57,58 L48, M177,

V84, T88, Q89, S91, H250 [marked with asterisks in Fig.

4(D)] are also found essential for receptor function of

A2AAR according to the mutation data in GPCRDB.59

Lastly the residues identified by CB � 0:05 but not com-

mented above to have any overlap with the previous bio-

chemical studies (M193, V55, I60, I64, I66, L85, L87,

I92, F93, A97, Y112, I125, I135, F182, L247) could be

regarded as candidate residues for allosteric hotspots of

A2AAR that our CB-based analysis predicts, which are

amenable to further experimental study.

In conjunction with CB value, the extent of sequence

conservation in each residue, DGðARÞ=kBT� [Eq. (1)],

based on the multiple sequence alignment of adenosine

receptor subfamily, could be useful for the purpose of our

analysis. Here, it should be noted that DGðARÞ is different

from DGðGPCRÞ in Figure 3(A). DGðARÞ is calculated by

restricting the MSA to the subfamily of adenosine recep-

tors while DGðGPCRÞ is calculated using the entire MSA

for class A GPCRs. Partitioning the residues into four dif-

ferent groups based on the DG=kBT� and CB scores

[Fig. 4(C)], i.e., CB � 0:05, DG=kBT� � 1:5 for group I;

CB � 0:05, DG=kBT� < 1:5 for group II; CB < 0:05,

DG=kBT� � 1:5 for group III; CB < 0:05, DG=kBT� < 1:5
for group IV, we make a few points below.

a. First, the definitions of CB and DG=kBT� are totally

independent from each other. Evident from the scatter

plot in Figure 4(C), no clear correlation is found

between CB and DGðARÞ=kBT�. Yet, the commonly

identified residues with the conditions of high CB

(� 0:05) and high DG=kBT� (� 1:5), namely the

group I residues contain as many as eight micro-

switches and four other hotspot residues. The group I

residues (CB � 0:05, DG=kBT� � 1:5) are clustered at

the core region of TMs (magenta region in Supporting

Information Figs. S2A and S2B), the contiguous sur-

face of which is known to form hydrogen-bond net-

work with the conserved polar residues and structural

water molecules.20,60 Of particular note is that evolu-

tionarily covarying residues identified from the

Figure 5
Difference of CB values calculated for apo and agonist-bound structures. Residues with jCAgo

B 2C
Apo
B j � 0:02, contributed from TM3, 5, 6, and 7,

are depicted with magenta for group I, green for group II, grey for group IV, and their indices are listed on the table.
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statistical coupling analysis (SCA), by definition, can-

not have a high DG=kBT� value; thus SCA cannot

detect residues in group I. The efficacy of CB score in

identifying microswitches as well as other hotspots is

compared with SCA for the case of rhodopsin in the

following section and Figure 6.

b. For AR family, most of the residues with low CB but

with high DG score (residues belonging to the group

III) are distributed around the ligand binding site and

in the cytoplasmic side (Supporting Information Fig.

S2B). The high sequence conservation in the ligand

binding sites, identified from the MSA of AR subfam-

ily, is consistent with our general notion that adeno-

sine receptors are specific to the adenosine ligand,

which allows the receptor to effectively discriminate

other ligand types. On the other hand, when MSA is

carried out for the entire sequences of the class A

GPCR family, the conserved residues are identified

more at the cytoplasmic region where G-protein binds

[Fig. 3(B)]. These findings suggest that the subtype

specificity or functional classification is correctly cap-

tured in residues with high DG value as long as a

good MSA is used.

c. There are slight differences in the CB scores between

the apo and agonist-bound forms. The contribution

of residues satisfying the condition jCAgo
B 2C

Apo
B j �

Figure 6
Comparison between the allosteric hotspots for rhodopsin predicted by SCA and CB-based analysis. Hotspots identified from SCA by (A) Suel

et al.,12 and (B) Dima et al.,13 and (C) from our network analysis based on the residues with CB � 0:05. Each method detected (A) 2 (B) 5 (C) 8
microswitches.

Intramolecular Signal Transduction of GPCR
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0:02 comes from the group I (12.5 %, residue num-

ber: 197, 246, 278), group II (37.5 %, residue number:

89, 93, 95, 97, 98, 112, 125, 135, 247), and group IV

(50 %, residue number: 90, 107, 190, 192, 226, 230,

231, 235, 279, 280, 284, 291) (Fig. 5). The residues

identified with high jCAgo
B 2C

Apo
B j � 0:02 values are

mainly located in TM3 and TM5–7. Of particular

note is that majority of the residues with

jCAgo
B 2C

Apo
B j � 0:02, also satisfying C

Apo
B � 0:05, are

found in the group II [9 out of 12, these residues are

marked with underlines in the table of Fig. 4(D)],

which suggests that among the allosteric hotspots

(groups I and II) the less conserved residues (group

II) are more sensitive to the apo ! ago (or

inactive ! active ) conformational change.

As presented above, the CB-based network analysis of

the A2AAR structure enables us to identify the allosteric

hotspots of A2AAR that show neither the sequence varia-

tion nor a detectable conformational change in the tran-

sition from the apo to agonist-bound form. Next, we

will show that the performance of CB-based analysis in

identifying the location of microswitches is remarkable

by making quantitative comparisons with other conven-

tional approaches.

Comparison with other approaches

Statistical coupling analysis (SCA)

A strong signal of covariation between two remote res-

idues in a multiple sequence alignment, which is

exploited as a basic principle to identify clusters of resi-

dues under long-range coupling in a bioinformatical

method called statistical coupling analysis (SCA),11–14 is

viewed as a consequence of allosteric communication

mediated by multiple groups of residues that lie in the

midst of signaling pathways. While it was proposed that

the method using SCA on GPCR identified the “sparse

network of coevolving amino acids” (or sectors)61,62

that bridges the ligand-binding site to the cytoplasmic

G-protein interaction site, forming the allosteric signaling

pathways,12,13 it fails to detect several highly conserved

microswitches. Figure 6 shows the list of allosteric hot-

spots identified for bovine rhodopsin by SCA from two

different studies [Figs. 6(A,B)] and the residues with

high CBð� 0:05Þ [Fig. 6(C)]. Although the two methods

are based on entirely different assumptions, one solely

based on sequence information, the other on network

topology, allosteric hotspots identified for rhodopsin are

mainly distributed around the TM region. It should,

however, be noted that CB-based network analysis is

much more efficacious in identifying the microswitches,

which are considered critical in the activation mechanism

of class A GPCRs. For rhodopsin, SCA using two slightly

different definitions of DG=kBT� in Refs. 12 and 13 iden-

tifies two and five microswitches, respectively, whereas

our CB-based analysis identifies eight microswitches out

of 18 predicted residues.

Statistical assessment of three results in Figure 6 can

be made by calculating um, the ratio between the num-

ber of predicted microswitches (Nm) and the expectation

value (hnirand) [Eq. (2)]. The number of correctly identi-

fied microswitches (Nm) and the number of residues

selected for the prediction (n) in each method are

ðNm; nÞ5ð2; 31Þ, (5,55), and (8,38) for (i) Suel et al., (ii)

Dima et al., and (iii) CB-based analysis, respectively.

Therefore, uðiÞm 52=1:8, uðiiÞm 55=3:2, and uðiiiÞm 58=2:2.

Note that ðuðiÞm < uðiiÞm < uðiiiÞm Þ indicates that prediction

of microswitches made by CB-based analysis is better

than those made by SCA, attesting to the utility of CB-

based analysis.

Structural perturbation method (SPM)

The SPM is used to identify key residues controlling

the conformational dynamics by assessing the importance

of a residue in the elastic network representation under

local perturbation.15,16 The perturbation is invoked by

changing the force constant of the springs that link the

residue and its neighbors. When the overlap of mode M

(~v M ) with the vector defining the transition of apo to

agonist-bound form (~r apo!ago5~Rago2~Rapo) is significant,

i.e., when cos ð~r apo!ago �~v MÞ is large, the frequency

change of a mode M under the perturbation of i-th

residue is calculated using dxðM ; iÞ5~v T
M � dH �~v M ,

where dH is the Hessian matrix of the following

perturbed energy potential for elastic network model:

dEENM 5 1
2

P
ij dkoðrij2ro

ijÞ
2Hðro

ij2Rc). Note that the

expression of dxðM ; iÞ5~v T
M � dH �~v M is analogous to the

first-order energy correction term for the M-th eigen-

mode in non-degenerate perturbation theory.15,16 Thus,

if a perturbation on the i-th residue leads to a large

change in dxðM ; iÞ, the residue i is considered to be

important in the SPM.

We found that in both for apo and agonist-bound

structure the mode 7 (excluding the three translational

and three rotational modes, the mode 7 is the lowest

eigenmode) has maximum overlap with the conforma-

tional change~r apo!ago (Fig. 7). As shown in Figure 7, key

residues with high dx are mainly distributed in the

extracellular and intracellular regions of TM helices,

which are accompanied with large conformational

changes when the transition occurs from the apo to

agonist-bound form. Note, however, that even the super-

position of six major modes, which have large overlap

with conformational changes, is not good enough to

identify microswitches that are buried deep inside the

GPCR structure. Prediction efficiency of SPM that identi-

fies Nm56 and 5 microswitches out of n 5 98 and 97

residues for apo and agonist-bound forms (Fig. 7) is

only um51:1 and 0.9, respectively [see Eq. (2)]. Whereas,

um54:8 for CB-based analysis indicates that CB-based

Y. Lee et al.
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analysis certainly outperforms SPM in identifying micro-

switches. Hence, neither is the SPM suitable for identify-

ing the microswitches of GPCRs, which undergo only a

minor change in their positions before and after the

activation.

The microswitches are critical for the integrity of
signaling network of GPCRs.

In theory of complex networks, a network’s tolerance

to an error or vulnerability to an attack is evaluated

using the relative change in the average network central-

ity when a node, say x, is removed,33 which can be writ-

ten as follows:

Cx
n5
hCni2hCx

n i
hCni

(6)

where hCnið�
PN

i51 CnðiÞ=NÞ is the average network

centrality, and hCx
ni is a value evaluated for a newly con-

structed network when the node x is removed from the

original network. The idea of network vulnerability is, in

fact, routinely practiced in molecular biology in the form

of protein mutagenesis assay, which measures the effect

Figure 7
SPM-identified residues with high dx values for the superposition of high overlapping modes (M57228) of (A) the apo (blue) and (B) the

agonist-bound form (red). The degree of overlap, cos ð~r apo!ago �~mM Þ, calculated between the conformational change from apo to agonist-bound
state and Mth normal mode (top). The superposition of hotspot residues, satisfying dxðM ; iÞ � 0:01 for high overlapping modes, are depicted

with blue and magenta surfaces, respectively, and their residue numbers are listed in the table below, in which the microswitches are marked with
asterisks. Note that the key residues identified by SPM are mainly located around the hinge region controlling the motion of TM5-ICL3-TM6. For

comparison, the locations of the microswitch residues are depicted with yellow spheres. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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of mutations on the degree to which proteins can retain

their activity. Adapting the idea of network vulnerability,

we performed in silico glycine scanning of the con-

structed residue interaction network of the A2AAR. As

straightforwardly implicated by the term “glycine

scanning”, we mimicked the protein mutagenesis assay

by deleting the side chain of each residue and evaluated

the deletion effect on the network. Our glycine scanning

analysis differs from the previous study applying network

analysis24 in that only a side chain, rather than the

entire residue, is deleted for each scan. It is important to

keep Ca backbone because, even in the absence of the

side chain, intra-molecular residue contacts can still be

formed via backbone-side chain or backbone-backbone

interactions. Note that here a readjustment of local envi-

ronment due to the side chain removal is not considered.

Our aim here is to make a quantitative assessment of the

role of the side chain in the original residue interaction

network. The greater is the role played by the removed

side chain in maintaining the network structure, the

more significant would be the response of average net-

work centrality to the removal of that particular residue.

We assess the effect of deleting side chains by calculating

the changes in average closeness (hCCi) or betweenness

centralities (hCBi), both of which turn out to be highly

correlated [Fig. 8(A)].

Our glycine scanning analysis identified the group of

residues critical for the integrity of interaction network

that is responsible for the receptor allostery. The residues

with strong network vulnerability (jCCn j � 0:003) are

identified in the regions around CWxP and NPxxY

motifs [Fig. 8(B)],27 which retain proline that creates a

kinked helix in the middle of TM6 or TM7.20 In the

inactive state of GPCRs, interactions between the

Figure 8
Glycine scanning (network vulnerability) of A2A adenosine receptor. (A) CCB

(top) and CCC
(bottom) (blue: the apo structure; red: the agonist-

bound structure). Scatter plot of (CCB
, CCC

) is shown to indicate that CCB
and CCC

are well correlated. (B) Regions with high network vulnerability
(jCj � 0:003) in the apo (left) and agonist-bound forms (right) are represented with blue and red surfaces, and corresponding residue indices are

listed in the table.
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cytoplasmic ends of TM3 and TM6 constrain the relative

motion of these segments by forming an ionic-lock

between R1023.50 and E2286.30.20 Disruption of such con-

straint, triggered by agonist binding, enables TM6 to

move outward from TM3 [see DRY motif and ionic lock

in the Fig. 3(C)]. NPxxY motif, which interacts with

TM6 or helix 8, imposes structural constraints in GPCRs

and stabilizes the helical structures.63,64 In addition,

C166, which constrains ECL1 and ECL2 by forming a

disulfide bond with C77, is detected to have high net-

work vulnerability. It is of note that the constrained ran-

dom coil structure of ECL2 is unique to A2AAR in that

the ECL2 of other GPCRs typically forms b sheet or

a-helix.27

Distinct CB-based wiring diagrams reflect GPCR subtype
specificity

Here we extend the CB-based network analysis to other

class A GPCRs, including b1, b2 adrenergic receptors

(PDB IDs: 2VT4 and 3NYA), chemokine CXCR4 receptor

(3ODU), dopamine D3 receptor (3PBL), histamine H1

receptor (3RZE), and bovine rhodopsin (1U19).65 Simi-

lar to the A2AAR, the network of residues with high

CBð� 0:05Þ in these class A GPCRs form contiguous sur-

face that bridges between the ligand binding and

G-protein binding sites (Supporting Information Fig.

S4). In most GPCRs the high CB residues are mainly dis-

tributed around the “minor binding pocket,” located in

the shallow part of the ligand binding site between the

TM1, 2, 3 and TM7, which serves as an onset point of

orthosteric signal transduction process.66 In particular,

when the CB is restricted to a value greater than 0.075,

the high CB residues bridge the extracellular region of

TM3 to the TM6, 7 helices. For the class A GPCRs, the

highly vulnerable residues identified by the glycine scan-

ning analysis are mostly distributed in TM3 and TM7

(Supporting Information Fig. S5). Note that K2967.43 in

bovine rhodopsin, known to contribute to the activation

of rhodopsin by forming a covalent bond with retinal,66

is also identified (the residue marked with a yellow arrow

in Supporting Information Fig. S5G). Along with the

variation of residues (F168 in A2AAR; R183 and Y190 in

CXCR4 receptor; and K179 in H1 receptor) and wiring

diagram in ECL2 detected by glycine scanning analysis,

the variations in the high CB-surfaces demonstrated in

the class A GPCRs (Supporting Information Fig. S4) are

deemed responsible for their subtype selectivity.66

Long-range transmembrane cross-
correlation in the agonist-bound
active state

As suggested by the G-protein bound structure,1 it is

expected that the agonist binding site in the extracellular

side and intracellular region are functionally coupled in

the active forms of GPCRs, and this coupling is mediated

by a structural reorganization of seven membered TM

helices. To quantify such long-range coupling in the

dynamics of A2AAR, we calculated cross-correlation

between residues in terms of CB [Eq. (2)] by using the

conformational ensemble of the A2AAR generated from

the 300 nsec MD simulation trajectory (see Materials

and Methods and Supporting Information Fig. S9).

CCij5
hCBðiÞCBðjÞi2hCBðiÞihCBðjÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðdCBðiÞÞ2i

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðdCBðjÞÞ2i

q (7)

where h. . .i refers to an ensemble average; thus hCBðiÞi
denotes the average betweenness centrality for the resi-

due i. As shown in the cross-correlation matrices for

apo and agonist-bound form (Supporting Information

Figs. S6 and S7), the signatures of correlation between

residues are scattered all over the structure. To identify

residue pairs with long-range cross-correlation we

imposed the conditions of CCij � 0:5 and dij > 6 [Fig.

9(A)]. Importantly, while in the apo structure the resi-

due pairs under high cross-correlations are distributed

only around the cytoplasmic side of the TMs [Fig.

9(A) and Supporting Information Fig. S7), functionally

important long-range couplings are detected between

the ligand-binding and cytoplasmic G-protein binding

sites in the agonist-bound form [Fig. 9(A) and Sup-

porting Information Fig. S7]. This result from the

agonist-bound form is consistent with the view that a

bound agonist makes tight interactions with the sur-

rounding residues and increases the receptor activity

above its basal level.1 The long-range coupling between

the ligand binding site and G-protein binding site for

the agonist-bound form is also grasped by computing

the mean square fluctuation using structural ensemble

(see Supporting Information Fig. S8).

Notably, there are multiple parallel paths linking the

correlated residues,67 the degeneracy of which varies

from 1 to as many as 480 depending on the residue pair

(For the details of entire paths between the correlated

residues, see Part 1 and 2 in Supporting Information II).

The presence of multiple parallel pathways is consistent

with the recent new view of allostery.50,67,68 As some of

the representative allosteric paths, linking the residues in

extracellular and intracellular regions, are demonstrated

in Figure 9(B), the 80 % of transmembrane signaling

paths go through the residues with high CB, which

includes the microswitches as well as other functionally

important residues (see the residues represented with

cyan spheres in Figure 9(B,C) and Part 1, 2 in Support-

ing Information II). It is these residues, lying in the

midst of communication pathways, that toggle the intra-

molecular signaling. The qualitatively disparate results

displayed in apo and agonist-bound forms provide a pic-

ture consistent with the function of GPCRs.

Intramolecular Signal Transduction of GPCR
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To systematically group correlated residues, we carried

out hierarchical clustering analysis on the acquired mat-

rices and represented the result using dendrogram (Sup-

porting Information Fig. S7). From the two clusters of

positively correlated residues (cluster 1 and 2), the clus-

ters of residue pairs with the strongest signal are shown

on each clustered cross-correlation map of the apo and

agonist-bound form with residue indices. The cross-

correlated residue pairs obtained using hierarchical clus-

tering analysis (Supporting Information Fig. S7) are sim-

ilar to those from the simple condition of CCij � 0:5
and dij > 6 that we imposed in Figure 9. The residues

within each of cluster 1 and 2 are the parts of structure

that “breathe together” in terms of CB values. Also, it is

noteworthy that in terms of the correlation of CB value

there is a strong anti-correlation between cluster 1 and

cluster 2, which suggests that “breathing” of residues in

cluster 1 and cluster 2 occurs out-of-phase.

Lastly, it is worth considering the signaling paths on a

weighted graph. To this end, we employed the

“dynamical network community analysis,”43 imple-

mented to the molecular visualization package VMD. In

this analysis, an inter-residue cross-correlation calculated

from an ensemble of structures from long MD simula-

tion is used for the weight of edges in the network.

Using the NetworkView module in VMD and our 300 ns

MD simulation as an input, we calculated the optimal

and a set of suboptimal paths (offset 520) between resi-

due pairs that show long-range cross-correlation (Sup-

porting Information II—Part 3). In most of the cases,

the allosteric signaling paths computed on unweighted

and weighted graphs for agonist-bound form are qualita-

tively similar; yet, it is interesting to point out the large

detour in the signaling paths of the residue pairs 116-4

and 116-10 on weighted graph (see Fig. S5 in Supporting

Information II).

Figure 9
Multiple pathways of intramolecular signals that link the cross-correlated residues in the extra and intra-cellular domains of A2AAR. (A) Residue

pairs with high cross-correlation (jCCij j � 0:5) and distance greater than 6 (dij > 6) are marked using blue circles and red squares for the apo
form (upper left corner) and for the agonist-bound form (lower right corner), respectively (see the original map in Supporting Information Fig.

S6). The minimum paths between the cross-correlated residues are shown for apo and agonist-bound forms on the left and right, respectively. For
agonist-bound form, long-range cross-correlations are detected between the extracellular ligand binding and cytoplasmic G protein binding sites.

Microswitches and other residues with high CB on the paths are displayed in cyan spheres. (B) Examples of the multiple signaling paths between

the agonist binding and G-protein binding sites. (C) Schematic of transmembrane signaling represented by multiple shortest paths linking the
long-range cross-correlated residues.
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CONCLUSIONS

Deciphering the protein allostery has long been one of

the grand challenges in molecular, structural, and com-

putational biology. We elucidated allosteric hotspots and

signaling pathways of the A2AAR and other class A

GPCRs by using the measure of betweenness centrality

for each residue in protein structure network, the glycine

scanning analysis, and the cross-correlation analysis

based on the structural ensemble from MD simulations.

Just like the role of native topology has been illuminated

in the folding and unfolding mechanisms of proteins,69–

72 the success of analysis using graph representations of

protein topology underscores the importance of native

protein topology as one of the most critical determinants

for intramolecular allosteric signaling. It is of special

note that signals generated from protein dynamics, which

include changes of inter-residue force, contact, or even

local packing, are transmitted via the contacts formed

between two neighboring residues. From the perspective

of signal transduction, the betweenness centrality, defined

with the number of parallel pathways on a given node, is

physically a sensible way to quantify the amount of traf-

fic on the node, thus to identify allosteric hotspots for a

given protein structure. Given that residues of GPCRs

associated with allostery and their signaling pathways are

hard to capture using other conventional methods

exploiting the information of sequence coevolution or

variants of normal mode analysis (Figs. 6 and 7), the

success of CB-based analysis presented here is

remarkable.

At the current stage, not only in the context of allo-

steric modulations in drug design73–75 but also in the

ligand binding (or release) induced conformational

change in biological motors,76,77 the importance of

allostery in understanding the protein dynamics is

highlighted more than ever. From the methodological

perspective of this study, our CB-based network analy-

sis on protein structures is found quite powerful in

identifying allosteric hotspots, and the results of analy-

sis are in strong correlation with biochemical studies.

The list of key residues for allostery and their cross-

correlation identified here should be of great help to

design experiments as well as contribute to our under-

standing to the dynamics of GPCRs. Our simple

approach can not only be extended to study the allos-

tery of other important proteins but also to study the

allosteric communication within protein-protein or

protein-RNA complexes.43
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