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Thermodynamic uncertainty relation of interacting oscillators in synchrony
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The thermodynamic uncertainty relation sets the minimal bound of the cost-precision tradeoff relation for
dissipative processes. Examining the dynamics of an internally coupled system that is driven by a constant
thermodynamic force, we, however, find that the tradeoff relation of a subsystem is not constrained by the
minimal bound of conventional uncertainty relation. We made our point explicit by using an exactly solvable
model of interacting oscillators. As the number (N ) of interacting oscillators increases, the uncertainty bound of
individual oscillators is reduced to 2kBT /N upon full synchronization under strong coupling. The cost-precision
tradeoff for interacting subsystems is particularly relevant for subcellular processes where interactions among
multiple energy-expending components lead to emergence of collective dynamics.
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I. INTRODUCTION

Orders that emerge in life are maintained via exchanges of
energy, matter, and information with the environment [1,2].
The recent advances in stochastic thermodynamics [3–5] un-
derscores the interplay between energy, information, and their
tradeoffs in small systems out of equilibrium, epitomized by
diverse biological processes [6–15]. To maintain a dissipative
process at nonequilibrium steady states (NESS), free energy
consumption (or heat dissipation), q(τ ), is bound to the pre-
cision of time-integrated output observable, θ (τ ), that char-
acterizes the process [8,9]. The thermodynamic uncertainty
relation (TUR) concisely recapitulates this tradeoff relation
and specifies its minimal bound [16],

Q ≡ 〈q(τ )〉 〈δθ (τ )2〉
〈θ (τ )〉2

� Qmin = 2kBT , (1)

where kB is the Boltzmann constant, T is temperature, and
〈· · · 〉 represents an average over an ensemble of many real-
izations.

Since the TUR was conjectured, general proofs and ex-
tension of the relation have been put forward from entirely
different perspectives [17–21], which have greatly enriched
our understanding of the dynamical processes in nonequilib-
rium. Further, analyses of experimental data exploiting the
idea of TUR shine new light on problems associated with
biological physics [22]. It is remarkable that the thermody-
namic consideration alone can provide a novel understand-
ing into the design principle of molecular machines in an
isothermal condition [22,23]. Nonetheless, currently the focus
of TUR is on the energetic cost for the operation of a single
enzyme and molecular motor, or for a system consisting of
multiple energy-consuming modules as a whole. In practice,
measurement of energetic cost can be made on a subsystem
that interacts with other modules of the whole system; that
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is, calculation of uncertainty measure Q can be made for
the subsystem. For example, in biological cells, it is often
recognized that the individual energy-consuming modules are
not in strict isolation, but are coupled with others, displaying
collective or cooperative dynamics [24–27].

Studying the cost-precision tradeoffs for internally coupled
systems driven by a constant thermodynamic force, one could
choose θi , an output observable to monitor the time evolution
of the ith subsystem, and also measure qi , the energetic cost
to operate the ith subsystem. The uncertainty measure for
the subsystem Qsub = Q(qi, θi ), which probes the tradeoff
between cost qi and squared relative error in the observable θi ,
〈δθ2

i 〉/〈θi〉2 could, in practice, be a more relevant measure to
explore in studying subcellular processes than Q(q, θi ), which
considers the energetic cost of operating the whole system
q = ∑

i qi .
In this study, we explore the cost-precision tradeoff re-

lation of a subsystem that is energetically coupled with the
remaining part of the system as well as its thermal bath of
temperature T . To this end, we investigate a concrete example,
a system of interacting oscillators under thermal fluctuations
(Fig. 1). When individual oscillators are noninteracting and
independent from each other, the TUR still holds regardless
of which output variable is probed and which part of cost is
included for the calculation of uncertainty measure. We, how-
ever, show that when the dynamics of interacting oscillators
are synchronized, the individual oscillator can achieve, with
the same amount of energetic cost, a higher phase precision
than the bound dictated by the conventional TUR.

This paper is organized as follows. In Sec. II, we introduce
our model of interacting oscillators under thermal fluctuations
and present the results of TUR for subsystems using numerical
simulations. We explain the results from numerical simula-
tions in light of the analytical solution of the model at limiting
cases in Sec. III. We extend our conclusion on TUR to N

coupled oscillators in Sec. IV and examine TUR for general
collective dynamics in Sec. V. Finally, we discuss our finding
in Sec. VI.
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FIG. 1. Two interacting oscillators embedded in a thermal reser-
voir at temperature T . The motion of each oscillator, described by
the phase variable θ1,2, is powered by the inherent frequency ω1,2,
corresponding to the nonconservative driving force. The parameter K

characterizes the interaction strength between the oscillators, which
elicits the synchronization of the phases. The heat dissipated from
each oscillator is denoted by q1,2.

II. MODEL

As our model system, we adopted the noisy Stuart-Landau
oscillator that has recently been used to discuss the tradeoff
between the energetic cost and the precision of phase variable
[8]. First, the single noisy Stuart-Landau oscillator, in the ab-
sence of amplitude-phase coupling, indeed meets the minimal
bound Qmin = 2kBT (see Appendix A). Next, to study the
effect of coupling between two oscillators on the uncertainty
relation, we consider the phase dynamics of noisy coupled
oscillators [28]:

dθ1

dt
= ω1 + K

2
sin(θ2 − θ1) + η1,

dθ2

dt
= ω2 + K

2
sin(θ1 − θ2) + η2, (2)

where ω1,2 are the intrinsic frequencies of the two oscillators,
K is the coupling strength, and η1,2 are thermal noises that
satisfy 〈ηi (t )〉 = 0 and 〈ηi (t )ηj (s)〉 = 2Dδij δ(t − s). Here,
the noise represents the effect of the thermal bath, whose
strength satisfies the Einstein relation, D = μkBT . If ωi � K

and
√

D, a condition corresponding to the XY model, strong
interaction between the oscillators or large noise suppress
the regular oscillation [29]. To impose the NESS condition
without phase locking, we mainly consider the parameter
range: |ωi | > |K| � √

D. Mapped on a Langevin equation,
θ̇i = μFi + ηi , where μ is the motility coefficient, which we
set to μ = 1 for convenience. The force term Fi of the model
is divided into the dissipative (ωi) and conservative forces
[fji = (K/2) sin (θj − θi )]. Two points are of note: (i) the
dissipative forces corresponding to ω1 and ω2 are the source
of driving; (ii) f12 + f21 = 0 so that the net contribution of
the conservative force to the whole system is zero. When the
steady state is reached, the heat generated from the oscillator
is calculated using [4]

qi (τ ) =
∫ τ

0
dtFi (t ) ◦ dθi

dt
, (3)

where the notation ◦ indicates that the integral was taken in the
Stratonovich sense. Note that Eq. (3) amounts to calculating
heat dissipated for time interval τ from the hydrodynamic
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FIG. 2. Thermodynamic uncertainty relations for two coupled
oscillators. (a) Heat dissipation rates of two oscillators (blue squares
and red circles) and their total heat dissipation rate (black triangles).
The two oscillators have intrinsic frequencies of ω1 = 10 and ω2 = 5,
respectively, and the noise strength is set to D = 1. (b) Mean phase
velocities of two oscillators. (c) Relative diffusion constants that
represent phase fluctuations. (d) The uncertainty measures for the
cost-precision tradeoffs calculated for the total systems [Q(q, θi )]
and subsystems [Q(qi, θi )]. The dotted black line represents the usual
minimal bound of TUR, 2kBT . To compute σ , v, and D, an ensemble
of 103 realizations of stochastic process are used. The lines depict
analytical expressions of σ , v, D, and Q (see Appendix B).

friction experienced by the oscillator with the surrounding
solvent molecules in the bath. To examine the uncertainty rela-
tion of this system, we calculate the following three quantities:

σi = lim
τ→∞

〈qi (τ )〉
τ

,

vi = lim
τ→∞

〈θi (τ )〉
τ

,

Di = lim
τ→∞

〈
δθi (τ )2

〉
2τ

, (4)

where σi , vi , and Di are the mean heat dissipation rate,
mean phase velocity, and effective diffusion constant of the
ith oscillator, respectively. Integrating Eq. (2) numerically,
we obtain the three quantities as a function of coupling
strength K . The two interacting oscillator model is, in fact,
exactly solvable (see Appendix A); thus, the results from the
numerics (data points in Fig. 2) can also be compared with
the analytical expressions (lines in Fig. 2) with no tuning
parameter. A few points are worth noting:

(i) In the absence of coupling, the energetic cost to operate
each oscillator σ1 and σ2 depends on each of the driving
frequency ω1 and ω2. However, upon synchronization at
large K , which slows down the oscillator 1, speeds up the
oscillator 2, and converges the mean phase velocities of the
two oscillators (v1 and v2) [Fig. 2(b)], the amount of cost σ1

and σ2 becomes identical [Fig. 2(a)]. Remarkably, the total
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FIG. 3. Thermodynamic uncertainty relation for interaction
strengths of the form of K sin[m(θj − θi )]. Qsub/kBT for various
m ∈ {1, 2, 3, 4} for two coupled oscillators (N = 2) with intrinsic
frequencies, ω1 = 10 and ω2 = 5. The noise strength is set to D = 1.
To compute the cost-precision tradeoff, we took an average over an
ensemble of 103 realizations.

energetic cost σ1 + σ2 to operate the two oscillators under
synchronization is smaller than that under small K [30]. This
means that more work is required for operating disordered
oscillators than ordered oscillators in synchrony.

(ii) In the absence of coupling (K = 0), the diffusivity
of phase variable is determined by the noise strength of the
thermal bath (Di = D). Weak coupling (small K) elicits ad-
ditional fluctuations in the phase variable [see Eq. (2)], which
gives rise to an increase in the diffusivity (Di > D). Stronger
couplings (large K) engendering the phase synchronization
reduce the phase fluctuation below the thermal noise strength
(Di → D/2). The effective diffusivity Di is maximized at
K ≈ |ω1 − ω2| [Fig. 2(c)].

(iii) Combining the three quantities, we evaluate the
cost-precision tradeoffs: Q(q, θi ) = (

∑
j σj )(2Di )/v2

i for the
whole system and Q(qi, θi ) = σi (2Di )/v2

i for the subsystems.
In the absence of coupling (K = 0), the subsystems behave
independently from each other. The uncertainty measure cal-
culated for the heat dissipation and phase fluctuations of
a subsystem attains the minimal bound Q(qi, θi ) = 2kBT .
The uncertainty measure accounting for the whole heat dis-
sipation is always greater than the minimal bound of the
conventional TUR, i.e., Q(q, θi ) � 2kBT [Fig. 2(d)] [16].
In marked contrast, once the subsystems are synchronized
under strong coupling (K � |ω1 − ω2|), the minimal bound
of the uncertainty measure is reduced to Q(qi, θi ) = kBT .
This implies that without demanding extra thermodynamic
cost the interacting oscillators under constant thermodynamic
driving can attain a higher precision in the phase variable
via synchronization. In the presence of synergetic interactions
between the components of the system, the bound of cost-
precision tradeoff relation germane to the subsystem can be
smaller than 2kBT , the conventional bound of TUR. This is
the principal finding of this study.

We also numerically confirmed that the conclusion still
holds for the higher-order odd trigonometric interactions,
sin[m(θj − θi )] (Fig. 3). This implies that our finding is
generalized into interacting oscillators with a general periodic

coupling with odd parity, which can be decomposed to a
Fourier series in terms of odd harmonics.

III. ANALYSIS

The problem of two coupled oscillators is exactly solvable.
Analyses at limiting cases allow us to gain a better under-
standing of the tradeoff relation of interacting subsystems. A
joint probability density P (θ1, θ2, t ) for the noisy coupled os-
cillators obeys the Fokker-Planck equation, ∂tP = −∂θ1J1 −
∂θ2J2, where Ji = FiP − D∂P/∂θi is a probability current.
The steady-state condition ∂P/∂t = 0 defines the steady-state
current J ss

i . For a given J ss
i , which allows us to calculate

vi = ∫ 2π

0 dθ1
∫ 2π

0 dθ2J
ss
i and σi = ∫ 2π

0 dθ1
∫ 2π

0 dθ2FiJ
ss
i . The

steady-state current for each oscillator J ss
i is conveniently

calculated by using an orthogonal coordinate, φ1 = θ1 + θ2

and φ2 = θ1 − θ2. From Eq. (2), the time evolutions of the
orthogonal coordinates are given as

dφ1

dt
= 2ω̄ + ξ1 (5)

dφ2

dt
= �ω − K sin φ2 + ξ2, (6)

where 2ω̄ ≡ ω1 + ω2 and �ω ≡ ω1 − ω2 and 〈ξi (t )〉 = 0 and
〈ξi (t )ξj (s)〉 = 4Dδij δ(t − s). Note that Eqs. (5) and (6) are
isomorphic to the Brownian motion in tilted periodic po-
tentials, which have recently been used to study the TUR
[31], where Q was shown nonmonotonic with the tilt and
its minimal bound was attained at both weak and strong tilt
limits. The present result of nonmonotonic dependence of Q
with varying K , demonstrated in Fig. 2(d), is realized in the
large tilt limit where the force terms, 2ω̄ and �ω − K sin φ2,
in Eqs. (5) and (6) are greater than the thermal noise.

Equation (5) straightforwardly leads to 〈δφ1(τ )2〉 = 4Dτ .
The phase fluctuation 〈δφ2(τ )2〉 = 4Deffτ under the tilted
period potential V (φ2) = −K cos φ2 − �ω × φ2 is explicitly
calculated using [32]

Deff

D
=

∫ 2π

0 dφ2I∓(φ2)I+(φ2)I−(φ2)[ ∫ 2π

0 dφ2I∓(φ2)
]3 , (7)

where I+(φ2) = exp[V (φ2)/2D]
∫ φ2

φ2−2π
dψ exp[−V (ψ )/2D]

and I−(φ2) = exp[−V (φ2)/2D]
∫ φ2+2π

φ2
dψ exp[V (ψ )/2D].

The orthogonality condition 〈δφ1δφ2〉 = 0 leads to
〈δθ2

1 〉 = 〈δθ2
2 〉 = (〈δφ2

1〉 + 〈δφ2
2〉)/4; thus the phase

fluctuations of each oscillator are straightforwardly related
to the diffusion constants obtained for the two orthogonal
coordinates as

〈δθi (τ )2〉 = 2Diτ = (D + Deff )τ. (8)

In the large K limit, the oscillators are synchronized with
a negligible phase difference (φ2 = θ1 − θ2 ≈ 0), which lin-
earizes Eq. (6) to dφ2/dt = �ω − Kφ2 + ξ2. The variance of
φ2 from its formal solution is

〈δφ2(τ )2〉 = 2D

|K| [1 − exp(−2|K|τ )]. (9)

Thus, 〈δφ2
2〉 = 0 for K � �ω, and 〈δφ2

2〉 = 4Dτ for K → 0.
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FIG. 4. Thermodynamic uncertainty relations for subsystems of
interacting oscillators. (a) Qsub/kBT for various numbers (N =
2, 4, 8, 16, 32) of oscillators as a function of interaction strength K .
Plotted are Qsub/kBT averaged over N oscillators. Individual oscil-
lators have intrinsic frequencies sampled from a normal distribution
N (ω̄, �ω) with a mean ω̄ = 10 and a standard deviation �ω = 5.
The noise strength is set to D = 1. (b) The minimal bound of Qsub

for large K � �ω (Qsub
min) for varying N (data point) is obtained from

the simulations of N -oscillator system. The red line depicts 2/N .

Next, at the two limiting cases of K → 0 and K � �ω,
the rate of heat dissipation is the square of the mean phase
velocity (σi = v2

i ): (i) For weak coupling limit (K → 0), the
two oscillators behave independently from each other and
oscillate with their own phase velocities vi = ωi , which leads
to

σi = ω2
i ; (10)

(ii) For strong coupling limit (K � �ω), the motion of os-
cillators is synchronized with the phase velocity of v1 = v2 =
(ω1 + ω2)/2, which gives rise to the heat dissipation of

σ1 = σ2 = (ω1 + ω2)2

4
. (11)

Finally, combining vi , Di , and σi to calculate Q(qi, θi ) =
σi (2Di )/v2

i , we confirm Q(qi, θi ) = 2kBT under weak cou-
pling (small K), whereas Q(qi, θi ) = kBT under strong cou-
pling (large K). Note that the reduced minimal bound of
cost-precision tradeoff uncertainty measure Q(qi, θi ) under
strong coupling is mainly caused by the reduction in phase
fluctuations rather than the changes in heat dissipation or
phase velocity (see Fig. 2).

IV. THERMODYNAMIC LIMIT

We generalize Eq. (2) into N -coupled oscillators and ex-
plore how the bound of cost-precision relation for subsystems
changes with N .

dθi

dt
= ωi + K

N

N∑
j=1

sin(θj − θi ) + ηi, (12)

where we assume the driving frequency for the ith oscillator
ωi sampled from a Gaussian distribution with a mean ω̄

and a standard deviation �ω. The numerically calculated
Q(qi, θi ) for the N -interacting oscillators confirms that the
bound of TUR for subsystems is lowered by 1/N upon full
synchronization (Fig. 4). From the numerics, we find that
the minimal bound of the uncertainty measure Qsub for the
individual oscillators for large K in the N -interacting system

inversely scales with N as

Qsub = 〈qi (τ )〉 〈δθi (τ )2〉
〈θi (τ )〉2

� Qsub
min = 2kBT

N
. (13)

This finding can be rationalized with ease considering the
following argument. In the limit of full synchronization, θi ≈
θj ; hence Eq. (12) can be approximated as dθi/dt = ωi +∑

j Mij θj + ηi with the interaction matrix

M =

⎡
⎢⎢⎢⎢⎣

−K K
N

K
N

. . . K
N

K
N

−K K
N

. . . K
N

...
...

...
. . .

...
K
N

K
N

K
N

. . . −K

⎤
⎥⎥⎥⎥⎦. (14)

M has one zero eigenvalue (λ1 = 0) with correspond-
ing eigenvector φ1 = θ1 + θ2 + . . . + θN . The other (N − 1)
eigenvalues are all negative with corresponding eigenvectors,
φi = θ1 − θi for i ∈ {2, 3, . . . , N}. Then, using θ1 = (φ1 +
φ2 + . . . + φN )/N , one can obtain

〈
δθ1(τ )2

〉 =
∑N

i=1

〈
δφi (τ )2

〉
N2

≈
〈
δφ1(τ )2

〉
N2

= 2Dτ

N
, (15)

where we have used 〈δφ2
i 〉 → 0 for i �= 1 at steady states

(τ → ∞) because their eigenvalues are negative. Further-
more, in the limit of phase synchrony (φi = θ1 − θi ≈ 0), the
phase fluctuations are equivalent 〈δθ2

i 〉 = 〈δθ2
1 〉 for all i. Since

the phase synchrony leads to 〈qi〉/τ = 〈θi〉2, every subsystem
achieves the reduced lower bound Qsub

min = 2kBT /N with the
reduced phase fluctuation in Eq. (15).

V. COLLECTIVE DYNAMICS

We note that the in-phase synchrony of interacting oscilla-
tors is not a prerequisite for the condition of reduced minimal
bound, Qsub

min � Qmin(= 2kBT ). Although we considered only
the positive interaction (K > 0) in Eq. (12), the sign of the
interaction can be negative (K < 0) or a mixture of positive
(Ki = K+ > 0) and negative (Ki = K− < 0) depending on
the oscillator index i [33]. When two repulsive oscillators with
negative interaction strengths are in out-of-phase synchrony
[Fig. 5(a)], or when three repulsive oscillators repel each
other, forming a splay state [Fig. 5(b)], each oscillator can
have an uncertainty bound smaller than 2kBT . Furthermore,
we confirm the main finding of this study, i.e., the minimal
bound of subsystem TUR is less than 2kBT even when both
signs of coupling are present in the system forming two
clusters, called a cluster state [Fig. 5(c)].

VI. DISCUSSION

Whereas the TUR sets a minimal bound (Qmin = 2kBT )
to the energy cost to operate an entire system for a given
precision in the output observable, many experimental mea-
surements are often made by focusing on the dynamic process
of subsystems. For a system of interacting oscillators, we
demonstrated that when the coupling between the oscillators
is strong enough to elicit a full synchronization, individual
oscillators could achieve a higher phase precision with a
reduced net energetic cost.
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FIG. 5. Subsystem cost-precision tradeoffs for various collective
dynamics. (a) Two coupled oscillators (N = 2) with intrinsic fre-
quencies ω1 = 10 and ω2 = 5 under attractive (K > 0) and repulsive
(K < 0) interactions. (b) Three coupled oscillators (N = 3) with
intrinsic frequencies ω1 = 15, ω2 = 10, and ω3 = 5 under attrac-
tive and repulsive interactions. (c) Thirty-two coupled oscillators
(N = 32) whose intrinsic frequencies are sampled from a normal
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ation �ω = 5. Among them, 24 oscillators (“conformists”) have
attractive coupling strengths (K+ = K), whereas eight oscillators
(“contrarians”) have negative coupling strengths (K− = −K/2). The
noise strength is set to D = 1. To compute the tradeoff, an ensemble
of 103 realizations of stochastic process are used. Insets represent
phase snapshots of attractive oscillators (blue circles) and repulsive
oscillators (red circles) at strong coupling regimes.

Our findings on the minimal bound of TUR for sub-
systems at two extreme interaction strengths (K = 0 and
K → ∞) are easily rationalized as follows. For K = 0,
each subsystem is effectively isolated and operates inde-
pendently from each other, which leads to Qsub

min = 2kBT .
At another extreme case when every subsystem operates
identically due to strong coupling (K → ∞), the phase dy-
namics of a subsystem will be characterized with the same
precision 〈δθ2

i 〉/〈θi〉2, regardless of the oscillator index i,
and q = ∑N

i qi = Nqi . This gives rise to Qsub = Q(qi, θi ) =
Q(q, θi )/N with Q � Qmin = 2kBT , and hence we obtain
Qsub

min = 2kBT /N . Physically, this is observed because the
phase precision of the individual oscillator is benefited by
the interaction with other oscillators without incurring extra
energetic cost. Over the range of intermediate K , however,

Qsub is maximized at a critical coupling strength Kc. The
peak of Qsub originates from the large fluctuation (diffusivity)
of an observable θi at Kc, due to extra noise emanating
from interaction with the phase θj of neighboring oscilla-
tors as well as from the thermal noise. Given the dynamics
dθi/dt = ωi + K/N

∑
j sin(θj − θi ) + ηi , the role played by

the coupling term [sin (θj − θi )] is twofold: (i) synchroniz-
ing the phases of oscillators by reducing their differences;
(ii) transferring phase fluctuations from neighboring oscilla-
tors. At small K < Kc, as the coupling strength K increases,
the noise transfer becomes amplified. However, at large K >

Kc, the first contribution becomes more dominant, which
reduces the phase fluctuation.

We note that there is a recent study pointing out that a
system represented by stochastic clocks driven by a periodic
external protocol can achieve arbitrary precision at arbitrarily
low cost [9]. Our scenario that the precision increased by the
mutual interaction between subsystems under constant ther-
modynamic force has not been considered before; yet is quite
relevant to experimental situations encountered in subcellular
systems [34]. Here, the mutual interaction modeled with sine
functions, which leads to the synchronization, is conservative
in nature that the net force exchanged between subsystems
is compensated to be zero. In general, any periodic coupling
with odd parity contributes to a higher phase precision as long
as the coupling is sufficiently strong.

The synchronization between interacting oscillators not
only reduces total energetic cost to operate the whole sys-
tem [30], but also enhances the efficiency of power transfer
between oscillators [35]. The key finding underscored in this
study, the reduction of the bound of cost-precision tradeoff for
subsystems through synchronization, sheds light on the design
principle underlying biological systems. Cooperative cargo
transport by multiple motors [25], force generation by the co-
ordination among muscle proteins [24], and synchronization
of bacterial flagellar motors via hydrodynamic coupling [36–
38] are the seminal examples that the whole system comprised
of multiple energy-expending modules improves the precision
of biological function by means of synchronization.

To conclude, our generalized uncertainty relation offers a
valuable insight into the tradeoff principle underlying bio-
logical processes that have many interacting components. It
would also be of great interest to survey the diverse forms of
collective dynamics [39] from the perspective of TUR.
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APPENDIX A: THERMODYNAMIC UNCERTAINTY
RELATION FOR A STUART-LANDAU OSCILLATOR

Here, we derive the thermodynamic uncertainty relation
between heat dissipation and phase precision for a Stuart-
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Landau oscillator [8]:

dz

dt
= (R2 + iω + iα|z|2 − |z|2)z, (A1)

where the complex variable z = r exp(iθ ) includes ampli-
tude r and phase θ . The converging amplitude R, intrinsic
frequency ω, and amplitude-phase coupling α are all positive
definite. The corresponding amplitude and phase dynamics
under noisy environment are

dr

dt
= R2r − r3 + ηr (A2)

dθ

dt
= ω + αr2 + ηθ , (A3)

where 〈ηr (t )〉 = 〈ηθ (t )〉 = 0, 〈ηr (t )ηr (s)〉 = 2Dδ(t − s), and
〈ηθ (t )ηθ (s)〉 = (2D/R2)δ(t − s). The amplitude of the non-
linear oscillator (r) converges to R. Then, the phase can be
clearly defined without ambiguity only for the small ampli-
tude fluctuation, 〈δr2〉 ≡ 〈(r − R)2〉 � R2. Expansion of the
above equations around r = R + δr gives

dδr

dt
= −2R2δr + ηr (A4)

dθ

dt
= ω + αR2 + 2αRδr + ηθ . (A5)

Then, one can obtain limτ→∞〈δr (τ )2〉 = D/(2R2), and the
condition 〈δr2〉 � R2 is translated as 2R4 � D. Similarly,
the phase fluctuation after one period τ is calculated as

〈δθ (τ )2〉 = 2Dτ

R2
+ (2αR)2

∫ τ

0
dt1

∫ τ

0
dt2〈δr (t1)δr (t2)〉

= 2Dτ

R2
(1 + α2R2). (A6)

Then, the dimensionless phase fluctuation is determined as

〈δθ (τ )2〉
〈θ (τ )〉2

= Dτ

2π2R2
(1 + α2R2). (A7)

Next, we compute the heat dissipated from the Stuart-
Landau oscillator. The probability density of amplitude and
phase P (r, θ, t ) evolves according to the Fokker-Planck equa-
tion:

∂P

∂t
= −1

r

∂

∂r

[
(R2r − r3)rP − rD

∂P

∂r

]

− ∂

∂θ

[
(ω + αr2)P − D

r2

∂2P

∂θ2

]

= −1

r

∂Jr

∂r
− ∂Jθ

∂θ
. (A8)

The steady-state probability density P ss (r, θ ) depends only on
the amplitude r:

P ss (r ) = Z exp

[
− r4 − 2R2r2

4D

]
(A9)

with a normalization constant Z to satisfy
2π

∫ ∞
0 rP ss (r )dr = 1. Using P ss (r ), one can obtain the

probability current for amplitude and phase, J ss
r = 0 and

J ss
θ = ωeff(r )P ss , respectively, with ωeff(r ) = ω + αr2. The

mean heat dissipation rate is obtained as

σ =
∫ 2π

0
dθ

∫ ∞

0
rdr

(
rJ ss

θ

)2

P ss
= 〈

r2ω2
eff

〉
. (A10)

Thus, the heat dissipated over a time period τ (≈ 2π/〈ωeff〉
for δr2 � R2) is

q(τ ) = τσ ≈ 2π
〈
r2ω2

eff

〉
〈ωeff〉

≈ 2πR2ω

(
1 + αR2

ω
+ 2α2D

ω(ω + αR2)
+ 4αD

R2ω

)

≈ 2πR2ω

(
1 + 2α2D

ω2
+ 4αD

R2ω

)

≈ 2πR2ω, (A11)

where the first line was analytically solved by using Eq. (A10),
and expanded under the conditions of small amplitude fluctu-
ation (2R4 � D) and phase dynamics (ω � αR2) [8], which
implies that the intrinsic factor ω should be much greater than
the amplitude coupling factor αR2 in ωeff = ω + αr2. Then,
from the two conditions, it follows that 2R2ω � αD and
2ω2 � α2D. The last line in Eq. (A11) follows from these
two inequalities. Finally, the cost-precision tradeoff can be
evaluated using the heat dissipation [Eq. (A11)] and the phase
fluctuation [Eq. (A7)]:

Q ≡ q(τ )
〈δθ (τ )2〉
〈θ (τ )〉2

= 2πR2ω
D2π/〈ωeff〉

2π2R2
(1 + α2R2)

≈ 2kBT (1 + α2R2) � 2kBT , (A12)

where we have used 〈ωeff〉/ω = 〈1 + αr2/ω〉 ≈ 1 under the
condition of ω � αR2, and the Einstein relation D = μkBT

with μ = 1. Therefore, the uncertainty relation achieves the
minimal bound Qmin = 2kBT , when the amplitude coupling
for phase dynamics is absent (α = 0). Reference [8] has
already studied in detail the heat dissipation and phase fluctu-
ation of the noisy Stuart-Landau oscillator, and this study cor-
roborates the minimal bound of their tradeoff. The pure phase
dynamics of the noisy Kuramoto model without coupling,

dθ

dt
= ω + η, (A13)

is the basis for this study.

APPENDIX B: PHASE VELOCITY AND HEAT
DISSIPATION OF COUPLED OSCILLATORS

Using the probability density P (θ1, θ2, t ) for phases of
two coupled oscillators, one can derive the mean phase
velocity and mean heat dissipation rate at nonequilibrium
steady state [30]. We consider the transformed probability
density P (θ1, θ2, t ) = P (φ2, t )/2π for the orthogonal coordi-
nate, φ1 = θ1 + θ2 and φ2 = θ1 − θ2. The probability density
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function follows the Fokker-Planck equation:

∂P (φ2, t )

∂t
= − ∂

∂φ2

[
�ω − K sin φ2 − 2D

∂

∂φ2

]
P (φ2, t ).

(B1)
Its steady-state solution is given as

P ss (φ2) = 1

Z
exp

[
− V (φ2)

2D

] ∫ φ2+2π

φ2

dψ exp

[
V (ψ )

2D

]
,

(B2)

where V (φ2) = −K cos φ2 − �ωφ2 is an effective potential,
and Z is a normalization constant to satisfy

∫ 2π

0 dφ2P
ss

(φ2) = 1:

Z =
∫ 2π

0
dφ2

∫ φ2+2π

φ2

dψ exp

[
V (ψ ) − V (φ2)

2D

]
. (B3)

Then, using the steady state probability density P ss , one can
define the steady-state current as

J ss
i (φ2) =

[
Fi − D

∂

∂θi

]
P ss (θ1, θ2)

=
[
Fi − D

(
∂φ1

∂θi

∂

∂φ1
+ ∂φ2

∂θi

∂

∂φ2

)]
P ss (φ1, φ2)

=
[
Fi + 1

2

∂φ2

∂θi

∂V (φ2)

∂φ2

]
P ss (φ2)

2π

+ D

2πZ

∂φ2

∂θi

[
1 − exp

(
− �ωπ

D

)]
. (B4)

Here the subscript i in J ss
i denotes the index of the ith

oscillator. The steady-state current for each oscillator is

J ss
1 = ω1 + ω2

4π
P ss (φ2) + D

2πZ

[
1 − exp

(
− �ωπ

D

)]
,

(B5)

J ss
2 = ω1 + ω2

4π
P ss (φ2)− D

2πZ

[
1− exp

(
− �ωπ

D

)]
. (B6)

Given the steady-state current, one can obtain the mean phase
velocity

vi =
∫ 2π

0
dθ1

∫ 2π

0
dθ2J

ss
i (θ1, θ2)

= 2π

∫ 2π

0
dφ2J

ss
i (φ2). (B7)

The mean phase velocity for each oscillator is

v1 = ω1 + ω2

2
+ 2πD

Z

[
1 − exp

(
− �ωπ

D

)]
,

v2 = ω1 + ω2

2
− 2πD

Z

[
1 − exp

(
− �ωπ

D

)]
. (B8)

For K → 0, vi → ωi , whereas for the large K limit, v1 =
v2 = (ω1 + ω2)/2. Next, using the steady-state current, one
can also obtain the heat dissipation rate,

σi =
∫ 2π

0
dθ1

∫ 2π

0
dθ2Fi (θ1, θ2)J ss

i (θ1, θ2)

= 2π

∫ 2π

0
dφ2Fi (φ2)J ss

i (φ2). (B9)

The mean heat dissipation rate for each oscillator is

σ1 = ω1v1 − (ω1 + ω2)K

4
〈sin φ2〉,

σ2 = ω2v2 + (ω1 + ω2)K

4
〈sin φ2〉, (B10)

where 〈sin φ2〉 ≡ 2π
∫ 2π

0 dφ2 sin φ2P
ss (φ2). At the large K

limit, 〈sin φ2〉 = (ω1 − ω2)/K; and hence the two synchro-
nized oscillators have the same heat dissipation rate σ1 =
σ2 = (ω1 + ω2)2/4. On the other hand, in the limit of K → 0,
σi = ω2

i .
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