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Thermodynamic uncertainty relations (TURs), originally discovered for classical systems, dictate the tradeoff
between dissipation and fluctuations of irreversible current, specifying a minimal bound that constrains the two
quantities. In a series of efforts to extend the relation to the one under more generalized conditions, it has
been noticed that the bound is less tight in open quantum processes. To study the origin of the loose bounds,
we consider an external field-driven transition dynamics of a two-level quantum system weakly coupled to the
bosonic bath as a model of an open quantum system. The model makes it explicit that the imaginary part of
quantum coherence, which contributes to dissipation to the environment, is responsible for loosening the TUR
bound by suppressing the relative fluctuations in the irreversible current of transitions, whereas the real part of
the coherence tightens it. Our study offers a better understanding of how quantum nature affects the TUR bound.
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I. INTRODUCTION

Thermodynamic uncertainty relations (TURs) offer quan-
titative ideas of how much the irreversible current of a certain
dynamical process and its fluctuations constrain the entropy
production, which makes the lower bound of total entropy
production dictated by the second law of thermodynamics
more precise [1–4]. The relation was originally derived for
classical systems, particularly for continuous-time Markov
jump processes on networks and for overdamped Langevin
dynamics in nonequilibrium steady states (NESS) [1,2,4],
and it has been extended to the one at finite-time [5–7] and
discrete-time Markov processes [8]. The significance of TURs
has been illuminated in specific contexts of biological pro-
cesses [9–15], heat engines [7,16–18], and other dynamical
processes [19–22]. More recently, the universal bound of TUR
has been used to infer the dissipation rate from the fluctuating
currents of dynamical processes [23]. The originally proposed
relation has been extended to a broader range of nonequi-
librium processes [5,6,24–29], including those generated in
underdamped conditions [30], under periodic drives [8,31],
and driven by velocity-dependent forces [32,33]. However,
these processes feature bounds that are less tight than that of
the original TUR.

The TUR has been explored for quantum systems as
well [34–40]. The TUR bound for an observable, such as
the integrated charge current in quantum transport, was found
smaller than the value of the original TUR over a certain
parameter range [36–39]. In these studies, the quantum na-
ture was suspected to enhance the precision of the current,
which thus lowers the TUR bound; however, expressed in the
language of the transmission function of the nonequilibrium
Green’s function formalism, the physical origin of the loose
TUR bound was left unclear [36–39].
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Here we consider a simple example of an open quantum
process that allows us to dissect the physical origin of the
loose TUR bound. The model is a standard two-level system
(TLS) of ground (|g〉) and excited (|e〉) states coupled to a
bosonic bath or a radiation field maintained at temperature T .
The transitions between the two levels are stimulated by an ex-
ternal driving field via dipole-electric field interaction [41–43]
(Fig. 1). Without driving, it is expected that the absorption
(|g〉 → |e〉) and emission (|e〉 → |g〉) satisfy the detailed bal-
ance (DB) condition with zero mean current (〈 j〉 = 0), and
in this case the population ratio of the ground and excited
states must maintain the canonical distribution, as a result
of exchanging energy with the thermal bath via system-bath
coupling. On the other hand, the external field, perturbing
the system via the dipole-field coupling (−�d · �E ), generates a
transition current (〈 j〉 > 0) between the two levels, breaking
the DB condition, which generates heat current dissipating to
the bath. The excess number of transitions stimulated by the
field is countered by the bath that invokes time irreversible
relaxation of the system to its NESS.

The expressions for the mean current of net transitions,
current fluctuations, and entropy production of the model en-
able us to clarify the detail of quantum nature contributing to
loosening the TUR bound.

II. MODEL

The total Hamiltonian in the presence of an external radia-
tion field is given by [42,44]

H (t ) = HS + Hext (t ) + HB + HSB (1)

with

HS = (h̄/2)ω0σz,

Hext (t ) = −�d · �E (r, t ),
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FIG. 1. A nondegenerate TLS coupled to a bosonic bath, per-
turbed by the incident field with the angular frequency ω. The
resonant frequency is denoted by ω0. The difference between ω and
ω0, δω = ω − ω0, is the detuning.

HB =
∑
k,ξ

h̄ωkb†
k,ξ

bk,ξ ,

HSB =
∑
k,ξ

h̄(g∗
k,ξ b†

k,ξ σ− + gk,ξ bk,ξ σ+).

Here σ ’s are the Pauli spin operators: σz = |e〉〈e| − |g〉〈g|,
σ+ = |e〉〈g|, and σ− = |g〉〈e|. Hext (t ) is defined by the dipole
operator �d = �degσ+ + �dgeσ− with the transition dipole �deg

( �dge) from |g〉 to |e〉 (from |e〉 to |g〉), interacting with the
electric field �E (r, t ) = �εe−i(k·r−iωt ) + �ε∗ei(k·r−iωt ), where k is
the wave vector interacting with the system at r, and ω is the
angular frequency of the field. In HB and HSB, the summa-
tion

∑
k,ξ runs over the wave vector k and polarization ξ .

The symbols b†
k,ξ and bk,ξ are the creation and annihilation

operators for the bath modes represented by the harmonic
oscillators with angular frequency ωk . The strength of system-
bath coupling is quantified by gk,ξ ≡ −ieik·r√2πωk/h̄V ε̂k,ξ ·
�deg, which is defined in terms of the polarization vector of
electric field ε̂k,ξ and quantization volume V .

The total density matrix ρtot(t ) undergoes a unitary evolu-
tion, obeying the von Neumann equation,

dρtot(t )

dt
= − i

h̄
[H (t ), ρtot(t )]. (2)

Next, tracing out the bath degrees of freedom from the total
density matrix, we obtain the evolution equation of the re-
duced density matrix for the system ρ(t ) = TrB(ρtot(t )) by
assuming that ρtot(t ) can be described with the uncorrelated
product state of the system ρ(t ) and environment in equilib-
rium (ρeq

B ), namely ρtot(t ) ≈ ρ(t ) ⊗ ρ
eq
B .

We employ the Lindblad approach [41,42] (see Ap-
pendix A for details), which ensures that the density matrix is
self-adjoint (ρeg = ρ∗

ge), trace-preserving (ρee + ρgg = 1), and
positive-semidefinite, while the system evolves and relaxes to
the steady state. The evolution equation for ρ(t ) reads

dρ(t )

dt
= − i

h̄
[HS + Hext(t ), ρ(t )] + D(ρ(t )). (3)

In evaluating the effect of Hext(t ) on ρ(t ), we consider the
dipole approximation that the driving field is nearly constant
over the molecular scale (eik·r � 1) [44], such that �E (t ) �
�εeiωt + �ε∗e−iωt . Together with �d = �degσ+ + �dgeσ−, one ob-
tains Hext(t ) = −h̄	(eiωt + e−iωt )(σ+ + σ−) with the driving

frequency, 	 = �deg · �ε/h̄ = �dge · �ε∗/h̄. The range of the angu-
lar frequency ω relevant to our model is ω = ω0 + δω with
|δω|/ω0 � 1, where δω is the detuning that reflects the extent
of off-resonance (see Fig. 1). The time-irreversible dynamics
of the system, invoked by a weak system-bath coupling (ω 

γ ), is delineated by the Lindblad dissipator (see Appendix A
for the derivation),

D(ρ(t )) ≡ γ (n̄ + 1)
(
σ−ρ(t )σ+ − 1

2 {σ+σ−, ρ(t )})
+ γ n̄

(
σ+ρ(t )σ− − 1

2 {σ−σ+, ρ(t )}), (4)

where n̄ = (eβ h̄ω0 − 1)−1 denotes the mean occupation num-
ber of the bosonic bath, and {Â, B̂} = ÂB̂ + B̂Â is the
anticommutator. The parameter γ , involving the spontaneous
emission frequency, sets the timescale of relaxation of the
system to the steady state, and γ n̄ represents the rate of bath-
induced transition. Thus, the first and second terms of Eq. (4)
arise from emissions and absorptions, respectively.

Equations (3) and (4) yield the evolution equations for the
reduced density matrix elements as follows:

ρ̇ee = − γ (n̄ + 1)ρee − i	(eiωt + e−iωt )ρeg

+ i	(eiωt + e−iωt )ρge + γ n̄ρgg,

ρ̇eg = − i	(eiωt + e−iωt )ρee −
[
iω0 + γ

2
(2n̄ + 1)

]
ρeg

+ i	(eiωt + e−iωt )ρgg,

ρ̇ge = i	(eiωt + e−iωt )ρee +
[
iω0 − γ

2
(2n̄ + 1)

]
ρge

− i	(eiωt + e−iωt )ρgg,

ρ̇gg = γ (n̄ + 1)ρee + i	(eiωt + e−iωt )ρeg

− i	(eiωt + e−iωt )ρge − γ n̄ρgg. (5)

Transformation of the density matrix into the one in the ro-
tating frame, ρee → ρ̃ee, ρgg → ρ̃gg, and ρeg → ρ̃ege−iωt (see
Appendix B), produces the terms retaining (1 + e±2iωt ) in
Eq. (5). With the rotating-wave approximation (RWA), the
highly oscillatory terms can be ignored in comparison with
the driving frequency 	, which approximates (1 + e±2iωt ) to
1. To be specific, the term e±2iωt vanishes when it is averaged
over a time interval ∼	−1 with the condition of ω/	 
 1:∣∣∣∣∣ 1

	−1

∫ 1
2	

− 1
2	

e±2iωt dt

∣∣∣∣∣ =
∣∣∣∣ sin (ω/	)

ω/	

∣∣∣∣ � 	/ω � 1. (6)

Thus, the RWA simplifies Eq. (5) to

∂ρ̃ee

∂τ
= − (n̄ + 1)ρ̃ee − i	γ ρ̃eg + i	γ ρ̃ge + n̄ρ̃gg,

∂ρ̃eg

∂τ
= − i	γ ρ̃ee +

[
iδωγ − (2n̄ + 1)

2

]
ρ̃eg + i	γ ρ̃gg,

∂ρ̃ge

∂τ
=i	γ ρ̃ee −

[
iδωγ + (2n̄ + 1)

2

]
ρ̃ge − i	γ ρ̃gg,

∂ρ̃gg

∂τ
=(n̄ + 1)ρ̃ee + i	γ ρ̃eg − i	γ ρ̃ge − n̄ρ̃gg, (7)

where the whole equation is rescaled with γ −1, with the
definitions of dimensionless parameters τ ≡ γ t , 	γ ≡ 	/γ ,
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and δωγ ≡ δω/γ . It is noteworthy that once the RWA is taken
under the condition of ω/	 
 1, the dynamics of our TLS
model studied in the rotating frame with the angular frequency
ω depends only on δωγ , and is impervious to the frequency
(ω) of the driving field [ �E (t )] [see Eq. (7)].

The steady-state values of density matrix elements are ob-
tained from Eq. (7) by setting dρ̃/dτ = 0 with the constraints
of ρ̃ss

ee + ρ̃ss
gg = 1 and ρ̃ss

eg = (ρ̃ss
ge)∗,

ρ̃ss
ee = n̄

[
(2n̄ + 1)2 + 4δω2

γ

] + 4	2
γ (2n̄ + 1)

(2n̄ + 1)
[
(2n̄ + 1)2 + 4δω2

γ + 8	2
γ

] ,

ρ̃ss
gg = (n̄ + 1)

[
(2n̄ + 1)2 + 4δω2

γ

] + 4	2
γ (2n̄ + 1)

(2n̄ + 1)
[
(2n̄ + 1)2 + 4δω2

γ + 8	2
γ

] ,

ρ̃ss
eg = −2	γ [2δωγ − i(2n̄ + 1)]

(2n̄ + 1)
[
(2n̄ + 1)2 + 4δω2

γ + 8	2
γ

] . (8)

For 	γ = 0, the TLS coupled only to the thermal bath should
be at equilibrium, satisfying the DB condition [45], which
can be confirmed from Eq. (8). The ratio of excited- and
ground-state populations obeys the Boltzmann distribution,
ρ̃ss

ee/ρ̃
ss
gg = n̄/(n̄ + 1) = e−β h̄ω0 , and the quantum coherence

vanishes (ρ̃ss
eg = 0). In contrast, the model with 	γ �= 0 results

in the breakdown of the DB condition and nonvanishing co-
herence (ρ̃ss

eg �= 0).
We introduce simplified notations for the real [ρR ≡

Re(ρ̃ss
eg)] and imaginary parts [ρI ≡ Im(ρ̃ss

eg)] of the coherence
(ρ̃ss

eg = ρR + iρI ):

ρR ≡ −4	γ δωγ

coth A
2

[
coth2 A

2 + 4δω2
γ + 8	2

γ

] ,

ρI ≡ 2	γ[
coth2 A

2 + 4δω2
γ + 8	2

γ

] , (9)

where we have used coth A
2 = (2n̄ + 1) with kBTA ≡ h̄ω0,

which corresponds to the energy gap between the ground and
excited states. The gain of energy eventually dissipates into
the bath along a single cycle of absorption and emission. A
couple of remarks on ρR and ρI are in order. (i) Both ρR and
ρI vanish with the driving frequency at ∼1/	γ . (ii) ρI takes
the form of a Lorentzian with respect to δωγ , whereas ρR is an
odd function of δωγ . In fact, the quantum coherence can be re-
lated to the response function (or susceptibility) of the system
between the external electric field ( �E ) and the polarization ( �P)
in the linear-response regime ( �P = χ �E ). More specifically,
ρR and ρI are related to the real and imaginary parts of the
susceptibility, which inform about the dispersion and absorp-
tion profile of the light-matter interaction, respectively (see
Appendix C).

III. MEAN CURRENT AND CURRENT FLUCTUATIONS

The mean current and the current fluctuations involving the
net number of transitions, n(τ ), i.e., the difference between the
total number of emissions and absorptions for time τ at steady
states, elicited by the irradiation, are calculated by employing

the method of generating function [46,47] (see Appendix D):

〈 j〉 ≡ lim
τ→∞

〈n(τ )〉
τ

= 4	2
γ[

coth2 A
2 + 4δω2

γ + 8	2
γ

]
= 2	γ ρI (10)

and

var[ j] ≡ lim
τ→∞

var[n(τ )]

τ

= 〈 j〉 coth

(A
2

)
f (A,	γ , δωγ ) (11)

with

f (A,	γ , δωγ )

≡
(

1 +
[
32δω2

γ − 24 coth2 A
2

]
	2

γ

coth2 A
2

[
coth2 A

2 + 4δω2
γ + 8	2

γ

]2

)

= [
1 + 2ρ2

R − 6ρ2
I

]
. (12)

The expression of mean current [Eq. (10)] conforms to
the coherence-current relation [48,49], which states that the
imaginary part of the coherence [Eq. (9)] is responsible for
inducing a quantum current between the states. Notice that
〈 j〉 � 0 for the entire parameter space with 〈 j〉 = 0 realized
when the driving field is absent (	γ = 0) or the energy gap
(dissipation to the bath) is zero (A = 0) and that 〈 j〉 increases
monotonically with 	γ and upper-bounded to 〈 j〉 → 1/2 for
	γ 
 1 (y �= 0). Next, Eq. (11) clarifies that var[ j] = 0 when
	γ = 0. For 	γ �= 0 and |δωγ | 
 1, the current fluctuations
are upper bounded as var[ j] � (1/2) coth (A2 ); and for δωγ =
0, it is simplified to var[ j]/〈 j〉 = coth (A2 )(1 − 6ρ2

I ), where
ρI = ρI (	γ ) [Eq. (9)] is a nonmonotonic function of 	γ .

IV. STEADY-STATE ENTROPY PRODUCTION RATE

The presence of irreversible current is conducive to the
entropy production. The total entropy production rate in the
open quantum system is given by [41,50]

� = dS

dτ
+ JS. (13)

The entropy of the system is defined with the von Neumann
entropy, S(ρ̃ ) = −kBTr(ρ̃ ln ρ̃ ), and JS corresponds to the heat
current into the bath. At steady state ( ˙̃ρ = 0), dS(ρ̃ )/dτ = 0,
so that � is contributed by the JS part only. In the Lindblad
framework, JS is expressed as [41,50] JS = (h̄ω0/T )Tr[(n̄ +
1)σ+σ−ρ̃ − n̄σ−σ+ρ̃]. Therefore, the total entropy production
rate at steady states is

�ss/kB = β h̄ω0Tr[(n̄ + 1)σ+σ−ρ̃ss − n̄σ−σ+ρ̃ss]

= β h̄ω0
[
(n̄ + 1)ρ̃ss

ee − n̄ρ̃ss
gg

]
= β h̄ω0

4	2
γ[

(2n̄ + 1)2 + 4δω2
γ + 8	2

γ

]
= A × 〈 j〉 � 0. (14)

Despite dS(ρ̃ )/dτ = 0 at NESS, the nonvanishing heat cur-
rent due to the interaction with the external field (Jss

S �= 0)
gives rise to �ss �= 0. We also note that the value of �ss
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FIG. 2. The uncertainty product Q. (a) Q as a function of 	γ

and A for the case of perfect resonance (δωγ = 0). The condition of
(	γ ,A) that minimizes Q is marked with the star symbol. (b) The
diagram of Q = Q(	γ , δωγ ) for A = 3.6 and 8. (c) Dissections of
Q. Left: Q(	γ = 0.37, δωγ ) at A = 3.8 and 8. Right: Q(	γ , δωγ =
0) for various values of A. The bound of the original TUR (Q = 2)
is marked with a blue dashed line.

is unaffected by the transformation into the rotating frame
ρ̃i j = eiωσzt/2ρi je−iωσzt/2.

V. THERMODYNAMIC UNCERTAINTY RELATION

The uncertainty product of TUR at NESS [1,4] for the net
transitions of the TLS is written as

Q = lim
τ→∞

�ssτ

kB

〈δn(τ )2〉
〈n(τ )〉2

=
(

�ss

kB〈 j〉
)

︸ ︷︷ ︸
=A

(
var[ j]

〈 j〉
)

︸ ︷︷ ︸
=F

= A coth

(A
2

)
f (A,	γ , δωγ ). (15)

The original TUR derived for the classical system states
that the uncertainty product Q between the cost (�ss/kB)
and the precision dictated by the square of the relative
fluctuations of current (var[ j]/〈 j〉2) cannot be smaller
than 2 [1,2,4]. However, when TUR is extended to
quantum systems, the uncertainty product can have a
loose bound. The expression given in Eq. (12) points
to the possibility of f (A,	γ , δωγ ) < 1, which in
turn leads to Q < 2 when the imaginary part of the
coherence is dominant. In fact, ρR = 0 for the case of
perfect resonance (δωγ = 0) simplifies Q to Q(A,	γ ) =
A coth (A2 )[1 − 24	2

γ

[coth2 ( A
2 )+8	2

γ ]2 ] � Q(A∗,	∗
γ ) ≈ 1.25 at

(A∗,	∗
γ ) ≈ (3.61, 0.37) [see Fig. 2(a)]. The minimal

uncertainty product, Q � Qmin = 1.25, coincides with
the value obtained in a recent work that studied TUR of a spin
in a rotating magnetic field [51].

For the case of finite detuning (off-resonance) δωγ �= 0, the
real part of coherence (ρR �= 0) contributes to increasing the
size of Q [Figs. 2(b) and 2(c)]. Thus, for a given set of param-
eters (A,	γ , δωγ ), the value of Q is determined as a result
of competition between the real and imaginary parts of the

coherence. Notably, ρ2
R < 3ρ2

I , i.e., |δωγ | < (
√

3/2) coth A
2 ,

is a necessary but not a sufficient condition for the loose bound
of TUR.

TUR can also be recast into the form of an inequality of
the Fano factor of transitions [29]. For our system, Eqs. (10)
and (11) define the Fano factor of transitions,

F = lim
τ→∞

var[n(τ )]

〈n(τ )〉 = var[ j]

〈 j〉

= coth

(A
2

)
f (A,	γ , δωγ ) � φ(A). (16)

For the original TUR derived for the case of constant
driving [1,2,4], φ(A) = φo(A) = 2/A. For the case of time-
symmetric periodic driving, Proesmans and Van den Broeck
have shown that the steady-state current fluctuations per pe-
riod in the long-time limit are bounded by var[ j]/〈 j〉2 �
2�t/(e�ss�t/kB − 1) [4,8]. Our electromagnetic field-driven
quantum TLS is, in principle, under time-symmetric periodic
driving with a constant period of �t = 2π/ω; however, such
a periodicity in driving field under a weak field limit (	 � ω)
is reduced to a constant driving under the RWA, as detailed
in Eqs. (6) and (7). Thus, it is pertinent to ask whether or
not the uncertainty product of our quantum TLS satisfies the
inequality dictated by the classical version of TUR under a
constant driving. Since 〈 j〉�t = 1 from the definition given
in Eq. (10) and �ss�t = A, the expression can be cast into
var[ j]/〈 j〉 � φ(A) = φp(A) = 2/(eA − 1). Mathematically,
φo(A) > φp(A) for all A � 0, but φp(A) converges to the
form of φo(A) when A � 1.

F , plotted against A with a randomly varying set of param-
eters (A,	γ , δωγ ), is upper-bounded by (5/4) coth A

2 (the
cyan line in Fig. 3), which is obtained from f (A,	γ , δωγ ) ≈
1 + 32δω2

γ 	2
γ

[4δω2
γ +8	2

γ ]2 � 5/4 for A 
 1, |δωγ | 
 1, and 	γ 
 1.

Of particular note is that there are data points that satisfy
φp(A) < F (A,	γ , δωγ ) < φo(A) at 1 � A � 6, signifying
that the TUR of our quantum TLS is characterized by a bound
that is less tight than that of the original TUR (Fig. 3).

VI. DISCUSSIONS

The relation between the parameters ω, ω0, γ , and 	,

ω ∼ ω0 
 γ ∼ 	, (17)

is the essential condition to study the time-irreversible
evolution of our TLS. First, for transitions induced by
dipole-electric field coupling, Fermi’s golden rule offers an
expression for the emission rate, γ = 4ω3

0|deg|2/(3h̄c3) [41].
Provided that the dipole moment of a molecule (or an
atom) is given by |deg| = ea0 with its electric charge e
and size a0(� 1 nm), and that ω0/c = 2π/λ, where c is
the speed of light and λ(≈ 500 nm) is the wavelength of
the field in the optical domain, one gets ω0/γ ≈ 6.5 × 105

from γ = (4α/3)(2πa0/λ)2ω0, with α ≡ e2/h̄c = 1/137 and
2πa0/λ ∼ 10−2. The separation of timescales (ω/γ 
 1) jus-
tifies decomposition of the total density matrix into the system
and equilibrated bath parts, and rationalizes the truncation
of the quantum optical master equation at the second order
(Born-Markov approximation; see Appendix A). Second, the
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FIG. 3. Fano factor (F ) of a bath-coupled TLS under a weak
driving plotted against the net entropy production over a cycle of
absorption and emission, A(= β h̄ω0). For F calculated with a ran-
domly generated set of parameters (A, 	γ , δωγ ), there are cases
whose Fano factor is smaller than the lower bound of the original
TUR (blue), but still greater than the bound specified by the general-
ized uncertainty relation (red) [8].

condition of ω 
 	 was used in taking the RWA in Eq. (6) to
obtain Eq. (7).

Since Eq. (7) is independent of ω, the system is effectively
under a constant driving. As a result, the system at a long time
limit, if classical, should obey the original TUR [1,30], instead
of the generalized TUR under time-symmetric periodic driv-
ing [8]. Thus, the loose TUR bound of our TLS model (Q < 2
in Fig. 2) stems from the quantum nature of the dynamics. Our
model further elaborates the contribution from the quantum
nature to TUR: The imaginary part of quantum coherence
contributes to suppressing the Fano factor of net transitions
and lowering the TUR bound, whereas the real part of the
coherence always tightens the TUR bound. The bound of TUR
is determined by the competition between the dissipation and
dispersion of the input light source.

For the cases in which the system-bath coupling (γ ) and/or
the strength of the driving field (	) are strong and become
comparable to the energy scale of the system, one should
reevaluate the quantum master equation presented here based
on generalized versions of open quantum dynamics that have
been under active development in recent years [52–54]. How-

ever, as long as the energy gap of the TLS is in the optical
domain (λ ∼ 500 nm), one of the conditions identified for
the loose TUR bound in Fig. 2 (	γ � 0.5) ensures the rela-
tion specified in Eq. (17), which should reduce a generalized
quantum master equation into the one studied here. Thus, we
anticipate that the condition leading to the loose TUR bound
will remain unaltered. Finally, the other condition A ∼ (2 −
8) (Fig. 2) becomes accessible in the range of high tempera-
ture T = (2 − 8)−1(hc/kBλ) ∼ O(103) K for λ ∼ 500 nm.

Despite the apparent simplicity of the model presented
here, it retains all the essential components that enable us to
explore the TUR of quantum processes. The model also offers
us a physically straightforward understanding of the condition
that leads to loosening the TUR bound.
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APPENDIX A: DERIVATION OF THE LINDBLAD
DISSIPATOR

Introducing the transformations

H ′
I (t ) = e

i
h̄ Hot HI (t )e− i

h̄ Hot , ρ ′
tot(t ) = e

i
h̄ Hotρtot(t )e− i

h̄ Hot

(A1)

with the definitions of

Ho ≡ HS + HB, HI (t ) ≡ Hext(t ) + HSB, (A2)

one can cast the von Neumann equation into the one in the
interaction picture [42],

dρ ′
tot(t )

dt
= − i

h̄
[H ′

I (t ), ρ ′
tot(t )]. (A3)

After integrating Eq. (A3) and expanding it up to the second
order, we obtain

dρ ′
tot(t )

dt
= − i

h̄
[H ′

SB(t ), ρ ′
tot(0)] − i

h̄
[H ′

ext(t ), ρ ′
tot(0)]

− 1

h̄2

∫ t

0
dt ′[H ′

I (t ), [H ′
I (t ′), ρ ′

tot(t
′)]]. (A4)

Next, we trace out the bath modes, assuming that the density
matrix ρtot(t ) for the total system at time t can be described
with the uncorrelated product state of system [ρ(t )] and envi-
ronment in equilibrium (ρeq

B ), such that ρtot(t ) ≈ ρ(t ) ⊗ ρ
eq
B .

Then, it follows that

dρ ′(t )

dt
= − i

h̄
[H ′

ext (t ), ρ ′(0)] − 1

h̄2

∫ t

0
dt ′TrB

([
H ′

ext(t ), [H ′
ext(t

′), ρ ′(t ′) ⊗ ρ
eq
B ]

])
− 1

h̄2

∫ t

0
dt ′TrB

([
H ′

SB(t ), [H ′
SB(t ′), ρ ′(t ′) ⊗ ρ

eq
B ]

])
, (A5)

where ρ ′ = TrB(ρ ′
tot ) was used in the left-hand side of the equation, and an assumption that the system is decoupled from the

environment at t = 0 leads to TrB[H ′
SB(t ), ρ ′

tot(0)] = 0.
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Next, to proceed further, it is convenient to define HSB = h̄
∑

m smqm, where sm are the system operators and qm are the bath
operators, with s1 ≡ σ−, s2 ≡ σ+, q1 ≡ ∑

k,ξ g∗
k,ξ b†

k,ξ , and q2 ≡ ∑
k,ξ gk,ξ bk,ξ . Then

H ′
SB(t ) = h̄

∑
m=1,2

e
i
h̄ (HS+HB )t smqme− i

h̄ (HS+HB )t = h̄
∑

m=1,2

(
e

i
h̄ HSt sme− i

h̄ HSt
)(

e
i
h̄ HBt qme− i

h̄ HBt
) = h̄

∑
m=1,2

sm(t )qm(t ), (A6)

where one can show using the Baker-Campbell-Hausdorff formula that s1(t ) = σ−e−iω0t , s2(t ) = σ+eiω0t , q1(t ) =∑
k,ξ g∗

k,ξ b†
k,ξ eiωkt , and q2(t ) = ∑

k,ξ gk,ξ bk,ξ e−iωkt . The master equation can be written as

dρ ′(t )

dt
= − i

h̄
[H ′

ext(t ), ρ ′(0)] − 1

h̄2

∫ t

0
dt ′TrB

([
H ′

ext(t ), [H ′
ext(t

′), ρ ′(t ′) ⊗ ρ
eq
B ]

])
− 1

h̄2

∫ t

0
dt ′{[s1(t )s2(t ′)ρ ′(t ′) − s2(t ′)ρ ′(t ′)s1(t )]〈q1(t )q2(t ′)〉B + [s2(t )s1(t ′)ρ ′(t ′) − s1(t ′)ρ ′(t ′)s2(t )]〈q2(t )q1(t ′)〉B

+[ρ ′(t ′)s1(t ′)s2(t ) − s2(t )ρ ′(t ′)s1(t ′)]〈q1(t ′)q2(t )〉B + [ρ ′(t ′)s2(t ′)s1(t ) − s1(t )ρ ′(t ′)s2(t ′)]〈q2(t ′)q1(t )〉B}, (A7)

where 〈qm(t )qn(t ′)〉B = TrB[ρeq
B qm(t )qn(t ′)] represents the bath correlation function. For example,

〈q1(t )q2(t ′)〉B =
∑
k,ξ

∑
k′,ξ ′

g∗
k,ξ gk′,ξ ′eiωkt e−iωk′ t ′

TrB
(
ρ

eq
B b†

k,ξ bk′,ξ ′
) =

∑
k

|gk,ξ |2eiωk (t−t ′ )n̄(ωk ). (A8)

Likewise

〈q2(t )q1(t ′)〉B =
∑

k

|gk|2e−iωk (t−t ′ )[n̄(ωk ) + 1]. (A9)

By substituting s1,2, q1,2 back, and transforming the time u = t − t ′, we obtain

dρ ′(t )

dt
= − i

h̄
[H ′

ext(t ), ρ ′(0)] − 1

h̄2

∫ t

0
dt ′TrB

([
H ′

ext(t ), [H ′
ext(t

′), ρ ′(t ′) ⊗ ρ
eq
B ]

])
−

∑
k,ξ

|gk,ξ |2
∫ t

0
du

[
[σ−σ+ρ ′(t − u) − σ+ρ ′(t − u)σ−]ei(ωk−ω0 )un̄(ωk )

+[σ+σ−ρ ′(t − u) − σ−ρ ′(t − u)σ+]e−i(ωk−ω0 )u[n̄(ωk ) + 1]

+[ρ ′(t − u)σ−σ+ − σ+ρ ′(t − u)σ−]e−i(ωk−ω0 )un̄(ωk )

+[ρ ′(t − u)σ+σ− − σ−ρ ′(t − u)σ+]ei(ωk−ω0 )u[n̄(ωk ) + 1]
]
. (A10)

To proceed further, the Markov approximation is often consid-
ered with ρ ′(t − u) → ρ ′(t ) and

∫ t
0 du → ∫ ∞

0 du by assum-
ing that the value of the density matrix is determined without
memory, and limt→∞

∫ t
−t du

∑
k,ξ |gk,ξ |2e±i(ωk−ω0 )u → γ ≡

2π
∫

d3kJ (k)|gk,ξ |2δ(ωk − ω0), where J (k) is the spectral
density, determining the decay rate γ [42].

Transformed back to the Schrödinger picture, the master
equation takes the following form [42]:

dρ(t )

dt
= − i

h̄
[HS + Hext(t ), ρ(t )] + D(ρ(t )) (A11)

with the Lindblad dissipator

D(ρ) = γ

2
(n̄ + 1)(2σ−ρσ+ − σ+σ−ρ − ρσ+σ−)

+ γ

2
n̄(2σ+ρσ− − σ−σ+ρ − ρσ−σ+), (A12)

where n̄ = n̄(ω0) = (eβ h̄ω0 − 1)−1 is the average number of
thermal photons.

APPENDIX B: TRANSFORMATION TO THE
ROTATING FRAME

The density matrix ρ̃ = |φ〉〈φ| in the rotating frame is
transformed into the one in the stationary frame ρ = |ψ〉〈ψ |
via the following operation:

|ψ〉〈ψ |︸ ︷︷ ︸
=ρ

= e−iωtσz/2 |φ〉〈φ|︸ ︷︷ ︸
=ρ̃

eiωtσz/2, (B1)

which allows us to express the excited-state population in the
stationary frame in the one in the rotating frame as

ρ̃ee = eiωtσz/2 |e〉〈e|︸ ︷︷ ︸
=ρee

e−iωtσz/2. (B2)

Employing the Baker-Campbell-Hausdorff formula,
esÂB̂e−sÂ=B̂+(s/1!)[Â, B̂]+(s2/2!)[Â, [Â, B̂]]+ · · · , one
can show that ρ̃ee = ρee, ρ̃gg = ρgg, ρ̃eg = ρegeiωt , and
ρ̃ge = ρgee−iωt .
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FIG. 4. The susceptibility of the system as a function of scaled
detuning (δωγ ) calculated at 	γ = 0.5 and A = β h̄ω0 = 2. (a) The
absorption profile (i.e., χ ′′) of the TLS. (b) The dispersion profile
(i.e., χ ′) of the medium.

APPENDIX C: RELATION BETWEEN THE COHERENCE
AND DIELECTRIC SUSCEPTIBILITY

Inside a dielectric medium, the electric polarization, de-
fined as the total dipole moment per volume, i.e., �P = N〈 �d〉,
with N the number of molecules per volume, is induced by
the incident radiation field, i.e., �P = χ �E , where χ is the lin-
ear susceptibility of the medium [44]. With 〈 �d〉 = Tr(ρ̃ �d ) =
ρ̃eg �dge+ρ̃ge �deg=eiωt (ρeg �dge+ρge �dege−2iωt )≈ρ̃eg �dge, the suscep-
tibility can be expressed as χ = Nd ρ̃eg with Nd = N |dge|/|�ε|.
In the light-matter interactions, the properties of the medium
can be investigated by studying χ , which is decomposed into
the real (χ ′) and imaginary part (χ ′′), i.e., χ = χ ′ + iχ ′′. For
the medium with |χ | � 1, since the refractive index (n) is
related with the dielectric constant as n2 = ε = 1 + 4πχ (in
Gaussian units),

n ≈ 1 + 2πχ ′. (C1)

The incident radiation field that is absorbed to the medium
is quantified by the attenuation coefficient α, which is re-
lated to the wave vector as k = β + iα/2, which leads to
�E ∼ eikz ∼ eiβz−αz/2 and | �E |2 ∼ e−αz. From k = (ω/c)n =
(ω/c)

√
1 + 4πχ ′ + 4π iχ ′′ ≈ (ω/c)(1 + 2πχ ′ + 2π iχ ′′), it

follows that

α = 4π
(ω

c

)
χ ′′. (C2)

This implies that the real part of the susceptibility (i.e., χ ′ =
Nd ρ̃R) informs about the dispersion profile of the medium,
while the imaginary part of the susceptibility (i.e., χ ′′ = Nd ρ̃I )
describes the absorption profile of the medium.

The degree of the absorption and dispersion varies with
detuning of the field (Fig. 4). For the perfect resonance (i.e.,
when δω = 0), the excitation is completely absorbed by the
medium (χ ′′ maximized in Fig. 4) without any dispersion
(χ ′ = 0 in Fig. 4). With increasing |δω|, the absorption (dis-
persion) in the medium decreases (increases).

APPENDIX D: METHOD OF GENERATING FUNCTION

The dynamical equations [Eq. (7)] can be cast into the
matrix form

∂τ ρ̃(τ ) = Lρ̃(τ ), (D1)

where ρ̃ = (ρ̃ee, ρ̃eg, ρ̃ge, ρ̃gg)T is a vector in Liouville space,
and L denotes the 4 × 4 Liouvillian superoperator. We aim
to count the net number of photons that transfer to the sur-
rounding bath for the time interval τ [n(τ )] and calculate the
mean current and current fluctuations at steady state. Since
the light-induced absorption and emission are a cyclic process
for the system, we assume that the system is periodic in
state space and that the superoperator L is periodic with its
period by L(= 4), satisfying Li j = Li+L, j+L for all i, j = 0,
1, 2, 3 representing the quantum state ee, eg, ge, and gg, re-
spectively, and we introduce a generalized coordinate μ ∈ Z,
which is related with the numeric index i = 0, 1, 2, 3 as μ =
i (mod L) with L = 4. This allows us to count the cycles of
absorptions followed by emissions via ρ̃i(μ, τ ) ≡ ρ̃(μ, τ )δL

μ,i

with the generalized Kronecker delta, δL
μ,i = 1 if μ = i (mod

L) and δL
μ,i = 0 otherwise [46,47]. Here, ρ̃i(μ, τ ) denotes

the probability of finding a system at a given quantum state
i ∈ {ee, eg, ge, gg} at site μ at time τ .

We consider a generating function for each element ρ̃i of
the vector ρ̃,

Gi(z, τ ) =
∞∑

μ=−∞
eznμ ρ̃i(μ, τ ). (D2)

Multiplying the factor eznμ on both sides of a generalized
version of Eq. (D1), namely ∂τ ρ̃i(μ, τ ) = ∑

j Li j ρ̃ j (μ, τ ),
and summing over μ, one gets

∂τGi(z, τ ) =
∑

j

[�(z)]i jG j (z, τ ), (D3)

where

�(z) ≡

⎡
⎢⎢⎢⎣

−(n̄ + 1) −i	γ i	γ n̄e−z

−i	γ iδωγ − (2n̄ + 1)/2 0 i	γ

i	γ 0 −iδωγ − (2n̄ + 1)/2 −i	γ

(n̄ + 1)ez i	γ −i	γ −n̄

⎤
⎥⎥⎥⎦. (D4)

In obtaining the matrix �(z) where the factor eznμ is multiplied
to each element, we have set nμ = −1 for the matrix element

[�(z)]ee,gg corresponding to absorption, nμ = 1 for [�(z)]gg,ee

corresponding to emission, and nμ = 0 for the rest. The
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formal solution of Eq. (D3) can be written as

Gi(z, τ ) =
∑

α

Tαi(z)eλα (z)τ , (D5)

where λα (z) and Tαi(z) are the αth eigenvalue and the
corresponding eigenstate of �(z), satisfying

∑
j[�(z)]i jTα j =

λα (z)Tαi(z), with λ0(z) > λ1(z) > λ2(z) > λ3(z) (α =
0, 1, 2, 3). At steady state, Gi(z, τ ) is dominated by the
term with the largest eigenvalue,

lim
τ→∞Gi(z, τ ) ∼ T0i(z, τ )eλ0(z)τ . (D6)

The eigenvalues λα (z) of �(z) are obtained from the charac-
teristic polynomial

det |λ(z)I − �(z)| =
4∑

n=0

an(z)λn(z) = 0, (D7)

where

a4 = 1, a3 = 2(2n̄ + 1),

a2 = 1
4

[
5(2n̄ + 1)2 + 4δω2

γ + 16	2
γ

]
,

a1(z) = 1
4

[
(2n̄ + 1)3 + 4δω2

γ (2n̄ + 1) + 16	2
γ (2n̄ + 1)

− 8	2
γ (ez + n̄e−z + n̄ez )

]
,

a0(z) = −	2
γ [ez + n̄e−z + 2n̄2e−z + 3n̄ez

+ 2n̄2ez − (2n̄ + 1)2].

Now, summing Gi(z, τ ) over the index i ∈ {ee, gg}, we
obtain the following expression that can be used as the
moment-generating function:

G(z, τ ) ≡
∑

i

Gi(z, τ ) =
∑

i

∞∑
μ=−∞

eznμ ρ̃i(μ, τ ), (D8)

which allows us to calculate the first and second cumulant of
n(τ ) as follows:

〈n(τ )〉 =
∑

i

∑
μ nμρ̃i(μ, τ )∑

i

∑
μ ρ̃i(μ, τ )

= ∂z ln G(z, τ )|z=0 (D9)

and

〈n(τ )2〉 − 〈n(τ )〉2 = ∂2
z ln G(z, τ )|z=0. (D10)

Finally, from Eqs. (D9) and (D10), and the asymptotic
expression of G(z, τ ),

lim
τ→∞G(z, τ ) ∼ h0(z, τ )eλ0(z)τ , (D11)

with h0(z, τ ) ≡ ∑
i T0i(z, τ ), we can obtain 〈 j〉 and var[ j],

〈 j〉 ≡ lim
τ→∞

〈n(τ )〉
τ

= λ′
0(0) (D12)

and

var[ j] ≡ lim
τ→∞

〈n(τ )2〉 − 〈n(τ )〉2

τ
= λ′′

0 (0). (D13)

These key values of λ′
0(0) and λ′′

0 (0) can be evaluated in terms
of the coefficients of the characteristic polynomial [Eq. (D7)]
differentiated with respect to z at z = 0 as follows:

a′
0(0) + a1(0)λ′

0(0) = 0 (D14)

and

a′′
0 (0) + 2a′

1(0)λ′
0(0) + a1(0)λ′′

0 (0) + 2a2(0)[λ′
0(0)]2 = 0.

(D15)

Therefore,

〈 j〉 = λ′
0(0) = −a′

0(0)

a1(0)
(D16)

and

var[ j] = λ′′
0 (0)

= − 1

a1(0)

(
a′′

0 (0) + 2a′
1(0)λ′

0(0) + 2a2(0)[λ′
0(0)]2

)
.

(D17)
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