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Derivation of the Smoluchowski equation for
FB model : According to the Liouville theorem
(dp/dt = 0) the time evolution of probability density
o(z,r,t) in terms of = and r satisfies
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where @ = (2,7) and F(t) = (}F,(t), F.(t)). Using
the vector notation as in the second line of Eq.S2, one
can formally solve for the probability density ¢(d,t)

as
t
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Averaging (d, t) over noise after iterating ¢(a,t) into
the noise related term in the integrand and exploit-
ing the fluctuation-dissipation theorem, we obtain the
Smoluchowski equation for ¢(x,r,t) in the presence of
a reaction sink, S(z,7) = k.726(x — x45),
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where L, = DO, (8m+(kBT)’13mUeg(x)) and
L, = N0, (0, +1r/0). Integrating both sides

of the equation over = by defining C( t) =
75 dap(z,r,t) leads to 9,C = O(r ) —

k2@ (245, 7, ). By setting p(ays,r,t) = (/)a:(xtb) (r,t
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Insertion of two Langevin equations (Eq.(1) in the
main text) for the fluctuating bottleneck model Oy =
—( oL Uet(z;7) + Fp(t)] and 0yr = —Ar + F,.(t) into
Eq.S1 leads to
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9, C(r,t) = [N00, (0, +1/0) — kr?] C(r,t),  (S5)

where k = Ué’ff(xb)/27rkBTe*AUi/kBT with
AU = U(mts) — Ulay). In all likelihood,
k. ( D x \/U Tis /27rk:BT) represents the product

of diffusion coeflicient D associated with barrier
crossing dynamics and the contribution of dy-
namics at the barrier top. Thus, under tension
f, one can set k — k(f) = koef2*/k5T wwhere
ky = Ul (w0) Ul (ws) [ 2k g T)e =AU kT
and ¢ describes the correction due to geometrical
information of the cross section of bottleneck [1, 2].
Therefore, under tension f, Eq.S5 becomes Eq.(2) in
the main text.

Solution of the Smoluchowski equation with
time-dependent sink : For the problem with a
constant loading rate, the sink function of our Smolu-
chowski equation becomes time-dependent, resulting
in the following equation for the flux C(r,t),

— 4+ ;) C(r,t) — kOTQStWAII/kBT)é(T, t) (S6)

with C(r,t = 0) = / %6_7'2/ 20 Although a time-dependent sink term, in general, makes Smoluchowski equations

analytically intractable, the ansatz C(r,t) ~ ()

~1(7* ysed in the Ref. [1] allows us to solve the above problem

exactly. Substitution of C(r,t) ~ e/®=1#®* Jeads to two ODEs for v(t) and pu(t) (with / denoting derivative



with respect to t),

V(£) = —2000(t) + A (s7)
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with p(0) = 1/20. The equation for u(t) in Eq.S13  Thus one obtains pu(t) using y(t) = —%.
is the Riccati equation, ¥’ = qo(t) + q1(t)y + ¢2(t)y?
with y(t) = u(t) — 1/46. In general, the Riccati equa-
tion can be reduced to a second order ODE. The vari- (t) = 1 4 @ Ig(p) + CQ,/B(P) (S13)
able is changed in two steps : (i) v(t) = g2(¢)y(t) Y T Is3(p) +cQp(p) )

leads to v/ = v® 4+ P(t)v + Q(t) where Q = qogs
A2 (1+ 4]300 e) and P = q1 + ¢4/q> = 0. (ii) An-
other substitution v(t) = —u/(t)/u(t) leads to u”(¢) —
P(t)u(t) + Q(t)u ()—0 Le.,

u(t) — N2 <1 + 4k)\oeeﬁ> u(t) = 0.

Introducing the variable p = 27\/ 4’“)?9 /2 = Br(t)

with 8 = @ and k(t) Lol ot5/2
the second- order ODE in Eq.S9 into a more familiar
modified Bessel equation,

(S9)

one can modify

p*Upp +pU, — [+ p*] U =0 (S10)
where u(t) = U(p). The solution of the above ODE
is the linear combination of I4g(p) for non-integer S,
and the linear combination of Ig(p) and Kg(p) when
[ is integer. Thus, the solution of Eq.S10 is
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For simplicity, we use the notation Qg(p) to represent
either I_g(p) or Kz(p),
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from which the survival probability is obtained as
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Note that Ij3(p) = dlg(p)/dp. The initial condition
1(0) = 1/260 determines the constant ¢ in Eq.S13

_ I(po) — [K(0)] " I5(po)
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where pg = $k(0). Thus, one obtains
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Recall that
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[(0)] 7 {15(p0) Qs(p) — Qs(po)I5(p)}-
p = Br(t) with 8 = 2)\/7, k(t)
0

K( and
po = p(0). Note that x(0)(Z'(
)dt

)/Z(p )) =1 is sat-
t using Eq.S15 and
= Ak(t)dt results in

P
isfied. Integration of Eq.S7 with
change of variable dp = 57 K(t)dt
the expression for v(t):
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With p(t) (Eq.S15) and v(t) (Eq.S16) in hand, we can
solve

(S16)
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The A-dependent unbinding time distribution Py (t) are obtained from the relation Py(t) = —dX](t)/dt,
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Transformation to the unbinding force distribution
P\(f) [=471Py(t)] is made through the relationship
between dimensionless scaled-force ( f) and time ¢:
f = At with 4 = yAxt /kpT.

Ilustration using synthetic data :  Although
Py(f) in Eq.S19 is complicated, the familiar expres-
sion used in the Dynamic Force Spectroscopy (DFS)
for P(f) is restored when A — oo (see below). In
order to obtain insight into the behavior of Py( f) we
generated several synthetic distributions for varying
A values and loading rates. We find that Py(f) with
varying 7(= yAz*/kpT) shows the standard pattern
of force distribution in DFS (Fig.S1-A, B) [2, 3]. The

J

_ 1} [ I(p))] e [1 . W)mp)} e

(519)

T(po T(p)

(

effect of varying A on PA(f) is shown in Fig.S1-C, D.
It is of particular interest that if ¥ > kof then the

most probable forces f5 from Py (f) are insensitive to
the variation in A even though the shapes of Py_,q( f)
and Py_(f) are very different from each other
(Fig.S1-C). However, when 7 ~ ko#, fj\‘ changes with

A (Fig.S1-E) and the shape of Py_o(f) differs from

Py oo (f) qualitatively (Fig.S1-D).

Asymptotic behavior at A\/¥ — oo : To obtain the
asymptotic behavior we will use the following uniform
asymptotic expansion of the modified Bessel function
for large orders (v — oo) [4].
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where I, (vz) = ﬁ],,(yz) and n = V14 22 +log (1+x/1+7)
The asymptotic behavior at large negative orders can be obtained by using the relation I_,(z) =

2 sin (vm) K, (2) + L, (2)
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Using these asymptotics, we obtain the following relations at 8 = 2)\/¥ — co.
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where S(t) = (1 4 x%(t))*/2. Therefore
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FIG. S1: A-D Rupture force distributions, P(j:)7 under varying loading rates (%) and the gating frequency (\) charac-
terizing the disorder. E. f* vs 4 plot under two limiting values of \.
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With limg_o S(t) = S and lims_o 3(n — 7o) = ASt where S = (1 + @)1/27 it is now casy to show
pt) 1 (S+1) — (S — 1)e~ 25t
27—~ 5
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Thus, substituting Eq.S25 and S26 into () = fooo drC(r,t) = \/% \e/u% recovers the previous result for survival
m

probability in Zwanzig’s FB model [1]

, B A (S+1)2— (S —1)2E]/?
%13%) X(t) = exp (—2(5 — 1)t) [ 15 . (527)
[
For A — oo and A — 0, limy_,o limy0 X(t) = A — o0, taking fooo dr(---) on Eq.S6 with pre-averaged
exp (—k6t) and limy o limy o X(t) = (14 2k0t)~'/%,  rate constant k(t)0 and transforming ¢ into f, we ob-
respectively. tain Y07 5s— o0 (f) = —k(f)08r—00(f), which leads to

Survival probability (2(f)) and rupture force S () = exp 1/f aFk(F)0 (28)
distribution (P(f)) for A — coc and A — 0 : For Y Jo



and the rupture force distribution

the (P(f) =
—d%(f)/df)

P)\HOO(.]E) (829)
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The most probable force (f*) is obtained us-
ing [0fPa—oo]j_j- = 0, which is equivalent to
S10k(F e = (2.0, Using k(f) = koc/, one
can easily show that

= log [7/(ko0)].

This expression is equivalent to the standard DFS the-
ory except for the presence of the 6 term. The fast
variation of r-coordinate effectively modifies the reac-
tivity kor? into ko.

For A — 0 the bottleneck radius is quenched to a sin-
gle value, say, ro. In this case the noise-averaged prob-
ability of the molecule found at the configuration of rg

at force f, (ro,f) = exp <_% fofdfk(f)r?]), should

be weighted by ¢(ro) {: ,/%e””g/w} as Lr_o(f) =
fooo droC(ro, f )é(ro) to give the survival probability,
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A similar procedure as in Egs. S29 and S30 leads to

Fios (S30)
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and

Filo =log {(3/ko0) (1 — 2kob/7)}. (S33)

Comparison between Py_...(f) and Py_(f) one-
dimensional models : Asymptotic behaviors of
P(f) with two limiting A values at large > f
Pr_oo(f) and Py_o(f) are obtained by using the Bell
model for k(f). Comparison between P\_...(f) and
Py_o( f) can be made by using the explicit form of

k(f) = koe!.

Pl = Lo |7 20l - 1)] - s3a)

and
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For f — oo, P(f) behaves as

im log Py oo () ~ f — "2

f—o0

lim log Py—o(f) ~ —f/2.

f—oo

(S36)

It is worth noting that depending on the A value (A —
oo or 0) Py(f) differs in its asymptotic behavior with
respect to f (see Eqs.S35 and S36).

The asymptotic behavior of the so-called micro-
scopic model [5, 6], whose force range is limited by the
critical force (f < f. = AG*/vAx?), is reduced to that
of Gumbel distribution only if f* < f <« f.. If f* <
f — f. then the unbinding force distribution decays
precipitously to zero as ~ (1 — f/f.)Y*~'(v = 2/3:
cubic potential) and linearly (v = 1/2: harmonic cusp
potential) (A — oo corresponds to the Bell model).
Note that the model in [5, 6] corresponds to A — oco.

In contrast, for f — 0,

lim Py_oo(f) ~ % X exp [(1 - k(;&) f]

f—0

lim Py_o(f) ~ @9 X [1 + ( kge
f—0 Y Y

) f+ O(F)} :
(S37)

The initial slope of P( f) is determined by the value
of koﬂ/ﬁ
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