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Using Brownian motion in periodic potentials V (x) tilted by a force f , we provide physical insight into the
thermodynamic uncertainty relation, a recently conjectured principle for statistical errors and irreversible heat
dissipation in nonequilibrium steady states. According to the relation, nonequilibrium output generated from
dissipative processes necessarily incurs an energetic cost or heat dissipation q, and in order to limit the output
fluctuation within a relative uncertainty ϵ, at least 2kBT /ϵ2 of heat must be dissipated. Our model shows that this
bound is attained not only at near-equilibrium [f ≪ V ′(x)] but also at far-from-equilibrium [f ≫ V ′(x)], more
generally when the dissipated heat is normally distributed. Furthermore, the energetic cost is maximized near the
critical force when the barrier separating the potential wells is about to vanish and the fluctuation of Brownian
particles is maximized. These findings indicate that the deviation of heat distribution from Gaussianity gives
rise to the inequality of the uncertainty relation, further clarifying the meaning of the uncertainty relation. Our
derivation of the uncertainty relation also recognizes a bound of nonequilibrium fluctuations that the variance of
dissipated heat (σ 2

q ) increases with its mean (µq ), and it cannot be smaller than 2kBT µq .
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I. INTRODUCTION

Precise determination of output information from a thermo-
dynamically dissipative process necessarily incurs energetic
cost to generate it. Tradeoffs between energetic cost and
information processing in biochemical and biomolecular
processes have been highlighted for the past few decades [1–5].
Among others, Barato and Seifert [1] have recently conjectured
a fundamental bound in the minimal heat dissipation (q)
to generate an output with relative uncertainty (ϵ). To be
specific, when a molecular motor moves along a cytoskeletal
filament [6–8], the chemical free energy transduced into the
motor movement, which results in a travel distance of X(t),
is eventually dissipated as heat into the surrounding media
[9,10], the amount of which increases with the time (⟨q⟩ ∼ t).

Because of the inherent stochasticity of chemical processes,
the travel distance X(t) has its own variance, σ 2

X = ⟨[δX(t)]2⟩,
and it defines a time-dependent fluctuation in the output
ϵX(≡σX/µX), whose squared quantity decreases with time
t , as ϵ2

X ∼ t−1. The product of the two quantities, Q, is in
fact independent of t [1,11], and it was further argued that Q is
always greater than 2kBT for any process that can be described
as a Markov jump process on a suitable network. This notion
is concisely written as

Q = ⟨q⟩ × ϵ2
X ! 2kBT . (1)

The validity of this inequality was claimed for general
Markovian networks [1,2], and it was partly proved near
equilibrium in the linear-response regime [1]. This effort has
recently been followed by a general proof employing the large
deviation theory [12–14].

Here, while limited to a particular model, we provide a less
abstract and physically more tangible proof of the thermody-
namic uncertainty relation [Eq. (1)] than the existing studies
by considering the dynamics of a Brownian particle on a static
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periodic potential subjected to a nonconservative force f .
Projection of biomolecular processes in one-dimensional (1D)
periodic potentials is fully legitimate as long as the time-scale
separation between a slow variable of interest and other faster
variables is ensured [15], and Brownian motion in a 1D
periodic potential has routinely been employed in describing
the motion of molecular motors and enzyme turnover reactions
[7,10,16]. We directly calculate each term (⟨q⟩ and ϵ2

X) in
Eq. (1), and we show that the product of the two quantities
must be greater than 2kBT .

II. BROWNIAN MOTION IN TILTED
PERIODIC POTENTIALS

The overdamped Langevin equation for the “position” x(t)
of a quasiparticle on a periodic potential V (x) = V (x + L) is
written as

ẋ(t) = µF (x(t),f ) + η(t), (2)

where µ is the motility coefficient (or inverse of friction
coefficient γ , µ = γ −1), F (x(t),f ) ≡ −V ′(x(t)) + f , and
Gaussian white noise is assumed such that ⟨η(t)⟩ = 0 and
⟨η(t)η(t ′)⟩ = 2Dδ(t − t ′) with the diffusion constant D =
µkBT . Then, the corresponding Fokker-Planck equation for
the probability density ρ(x,t) is

∂tρ(x,t) = D∂x[∂x − βF (x(t))]ρ(x,t)

= −∂xj (x,t), (3)

which defines the probability current j (x,t) = −D∂xρ(x,t) +
µF (x(t))ρ(x,t).

Equations (2) and (3) represent the Brownian motion in
tilted washboard potentials where the extent of tilt is controlled
by f [17]. At steady state, the probability density becomes
time-independent [ρ(x,t) = ρss(x)], which in turn renders a
constant probability current, j (x,t) = jss. Furthermore, heat
(housekeeping heat [18–20]) has to be continuously dissipated
to sustain the process at nonequilibrium steady state (NESS).
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Before carrying out an explicit calculation, two limiting cases
are worth considering: (i) At weak tilt [0 " f ≪ V ′(x)], it
is expected that the particle hops stochastically between the
adjacent confining potential wells of V (x) with a mean hopping
time ⟨τ ⟩ and a small downhill velocity ∼L/⟨τ ⟩ and a reduced
effective diffusion constant Deff(<D) [21,22]. (ii) At strong
tilt [f ≫ V ′(x)], the barrier separating the adjacent potentials
vanishes, and the particles will drift downhill with mean
steady-state velocity vss ∼ µf and with the original diffusion
constant D.

III. EVALUATION OF Q IN TILTED
PERIODIC POTENTIALS

Here, our aim is to evaluate Q for arbitrary values of f
and prove that Q is lower bounded by 2kBT . First, the heat
dissipated from this process in NESS is a housekeeping heat,
which can be evaluated for Langevin systems as [1,19,20]

q[x(t),f ] = µ−1
∫ t

0
dτ vss(x,f )ẋ(τ ), (4)

where vss(x,f ) ≡ jss(f )/ρss(x,f ) = µF (x,f ) − D∂x log
ρss(x,f ) is the mean local velocity. Note that due to the
stochastic term ẋ(τ ), the housekeeping heat is a stochas-
tic quantity that depends on the path of realization. The
argument [x(t)] of q makes it explicit that the calculated
heat is for a particular realization of the trajectory [x(t)] =
(x(0),x(1),x(2), . . . ,x(t)), hence the housekeeping heat av-
eraged over the ensemble of trajectories is written in the
following form:

⟨q⟩ =
∫

dx0p(x0)
∫ t−1∏

i=1

dxiP (xi |xi−1)q(x0, . . . ,xt )

=
∫

D[x(τ )]e−S[x(τ )|x0]
∫ t

0
dτ µ−1vss(x(τ ))ẋ(τ )

=
〈 ∫ t

0
dτ vss(x(τ ))F (x(τ ))

〉

= ⟨vss(x,f )F (x,f )⟩t ≡ ⟨vF ⟩sst, (5)

where S[x(τ ),f (τ )] =
∫ t

0 dτ ( [ẋ−µF (x,f )]2

4D
+ µ

2 ∂xF ) [20], and
⟨· · · ⟩ ≡

∫
D[x(τ )]e−S[x(τ )|x0](· · · ) denotes the average over all

the paths and initial conditions. At steady state, however, the
implicit time dependence in vss(x(τ )) and F (x(τ )) can be
removed from the above formal path integral expression, and
thus the notion of a sum over all paths is replaced with an
integral weighed with the steady-state probability, ρss(x), with
a normalization condition,

∫ L

0 ρss(x)dx = 1. That is, ⟨g⟩ =∫
D(x(τ ))P [x(τ )|x0]

∫ t

0 dτ g(x(τ )) =
∫

dx g(x)ρss(x). In the
last line of Eq. (5), we have dropped the dependence of
steady-state quantities on x and f from the expression and
used a simplified notation ⟨· · · ⟩ss. Henceforth, for notational
convenience, we will use this simplified notation, i.e., ⟨K⟩ss ≡
⟨Kss(x,f )⟩ =

∫ L

0 Kss(x,f )ρss(x,f )dx.
Next, the mean travel distance ⟨X(t)⟩ and its variance

(⟨[δX(t)]2⟩) of Brownian motion in tilted periodic potentials
are a topic that has been discussed in many different con-
texts, and their analytic forms at t → ∞ are available from

Refs. [23–25],

⟨X(t)⟩ = µ

〈 ∫ t

0
dτ F [x(τ ),f ]

〉
= µ⟨F ⟩sst (6)

and

⟨[δX(t)]2⟩ = 2Deff(f )t, (7)

where Deff(f ) = DG(f ) is a force-dependent effective diffu-
sion coefficient,

G(f ) = ⟨I∓(x,f )I+(x,f )I−(x,f )⟩L
⟨I∓(x,f )⟩3

L

, (8)

where ⟨· · · ⟩L ≡ L−1
∫ L

0 (· · · )dx denotes averaging over a
period with

I+(x,f ) = eβ*(x,f )
∫ x

x−L

dy e−β*(y,f ) (9)

and

I−(x,f ) = e−β*(x,f )
∫ x+L

x

dy eβ*(y,f ), (10)

where *(x,f ) ≡ V (x) − f x.
Now, we are ready to evaluate Q [Eq. (1)] using Eqs. (5)–

(7), and we prove the uncertainty relation, Q ! 2kBT ,

Q = ⟨q⟩ × ⟨[δX(t)]2⟩
⟨X(t)⟩2

= 2kBT
⟨vF ⟩ss

µ⟨F ⟩2
ss
G(f ). (11)

The two core averages in Eq. (11) are evaluated as follows:

⟨F ⟩ss =
∫ L

0
F (x)ρss(x)dx

=
∫ L

0
[γjss(f ) + kBT ∂xρss(x,f )]dx = γjss(f )L

(12)

and

⟨vF ⟩ss =
∫ L

0
vss(x)F (x)ρss(x)dx

=
∫ L

0
vss(x,f )[γjss(f ) + kBT ∂xρss(x,f )]dx

= γj 2
ss(f )

∫ L

0
ρ−1

ss (x,f )dx, (13)

where the condition of periodic boundary ρss(L) = ρss(0) was
used in both Eqs. (12) and (13). Now, to prove the uncertainty
relation, we have to verify the following inequality for all f :

Q(f )
2kBT

=
(

1
L2

∫ L

0
ρ−1

ss (x,f )dx

)
× G(f ) ! 1. (14)

The conditions of normalization
∫ L

0 ρss(x,f )dx = 1 and
boundedness |ρss(x,f )| < ∞ for all x’s enable us to calculate
the position-dependent steady-state probability ρss(x,f ) and
steady-state current jss(f ) [17] (see Appendix A), both of
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FIG. 1. Q(f ) calculated for *(x,f ) = V (x) − f x with V (x) =
Vo sin(2πx/L), Vo = 5 kBT , and L = 6 nm [blue line in panel (a)].
The shapes of the potential *(x,f ) at varying f are shown in the
small panels (b)–(e). A greater dissipation [larger Q(f )] is obtained
for a deeper potential well (Vo = 10 kBT , magenta line). The red
dashed line depicts the lower bound Q = 2kBT .

which are required for evaluating Q explicitly,

ρss(x,f )

= jss(f )e−β*(x,f )

D,(βf L)
[ψ+(L,f ) − ,(βf L)ψ+(x,f )], (15)

jss(f ) = D,(βf L)
ψ+(L,f )ψ−(L,f ) − ,(βf L).+(L,f )

, (16)

where .+(L,f ) =
∫ L

0 dx e−β*(x,f )ψ+(x,f ), β = 1/kBT ,
,(x) = 1 − e−x , and ψ±(x,f ) =

∫ x

0 e±β*(x ′,f )dx ′. Insertion
of Eqs. (A7) and (16) into ⟨F ⟩ss [Eq. (12)] and ⟨vF ⟩ss [Eq. (13)]
allows us to calculate the f dependence ofQ, which is depicted
in Fig. 1(a).

Three regimes of f are investigated: (i) In the weak tilt
limit [V ′(x) ≫ f → 0], using Eqs. (12), (13), (A7), (16), and
the periodicity of V (x), i.e.,

∫ x

x−L
e±βV (y)dy =

∫ L

0 e±βV (y)dy,
one can show that ⟨F ⟩ss → f ϕ−1

+ ϕ−1
− , where ϕ± ≡ ⟨e±βV (x)⟩L,

⟨vF ⟩ss → µf 2ϕ−1
+ ϕ−1

− , and G(f ) → ϕ−1
+ ϕ−1

− , where ϕ± =
⟨e±βV (x)⟩L. This leads toQ(f )/2kBT → 1. A series expansion
of Q(f ) in the power of f leads to (see Appendix B 1 for the
details of the power-series expansion)

lim
f →0≪V ′(x)

Q
2kBT

= 1 + λβf + O(f 2) ! 1 (17)

with λ ! 0 [Eq. (B20)]. (ii) In the strong tilt limit [V ′(x) ≪ f ],
the particle continuously drifts downhill without being trapped
in potential wells. In this case, ⟨F ⟩ss → f , ⟨vF ⟩ss → µf 2, and
G(f ) → 1, which again leads to Q(f )/2kBT → 1. A series
expansion of Q(f ) in the power of 1/f leads to (see Appendix
B 2)

lim
V ′(x)≪f

Q
2kBT

! 1 + 3
⟨{V ′(x)}2⟩L

f 3
+ · · · ! 1. (18)

(iii) Figure 1 shows that Q(f ) is maximized at an intermediate
tilt limit f " fc, which satisfies V ′(x) − fc ≈ 0. In this case,
*(x,f ) resembles a descending staircase (see Fig. 1 at f ≈
fc). It is straightforward to show that (see Appendix B 3)

Q(fc)
2kBT

≃ βfcL

3
(1 + 5e−βfcL + 5e−2βfcL + e−3βfcL)

(1 + e−βfcL)2(1 − e−βfcL)

! 1, (19)

where Q(fc) increases monotonically with fc and the equality
is attained only for fcL ≪ kBT , which is realized essentially
for a barrierless, flat potential.

Taking (i)–(iii) together, we have essentially proved that
Q(f )/2kBT ! 1 for all f . Remarkably, the lower bound of
Q, 2kBT , is attained at the two disparate conditions of f , and
it is of particular significance that Q is maximized near the
critical force (f " fc) at which the barrier of the potential is
about to vanish and the fluctuation of the Brownian particles
is maximized.

IV. THERMODYNAMIC UNCERTAINTY RELATION AND
HEAT DISTRIBUTION

Instead of the travel distance X(t) as an output observ-
able, the dissipated heat (q) in steady state can be used
as an alternative probe of output from the process. For a
given thermodynamic affinity per cycle A, which itself is a
deterministic quantity defined as the log-ratio between the
forward and backward flux (or microscopic rate constants
of chemical networks) [1,10,26], the mean and variance
of the housekeeping heat can be related with those of
another stochastic observable, such as reaction cycle step
n(t) or travel distance X(t): ⟨q⟩ = A × ⟨n⟩ = A/L × ⟨X⟩
and ⟨(δq)2⟩ = A2 × ⟨(δn)2⟩ = (A/L)2 × ⟨(δX)2⟩. Then, the
squared uncertainty ϵ2

ξ = σ 2
ξ /µ2

ξ is identical for ξ = q(t), n(t),
and X(t).

If the dissipated heat itself is used as an output observable
(ξ = q), Q turns into a Fano factor of q and is lower bounded
by 2kBT ,

Q = µq × ϵ2
q = σ 2

q /µq ! 2kBT , (20)

or equivalently,

0 # µq #
σ 2

q

2kBT
. (21)

The lower bound of µq is a straightforward outcome of the
second law of the thermodynamics, but the upper bound,
which is an interesting outcome, implies that the variance
of heat dissipated in NESS is constrained by its mean, such
that σ 2

q grows with µq and cannot be smaller than 2kBT × µq .
While the thermodynamic uncertainty relation has originally
recognized the bound of steady-state current fluctuation (ϵJ )
[12], here we show that the relation of variance of heat
dissipation with its mean [Eq. (21)] can be deduced from it
as well.

Next, we relate Eqs. (20) and (21) with the integral
fluctuation theorem for housekeeping heat, ⟨e−βq⟩ = 1 [27].
The first inequality in Eq. (21) (0 # µq) is obtained from
Jensen’s inequality for convex functions, ⟨e−βq⟩ ! e−β⟨q⟩, and
the second one (µq # σ 2

1 /2kBT ) is obtained by truncating the
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cumulant expansion of e−βq at the second term as

0 = −β−1 log ⟨e−βq⟩

= µq − β

2
σ 2

q + R(βq) ! µq − β

2
σ 2

q , (22)

and by claiming that the remaining sum of alternating series
beyond the second cumulant is non-negative regardless of
the value of βq, i.e., R(βq) ! 0. To be consistent with the
form of the thermodynamic uncertainty relation in Eq. (20),
the inequality R(βq) ! 0 should hold. The equality sign is
acquired when the heat distribution, P (q), is Gaussian.

Speck et al. [27], in fact, have calculated P (q,t) by solving
the Fokker-Planck equation of Brownian motion in periodic
potentials through adiabatic elimination of fast variables. They
found that the dissipated heat in steady states takes a form of
Gaussian distribution P (q,t) ∼ exp[−(q − µq)2/2σ 2

q ] at two
limiting cases. For |V ′(x)| ≫ f ,

P (q,t) ∼ exp
[
− (q − γ ⟨v2⟩sst)2

4γ kBT ⟨v2⟩sst

]
, (23)

which gives µq = γ ⟨v2⟩sst , σ 2
q = 2γ kBT ⟨v2⟩sst , and Q =

σ 2
q /µq = 2kBT . For |V ′(x)| ≪ f ,

P (q,t) ∼ exp
[
− (q − µf 2t)2

4Df 2t

]
, (24)

which gives µq = µf 2t and σ 2
q = 2Df 2t . In both cases, Q =

σ 2
q /µq = 2kBT . These results (i) agree with those shown in

Eqs. (17) and (18), which use the travel distance as an output
(Q = µqϵ

2
X = 2kBT ), (ii) confirm that Q is time-independent,

and (iii) confirm that Gaussian dissipation leads to Q = 2kBT ,
as we have discussed using the integral fluctuation theorem
[Eq. (22)].

V. CONCLUSIONS

The implication of the thermodynamic uncertainty relation,
which differs from other inequality relations such as the second
law and the stability condition in equilibrium thermodynamics
[28], is worth further deliberation. It is interesting that
the lower bound of Q is attained both near and far from
equilibrium. For a unicyclic Markovian network with N states,
it was shown that Q ! (A/N) coth(A/2NkBT ) ! 2kBT [1].
In this case, the minimum dissipation bound of Q = 2kBT
is attained only when the affinity goes to zero (A → 0), in
which the local detailed balance condition is approached. Our

limiting case of f ≫ V ′(x) could be thought of as A ≫ 1,
but the above expression of Q from the Markovian network
diverges as A ≫ 1 at fixed N , which appears to contradict
Eq. (18). Under the condition of f ≫ V ′(x), however, the
potential barriers between adjacent wells vanish and the
mapping of dissipative dynamics using the Markov jump
process on networks can no longer be maintained. While the
condition is fundamentally different from another limiting case
near equilibrium, we still find the Q = 2kBT bound being
attained at this extreme driving condition that also gives rise
to a Gaussian heat dissipation, a hallmark of independence
and uncorrelated statistics. Also suggested in Fig. 1, except
for the two limiting conditions, it is likely that the distribution
of dissipated heat is characterized by non-Gaussianity. Thus,
Q, greater than 2kBT , implies deviation of heat dissipation
from Gaussian, and it can be used as a measure for assessing
the complexity of dissipative processes, which, for the case
of Brownian motion in 1D periodic potentials, approaches its
lower bound both near and far from equilibrium.
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APPENDIX A: DERIVATION OF ρss(x, f ) AND jss( f ) [17]

The Fokker-Planck equation with effective potential
*(x,f ) = V (x) − f x is

∂tρ(x,f,t) = D∂x[∂x + β*′(x; f )]ρ(x,t)

= −∂xj (x,f,t). (A1)

At steady state, ρ(x,f,t) = ρss(x,f ) and j (x,f,t) = jss(f ),

jss(f ) = −D∂xρss(x,f ) − µ*′(x)ρss(x,f )

= −De−β*(x,f )∂x[eβ*(x,f )ρss(x,f )]. (A2)

Here, ρss(x,f ) can be formally solved as

ρss(x,f ) = Ne−β*(x,f ) − jss(f )
D

e−β*(x,f )
∫ x

eβ*(y,f )dy

(A3)

and one can determine N , the normalization constant, by using
the fact that the steady-state probability ρss(x) is bounded for
large x and jss by using

∫ L

0 ρss(x)dx = 1.
To carry out this algebra, let us first evaluate

∫ x+nL

0
eβ*(x ′)dx ′ =

∫ L

0
eβ*(x ′)dx ′ + · · · +

∫ nL

(n−1)L
eβ*(x ′)dx ′ +

∫ nL+x

nL

eβ*(x ′)dx ′

= (1 + e−βf L + · · · + e−βf (n−1))
∫ L

0
eβ*(x ′)dx ′ + e−βf nL

∫ x

0
eβ*(x ′)dx ′

= 1 − e−βf nL

1 − e−βf L
I + e−βf nL

∫ x

0
dx ′eβV (x ′), (A4)
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where I ≡
∫ L

0 eβ*(x ′)dx ′. This allows us to express ρss(x + nL) as

ρss(x + nL) = e−β*(x+nL)
(

N − jss

D

∫ x+nL

0
eβ*(x ′)dx ′

)

= e−β*(x,f )eβf nL

[
N − jss

D

(
I

1 − e−βf nL

1 − e−βf L
+ e−βf nL

∫ x

0
dx ′eβV (x ′)

)]

= e−β*(x,f )eβf nL

[
N − jssI

D(1 − e−βf L)

]
+ e−β*(x,f )

(
jssI

D

1
1 − e−βf L

− jss

D

∫ x

0
dx ′eβV (x ′)

)
. (A5)

In order for ρss(x + nL) to be bounded even when n → ∞ (f > 0), the first term in the last line of Eq. (A5) should vanish,
which demands

N = jssI

D(1 − e−βf L)
. (A6)

Therefore, the steady-state probability along the reaction coordinate is written as

ρss(x) = jss

D
e−β*(x,f )

(
ψ+(L)

1 − e−βf L
− ψ+(x)

)
, (A7)

where ψ±(x) =
∫ x

0 e±β*(x ′)dx ′.
Next, the normalization condition

∫ L

0 ρss(x,f )dx = 1 determines jss(f )

jss(f ) = D(1 − e−βf L)

ψ+(L,f )ψ−(L,f ) − (1 − e−βf L)
∫ L

0 dx e−β*(x,f )ψ+(x,f )
. (A8)

APPENDIX B: BEHAVIORS OF Q( f ) AT THREE REGIMES OF f [23–25]

For three different regimes of f , we will evaluate

Q(f )
2kBT

= 1
L2

∫ L

0
dx ρss(x,f ) × ⟨[I−(x,f )]2I+(x,f )⟩L

⟨I−(x,f )⟩3
L

. (B1)

To evaluate Eq. (B1), it is convenient to have the following four identities [23–25]: First,

I+(x,f ) = eβ*(x,f )
∫ x

x−L

dy e−β*(y,f ) =
∫ L

0
dy eβ[*(x,f )−*(x−y,f )] =

∫ L

0
dy eβ[V (x)−V (x−y)]e−βfy. (B2)

Second,

I−(x,f ) = e−β*(x,f )
∫ x+L

x

dy eβ*(y,f ) =
∫ L

0
dy e−β[*(x,f )−*(x+y,f )] =

∫ L

0
dy e−β[V (x)−V (x+y)]e−βfy. (B3)

Third,

1
L

∫ L

0
dx

∫ L

0
dy ye−β[V (x)+V (x−y)] = 1

L

∫ L

0
dx

∫ L

0
dy(L − y)e−β[V (x)+V (x+y)]

= Lϕ2
− − 1

L

∫ L

0
dx

∫ L

0
dy ye−β[V (x)+V (x+y)]

= Lϕ2
− − 1

L

∫ L

0
dx

∫ L

0
dy ye−β[V (x−y)+V (x)], (B4)

which leads to

1
L

∫ L

0
dx

∫ L

0
dy ye−β[V (x−y)+V (x)] =

Lϕ2
−

2
. (B5)

Lastly,

l2
o = 1

L

∫ L

0
dx e−βV (x)

∫ L

0
dy yeβV (x+y)

︸ ︷︷ ︸
∫ L+x

x
ds(s−x)eβV (s)

= 1
L

∫ L

0
dx e−βV (x)[L⟨x⟩+ + Lψ+(x,0) − xLϕ+]

= L⟨x⟩+ϕ− − L⟨x⟩−ϕ+ + .+(L,0), (B6)
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where ⟨xn⟩± ≡ 1
L

∫ L

0 dx xne±βV (x) and .+(x,f ) =
∫ x

0 dy e−[βV (y)−fy]
∫ y

0 dz eβ[V (z)−f z], thus .+(L,0) =
∫ L

0 dx e−βV (x)
∫ x

0 dx eβV (x).

1. Weak tilt limit, V ′(x) ≫ f

First,

I−(x,f ) =
∫ L

0
dy e−β[V (x)−V (x+y)](1 − βfy + · · · ) = e−βV (x)

∫ L

0
dy eβV (y) − βf

∫ L

0
dy ye−β[V (x)−V (x+y)] + O(f 2), (B7)

where we have used a property of periodic function,
∫ L

0 dy eβV (x+y) =
∫ L

0 dy eβV (y). Then, the average over a period is

⟨I−(x,f )⟩L = 1
L

∫ L

0
dx e−βV (x)

︸ ︷︷ ︸
=Lϕ−

∫ L

0
dy eβV (y)

︸ ︷︷ ︸
=Lϕ+

−βf
1
L

∫ L

0
dx

∫ L

0
dy ye−β[V (x)−V (x+y)]

︸ ︷︷ ︸
=l2

o

+O(f 2)

= Lϕ+ϕ−

(
1 − l2

oβf

Lϕ+ϕ−
+ O(f 2)

)
, (B8)

where ϕ± = 1
L

∫ L

0 dx e±βV (x) and l2
o = 1

L

∫ L

0 dx e−βV (x)
∫ L

0 dy yeβV (x+y). Hence, we obtain

⟨I−(x,f )⟩3
L = L3ϕ3

+ϕ3
−

(
1 − 3l2

o

Lϕ+ϕ−
βf + O(f 2)

)
. (B9)

Next,

⟨[I−(x,f )]2I+(x,f )⟩L = 1
L

∫ L

0
dx[I−(x)]2

[∫ L

0
dy eβ[V (x)−V (x−y)]e−βfy

]

= 1
L

∫ L

0
dx e−βV (x)

(
L2ϕ2

+ − 2Lϕ+

∫ L

0
dy yeβV (x+y)βf + · · ·

)

×

⎛

⎜⎜⎜⎝

∫ L

0
dy e−βV (x−y)

︸ ︷︷ ︸
=Lϕ−

−βf

∫ L

0
dy ye−βV (x−y) + · · ·

⎞

⎟⎟⎟⎠

= 1
L

∫ L

0
dx e−βV (x)

︸ ︷︷ ︸
ϕ−

L3ϕ2
+ϕ− − 2βf L2ϕ+ϕ−

1
L

∫ L

0
dx e−βV (x)

∫ L

0
dy yeβV (x+y)

︸ ︷︷ ︸
≡l2

o

−βf L2ϕ2
+

1
L

∫ L

0
dx e−βV (x)

∫ L

0
dy ye−βV (x−y)

︸ ︷︷ ︸
=L2ϕ2

−/2 [Eq. (B5)]

= L3ϕ2
+ϕ2

−

(
1 − 2l2

o + L2ϕ+ϕ−/2
Lϕ+ϕ−

βf + O(f 2)
)

. (B10)

Therefore,

⟨[I−(x,f )]2I+(x,f )⟩L
⟨I−(x,f )⟩3

L

= 1
ϕ+ϕ−

[
1 +

(
l2
o

L2ϕ+ϕ−
− 1

2

)
βf L + O(f 2)

]
. (B11)

Lastly,

1
L2

∫ L

0
ρ−1

ss (x,f )dx = 1
L2

∫ L

0
dx

eβ*(x,f )[ψ+(L,f )ψ−(L,f ) − ,(βf L).+(x,f )]
ψ+(L,f ) − ,(βf L)ψ+(x,f )

= 1
L2

∫ L

0
dx eβ*(x,f ) N (x,f )

D(x,f )
, (B12)

where .+(x,f ) =
∫ x

0 dy e−β*(y,f )ψ+(y,f ) =
∫ x

0 dy e−β*(y,f )
∫ y

0 dz eβ*(z,f ). For small f [f ≪ V ′(x)],

ψ±(L,f ) =
∫ L

0
dx e±β*(x,f ) =

∫ L

0
dx e±βV (x)(1 ∓ βf x + · · · ) = Lϕ± ∓ (βf L)⟨x⟩± + · · · (B13)
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with ⟨xn⟩± = 1
L

∫ L

0 dx xne±βV (x). Thus, one can expand the numerator and denominator defined, respectively, as N (x,f ) and
D(x,f ) in Eq. (B12) in the power of f :

N (x,f ) = ψ+(L,f )ψ−(L,f ) − ,(βf L).+(x,f )

= [Lϕ+ − (βf L)⟨x⟩+ + · · · ][Lϕ− + (βf L)⟨x⟩− + · · · ] − ,(βf L).+(x,f )

= L2ϕ+ϕ− − [L⟨x⟩+ϕ− − L⟨x⟩−ϕ+ + .+(x,0)](βf L) + O(f 2) (B14)

and

D(x,f ) = ψ+(L,f ) − ,(βf L)ψ+(x,f ) = Lϕ+ − [⟨x⟩+ + ψ+(x,0)]βf L + O(f 2). (B15)

Equations (B12), (B14), and (B15) lead to the power-series expansion of 1
L2

∫ L

0 ρ−1
ss (x,f ) in terms of f ,

1
L2

∫ L

0
dx ρ−1

ss (x,f ) = 1
L2

∫ L

0
dx eβ*(x,f ) N (x,f )

D(x,f )

= 1
L2

∫ L

0
dx eβV (x)(1 − βf x + · · · )

L2ϕ+ϕ− − [L⟨x⟩+ϕ− − L⟨x⟩−ϕ+ + .+(x,0)](βf L) + · · ·
Lϕ+ − [⟨x⟩+ + ψ+(x,0)]βf L + · · ·

≈ ϕ+ϕ− +
[
⟨x⟩−ϕ+ − ⟨x⟩+ϕ− + 1

Lϕ+

∫ L

0
dx eβV (x)

{
ϕ−ψ+(x,0) − .+(x,0)

L

}]
βf + O(f 2)

= ϕ+ϕ−

[
1 +

( ⟨x⟩−
ϕ−

− ⟨x⟩+
ϕ+

+ 1
ϕ+

∫ L

0
dx eβV (x)

{
ψ+(x,0)

Lϕ+
− .+(x,0)

L2ϕ+ϕ−

})
βf + O(f 2)

]
. (B16)

Taken together,

Q(f )
2kBT

= 1
L2

∫ L

0
dx ρ−1

ss (x) × ⟨[I−(x)]2I+(x)⟩L
⟨I−(x)⟩3

L

= ϕ+ϕ−

[
1 +

( ⟨x⟩−
ϕ−

− ⟨x⟩+
ϕ+

+ 1
ϕ+

∫ L

0
dx eβV (x)

{
ψ+(x,0)

Lϕ+
− .+(x,0)

L2ϕ+ϕ−

})
βf + O(f 2)

]

× 1
ϕ+ϕ−

[
1 +

(
2l2

o − L2ϕ+ϕ−

2Lϕ+ϕ−

)
βf + O(f 2)

]

= 1 +
[(

l2
o − L2ϕ+ϕ−/2 + L⟨x⟩−ϕ+ − L⟨x⟩+ϕ−

Lϕ+ϕ−

)
+ 1

ϕ+

∫ L

0
dx eβV (x)

{
ψ+(x,0)

Lϕ+
− .+(x,0)

L2ϕ+ϕ−

}]
βf + · · ·

= 1 +
[(

.+(L,0) − L2ϕ+ϕ−/2
Lϕ+ϕ−

)
+ 1

ϕ+

∫ L

0
dx eβV (x)

{
ψ+(x,0)

Lϕ+
− .+(x,0)

L2ϕ+ϕ−

}]

︸ ︷︷ ︸
=λ

βf + · · · . (B17)

Now, for Q(f )/2kBT ! 1 to be valid, the prefactor of βf , λ, should be non-negative, i.e., λ ! 0,

λ = 1
ϕ+

(∫ L

0 dx e−βV (x)
∫ x

0 dy eβV (y)

∫ L

0 dx e−βV (x)
− Lϕ+

2
+

∫ L

0 dx eβV (x)
∫ x

0 dy eβV (y)

∫ L

0 dx eβV (x)
−

∫ L

0 dx eβV (x)
(∫ x

0 dy e−βV (y)
∫ y

0 dz eβV (z)
)

∫ L

0 dx eβV (x)
∫ L

0 dx e−βV (x)

)

.

(B18)

Because
∫ L

0 dx eβV (x)
∫ x

0 dy eβV (y) = 1
2 (

∫ L

0 dx eβV (x))
2

= L2ϕ2
+

2 , the second and third terms in Eq. (B18) vanish. The numerator
of the last term in Eq. (B18) can be rewritten as

∫ L

0
dx eβV (x)

∫ x

0
dy e−βV (y)

∫ y

0
dz eβV (z) =

∫ L

0
dx e−βV (x)

∫ x

0
dy eβV (y)

∫ L

x

dz eβV (z)

#
∫ L

0
dx e−βV (x)

∫ x

0
dy eβV (y)

∫ L

0
dz eβV (z). (B19)

Therefore, λ ! 0 is further ensured from the following:

λ = 1
ϕ+

(∫ L

0 dx e−βV (x)
∫ x

0 dy eβV (y)

∫ L

0 dx e−βV (x)
−

∫ L

0 dx eβV (x)
(∫ x

0 dy e−βV (y)
∫ y

0 dz eβV (z)
)

∫ L

0 dx eβV (x)
∫ L

0 dx e−βV (x)

)

! 1
ϕ+

(∫ L

0 dx e−βV (x)
∫ x

0 dy eβV (y)

∫ L

0 dx e−βV (x)
−

∫ L

0 dx e−βV (x)
∫ x

0 dy eβV (y)
( ∫ L

0 dz eβV (z)
)

( ∫ L

0 dx eβV (x)
)( ∫ L

0 dx e−βV (x)
)

)

= 0. (B20)
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2. Strong tilt limit: V ′(x) ≪ f

Under this condition, V (x) is minor compared to the f x term. Thus, we expand e±βV (x) into a Taylor series,

I−(x) =
∫ L

0
dy e−β[V (x)−V (x+y)]e−βfy =

∫ L

0
dy

(
1 + βV ′(x)y + 1

2
{β2[V ′(x)]2 + β−1V ′′(x)}y2 + · · ·

)
e−βfy

= 1
βf

(
1 + V ′(x)

f
+ {[V ′(x)]2 + β−1V ′′(x)}

f 2
+ · · ·

)
. (B21)

Then

⟨I−(x)⟩L = 1
βf

[
1 + ⟨[V ′(x)]2⟩L

f 2
+ · · ·

]
, (B22)

⟨I−(x)⟩3
L = 1

β3f 3

[
1 + 3⟨[V ′(x)]2⟩L

f 2
+ · · ·

]
, (B23)

where ⟨V ′(x)⟩L = 0 and ⟨V ′′(x)⟩L = 0 due to the periodicity of V (x).
Next,

I 2
−(x)I+(x) = I 2

−(x)
∫ L

0
dy eβ[V (x)−V (x−y)]e−βfy

= I 2
−(x)

∫ L

0
dy

(
1 + βV ′(x)y + 1

2
{β2[V ′(x)]2 + β−1V ′′(x)}y2 · · ·

)
e−βfy

= I 2
−(x)

1
βf

(
1 + V ′(x)

f
+ [V ′(x)]2 − β−1V ′′(x)

f 2
+ · · ·

)
, (B24)

where limβf L≫1
1

(βf )n+1

∫ βf L

0 dα αne−α = n!
(βf )n+1 was used to evaluate the integrals in the second line. Then

⟨I 2
−(x)I+(x)⟩L = 1

L

∫ L

0
dx

1
β3f 3

(
1 + 2V ′(x)

f
+ 3[V ′(x)]2 + 2β−1V ′′(x)

f 2
+ · · ·

)

×
(

1 + V ′(x)
f

+ [V ′(x)]2 − β−1V ′′(x)
f 2

+ · · ·
)

= 1
β3f 3

⎛

⎜⎜⎜⎝
1 + 3

=0︷ ︸︸ ︷
⟨[V ′(x)]⟩L

f
+ 6⟨[V ′(x)]2⟩L + β−1

=0︷ ︸︸ ︷
⟨V ′′(x)⟩L

f 2
+ · · ·

⎞

⎟⎟⎟⎠

= 1
β3f 3

(
1 + 6⟨[V ′(x)]2⟩L

f 2
+ · · ·

)
. (B25)

Therefore, by taking the ratio between Eqs. (B25) and (B23), we get the following for f ≫ V ′(x):

⟨[I−(x)]2I+(x)⟩L
⟨I+(x)⟩3

L

= 1 + 3⟨[V ′(x)]2⟩L
f 3

+ · · · ! 1. (B26)

Next, from the continuous version of Chebyshev’s sum inequality, i.e., for real-valued, integrable functions X(x) and Y (x)
satisfying X′(x)Y ′(x) # 0 for ∀ x ∈ [0,L], it holds that

(
1
L

∫ L

0
X(x)dx

)(
1
L

∫ L

0
Y (x)dx

)
! 1

L

∫ L

0
X(x)Y (x)dx. (B27)

With the normalization condition
∫ L

0 ρss(x,f )dx = 1, and setting f (x) = ρss(x,f ) and g(x) = ρ−1
ss (x,f ), it follows that

1
L2

∫ L

0
ρ−1

ss (x,f )dx ! 1 (B28)

for all f .
Thus, the following relation can be acquired for f ≫ V ′(x):

Q(f )/2kBT = 1
L2

∫ L

0
ρ−1

ss (x,f )dx × ⟨[I−(x)]2I+(x)⟩L
⟨I+(x)⟩3

L

! 1 + 3⟨[V ′(x)]2⟩L
f 3

+ · · · ! 1. (B29)
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3. Near critical force f " fc

Near critical force, f ≈ fc, the barriers of the potential vanish, and *(x,f ) becomes almost flat over the period, (0,L).
The shape of the potential would resemble a descending staircase with the period of L. In this case, we can approximate
*(x + nL,f ) = c − nf L for nL < x < (n + 1)L. Then,

⟨I+(x)⟩L = 1
L

∫ L

0
dx eβ*(x,f )

∫ x

x−L

dy e−β*(y,f ) ≈ 1
L

∫ L

0
dx eβc

(∫ 0

x−L

dy e−β(c+f L) +
∫ x

0
dy e−βc

)
= L

2
(1 + e−βf L) (B30)

and

⟨[I+(x)]2I−(x)⟩L = 1
L

∫ L

0
dx eβ*(x,f )

(∫ x

x−L

dy e−β*(y,f )
)2(∫ x+L

x

dy eβ*(y,f )
)

≈ 1
L

∫ L

0
dx eβc

(∫ 0

x−L

dy e−β(c+f L) +
∫ x

0
dy e−βc

)2(∫ L

x

dy eβc +
∫ L+x

L

dy eβ(c−f L)
)

= L3

12
(1 + 5e−βf L + 5e−2βf L + e−3βf L), (B31)

which leads to

⟨[I+(x)]2I−(x)⟩L
⟨I+(x)⟩3

L

= 2
3

(1 + 5e−βf L + 5e−2βf L + e−3βf L)
(1 + e−βf L)3

. (B32)

Next,

1
L2

∫ L

0
dx ρ−1

ss (x,f ) ≈ 1
L2

∫ L

0
dx

eβc(ψ+(L,f )ψ−(L,f ) − f ,
∫ L

0 dx e−βc
∫ x

0 dy eβc)

ψ+(L,f ) − ,
∫ x

0 dy eβc

= 1
L2

∫ L

0
dx

eβc(L2 − ,L2/2)
eβcL − ,eβcx

=
∫ L

0
dx

(1 − ,/2)
L − ,x

= 1 − ,/2
,

log
1

1 − ,
= βf L

2
1 + e−βf L

1 − e−βf L
. (B33)

Therefore, from Eqs. (B32) and (B33) it follows that

Q(fc)
2kBT

= βfcL

3
(1 + 5e−βfcL + 5e−2βfcL + e−3βfcL)

(1 + e−βfcL)2(1 − e−βfcL)
! 1. (B34)

Equation (B34) is a monotonically increasing function of βfcL, greater than 1, and the equality sign is acquired when βfcL → 0.

[1] A. C. Barato and U. Seifert, Phys. Rev. Lett. 114, 158101 (2015).
[2] A. C. Barato and U. Seifert, J. Phys. Chem. B 119, 6555 (2015).
[3] G. Lan, P. Sartori, S. Neumann, V. Sourjik, and Y. Tu, Nat. Phys.

8, 422 (2012).
[4] J. M. Parrondo, J. M. Horowitz, and T. Sagawa, Nat. Phys. 11,

131 (2015).
[5] M. Hinczewski and D. Thirumalai, Phys. Rev. X 4, 041017

(2014).
[6] K. Visscher, M. J. Schnitzer, and S. M. Block, Nature (London)

400, 184 (1999).
[7] A. B. Kolomeisky and M. E. Fisher, Annu. Rev. Phys. Chem.

58, 675 (2007).
[8] C. Hyeon and J. N. Onuchic, Biophys. J. 101, 2749 (2011).
[9] C. Bustamante, J. Liphardt, and F. Ritort, Phys. Today 58(7), 43

(2005).
[10] W. Hwang and C. Hyeon, J. Phys. Chem. Lett. 8, 250 (2017).
[11] P. Pietzonka, F. Ritort, and U. Seifert, Phys. Rev. E 96, 012101

(2017).
[12] T. R. Gingrich, J. M. Horowitz, N. Perunov, and J. L. England,

Phys. Rev. Lett. 116, 120601 (2016).
[13] P. Pietzonka, A. C. Barato, and U. Seifert, Phys. Rev. E 93,

052145 (2016).

[14] M. Polettini, A. Lazarescu, and M. Esposito, Phys. Rev. E 94,
052104 (2016).

[15] R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford
University Press, New York, 2001).

[16] R. D. Astumian, Biophys. J. 98, 2401 (2010).
[17] H. Risken, The Fokker-Planck Equation, 2nd ed., edited by

H. Haken (Springer, Berlin, 1996).
[18] K. Sekimoto, Prog. Theor. Phys. Suppl. 130, 17 (1998).
[19] T. Hatano and S. I. Sasa, Phys. Rev. Lett. 86, 3463 (2001).
[20] U. Seifert, Rep. Prog. Phys. 75, 126001 (2012).
[21] S. Lifson and J. Jackson, J. Chem. Phys. 36, 2410 (1962).
[22] R. Zwanzig, Proc. Natl. Acad. Sci. (USA) 85, 2029 (1988).
[23] P. Reimann, C. Van den Broeck, H. Linke, P. Hänggi, J. M.

Rubi, and A. Pérez-Madrid, Phys. Rev. Lett. 87, 010602
(2001).

[24] P. Reimann, C. Van den Broeck, H. Linke, P. Hänggi, J. M. Rubi,
and A. Pérez-Madrid, Phys. Rev. E 65, 031104 (2002).

[25] H. Wang, Acta Math. Sci. 31, 2323 (2011).
[26] H. Qian, Annu. Rev. Phys. Chem. 58, 113 (2007).
[27] T. Speck and U. Seifert, J. Phys. A 38, L581 (2005).
[28] H. B. Callen, Thermodynamics and an Introduction to Thermo-

statistics (Wiley, New York, 1985).

012156-9

https://doi.org/10.1103/PhysRevLett.114.158101
https://doi.org/10.1103/PhysRevLett.114.158101
https://doi.org/10.1103/PhysRevLett.114.158101
https://doi.org/10.1103/PhysRevLett.114.158101
https://doi.org/10.1021/acs.jpcb.5b01918
https://doi.org/10.1021/acs.jpcb.5b01918
https://doi.org/10.1021/acs.jpcb.5b01918
https://doi.org/10.1021/acs.jpcb.5b01918
https://doi.org/10.1038/nphys2276
https://doi.org/10.1038/nphys2276
https://doi.org/10.1038/nphys2276
https://doi.org/10.1038/nphys2276
https://doi.org/10.1038/nphys3230
https://doi.org/10.1038/nphys3230
https://doi.org/10.1038/nphys3230
https://doi.org/10.1038/nphys3230
https://doi.org/10.1103/PhysRevX.4.041017
https://doi.org/10.1103/PhysRevX.4.041017
https://doi.org/10.1103/PhysRevX.4.041017
https://doi.org/10.1103/PhysRevX.4.041017
https://doi.org/10.1038/22146
https://doi.org/10.1038/22146
https://doi.org/10.1038/22146
https://doi.org/10.1038/22146
https://doi.org/10.1146/annurev.physchem.58.032806.104532
https://doi.org/10.1146/annurev.physchem.58.032806.104532
https://doi.org/10.1146/annurev.physchem.58.032806.104532
https://doi.org/10.1146/annurev.physchem.58.032806.104532
https://doi.org/10.1016/j.bpj.2011.10.037
https://doi.org/10.1016/j.bpj.2011.10.037
https://doi.org/10.1016/j.bpj.2011.10.037
https://doi.org/10.1016/j.bpj.2011.10.037
https://doi.org/10.1063/1.2012462
https://doi.org/10.1063/1.2012462
https://doi.org/10.1063/1.2012462
https://doi.org/10.1063/1.2012462
https://doi.org/10.1063/1.2012462
https://doi.org/10.1021/acs.jpclett.6b02657
https://doi.org/10.1021/acs.jpclett.6b02657
https://doi.org/10.1021/acs.jpclett.6b02657
https://doi.org/10.1021/acs.jpclett.6b02657
https://doi.org/10.1103/PhysRevE.96.012101
https://doi.org/10.1103/PhysRevE.96.012101
https://doi.org/10.1103/PhysRevE.96.012101
https://doi.org/10.1103/PhysRevE.96.012101
https://doi.org/10.1103/PhysRevLett.116.120601
https://doi.org/10.1103/PhysRevLett.116.120601
https://doi.org/10.1103/PhysRevLett.116.120601
https://doi.org/10.1103/PhysRevLett.116.120601
https://doi.org/10.1103/PhysRevE.93.052145
https://doi.org/10.1103/PhysRevE.93.052145
https://doi.org/10.1103/PhysRevE.93.052145
https://doi.org/10.1103/PhysRevE.93.052145
https://doi.org/10.1103/PhysRevE.94.052104
https://doi.org/10.1103/PhysRevE.94.052104
https://doi.org/10.1103/PhysRevE.94.052104
https://doi.org/10.1103/PhysRevE.94.052104
https://doi.org/10.1016/j.bpj.2010.02.040
https://doi.org/10.1016/j.bpj.2010.02.040
https://doi.org/10.1016/j.bpj.2010.02.040
https://doi.org/10.1016/j.bpj.2010.02.040
https://doi.org/10.1143/PTPS.130.17
https://doi.org/10.1143/PTPS.130.17
https://doi.org/10.1143/PTPS.130.17
https://doi.org/10.1143/PTPS.130.17
https://doi.org/10.1103/PhysRevLett.86.3463
https://doi.org/10.1103/PhysRevLett.86.3463
https://doi.org/10.1103/PhysRevLett.86.3463
https://doi.org/10.1103/PhysRevLett.86.3463
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1063/1.1732899
https://doi.org/10.1063/1.1732899
https://doi.org/10.1063/1.1732899
https://doi.org/10.1063/1.1732899
https://doi.org/10.1073/pnas.85.7.2029
https://doi.org/10.1073/pnas.85.7.2029
https://doi.org/10.1073/pnas.85.7.2029
https://doi.org/10.1073/pnas.85.7.2029
https://doi.org/10.1103/PhysRevLett.87.010602
https://doi.org/10.1103/PhysRevLett.87.010602
https://doi.org/10.1103/PhysRevLett.87.010602
https://doi.org/10.1103/PhysRevLett.87.010602
https://doi.org/10.1103/PhysRevE.65.031104
https://doi.org/10.1103/PhysRevE.65.031104
https://doi.org/10.1103/PhysRevE.65.031104
https://doi.org/10.1103/PhysRevE.65.031104
https://doi.org/10.1016/S0252-9602(11)60404-9
https://doi.org/10.1016/S0252-9602(11)60404-9
https://doi.org/10.1016/S0252-9602(11)60404-9
https://doi.org/10.1016/S0252-9602(11)60404-9
https://doi.org/10.1146/annurev.physchem.58.032806.104550
https://doi.org/10.1146/annurev.physchem.58.032806.104550
https://doi.org/10.1146/annurev.physchem.58.032806.104550
https://doi.org/10.1146/annurev.physchem.58.032806.104550
https://doi.org/10.1088/0305-4470/38/34/L03
https://doi.org/10.1088/0305-4470/38/34/L03
https://doi.org/10.1088/0305-4470/38/34/L03
https://doi.org/10.1088/0305-4470/38/34/L03

