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Abstract

Single molecule time trajectories of biomolecules provide glimpses into complex folding

landscapes that are difficult to visualize using conventional ensemble measurements.

Recent experiments and theoretical analyses have highlighted dynamic disorder in certain

classes of biomolecules, whose dynamic pattern of conformational transitions is affected

by slower transition dynamics of internal state hidden in a low dimensional projection. A

systematic means to analyze such data is, however, currently not well developed. Here we

report a new algorithm—Variational Bayes-double chain Markov model (VB-DCMM)—to

analyze single molecule time trajectories that display dynamic disorder. The proposed

analysis employing VB-DCMM allows us to detect the presence of dynamic disorder, if

any, in each trajectory, identify the number of internal states, and estimate transition rates

between the internal states as well as the rates of conformational transition within each

internal state. Applying VB-DCMM algorithm to single molecule FRET data of H-DNA in

100 mM-Na+ solution, followed by data clustering, we show that at least 6 kinetic paths

linking 4 distinct internal states are required to correctly interpret the duplex-triplex transi-

tions of H-DNA.

Author Summary

We have developed a new algorithm to better decode single molecule data with dynamic

disorder. Our new algorithm, which represents a substantial improvement over other

methodologies, can detect the presence of dynamic disorder in each trajectory and quan-

tify the kinetic characteristics of underlying energy landscape. As a model system, we

applied our algorithm to the single molecule FRET time traces of H-DNA. While duplex-

triplex transitions of H-DNA are conventionally interpreted in terms of two-state kinetics,

slowly varying dynamic patterns corresponding to hidden internal states can also be iden-

tified from the individual time traces. Our algorithm reveals that at least 4 distinct internal

states are required to correctly interpret the data.
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Introduction

Recent technological advances in single molecule experiments on biomolecules have provided

an unprecedented chance to investigate dynamics of proteins and nucleic acids at single mole-

cule (SM) level, which has previously been elusive in conventional experiments [1–7]. Folding/

unfolding pathways gleaned from individual SM trajectories indicate rugged folding land-

scapes inherent to biomolecules [4, 8, 9]. Long time trajectories from SM measurements,

which now can be extended more than hundreds seconds, allow us to address how a rugged

conformational landscape is sampled over time [7, 10, 11]. One of the striking findings from

these measurements is that even under the same folding condition, conformational dynamics

of individual molecules differ substantially from one another while still maintaining their bio-

logical functions. Cofactor-induced conformational transitions of T. ribozymes [12], Holliday

junctions [13], TPP-riboswitch [14], and preQ1-riboswitch [15] are the recent seminal exam-

ples that exhibit molecular heterogeneity at equilibrium. The variation in the velocities of indi-

vidual RecBCD helicase motors along the dsDNA [16] is a good example of the molecular

heterogeneity out of equilibrium, driven by ATP hydrolysis. Together with other reports [17–

28], these could be merely a subset of more widespread, yet unrecognized cases that exhibit

dynamical heterogeneity in SM time traces.

The chance of conformational frustration increases with the system size (Nsys). For a given

Nsys, the time for conformational sampling (τsample) is expected to scale as tsample � eNsys [29].

Suppose that Tobs, which is in practice limited by several factors [30–32], is long enough to

observe many (more than hundreds) transitions along a trace generated from SM measure-

ment. Two distinct scenarios arise depending on the length of τsample relative to Tobs, (i) If the

sampling time is shorter than Tobs (τsample� Tobs), then the conformational space of biomole-

cule is fully sampled. In this case, the ergodicity of the system is ensured such that for any mol-

ecule α (or time trace α) the time average of an observable Oα, hOiT ¼ 1

Tobs

R Tobs
0

OaðtÞ dt, is

equivalent to the ensemble average of Oα(t) over all α’s (1� α� Nens) at any moment t,
1

Nens

PNens
a¼1

OaðtÞ ¼ hOiens, i.e., hOiT = hOiens; thus thermodynamic properties of the system can

be read out by analyzing a single time trace. (ii) In contrast, if τsample� Tobs is satisfied due to

ruggedness of conformational space characterised with a number of deep local basins of attrac-

tion, then each time trace can sample only a local region of the conformational space. In this

case, dynamic pattern from each time trace would look different, and a change in the dynamic

pattern from one time interval to another would be observed only occasionally.

To be more precise about the second scenario (τsample� Tobs), suppose that the average

time scale for each local basin of attraction to be “sampled” by the conformational dynamics of

molecule is τconf and that the time for the molecule to make transitions between different

superbasins of attraction is τint (Fig 1). In principle the relaxation rates and energy barrier

heights of biomolecules span continuous spectra. So, the clear time scale separation may not

always be waranteed. However, to be able to grasp the presence of dynamic disorder, if any, in

SM time traces straightforwardly, a separation between two distinct time scales is required

such that τconf� τint (or DGzconf � DGzint). If τconf and τint were comparable (or the spectra of

relaxation rates were uniform and continuous), an algorithm we will propose here as well as

others could hardly be of any help to conceive a concrete landscape model as the one illus-

trated in Fig 1. Therefore, here we consider τconf and τint as two disparate time scales as illus-

trated in Fig 1. τconf is the time at which the time average of an observable hOi
t
¼ 1

t

R t

0
OðtÞdt

reaches its steady state value when τ> τconf, corresponding to a time scale in which to fully

sample the local basin of attraction. Alternatively, τconf is limited by a kinetic barrier with the

greatest DGzconf within the local basin of attraction, so that tconf ≳ e
DGzconf =kBT . On the other hand,
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τint is the transition time that is expected to scale with the height of kinetic barriers (DGzint)
between the two superbasins as tint � eDGzint=kBT . When measurements are conducted with a

finite duration of observation time (Tobs), we can conceive two entirely different dynamic pat-

terns depending on the relationship between τconf, τint, and Tobs:

• τconf� Tobs� τint: The interconversion time between distinct basins of attractions is far lon-

ger than the observation time. The dynamic patterns from individual trajectories that sample

distinct basin of attraction are expected to differ from each other. Since Tobs� τint, there is

few chance to observe an exchange of dynamic pattern in a single time trace, which corre-

sponds to a case with quenched disorder that each SM time trace looks entirely different.

Such cases are reported in Holliday junction [13], T. ribozyme [12], and RecBCD [16].

• τconf� τint ≲Tobs: The interconversion time between basins of attraction is shorter than or

comparable to the observation time. In this case, it is possible to observe a few rounds

(*Tobs/τint) of pattern exchanges in a single time trace. Such SM time traces are called to

have a dynamic disorder [15, 28, 33–36].

While the most interesting and physically relevant question to ask about the heterogeneity

in single molecule time traces is its molecular origin, detection and quantification of such

heterogeneity should precede such question for a further analysis. For SM time traces with

quenched disorder, it is relatively straightforward to analyze as one can use the criterion of

Fig 1. A rugged energy-landscape with hierarchical structure and an emergence of multiple time

scales of transitions. τint is the transition time between different superbasins of attraction whereas τconf is the

time scale of conformational dynamics of molecule within each basin. Due to large difference in kinetic

barriers (DGzint � DGzconf ), τint� τconf.

doi:10.1371/journal.pcbi.1005286.g001
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ergodicity and partition each time trace into its dynamic subensembles [13]. It is, however,

more challenging to analyze time traces with dynamic disorder.

In the ion-channel community, ion currents across a single ion-channel measured with

patch-clamp technique often demonstrate time series that switch between multiple dynamic

patterns, and such a phenomenon is called ‘mode-switching’ [37] or ‘modal gating’ [38]. An

algorithm (aggregated Markov model, AMM) developed by ion-channel community to ana-

lyze time series exhibiting dynamics disorder is in principle of use, but when applied to our

synthetic data, we found that the algorithm tends to overpredict the transitions between hid-

den states (see S25 Fig and discussion related to it below). Thus, here we have developed a

more reliable and systematic algorithm—Variational Bayes-Double Chain Markov Model

(VB-DCMM)—which combined variational Bayes method with Double Chain Markov Model

(DCMM) [39–43], to analyze SM time traces with dynamic disorder in which dynamic pattern

of conformational transition changes at much longer time scale than apparent conformational

fluctuations due to a slower transition of a hidden variable.

We first explain the algorithm for VB-DCMM, and next apply our VB-DCMM method to

synthetic data as a blind test to show that our method can accurately identify the hidden inter-

nal states and determine the kinetic rate constants associated with the data. The results from

our analysis using VB-DCMM are reliable as long as a clear separation in time scales exists

between the apparent conformational transition (τconf) and the interconversion times (τint).
As a prototypical example of single molecule time traces with dynamic disorder, data from

H-DNA [44, 45] that undergoes duplex-to-triplex conformational transitions (Fig 2A) are

analyzed. A kinetic pattern of two-state like conformational transitions between duplex (low

FRET * 0.1) and triplex form of H-DNA (high FRET * 0.9) observed in one time interval

changes to another pattern in the next time interval (Fig 2B). DCMM models this peculiar

dynamic pattern of H-DNA in Fig 2B by assuming a slowly varying dynamics of a hidden

internal state. Fig 2C illustrates how the dynamic pattern of the original time trace of observ-
able state, on(t) (gray traces in Fig 2C), changes with the internal state x(t) at a given time t. The

dynamic pattern of on(t), displaying multiple transitions, is slave to the slowly changing value

of x(t). DCMM implements this idea into an algorithm and allows us to extract the informa-

tion of x(t) from on(t). Finally, we apply VB-DCMM to an ensemble of H-DNA time traces

obtained from smFRET experiments and show that the dynamics of H-DNA at [Na+] = 100

mM should be modeled using at least 4 large basins of attraction.

Algorithm

Here, we provide a general overview of the VB-DCMM algorithm, defining terms and parame-

ters. More technical details of derivation and implementation of the algorithm are given in the

Supplementary Information.

Modeling time series with dynamic disorder

Markov chain approach is ubiquitously used in modeling biological systems. For example,

reversible conformational transitions of biomolecules probed by single molecule fluorescence

resonance energy transfer (smFRET) or force spectroscopy are often modeled as a homoge-

neous Markov process in which the transition rates between experimentally discernible con-

formational states are uniquely decided. To decipher time series with dynamic disorder that

change their dynamic pattern from one time interval to another we assume that there are hid-

den “internal states”, each of which determines the rate of conformational transitions. A signa-

ture of the transition between internal states, which gives rise to dynamic disorder in time

series, are difficult to detect using the value of FRET efficiency or end-to-end distance alone

Decoding Single Molecule Trajectories with Dynamic Disorder
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Fig 2. Duplex-triplex transitions of H-DNA with dynamic disorder. (A) Illustration of H-DNA dynamics.

The sequences in blue and black form duplex via Watson-Crick base pairing; the sequences in red extended

from 3’-end region of the black sequence can pair with the sequences in blue via Hoogsteen base pairs to

form the triplex helix. (B) A time trace of H-DNA displaying dynamic disorder. (Top) The fluorescence signals

from Cy3 (green) and Cy5 (red) dyes. (Bottom) FRET signal (gray) was calculated using the signals from Cy3

Decoding Single Molecule Trajectories with Dynamic Disorder
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when the values observed along the time series are indiscernible even if the internal state is

altered. By assuming that the transition between internal states is described by a homogeneous

Markov process, and that transition between observable (in this study, FRET) follows non-

homogeneous Markov process, whose transition rates are slaved to the internal state at each

time, we model time trajectories made of these two layers of Markov chains. This algorithm

corresponds to the Double Chain Markov Model (DCMM) [39–43] (Fig 2C and 2D).

DCMM is characterized by the following model parameters: (i) Transition matrix A for

homogeneous Markov chain, which describes the transition probability between the K-distinct

internal states along the time series (x = (x(1), x(2), . . ., x(t), � � �, x(T − 1))). Here K is a total num-

ber of internal states in the model, and x(t), specifying internal state at time t, takes one of the val-

ues between 1 and K. T is the total observation time. The internal state at time t+1 (x(t + 1)) is

determined by the previous internal state at time t (x(t)), whose transition to x(t + 1) is deter-

mined by a K × K Markov transition matrix A as Pðxðt þ 1Þ ¼ mÞ ¼
PK

n¼1
Am;nPðxðtÞ ¼ nÞ

where P(x(t) = ν) denotes the probability of x(t) being in the ν-th internal state; (ii) K transition

matrices B(μ) with μ 2 {1, 2, . . ., K} for non-homogeneous Markov chain describes the transition

probability between the observable states along the time series (o = (o(1), o(2), . . ., o(T))). o(t)
specifies the state of the observable among N possible states {1, 2, . . ., N} at time t. Transition

from o(t) to o(t + 1) is determined by an N × N transition matrix Bx(t)(t), the matrix elements of

which are slave to the value of x(t)(= μ 2 {1, 2, . . ., K}).

For example, if there are two (K = 2) internal states, and each internal state has three

(N = 3) observables in a given time trace recorded with time resolution Δt, then two transition

matrices for o with μ = 1, 2 can be considered (i.e., B(1) and B(2)):

BðmÞ ¼

kðmÞ1!1Dt kðmÞ1!2Dt kðmÞ1!3Dt

kðmÞ2!1Dt kðmÞ2!2Dt kðmÞ2!3Dt

kðmÞ3!1Dt kðmÞ3!2Dt kðmÞ3!3Dt

0

B
B
@

1

C
C
A:

Next, the transition matrix A for the interconversion between two internal states is:

A ¼
gð1Þ!ð1ÞDt gð1Þ!ð2ÞDt

gð2Þ!ð1ÞDt gð2Þ!ð2ÞDt

 !

:

In the above matrices, the matrix elements must satisfy,
P3

j¼1
kðmÞi!jDt ¼ 1 for each i = 1, 2, 3 in

B(μ), and γ(1)!(1)Δt + γ(1)!(2)Δt = γ(2)!(1)Δt + γ(2)!(2)Δt = 1 in A. More detailed descriptions

about DCMM are available in the original papers [39–43] particularly in ref. [39] (see also SI).

A similar but more general version of DCMM, which can accommodate inputs variables as

well as multiple number of internal state sequences, has been suggested by extending the facto-

rial hidden Markov model [46, 47].

and Cy5. Blue line is the noise-filtered FRET signal obtained using HMM. The low-FRET (*0.1) and high-

FRET state (*0.9) correspond to the duplex and triplex states, respectively. The dynamic pattern of the time

trace changes occasionally from one time interval to another. For example, the transitions from low to high

FRET state around 70 s are much slower compared with those around 140 s. (C) The model for H-DNA

dynamics with dynamic disorder. Hierarchical transitions, (1) transitions within x(t) = i, and (2) interconversion

between x(t) = i and x(t 0) = j (i 6¼ j), can be described using Double Chain Markov Model (DCMM). (D)

Graphical representation of DCMM. x(t), o(t), and on(t) represent internal state, noise-filtered observable (blue

line in (B)), and the original observable at time t (gray line in (B)), respectively. The black arrows signify how

each state is determined by others. For example, the state of observable at time t, o(t) is determined by the

previous observable state at time t − 1, o(t − 1), and the state of the previous internal state, x(t − 1).

doi:10.1371/journal.pcbi.1005286.g002
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Determining the number of internal states

DCMM can estimate the transition matrices A and B(μ) quantitatively, and hence determine

the most probable sequence of internal state and associated kinetic rates, fkðmÞa!bg and {γ(μ)!(ν)}.

However, the likelihood (the probability of observing data for given model parameters), maxi-

mized by DCMM, P(o|π, A, B) where π� (π1, π2, . . ., πK) with πμ = P(x(1) = μ|o, A, B), is

prone to increase when more number of parameters are used in the model. DCMM can select

the best set of parameters for a given model, but not suited to select the best model (i.e., cannot

determine the optimal number of internal states K for a given time trace). To overcome this

limitation, often used is the maximum evidence method, where the evidence (P(o|K), also

called marginal likelihood) is defined as the conditional probability of observing data (o) for a

given model (K), so that

PðojKÞ ¼
Z

PðojλÞPðλjKÞdλ ð1Þ

where λ� (π, A, B) represents the parameter space. In this method, the penalty against model

complexity is naturally incorporated during the calculation, allowing to select the best model

(see SI). By calculating the evidence for each different model (different K, the number of inter-

nal states in data), one can select the best model with an optimal number of internal states that

maximizes the evidence. The calculation of the evidence, however, involves a massive compu-

tational cost to explore the entire parameter space for a given model.

Variational Bayes double chain Markov model

To alleviate the computational cost in employing the maximum evidence method in Eq 1, we

employ the Variational Bayes [48], a method that effectively uses a mean-field approximation.

The method has previously been used to determine the number of observable states (FRET

states) from smFRET data [49–51], the number of diffusive states from single molecule track-

ing data [52], and the number of DNA-protein conformations from tethered particle motion

data [53]. It has also been used inside the empirical Bayes method which can analyze several

smFRET time series simultaneously [54, 55]. In our study, the variational Bayes method

combined with DCMM (VB-DCMM) was used to analyze single molecule time traces with

dynamic disorder. The analytical expression of the lower bound of the evidence (F), offered by

VB-DCMM, makes clear where the model penalty comes from, thus providing guidelines to

choose the prior parameters to incorporate a prior knowledge of data (see SI). Once prior

parameters are selected, VB-DCMM iteratively increases the lower bound of log(evidence)(=
log P(o|K)) by identifying a better approximation to the true probability distribution.

log PðojKÞ ¼
Z

qðZÞlog PðojKÞdZ

¼ F½q� þ DKLðqjjpÞ � F½q��:
ð2Þ

where q(Z) is an arbitrary probability distribution of a set of variables, Z(� (x, λ)) consisting of

parameters and hidden variables of model,

F½q� �
Z

qðZÞ log Pðo;ZjKÞ=qðZÞð Þ

and

DKLðqjjpÞ �
Z

qðZÞ log qðZÞ=PðZjo;KÞð Þ � 0;

Decoding Single Molecule Trajectories with Dynamic Disorder
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where DKL(q||p) is the Kullback-Leibler divergence of q(Z) from P(Z|o, K), which we want

to minimize. Once the solution from the algorithm converges, the approximate value of log

P(o|K�)(’ F[q�]) and the (locally) best model parameters (a set of the best kinetic rates), π�,

A� and B�, which determines all the rate constants to describe the given time traces (fkðmÞa!bg

and {γ(μ)!(ν)}), are acquired from an approximated probability distribution (See SI for the

mathematical details). The performance of VB-DCMM is quite robust over a wide variation of

prior parameters (S21 and S22 Figs).

Implementation of the algorithm

The observable sequence o is obtained by filtering the noise in the experimental data (on) using

Hidden Markov Model (HMM) following a similar procedure as the previous studies [49, 56]

using a custom code written based on the code from Sagemath software [57]. Next, the o is

analyzed using VB-DCMM to select the best model and to estimate the best model parameters.

The optimal sequence of internal states x is determined by using Viterbi algorithm [39]. All

the implementations and data analysis are done by using our custom code. VB-DCMM is

freely available at “https://github.com/TBiophysG/VBDCMM”

Results and Discussion

Validation of VB-DCMM

To first validate the efficacy of VB-DCMM in identifying internal states in a given SM time

trace, we applied VB-DCMM algorithm on synthetic data that mimic a SM time trajectory

with dynamic disorder (see Methods). To generate a synthetic SM time trajectory, we first pro-

duce a time trajectory specifying the value of internal state from t = 1 to t = T − 1. The time tra-

jectory of internal state is represented with a symbol x� (x(1), x(2), � � �, x(t), � � �, x(T − 1)).

When the total number of distinct internal states in the model is K, one of the values in

{1, 2, � � �, K} is assigned to x(t). Thus, for K = 2 a typical time trajectory of internal state x looks

like (1, 1, 1, � � �, 1, 1, 2, 2, 2, � � �, 2, 2, 1, 1, � � �, 1, 1), (1, 1, 1, � � �, 1, 2, 2, � � �, 2, 2), (2, 2, � � �, 2, 1,

1, � � �, 1, 1, 2, 2, � � �, 2, 2, 2), etc. The time trajectory given in Fig 3A(i) is an example generated

with K = 2 and T = 8801. Next, similar to the structure of x, the time trajectory of noiseless

observables is represented using o� (o(1), o(2), � � �, o(t), � � �, o(T)). In Fig 3A(ii), a trajectory

of o is shown, also demonstrating the influence of x on o. Finally, Gaussian noise was added on

o and the range of signal was adjusted to produce the final trajectory on� (on(1), on(2), � � �,

on(T)) which now resembles a time trajectory of SM FRET signal (Fig 3A(iii)).

Deciphering the information of internal states from an observed time trace involves solving

an inverse problem, i.e., decoding on to obtain x. To decode the trace of internal states from

the synthetic data, we follow a 3-step procedure: (1) Filter the noise from on to obtain o using

Hidden Markov Model (HMM) [56] (Fig 3A(iv), blue line); (2) Analyze o by applying

VB-DCMM algorithm with different models 1, 2, . . ., K (again, K is the total number of inter-

nal states assumed in each model); (3) To select the best model we calculated the conditional

probability of observing data for a given model parameter K, P(o|K), which is often called evi-
dence or marginal likelihood in machine learning community (Eq 2) [48]. Calculation of P(o|K)

is conducted using the Variational Bayes (VB) method, which gives the lower bound of log P
(o|K) denoted by F(K). Details of the evidence function F(K) and approximation procedure are

provided in the Supplementary Information (SI). Finally, we select the best model K� which

maximizes F(K), i.e., K� = arg max F(K).

To be specific, in order to identify the best model parameter K for the time trace o(t) given

in Fig 3A(iv), we varied K from 1 to 3. The most probable trace of internal states, xmodel
ðKÞ , was

Decoding Single Molecule Trajectories with Dynamic Disorder
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Fig 3. Validation of VB-DCMM on synthetic data. (A) (i) A time trace of internal state generated with γ(1)!(2)Δt = γ(2)!(1)Δt = 0.001.

(ii) An observable time trace generated based on the trace of internal state in (i) by using internal state-dependent parameters

kð1ÞL!HDt ¼ kð1ÞH!LDt ¼ 0:05, kð2ÞL!HDt ¼ 0:00625, kð2ÞL!HDt ¼ 0:025. (iii) An synthetic FRET data with Gaussian noise overlaid on the trace in

(ii). (iv) Noised filtered FRET state by HMM (blue line). (v) Traces of internal state with different K, estimated using VB-DCMM on the

noise-filtered FRET trace from (iv) (black line is the true internal state trace while red, orange, and blue are internal state estimated

Decoding Single Molecule Trajectories with Dynamic Disorder
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calculated for each model with K = 1 (red), K = 2 (orange), K = 3 (blue) (see Fig 3A(v)). The

evidence F(K) calculated using VB method was maximized at K = K� = 2, and the resulting

time trace of the internal states, xmodel
ðK�¼2Þ

, most closely recovers the trajectory of x (black trace in

Fig 3A(v)) except at the time interval where the transitions of x(t) between 1 and 2 occur only

transiently or at the boundaries of transitions (red arrows on Fig 3A(v)). This result shows that

VB-DCMM can avoid the over-fitting problem that other methods based on maximum likeli-

hood are often fraught with [48].

Conditions required for an accurate recovery of internal states

VB-DCMM detects a signature of change in internal state (x) from a given observable time

trace (o) by evaluating the statistical difference in transition rates. Thus, in the absence of an

enough number of transitions in the trace o, the algorithm becomes less reliable. For example,

we obtained F(K = 2)� F(K = 3) although F(2)� F(3) is more desirable (Fig 3B. See another

example in S1 Fig). This is due to the lack of statistics in transition events in this particular test

trace given in Fig 3A. For example, when only a part of the time trace is selected and analyzed

using HMM, the estimated rates of transition from high (H) to low (L) FRET value are

kestH!L Dt ¼ 0:016 in 1500 ≲ t≲ 4000, and kestH!L Dt ¼ 0:026 in 5700 ≲ t≲ 8700. Thus, in

(K = 3)-model the two time intervals, originally generated by using the same kinetic parameter

(kð2ÞH!L Dt ¼ 0:025), are determined to be distinct from each other (blue trace in Fig 3A(v)). By

contrast, in (K = 2)-model, kestH!L Dt ¼ 0:020 was estimated over these two time intervals. This

type of statistical error is unavoidable for a small Tobs. A more systematic evaluation on the

accuracy of the algorithm as a function of Tobs and transition rate between distinct internal

states will be discussed in the next section.

To assess the accuracy of the best model xmodel
ðK�Þ predicted by VB-DCMM against the solution

x, the following overlap function can be used.

w ¼
1

T � 1

XT� 1

t¼1

dxðtÞ;xmodel
ðK�Þ

ðtÞ ð3Þ

where δi,j is the Kronecker delta and T = Tobs/Δt is the total number of data in the traces (Δt
denotes the temporal resolution of the data). For 100 synthetic time traces, generated under

the identical parameters used for producing the time trace in Fig 3A, we found that χ� 0.9 on

average (Fig 3C). Note, however, that x(t), only available for the case of “synthetic data”. Thus,

to assess the accuracy of our method against a real time trace from SM experiments, we devised

other metrics.

For a given time trace with dynamic disorder, our algorithm quantifies the kinetic features

of the time trace in terms of the transition rate between the observable states a and b within

the μ-th internal state kðmÞa!b and the transition rate from the μ-th internal state to ν-th internal

state γ(μ)!(ν) (1� μ, ν� K, 1� a, b� N. Here, μ is the index for internal state whereas a and b
are indices for observable (In FRET displaying low/high two state transitions, these states cor-

respond to the low and high FRET values). K is the total number of hidden internal states, and

N denotes the total number of observables). To be able to extract the information of multiple

from the model with K = 1, 2, and 3, respectively. The indices of internal state were determined by comparing B(μ) estimated for each

internal state with B(μ),true which is used to generate the synthetic data). (B) Estimated lower bound of the evidence function F(K) of

DCMM models with K = 1, 2, and 3. (C) Accuracy of detecting internal states. The overlap function χ calculated for 100 synthetic

FRET traces generated under the identical condition used for generating the trace of internal state shown in (A).

doi:10.1371/journal.pcbi.1005286.g003
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internal states reliably from a time trace using VB-DCMM, two general conditions are

required for the time trace being analyzed.

1. A large time scale separation should be present in the kinetics within each internal state,

i.e., kðmÞa!b and kðnÞa!b (μ 6¼ ν) should be disparate.

2. There should be a clear time scale separation between intra-basins and inter-basin transi-

tions (i.e., τconf and τint). More precisely, the intra-basin transition probability kðmÞa!b Dt
should be much greater than the transition probability from the μ-th to any other internal

state ∑ν6¼μ γ(μ)!(ν) Δt (= 1 − γ(μ)!(μ) Δt).

To substantiate the above-mentioned conditions 1 and 2, we define two metrics Dconf and

Dint, which compute the average Hamming-like distances between the distinct rate constants

extracted from a given time trace using VB-DCMM analysis:

Dconf ¼
2

KðK � 1Þ

XK

m;n¼1
m>n

1

NðN � 1Þ

XN

a;b¼1
a6¼b

log
2

kðmÞa!b

kðnÞa!b

�
�
�
�
�

�
�
�
�
�

ð4Þ

and

Dint ¼
1

K

XK

m¼1

1

NðN � 1Þ

XN

a;b¼1
a6¼b

log
2

kðmÞa!bP
n6¼m

gðmÞ!ðnÞ

�
�
�
�
�

�
�
�
�
�
: ð5Þ

Dconf measures the dissimilarity between distinct internal states in terms of the intra-basin

transition rates. Two distinct internal states (μ, ν (μ 6¼ ν)) can be better discerned if the intra-

basin transition rate of one internal state (say, kðmÞa!b) differs greatly from that of other internal

state (kðnÞa!b), so that j log 2ðk
ðmÞ

a!b=k
ðnÞ

a!bÞj is maximized. Dint measures the average number of

intra-basin transitions in each internal state using the ratio between the transition probabili-

ties, kðmÞa!b Dt and ∑ν6¼μ γ(μ)!(ν)Δt (= 1 − γ(μ)!(μ) Δt). A greater Dint ensures a large time scale

separation in dynamics between intra-basin and inter-basin transitions, which improves the

reliability of our method to decode the internal state from a given time trace. In general, Dint

or Dconf shows a good correlation with hχi (see below); thus, one can use (Dint, Dconf) to assess

the accuracy of predicted internal states. Note that the metrics Dint and Dconf can be estimated

for real data, while hχi can be calculated only against the synthetic data. Since there is a good

correlation between (Dint, Dconf) and χ, one can evaluate (Dint, Dconf), alternative to χ, to assess

the reliability of a predicted result of xmodel
ðK�Þ ðtÞ.

To be more concrete, we applied VB-DCMM algorithm to analyze synthetic data generated

with N = 2 (transitioning between high and low FRET values) and K = 2 (two internal states;

μ = 1 and 2) under various scenarios.

• We fixed the transition rates in the state μ = 1 as kð1ÞL!H Dt ¼ kð1ÞH!L Dt ¼ 0:05, and varied the

rates associated with the state μ = 2 over the range of 0:125 � kð2ÞL!H=k
ð1Þ

L!H ; k
ð2Þ

H!L=k
ð1Þ

H!L � 8

(Fig 4A, left). For the interconversion probability between the two internal states we set

γ(1)!(2) Δt = γ(2)!(1) Δt = 0.001. The accuracy of the model prediction (hχi, Eq (3)) is on

average greater than 0.9 as long as the transition rates kðmÞL$H and kðnÞL$H (μ 6¼ ν) differ more

than the factor of 4. Note that in Fig 4A (left), the value of hχi is greater for kð2ÞL!H=k
ð1Þ

L!H ,

kð2ÞH!L=k
ð1Þ

H!L � 1 than for kð2ÞL!H=k
ð1Þ

L!H , kð2ÞH!L=k
ð1Þ

H!L � 1; this is because a statistically suffi-

cient number of transitions make the detection of internal states more reliable. In contrast,

Decoding Single Molecule Trajectories with Dynamic Disorder
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when kð2ÞL!H=k
ð1Þ

L!H , kð2ÞH!L=k
ð1Þ

H!L ’ 1, i.e. when the kinetics inside the two internal states are

essentially identical, it is difficult to discern the two internal states. In this case, K = 1 instead

of K = 2 is effectively the correct number of internal states. Indeed, when K = 1 is assumed

(i.e., assuming true internal state x(t) = 1 for all t in Eq (3)), the re-calculated hχi is close to 1

(see S2 Fig).

• To explore the effect of interconversion between distinct internal states on the perfor-

mance of algorithm, we generated synthetic data with kð1ÞL!H Dt ¼ kð1ÞH!L Dt ¼ 0:05,

kð2ÞL!H=k
ð1Þ

L!H ¼ 0:125, and kð2ÞH!L=k
ð1Þ

H!L ¼ 0:25 by, this time, varying γ(1)!(2) Δt and γ(2)!(1)

Δt = 0.00025 * 0.005 (Fig 4B, left). The results clearly show that the case with smaller

γ(μ)!(ν) results in a higher hχi, which is expected because each internal state can have

more number of transitions in the traces o when the interconversion is slower (Fig 4B).

Re-plotting hχi as a function of Dconf and Dint reveals clear dependence of the accuracy on

Dint (Fig 4B, right). Similar trends are observed for other conditions of kð2ÞL!H=k
ð1Þ

L!H and

kð2ÞH!L=k
ð1Þ

H!L (S3 Fig).

• Analyses on synthetic data generated using the same input parameters with those in Fig 4,

but with a different number of data points in each trace, Tobs/Δt = 4400, and 2200 (S4 Fig)

Fig 4. Accuracy of VB-DCMM in detecting internal states under various conditions of kðmÞL$H and γ(1)$(2)

with Tobs/Δt = 8800. (A) The color bar denotes the accuracy of analysis in terms of hχi under varying

kð2ÞL!H; k
ð2Þ

H!L with K = 2, kð1ÞL!HDt ¼ 0:05, kð1ÞH!LDt ¼ 0:05, and γ(1)!(2)Δt = γ(2)!(1)Δt = 0.001. (B) hχi under varying

γ(1)!(2) and γ(2)!(1) with K = 2, kð1ÞL!HDt ¼ kð1ÞH!LDt ¼ 0:05; kð2ÞL!HDt ¼ 0:00625; kð2ÞH!LDt ¼ 0:0125. hχi was

calculated by averaging over the results from analysis of 100 traces in each condition. The panels on the right

show the relation between the value of hχi and pairs of Dint and Dconf values which are evaluated at varying

kinetic parameters. Results from the analysis over the data with the same parameters but different length of

time trace (or different number of data points Tobs/Δt = 2200, 4400) are provided in S4 Fig.

doi:10.1371/journal.pcbi.1005286.g004
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show a similar trend as observed in Fig 4 with Tobs/Δt = 8800 but with slightly smaller hχi
values.

• Extension of VB-DCMM algorithm to a more complicated case for K> 2 (S5 and S14 Figs)

or N> 2 (S6 and S14 Figs) is straightforward. Application of VB-DCMM to a trajectory in

which each internal state trajectory has different N is also straightforward (S7 Fig). In the lat-

ter case, the data is analyzed by assuming that all internal states have the same number of

possible observables, N; but the analysis would indicate that transition associated with a

small transition rate is essentially disallowed. In all situations considered for various K and

N, VB-DCMM can be used for the reliable recovery of the sequence of true internal states.

• Analyses of synthetic traces show that the accuracy of the algorithm improves with both

Dconf and Dint (Fig 4 right panels and Fig 5). Thus, these two metrics allow one to judge the

reliability of the information on internal states extracted from a given time trace. Alterna-

tively, a single parameter Dtot(= Dconf + αDint) with an empirically acquired coefficient

α� 0.8) can be used to judge the reliability of the extracted information. Note that hχi
remains similar as long as Dtot remains constant (Fig 5B). Hence, when hχi is plotted against

Dtot, all synthetic data generated using different parameters approximately collapse onto a

single universal curve (S8 Fig).

• There are multiple ways of assessing the efficacy of VB-DCMM in decoding the internal

states. In addition to hχi, Dconf, Dint, and Dtot as the possible measures for the assessment,

one can also use the statistical property that the dwell times of homogeneous Markov process

satisfies

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ht2i � hti
2

q

=hti � 1 (see SI for details).

Application of VB-DCMM on H-DNA data

Now, to analyze the duplex-triplex transitions of H-DNA (Fig 6), we obtain o by filtering the

noise from FRET signal (Fig 6(ii), blue line) and apply the VB-DCMM algorithm to decode

the hidden internal state in the signals. Fig 6(iii) shows time series of internal state, xmodel
ðKÞ , cal-

culated from the VB-DCMM by varying K from 1 to 5. It is of note that the number of actually

observed internal states in the xmodel
ðKÞ for a given input parameter K does not change after some

Kobs(� K) (Kobs = 2 (Fig 6A), 2 (Fig 6B), 2 (Fig 6C), and 1 (Fig 6D)). (See also other time traces

of synthetic data and H-DNA analyzed in SI: S1A Fig (Kobs = 1), S9A Fig (Kobs = 3), S9B Fig

(Kobs = 2), S9C Fig (Kobs = 3), S9D Fig (Kobs = 3), S10A Fig (Kobs = 4), S10B Fig (Kobs = 2), S10C

Fig (Kobs = 2), S10D Fig (Kobs = 3), and S12 Fig (Kobs = 3)). A similar behavior is also observed

when analyzing data using the variational Bayes Gaussian mixture model [48].

To account for the contribution due to degeneracy in labeling the internal states, log K!

term is conventionally considered in formulating the evidence function F(K) (See SI for the

details); however, in our problems, the actual number of degeneracy in labeling internal

states should be KCKobs
� Kobs! instead of K!. Therefore, we replace the log K! term in F(K) with

log [K!/(K − Kobs)!], and considered a modified evidence function, G(K), to identify an optimal

K for a given time trace:

GðKÞ � FðKÞ � log ðK � KobsÞ! ð6Þ

G(K) shows a clear peak, allowing us to identify the optimal K(= K�) with ease (blue circles on

the right side of Figs 6, S9 and S10). Use of G(K) instead of F(K) in analyzing synthetic data

does not alter K� (S12 and S14B Figs).
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Among the time traces of H-DNA, traces with more than 3 interconversions between dis-

tinct internal states, which enables us to estimate γ(μ)!(ν), are rare, especially when [Na+] = 100

mM; thus it is not feasible to get a statistically meaningful scatter plot of (Dconf, Dint) (see

S23D, S23E and S23F Fig); however, for those displayed in S23D, S23E and S23F Fig, hDtoti �

7 suggests that χ ≳ 0.9 (from Fig 5). Therefore, at least the intra-basin rate constants extracted

from H-DNA data using VB-DCMM are reliable.

Time traces that have τint comparable to experimental observation time (tint � T obs) would

exhibit on average no or only a single transition event between distinct internal states. Indeed,

we find that only a subset of total number of internal states is sampled by individual time traces

due to the limited observation time. For instance, at [NaCl] = 100 mM, our analysis identified

K� � 2 in 265 out of 269 traces, and that only 4 time traces display K� > 2 (S11 Fig). Therefore,

in order to identify the internal states present in the transition dynamics of H-DNA, clustering

analysis is required against the whole ensemble of time trajectories. We provide the procedure

of clustering analysis and results in details in the following section.

Clustering H-DNA data

VB-DCMM algorithm allows us to decompose individual H-DNA time traces with dynamic

disorder into multiple “components”, each of which should satisfies the property of homoge-
neous Markov chain. In order to understand the structure of conformational space of H-DNA,

the ensemble of components acquired from the VB-DCMM analysis should be clustered into

the same kind. To this end, we produce scatter plots of (kL!H, kH!L), representing the kinetic

property of the ensemble of time traces, using the transition rates estimated for individual time

traces. The scatter plots of (kL!H, kH!L) were calculated for the ensemble of H-DNA time

traces (i) before (Fig 7A, left) and (ii) after decomposing the individual heterogeneous time

traces retaining multiple components into the homogeneous ones (Fig 7A, right). The scatter

plot of (kL!H, kH!L) after the decomposition has a greater dispersion, which is expected since

Fig 5. Average accuracy of internal state detection as a function of Dconf, and Dint. To construct this diagram, we employed various

synthetic data in Fig 4 (circle, two internal states (K = 2), two FRET states (N = 2)), S5 Fig (left triangle, K = 3, N = 2), and S6 Fig (hexagon,

K = 2, N = 3). The right triangle symbol denotes the result from the similar analysis shown in S5 Fig with K = 3 but with smaller relative

differences in the transition rates, k’s. Pentagon represents the result obtained with K = 4 and N = 2. (A) Color code denotes the accuracy of

internal states predictions in terms of hχi, averaged over 100 traces for each condition. (B) The dashed lines corresponding to Δ = Dconf

+ 0.8Dint = 4, 5, . . . 9 are overlaid on the 2-D scatter plot of hχi(Dconf, Dint) calculated in (A).

doi:10.1371/journal.pcbi.1005286.g005
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Fig 6. Representative time traces of H-DNA at [Na+] = 100 mM and their analysis. (A) (i) Fluorescence signal and (ii) their

FRET state. (iii) Internal states estimated for K = 1, 2, . . ., 5. Right panel shows G(K) (blue circle) where Kobs specifies the

number of detected internal states in individual traces (blue). (B, C, D) Other representative time traces and their G(K)

obtained under the same experimental condition.

doi:10.1371/journal.pcbi.1005286.g006
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Fig 7. Clustering H-DNA data at [Na+] = 100 mM condition. (A) The scatter plots of (kL!H, kH!L) before (left) and after (right)

applying VB-DCMM from [Na+] = 100 mM data. (B) The “average pairing distance” DðKÞ as a function of the number of clusters

(K)(see Methods). The minimum value of DðKÞ is found at K ¼ 6. (C) Left: the scatter plot of clustered data projected on

ðkbf
L!H; k

af
L!HÞ plane. Right: scatter plot of clustered data projected on ðkbf

H!L; k
af
H!LÞ plane. The data belonging to different clusters

are depicted in different colors, and the centroid of each cluster is marked with the × symbol. Total 98 data points were used for

Decoding Single Molecule Trajectories with Dynamic Disorder

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005286 December 27, 2016 16 / 29



a data point (kL!H, kH!L) for a time trace with dynamic disorder is a mixture of ðkðmÞL!H ; k
ðmÞ

H!LÞ

with μ = 1, 2, . . . K. In the presence of clear distinction between internal states (μ 6¼ ν), the clus-

tering of ðkðmÞL!H ; k
ðmÞ

H!LÞ would be straightforward, which is indeed the case for the synthetic data

(S13A Fig). However, for the H-DNA data, even after the decomposition, the clustering of

data on (kL!H, kH!L) plane (Fig 7A) is not that clear.

To improve the quality of clustering, we extended the clustering of the kinetic data to a higher

dimension by considering the kinetic information of internal states that are contiguous (kineti-

cally linked) along time traces. To be specific, for a time trace exhibiting a transition from the

μ-th to ν-th internal state (μ 6¼ ν), one can consider that the inter-basin transition has occurred

from the time interval represented by its pair of kinetic rate ðkbf
L!H; k

bf
H!LÞ½¼ ðk

ðmÞ

L!H; k
ðmÞ

H!LÞ� to the

next time interval represented by ðkaf
L!H; k

af
H!LÞ½¼ ðk

ðnÞ

L!H; k
ðnÞ

H!LÞ�, where the superscripts, ‘bf’ and

‘af’ denotes ‘before’ and ‘after’ the transition, respectively. Thus, instead of (kL!H, kH!L), a clus-

tering at a higher dimension can be carried out by measuring the Euclidean distance between a

pair of the four-dimensional (4-dim) arrays, ð logkbf
L!H ; log kbf

H!L; log kaf
L!H ; logkaf

H!LÞ.

In order to cluster the 4-dim arrays we used the k-means clustering algorithm. Application

of the algorithm to the H-DNA data at [Na+] = 100 mM reveals that the average pairing dis-

tance, DðKÞ (see Methods), is minimized when the number of clusters is 6 (K ¼ 6), namely,

the model with 6 clusters provides the best interpretation of the data (Fig 7B). Although the

model with 14 clusters shows a smaller D, we selected K ¼ 6 as the best solution, since for

K ¼ 14 each of 12 clusters out of 14 has less than 10 data points, which makes the result of

clustering statistically less significant (S16 Fig). This results remain qualitatively identical when

L1 distance (so called “city block” distance) was used instead of “square-euclidean” distance

(S19 Fig). Furthermore, the clustering algorithm using “affinity propagation” [58], which con-

siders all the data points as possible exemplars (analogous to centroids in k-means clustering

method) and iteratively exchanges messages between them, also gives qualitatively identical

results, confirming the robustness of the conclusion on H-DNA dynamics obtained from

VB-DCMM and k-mean clustering (see S20 Fig).

We present the result of clustering either (i) by projecting it on the two separate kinetic planes,

ðkbf
L!H; k

af
L!HÞ and ðkbf

H!L; k
af
H!LÞ, which visualize the inter-basin transitions in terms of variable

L!H and H!L transition rates (see Fig 7C), or (ii) by using “interconversion arrows” linking

the kinetic rates of two internal states, ½ð log kbf
L!H; log kbf

H!LÞ ! ð logkaf
L!H ; log kaf

H!LÞ� on the

(kL!H, kH!L) plane (Fig 7D). Note that in the scatter plot visualized with ðkbf
H!L; k

af
H!LÞ, the dis-

tinction between different clusters is clear (the right panel of Fig 7C). Furthermore, for a system

in equilibrium or at least near equilibrium, the interconversion between two internal states, say μ
and ν, should occur in both directions, i.e., μ!ν and ν!μ. In the representation (i), a symmetry

of ðkðmÞa!b; k
ðnÞ

a!bÞ ¼ ðk
ðnÞ

a!b; k
ðmÞ

a!bÞ is expected in the both panels of Fig 7C; and in the representation

(ii), the “arrows”, amounting to the kinetic connectivity between distinct internal states, should

be bi-directional. The symmetry of the data plotted in Fig 7C or the bidirectionality of the kinetic

arrows confirms the condition of detailed balance being satisfied in the system in equilibrium.

Fig 7D depicts 6 kinetic arrows (3 pairs of reversible kinetic arrows) connecting the centroids of

ð log kbf
L!H ; log kaf

L!HÞ or ð log kbf
H!L; log kaf

H!LÞ data.

analysis. (D) The result of the above clustering is represented using 6 kinetic arrows which represent the centroids of each

cluster represented in (kL!H, kH!L) plane. The starting point of the arrow is (hkðmÞ;bf
L!H i, hk

ðmÞ;bf
H!L i) whereas the ending point of the

arrow is (hkðmÞ;af
L!H i, hk

ðmÞ;af
H!L i), where the superscript μ represents the index of each cluster μ = 1, 2, . . . 6. The colors used for

depicting kinetic arrows are consistent with the data points in (C). (E) A schematic of the conformational landscape of H-DNA.

doi:10.1371/journal.pcbi.1005286.g007
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Application of the above clustering method to synthetic data with K = 3, N = 2 (S13 Fig)

is straightforward. To check the efficacy of clustering method for a more complicated

case, we have tested with synthetic data generated with K = 4, N = 4, i.e. when there are as

many as 4 observable states in each internal state (S14 and S15 Figs). In the case with 4

observable states, total 12 possible intrabasin transitions are conceivable. Thus, the dimen-

sion of the array associated with interbasin transition is 24. As long as there is a clear time

scale separation, it is expected that the pairing distance DðK ¼ 12Þ shows minimum

as there are 12 connection paths between 4 internal states. Indeed, DðKÞ is minimized at

K ¼ 12 (S15A Fig).

Lastly, it is noteworthy that the clustering method presented here is not limited to data anal-

ysis for systems in equilibrium, but can be extended to systems in nonequilibrium steady state

[59] where the individual state-to-state kinetic transition rate is well defined using the revers-

ible Markov process although the condition of detailed balance is no longer anticipated [60,

61]. The symmetry of data point and bidirectionality of kinetic arrows as in Fig 7C and 7D are

still of use to cluster the kinetic information generated from a system in nonequilibrium steady

states.

Folding energy landscape of H-DNA

We classified the “components” of a similar kinetic pattern (kL!H, kH!L) obtained from

VB-DCMM into a single cluster which represents a kinetic path linking two independent

basins of attraction (or internal states). For example, the kinetic paths in Fig 7D can be best

understood by hypothesizing 4 internal states (four basins) linked by 6 kinetic paths. Thus, the

conformational transition landscape of H-DNA at [Na+] = 100 mM condition consists of 4

internal states with 3 reversible kinetic paths being established as illustrated in Fig 7E. At lower

salt concentrations ([Na+] = 50 mM (S17 Fig) and [Na+] = 26 mM (S18 Fig)), H-DNA transi-

tions slow down and the dispersion of data also increases; however, the overall structure of

conformational landscape of H-DNA remains unchanged from the picture suggested in Fig

7E; thus, there is a central superbasin to which three other superbasins are kinetically con-

nected (S17 and S18 Figs).

Contributions of our work

In comparison to other pre-existing methods, the advantage of our VB-DCMM in decoding

dynamic disorder from a given trajectory is highlighted as follows:

(1) Dynamic disorders in single molecule time trajectories are modeled using DCMM by

assuming the presence of hidden internal states. While Aggregated Markov Model (AMM),

which has been adopted in ion-channel community for time trace analysis of varying current

[62–76], can be employed to analyze our data with dynamic disorder, DCMM is better in cor-

rectly decoding dynamic disorder than AMM. We found that AMM is prone to overpredict

the transition between kinetic patterns (S25 Fig). Our method is more suitable to the data

showing persistent dynamic patterns by suppressing unwanted frequent transition between

kinetic patterns. Detailed explanations of connection and quantitative comparison between

DCMM and AMM are provided in SI and S25 Fig.

(2) In this paper, Bayesian version of DCMM was developed by using variational Bayes

(VB) method, which enabled us to determine the number of internal states straightforwardly.

Although Bayesian version of DCMM using Markov chain Monte Carlo (MCMC) method has

previously been developed for the credit portfolio modeling [77], the idea of Bayesian infer-

ence in ref. [77] was used only for the purpose of calculating a posterior distribution of model

parameters. To determine the number of hidden states corresponding to the internal states in
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this study, the authors in ref. [77] used the economic cycle fluctuation model, instead. Our

study combining VB with DCMM (i) can determine the number of internal states in a more

objective fashion, (ii) offers intuitive way to incorporate prior knowledge, and (iii) is computa-

tionally more efficient than MCMC (See SI for details).

(3) We tested VB-DCMM under various conditions, by varying the kinetic rates, the num-

ber of observables, the number of hidden states, and prior parameters. New metrics were also

devised to quantify the performance of algorithm systematically.

(4) Finally the connection paths (kinetic arrows) between internal states of H-DNA are

clustered by using the kinetic components extracted from VB-DCMM and by applying k-

means clustering algorithm to high dimensional arrays.

To recapitulate, our entire process of analyzing single molecule data is composed of three

stages: (i) noise-filtering using HMM; (ii) decomposition of heterogeneous time traces into the

homogeneous components using VB-DCMM; (iii) clustering the decomposed components

into the same cluster.

In principle, this three-stage analysis can be made more systematic by combining the noise-

filtering and clustering procedure with VB-DCMM. To be more specific, (1) The noise-filter-

ing of observable trace (on) is processed, independently from the main VB-DCMM algorithm,

by using HMM, which has been proved to be reliable in noise-filtering [56], and the maximum

number of observables (N) are predetermined as an input parameter. Current version of algo-

rithm can be further automated by combining with the Bayesian version of HMM [49], which

can determine the number of observables while filtering the noise in data (See Fig 2D). The

resulting model will have a similar structure with the modified factorial HMM [46, 47]. (2)

The heterogeneous components identified from individual time traces are clustered separately

from our main algorithm. It would be also desirable to unify the post-processing step (cluster-

ing) with VB-DCMM using empirical Bayes method which has been applied recently to ana-

lyze single molecule data [54, 55].

However, it should also be noted that a blind integration of noise-filtering and clustering

steps inevitably complicates the implementation of VB-DCMM, as more number of prior

parameters are ought to be decided by users. For example, Bayesian implementation of HMM

for noise filtering demands manual determination of additional N(N + 5) prior-parameters

[49]. Compared to this, currently VB-DCMM requires users to pre-determine only one prior

parameter which characterizes the final transition rate matrix, A (see the subsection: Selection
of prior parameters in SI). Moreover, the integration of other methods will obscure the flow of

analysis, making it difficult to identify an error-causing step. Keeping each step in the algo-

rithm separate makes the integration of VB-DCMM to other applications more transparent

(for example, if noise-filtering by HMM is unsuccessful, other advanced method can be

employed [49]). We leave it as our future work to develop an algorithm that integrates the

above-mentioned three procedures (noise-filtering, VB-DCMM, and clustering) without

increasing complexity or obscuring the flow of analysis.

In decoding SM FRET data, the most notable difference of our VB-DCMM from the previ-

ous studies employing the probabilistic models such as maximum likelihood and Bayesian sta-

tistics is that VB-DCMM explicitly considers the situation that transition rates can change

from one time interval to another within individual time traces. The previous studies [49–51,

56, 78–80] assumed that the transition rates were constant within individual time traces. Also,

currently, VB-DCMM is applicable to window-averaging FRET trajectories. It will be of great

interest to extend VB-DCMM to analyzing time trajectories in which arrival times for individ-

ual photons are available. VB-DCMM is particularly powerful when there is a separation in

time scales between τint and τconf.
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Concluding remarks

While the notion of dynamical heterogeneity or broken ergodicity seems better recognized in

the research field of nucleic acids [81] than in proteins, which likely arises from more homo-

polymer-like nature of building block of nucleotides [82], biomolecules in general can have a

rugged folding landscape with many local basins of attraction and kinetic barriers with varying

heights [83]. Conformational dynamics of biomolecules on rugged landscapes can be hetero-

geneous, which gives rise to static or dynamic disorder depending on the time scale of observa-

tion or the height distribution of kinetic barrier. The presence of heterogeneity or disorder

among individual molecules, unveiled by in vitro SM experiments could be surprising at first

sight; however, it is also important to note that the general hypotheses in the conventional

molecular biology towards a single native state have been put forward based on the observa-

tions from ensemble experiments where the heterogeneity, if any, is usually masked by the pro-

cess of ensemble averaging. Given that the complexity of a molecular system increases with the

system size (Nsys) as� eNsys [29], it should not be too surprising to find such disorder in bio-

molecules in itself. Cells are equipped with molecular chaperones that can tame misfolding-

prone biomolecules with rugged landscapes [84–87]; thus the principle of optimization in biol-

ogy, if it fails at the level of a molecule in isolation, can be extended further to the molecular

system including its environmental factors.

It is not easy to elucidate the molecular origin of disorder in a conclusive manner; yet, it has

recently been suspected that interactions of biomolecules with cofactor such as ATP and multi-

valent metal-ions could be the microscopic causes for those molecules exhibiting dynamical

heterogeneity [12, 13, 16, 88, 89]. Modulating the concentration of Mg2+ ions from high to low

and again to high induced inter-conversions of dynamic patterns in equilibrium conforma-

tional fluctuations of T. ribozyme [12] and Holliday junctions [13]. Distinct velocities of ATP-

empowered individual RecBED helicase motors, which can move progressively along dsDNA

by unwinding it into two separate strands, can be reset by introducing a long pause by halting

the supply of ATP. For the time trajectories of biomolecules displaying quenched disorder, a

method to analyze such data was proposed using a concept from glass physics [13]. Here, to

deal with more general scenarios, we have developed a method to analyze single molecule time

traces with dynamic disorder.

As demonstrated by testing the VB-DCMM algorithm on synthetic data, the algorithm is

quite accurate in decoding dynamic disorder as long as a time trajectory of interest contains

multiple time intervals, each of which display kinetic pattern distinct from others. When a

clear separation in timescale is present between two distinct kinetic patterns, large value of

Dconf, Dint, and Dtot would be acquired.

While we developed the VB-DCMM algorithm primarily to analyze dynamic disorder in

duplex-triplex transitions of H-DNA, the method is applicable to any data in the form of one-

dimensional time series with multiple transitions. Together with a further technical advance in

SM, which eliminates experimental artifacts as well as extends the measurement time, our

algorithm developed here will contribute to better understanding of biomolecules that display

heterogeneous dynamics.

Methods

Generation of synthetic data

Internal state sequence x was generated by using Monte Carlo method with a constant transi-

tion matrix (homogeneous Markov chain model). The observable sequence o was generated
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by using the same method but with the transition matrix that was defined at each time t based

on the internal state x(t). Finally, Gaussian noise was added on o to produce on.

Single-molecule FRET measurements to monitor duplex-triplex

transitions of H-DNA

We purchased triplex forming oligonucleotides from Integrated DNA Technologies (Coral-

ville, IA, USA). The oligonucleotides were dissolved in T50 buffer solution (10 mM Tris-HCl,

50 mM NaCl, pH = 7.5) and were heated beyond the melting temperature of DNA duplex

(* 90˚C), and slowly cooled down on a heat block to room temperature over 8 hour to prop-

erly hybridize them. The DNA prepared as such is called “H-DNA” here. The sequences of the

triplex forming strands (purine-rich and pyrimidine-rich) are: Purine-rich strand: 5’ AAG

AAG AAG AAG AAG (Cy5) TGG CGA CGG CAG CGA (Biotin) 3’, Pyrimidine-rich strand:

5’ TCG CTG CCG TCG CCA CTT CTT CTT CTT CTT TTT TCT TCT TCT TCT TCT TC

(Cy3) 3’. In the purine-rich strand, the biotin at 3’ terminus is used to attach the H-DNA mole-

cule to a neutravidin-coated cover-glass. The Cy3 and Cy5 dyes in the H-DNA molecule corre-

spond to a donor and an acceptor for FRET measurements, respectively. In order to observe

the transition between folded triplex and unfolded DNA, we used the reaction buffer contain-

ing 50 mM HEPES(Sigma-Aldrich) and various concentrations of Na+ (26, 50, 100 mM).

These buffer solutions also contained 2 mM trolox, 10% glucose and gloxy for single-molecule

fluorescence experiments. We utilized a home-made TIRF (Total Internal Reflection Fluores-

cence) microscope to measure the FRET efficiency between donor and acceptor dyes, which

reveals the conformational state of the H-DNA molecule. A 532-nm laser (CrystaLaser DPSS,

10 mW) was used to excite donor molecules and fluorescence intensities of both dyes were

measured by an EMCCD (Andor iXon DV887, Andor technology). To observe the change of

FRET efficiency in real time, we measured the time-lapse FRET traces with the repetition rate

of 10 Hz. To study kinetic features of the conformational transition with dynamic disorder, we

acquired the FRET time traces for a long period (>100 sec).

Clustering at a higher dimension

For given N and K, total N(N − 1) intra-basin transition rates kðmÞa;b (a, b 2 {1, 2, � � �, N}, a 6¼ b)

are defined in the μ-th basin (or μ-th internal state) and total K(K − 1) inter-basin transitions

are conceivable. To cluster the kinetic information of H-DNA data obtained from VB-DCMM,

we consider the kinetic arrow, 2N(N − 1)-dimensional array of data, which has the structure

of Ci � ðf logki;bf
a;b g; f logki;af

a;bgÞ where the subscript i denotes an index referring to one of

K(K − 1) possible inter-basin transitions linking two internal states (μ 6¼ ν). For a kinetic

scheme made of a network of reversible transitions between K internal states, the transition

between two internal states should be bidirectional; thus for a given inter-basin transition path

i, there should be a kinetic path j antiparallel to the path i, satisfying kCi �
~C j k� 0, where

~C j � ðf logkj;af
a;bg; f logkj;bf

a;b gÞ. In our problem, the set of all the data generated as an outcome

of VB-DCMM can in principle be clustered into the disjoint subsets of size 2 partitioning the

K transition paths, fKj1 � K � KðK � 1Þg, and one realization of such disjoint subsets will

minimize the pairwise sum of Euclidean distances kCa �
~Cb k for all α and β; however, the

method suffers from high computational cost as the possible number of clusters increases rap-

idly with N and K.

To alleviate the computational cost for large N and K, we modified the original method.

We first searched the the best partitioning set of data S�ðKÞ for a given K that minimizes the
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Euclidean distance between all the pairs of centroids,

DcðKÞ ¼
2

K

X

ði;jÞ

ðdc
ijÞ

2
ð7Þ

where dc
ij ¼kCc

i �
~C c

j k with Cc
i � ðfh logki;bf

a;b ig; fh log ki;af
a;b igÞ,

~C c
j � ðfh log kj;af

a;big; fh log kj;bf
a;b igÞ,

and h. . .i denotes the centroid of clustered data. To obtain the best clustering result for a

given K, we conducted k-means clustering using k_means function from scikit-learn librar-

ies [90] with 20,000 different random initial conditions in each analysis. It is expected that

DcðKÞ ¼ 2

K

X

ði;jÞ
ðdc

ijÞ
2
� 2

K

X

S�ðKÞ
ðdc

ijÞ
2
. The summation, ∑(i,j), signifies that the sum is taken

over the disjoint subsets of size 2 partitioning a set f1; . . . ;Kg with K being an even number)

and S�ðKÞ is the best partitioning set that minimizes the value of DcðKÞ for a given K. For

example, provided that there are 4 kinetic arrows made of centroids (i = 1, 2, 3, 4), which

minimizes Dc at K ¼ 2 when i = 1 is paired with i = 3 and i = 2 with i = 4, then S�(2) = {{1, 3},

{2, 4}} and Dcð2Þ ¼ dc
13
þ dc

24
.

Next, in order to decide the optimal K, we calculated pairing distance between paired clus-

ters in S�ðKÞ again, but this time using all the elements in each cluster. The total pairing score

DðKÞ �
2

K

X

S�ðKÞ

hdiji; ð8Þ

where the average pairing distance between two clusters i and j is defined as

hdiji � 1

MiMj

PMi
n

PMj
m kCin

� ~C jm
k where Cin

¼ ðf logkin;bf
a;b g; f logkin;af

a;b gÞ,

~C jm
¼ ðf logkjm ;af

a;b g; f logkjm;bf
a;b gÞ, and n refers to an index for the element in the i-th cluster and

m to an index for the elements in the j-th cluster. Mi is the total number of the elements in the

i-th cluster. Finally, the optimal K�, minimizing DðKÞ, is selected, i.e., K� ¼ arg minDðKÞ,
and the interpretation of data is conducted for the best partitioning set S�ðK ¼ K�Þ.

For H-DNA data at three different Na+ concentrations, the optimal K� are determined at

K� ¼ 6 for [Na+] = 100 mM (Fig 7A), K� ¼ 10 for [Na+] = 50 mM (S17B Fig), K� ¼ 12 for

[Na+] = 26 mM (S18B Fig). This implies that the complexity of conformational space of

H-DNA increases at low salt condition (also see the scatter plot of (kL!H, kH!L) in Figs 7A,

S17A and S18A).

The clustering results presented in this study remain robust regardless of the choice of dis-

tance metric. K-means clustering using L1 distance (“city block”) measure with 20,000 differ-

ent random initial conditions also was led to qualitatively similar results (S19 Fig).

Furthermore, as an alternative clustering algorithm, we also tested “affinity propagation”

[58] on our data, and the results remain qualitatively identical (see S20 Fig). In the affinity

propagation method, negative square-euclidean distance was employed as a similarity metric

(s(i, j) = −||xi − xj||2) where xi denotes the coordinate of the i-th data point. The objective of the

algorithm is to optimize the factorized probability distribution which approximates the net

similarity S, defined as S �
QN

i¼1
esði;ciÞ. Here, ci is the index of the exemplar of i-th data point

xi. For example, if ci = k, xk is an exemplar of xi and xi belongs to the cluster represented by xk.
Multiple iterations of message passing are carried out until convergence is achieved in the

result and the best result of clustering is acquired. For implementation, we used AffinityPropa-
gation class from scikit [90] library with varying “preference” as an input parameter, where the

preference denotes the logarithm of probability that i-th data point xi selects itself as an exem-

plar. Further details of the algorithm are available in Ref. [58].
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Supporting Information

S1 Text. Supplementary Information.

(PDF)

S1 Fig. VB-DCMM analysis on synthetic data generated with the following parameters:

Ktrue = 2, γ(1)!(2)Δt = γ(2)!(1)Δt = 0.001, kð1ÞL!HDt ¼ kð1ÞH!LDt ¼ 0:05,

kð2ÞL!HDt ¼ kð2ÞH!LDt ¼ 0:0025.

(TIF)

S2 Fig. Re-calculated accuracy of model prediction (hχi) by assuming “K = 1”.

(TIF)

S3 Fig. Systematic validation of VB-DCMM on synthetic data generated under various

conditions with Tobs/Δt = 8800.

(TIF)

S4 Fig. Accuracy of VB-DCMM on synthetic data with Tobs/Δt = 4400 and 2200.

(TIF)

S5 Fig. VB-DCMM analysis on synthetic data having three internal states.

(TIF)

S6 Fig. VB-DCMM analysis on synthetic data having 3 observables.

(TIF)

S7 Fig. VB-DCMM analysis on synthetic data having 4 observables (o = 1, 2, 3, and 4) when

internal state x = 1, or having 2 (o = 1, 3) observables when x = 2.

(TIF)

S8 Fig. Average accuracy of the model prediction hχi versus Dtot = Dconf + 0.8Dint from var-

ious synthetic data.

(TIF)

S9 Fig. Representative time traces of H-DNA dynamics and their analysis using

VB-DCMM at [Na+] = 50 mM.

(TIF)

S10 Fig. Representative time traces of H-DNA dynamics and their analysis using

VB-DCMM at [Na+] = 26 mM.

(TIF)

S11 Fig. Representative time traces of H-DNA dynamics which display more than two

internal states within the trace at [Na+] = 26 mM.

(TIF)

S12 Fig. VB-DCMM analysis on synthetic data generated with the following parameters:

Tobs/Δt = 4400, Ktrue = 2, γ(1)!(2)Δt = γ(2)!(1)Δt = 0.001, kð1ÞL!HDt ¼ kð1ÞH!LDt ¼ 0:05,

kð2ÞL!HDt ¼ 0:00625, kð2ÞL!HDt ¼ 0:0125.

(TIF)

S13 Fig. Clustering synthetic data with three internal states (K = 3) with two observable

states (N = 2).

(TIF)
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S14 Fig. VB-DCMM analysis on synthetic data having four internal states (K = 4) with four

observable states (N = 4).

(TIF)

S15 Fig. Clustering synthetic data with three internal states (K = 4) with four observable

states (N = 4).

(TIF)

S16 Fig. Clustering H-DNA data ([Na+] = 100 mM).

(TIF)

S17 Fig. Clustering H-DNA data ([Na+] = 50 mM).

(TIF)

S18 Fig. Clustering H-DNA data ([Na+] = 26 mM).

(TIF)

S19 Fig. H-DNA data ([Na+] = 100 mM) analyzed with k-means clustering algorithm using

“city block” distance (L1-distance).

(TIF)

S20 Fig. Clustering results of H-DNA data ([Na+] = 100 mM) from “affinity propagation”

method.

(TIF)

S21 Fig. Accuracy of the model prediction in terms of hχi under varying prior parameters

ub, and ubd.

(TIF)

S22 Fig. Accuracy of the model prediction in terms of hχi under varying prior parameters

ua, and uad.

(TIF)

S23 Fig. Effect of decomposing the original H-DNA time traces into its homogeneous Mar-

kov components.

(TIF)

S24 Fig. Comparison of φ20 = σ20/μ20 histograms on synthetic data before and after remov-

ing dynamic heterogeneity (red) by decomposing the original traces into the pieces accord-

ing to estimated internal state trace.

(TIF)

S25 Fig. Comparison between VB-DCMM and sticky-iAMM.

(TIF)
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