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ABSTRACT: Theoretical analysis, which maps single-molecule time trajectories of a
molecular motor onto unicyclic Markov processes, allows us to evaluate the heat
dissipated from the motor and to elucidate its dependence on the mean velocity and
diffusivity. Unlike passive Brownian particles in equilibrium, the velocity and diffusion
constant of molecular motors are closely inter-related. In particular, our study makes it
clear that the increase of diffusivity with the heat production is a natural outcome of active
particles, which is reminiscent of the recent experimental premise that the diffusion of an
exothermic enzyme is enhanced by the heat released from its own catalytic turnover.
Compared with freely diffusing exothermic enzymes, kinesin-1, whose dynamics is
confined on one-dimensional tracks, is highly efficient in transforming conformational
fluctuations into a locally directed motion, thus displaying a significantly higher
enhancement in diffusivity with its turnover rate. Putting molecular motors and freely
diffusing enzymes on an equal footing, our study offers a thermodynamic basis to
understand the heat-enhanced self-diffusion of exothermic enzymes.

Together with recent studies,1−4 Riedel et al.5 have
demonstrated a rather surprising result, from the

perspective of equilibrium statistical mechanics: Diffusion
constants (D) of exothermic enzymes, measured from
fluorescence correlation spectroscopy (FCS), increase linearly
with their catalytic turnover rates, Vcat, so that the enhancement
of diffusivity at maximal activity (maximum Vcat) is as large as
ΔD/D0[≡ (Dmax−D0) /D0] ≈ 0.3−3, where D0 and Dmax are
the diffusion constants measured by FCS at Vcat = 0 and
maximal Vcat, respectively. Their enigmatic observation5 has
focused much attention of the biophysics community on the
physical origin of the activity-dependent diffusivity of a single
enzyme. Golestanian6 considered four distinct scenarios (self-
thermophoresis, boost in kinetic energy, stochastic swimming,
and collective heating) to account for this observation
quantitatively; however, the extent of enhancement observed
in the experiment was still orders of magnitude greater than the
theoretical estimates from the suggested mechanisms. Bai and
Wolynes7 also drew a similar conclusion by considering
hydrodynamic coupling between the conformational change
of the enzyme and surrounding media. The experimental
demonstration of enzymes’ enhanced diffusion with multiple
control experiments in ref 5 is straightforward; however,
physical insight of the observed phenomena is currently
missing.5,6,8,9

While seemingly entirely different from freely diffusing
enzymes, kinesin-110−15 is also a substrate-catalyzing enzyme.
Conformational dynamics of kinesin-1, induced by ATP
hydrolysis and thermal fluctuations, is rectified into a
unidirectional movement with a high fidelity;16,17 hydrolysis
of a single ATP almost always leads to 8 nm step.18 Every step
of kinesin-1 along one-dimensional (1D) tracks, an outcome of

cyclic chemical reaction, can be mapped onto the chemical state
space. Once this mapping is established, it is straightforward to
calculate the motor velocity (V), diffusion constant (D), and
heat dissipation (Q̇) in terms of a set of transition rate
constants, thus offering an opportunity to scrutinize the
catalysis-enhanced diffusivity of enzymes from a refreshing
angle.
Here, we map the problem of kinesin-1 onto Derrida’s

periodic 1D hopping model (Figure 1)19−21 and study the

relationship between D and V of the motor. Our study shows
that when V is augmented by increasing the substrate (e.g.,
ATP) concentration, D can be expressed as a third-degree
polynomial in V. Similar to Riedel et al.’s measurements on
enzymes, the data of kinesins clearly demonstrate the enhanced
diffusivity at higher activity (velocity), but the extent of
enhancement is even greater. We compare our analyzed result
of motor enzyme, kinesin-1, with Riedel et al.’s freely diffusing
active enzymes and discuss their common features and

Received: November 14, 2016
Accepted: December 16, 2016
Published: December 16, 2016

Figure 1. N-state kinetic model. (1)μ, (2)μ, ..., (N)μ denote distinct
chemical states of a molecular motor going through the μth reaction
cycle. The microscopic rate constants in the forward (n → n + 1) and
backward (n + 1 → n) directions are given by un and wn, respectively.
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differences. From the perspective of thermodynamics, we argue
that these two systems belong to the same thermodynamic class
in that the dynamics of both systems are affected by the supply
of chemical energy input from substrates. Our study also
clarifies the relationship between the heat dissipation (Q̇) and
enhanced diffusivity of the motor using the theoretical
framework of nonequilibrium steady state (NESS) thermody-
namics22−30 and confers thermodynamic insight into how
chemical free energy deposited into a molecular system
determines its transport properties.
Dependence of Dif fusivity on Motor Velocity. Kinesin-1 walks

along microtubules, hydrolyzing one ATP per step.12,18,31 To
model the kinesin’s stochastic movement, one can consider a
kinetic cycle consisting of N chemically distinct states, where
the probability of being in the nth chemical state, pn(t) (n = 1,
2, ..., N), obeys a master equation (see Figure 1)19−21
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probability of being in the nth chemical state at the μth reaction
cycle. The forward and backward hopping rates between the
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where Σ({un},{wn}) ≡ ∏n=1
N un∑n=1

N rn with rn = un
−1[1 +

∑i=1
N−1∏j=1

i (wn+j−1/un+j)].
19 The net flux, j, is decomposed into

the forward and backward fluxes as, j = j+ − j− where j+ =
∏n=1

N un/Σ({un},{wn}) and j− = ∏n=1
N wn/Σ({un},{wn}). Both the

mean velocity (V) and effective diffusion constant (D) are
defined from the trajectories, x(t), that record the position of
individual kinesin motors:

∑ μπ= ⟨ ⟩ =
μ

μ→∞ →∞ =−∞

∞
V

t
x t d

t
tlim d

d
( ) lim d

d
[ ( )]

t t
0

(3)

and

∑ ∑μ π μπ

= ⟨ ⟩ − ⟨ ⟩

= −
μ

μ
μ

μ

→∞

→∞ =−∞

∞

=−∞

∞⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

D
t

x t x t

d
t

t t

1
2

lim d
d

( ( ( )) ( ) )

2
lim d

d
( ) ( ( ))

t

t

2 2

0
2

2 2

(4)

where πμ(t) = ∑n=1
N Pμ,n(t) and d0 is the step size. Both V and D

are fully determined in terms of a set of rate constants,
{un}n=1, . . . ,N and {wn}n=1, . . . ,N

20,21 (see the Supporting
Information). Regardless of the nature of dynamical process
(equilibrium or nonequilibrium, passive or active, biased or
unbiased), the first line of eq 4 is the general definition of
diffusion constant. Most experiments directly calculate the
value of D from trajectories based on eq 4 or at least extract the
value of D from formulas derived based on eq 4 (e.g.,
autocorrelation function of FCS by assuming the normal
diffusion5).
When [ATP] is the only control variable, a simple

relationship between V and D is derived by assuming that

u1(=u1
o[ATP]) is the only ATP-dependent step in the reaction

scheme (Figure 1). Because V and D are both functions of
[ATP],20,21 it is possible to eliminate the common variable
[ATP] (or more conveniently u1) from the two quantities. For
the general N-state model, one can express D as a third-degree
polynomial in V (see the Supporting Information for N = 1 and
2 and the details of derivation for the N-state model):

α α α= + − +D V D V V V( ) 0 1 2
2

3
3

(5)

where αi’s are the constants, uniquely defined when all the rate
constants {un}n=2,...,N and {wn}n=1,...,N are known.
This relationship (eq 5) holds as long as a motor particle

retaining N internal chemical states walks along 1D tracks
which are made of binding sites with an equal spacing. In fact,
the enhancement of diffusion in motor particles has also been
noted by Klumpp and Lipowsky32 in the name of active
diffusion and a similar form of velocity dependent diffusion
constant as eq 5 was obtained. The detail of their expression
differs from eq 5, however, because the focus of their study was
on the effect of the patterns (or geometry) of the underlying
scaffold on the active diffusion constant of the motor.
Equation 5 was used to fit the (V, D) data digitized from

Visscher et al.’s single molecule measurement on kinesin-133

which had reported V and the randomness parameter r = 2D/
d0V (d0 = 8.2 nm, kinesin’s step size) at varying load ( f) and
[ATP]. The fits (dashed line) using eq 5 allow us to determine
the parameters D0, α1, α2, and α3 [see Figure 2A ( f = 1.05 pN)
and Figure 2B ( f = 3.59 pN)]. As expected, D(V = 0) = D0 ≈
10−5 μm2/sec is vanishingly small for kinesin-1 whose motility

Figure 2. Motor diffusivity (D) as a function of mean velocity (V) of
kinesin-1. (V, D) measured at varying [ATP] (= 0−2 mM) and a fixed
(A) f = 1.05 pN, (B) 3.59 pN, and (C) 5.63 pN.33 The standard
deviations of D (σD) were estimated from σD ≃ d0(σrV + rσV) by using
the extracted values of r, V, σr, and σV. The black dashed lines in panels
A and B are the fits using eq 5. For f = 1.05 pN and 3.59 pN, (D0, α1,
α2, α3) = (2.2 × 10−5, 3.8 × 10−3, 7.1 × 10−3, 5.5 × 10−3) and (7.4 ×
10−6, 5.6 × 10−3, 1.2 × 10−2, 1.1 × 10−2), respectively. The solid lines
in magenta in panels A−C are plotted using the (N = 4)-kinetic
model’s parameters (Table 2). (D) (V, D) (black filled square)
measured at varying f (black empty circle) and [ATP] = 2 mM. The
solid line in cyan, plotted by using the parameters in Table 2, is the
predicted behavior of D = D(V) when V is varied by f, instead of
[ATP].
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is tightly coupled to ATP. At V = 0, the flux along the cycle
vanishes (j = 0), establishing the detailed balance (DB), unpn

eq =
wnpn+1

eq for all n’s with ∑n=1
N pn

eq = 1. In this case, D0 = d0
2/

∑n=1
N (unpn

eq)−1 ≤ umind0
2/N,34 where umin = min{un|n = 1··· N}.

For [ATP] ≪ 1, it is expected that umin ≈ u1 = u1
o[ATP] ≪ 1.

We also used the (N = 4)-state kinetic model by Fisher and
Kolomeisky21 and determined a set of parameters, {un}, {wn},
and {θn

±} (with n = 1, ..., 4), which best describe the kinesin’s
motility data, by simultaneously fitting all the data points in
Figures 2A−C and 5 (see Analysis of Kinesin-1 Data Using (N
= 4)-State Kinetic Model). For a consistency check, we overlaid
a theoretically predicted line (Figure 2D, cyan line) over the
data (V, D) obtained at varying f but with fixed [ATP] = 2 mM,
which we did not use in determining the parameters. D(V),
over the range of 0 < V ≲ 0.3 μm/sec (Figure 2D), predicts the
behavior of D at high f regime near a stall force.
Energy and Heat Balance of Molecular Motor. The movement

of a molecular motor is driven by a net driving force due to
ATP hydrolysis and opposed by the resisting load f. In a NESS,
the flux ratio, K( f) = j+( f)/j−( f), defined for unicyclic reaction
cycle for kinesin, is balanced with the chemical potential
difference driving the reaction Δμeff( f) (or the affinity

μ= −Δ eff( ) as
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where Δμeff is contributed by chemical potential due to ATP
hydrolysis Δμhyd and mechanical work ( fd0) against the load f.
With j( f) denoting the total flux (i.e., the number of cycles per
a given time) at force f, the heat dissipated at a steady state, Q̇ =
j( f) × (−Δμeff), is balanced with the (free) energy
consumption Ė = j( f) × (−Δμhyd) subtracted by the work
against an external load Ẇ = j( f) fd0; thus
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where Q̇, analogous to the electric power produced by means of
current × voltage, is always positive (Q̇ ≥ 0) regardless of
whether j( f) > 0 or j( f) < 0. Equation 7 is readily obtained by
assuming barometric dependence of rates on forces as un =
un
o exp(−f d0θn+/kBT) and wn = wn

o exp( fd0θn
−/kBT) with ∑n=1

N (θn
+

+ θn
−) = 1.20,21 When f = 0, the motor moves along

microtubules unidirectionally but the movement of the motor
itself does not perform work to the environment; thus, the
entire free energy consumed via ATP hydrolysis (−Δμhyd > 0)

is dissipated into heat at a rate j(0) × (−Δμhyd). When f ≠ 0,
the motor performs work against the load, W = fd0 per cycle.
Hence, the total chemical free energy change due to ATP
hydrolysis, −Δμhyd, is dispensed into heat (Q) and work (W)
per cycle, leading to Ė = Q̇ + Ẇ.29 Note that Ẇ = j( f)fd0 = 0
either at f = 0 or at the stall condition f = fc, which imposes j( fc)
= 0; thus, the work production (Ẇ) is a nonmonotonic
function of f, whereas Ė and Q̇ decrease monotonically with f.
For concreteness, we plot Ė, Q̇, and Ẇ as a function of f (Figure
3A). At [ATP] = 2 mM, Ẇ is maximized at f ≈ 4.5 pN. The
heat production, Q̇, is maximal ≈1750 kBT/s at f = 0 and
decreases monotonically to zero at stall ( f = fc).
The monotonic increase of Q̇(V) (Figure 3B) implies that

more heat is generated when the motor moves faster at a
smaller f. Higher load ( f) that hampers motor movement
(smaller V) as in Figure 2D reduces Q̇ (Figure 3B). If the
dissipated heat does influence the dispersion of the motor, then
a positive correlation between Q̇ and D should be observed
even when both quantities are suppressed at higher force.
Indeed, Figure 3C predicts that D increases with Q̇, although
the extent of the increase is small over the range where the data
are available.
Next, to investigate the effect of varying [ATP] on V, D, and

Q̇, we plotted (V, Q̇) (Figure 4A) and (Q̇, D) (Figure 4B) at

varying [ATP] with fixed f = 1.05 pN or f = 3.59 pN. Again,
monotonic increase of Q̇ with V and the correlation between Q̇
and D clearer than that in Figure 3C are observed. Similar to
the cubic polynomial dependence of D on V, it is possible to
relate V and D with Q̇ at constant load. We found that for
general N-state model, Q̇ ∼ V2 and D ∼ Q̇1/2 at small Q̇ (see
section 5 of the Supporting Information), which explains the
curvatures of the plots at small Q̇ regime in Figure 4. From the
perspective of NESS thermodynamics,22,23 for a motor to

Figure 3. Heat and work production at varying load. (A) Theoretical plot of heat (Q̇, red), work production (Ẇ, blue), and their sum (Ė, black) as a
function of load using (N = 4)-state model. (B) Heat production (Q̇) as a function of motor velocity (V), modulated by varying f at [ATP] = 2 mM.
(C) D plotted against Q̇ when f is varied at [ATP] = 2 mM. The solid lines in cyan are theoretical predictions using the parameters determined in the
(N = 4)-state model.

Figure 4. Relationships of Q̇ vs V and D vs Q̇ modulated under varying
[ATP] but at a constant f. (A) Q̇ vs V at f = 1.05, 3.59 pN. (B) D vs Q̇
at f = 1.05, 3.59 pN. Solid lines are the fits using (N = 4)-state model
with model parameters determined from global fitting of data in
Figures 2A−C and 5. The V and D data are digitized from ref 33.
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sustain its motility, a free energy cost called housekeeping heat
should be continuously supplied to the system. For the N-state
model, the system relaxes to the NESS from its arbitrary initial
nonequilibrium state in a rather short time scale τNE = 1/
∑n=1

N (un + wn) (see section 4 and Figure S2 of the Supporting
Information). In a NESS, the housekeeping heat and the total
heat and entropy production discharged to the heat bath are all
equal to Q̇ = jkBT log(j+/j−) ≥ 0 (see section 4 of the
Supporting Information).
Cautionary remarks are in order. Our formalism describing

the trajectories of kinesin is based solely on a unicyclic reaction
scheme. While straightforward in developing a formalism, the
unicyclic reaction scheme leads to a problematic interpretation
that the backstep is realized always by a reversal of the forward
cycle,24 which means that the backstep near the stall condition
is taken with the synthesis of ATP from ADP and Pi. This
rather strong assumption could be alleviated by extending the
current formalism to the one based on a multicycle
model,14,24,35,36 so as to accommodate the possibilities of
ATP-induced backstep and futile cycle near the stall condition.
For the multiple-cycle model, the flux branches into different
cycles and the net flux at each kinetic step remains
nonvanishing (j+ ≠ j−) even at the stall condition. As a result,
it is expected that Q̇ ≠ 0 and Ẇ ≠ 0. More explicit calculation
of the functional dependence of Q̇ or Ẇ on f, however, requires
a detailed model based on a multicycle reaction scheme, which
we leave for our future study.
Passive versus Active Particles. Broken DB and violation of the

fluctuation dissipation theorem (FDT)37,38 differentiate an
active system operated under nonconservative forces from a
passive system in mechanical equilibrium under conservative
forces. For example, the terminal velocity (V) and diffusion
constant (D) of a colloidal particle of size R in the gravitational
or electric field are mutually independent, so that regardless of
V, D is always constant, obeying Stokes−Einstein relation D ∼
DSE ∼ kBT/ηR where η is the viscosity of media, kB the
Boltzmann constant, and T the absolute temperature. A similar
argument can be extended to a composite system (e.g.,
macromolecules in solution) subjected to conservative forces.
In contrast, for a self-propelled active particle, the depend-

ence of diffusivity on its velocity is often noted, and the ef fective
dif fusion constant, defined as the increment of mean square
displacement over time Deff = ⟨(δr)2⟩/6t at an ambient
temperature T, depends on a set of parameters (velocity,
density, etc.), violating the FDT.39,40 To be specific, let us
consider a run-and-tumble motion of a swimming bacterium,
which locomotes with a velocity Vb in search of a food. If the
mean duration of locomotion is τr and the bacterium tumbles
occasionally with a rotational diffusion constant DR for time τt,
the effective diffusion constant of the bacterium at time t much
greater than τs and τt is estimated to be Deff ∼ Vb

2τr/6DRτt.
41,42

In this case, Vb or Deff of bacterium is affected not by the
ambient temperature but by the amount of food, also violating
the conventional FDT (Deff is not ∼kBT/ηR).37,43,44
Unlike a passive particle in equilibrium, V and D of an active

particle are both augmented by the same nonthermal,
nonconservative force (e.g., ATP hydrolysis). Importantly,
regardless of whether a system is in equilibrium or in
nonequilibrium, and is passive or active, it is legitimate to
def ine the diffusion constant as an increased amount of mean
square displacement for time t without resorting to the FDT. In
ref 5, the signal from FCS measurement was nicely fitted to the

autocorrelation function, G(τ), which assumed the normal
diffusive motion of the enzymes.
Comparison of Enhanced Dif fusivities between Dif ferent Types

of Active Particles. While a precise mechanistic link between the
heat and enhanced diffusion is still elusive in this study as well
as in others,5−9 our study still offers further insights into the
problem of enhanced diffusion of exothermic enzymes.1,5 From
Figure 2, (ΔD/D0)obs at the maximal velocity of kinesin-1 is as
large as ∼ (10 )26 . For swimming Escherichia coli, the enhance-
ment is estimated to be Δ ≳D D( / ) (10 )0 obs

26 (the effective
diffusion coefficient of E. coli is D ∼ 53 μm2/s41,45 and D0 = DSE
∼ 0.5 μm2/s by assuming bacterium as a sphere with radius of
0.5 μm). Considering the extent of enhancement in kinesin-1
and E. coli, (ΔD/D0)obs ∼ 0.3−3 for the substrate fed,
exothermic enzymes observed by Riedel et al.5 should not be
too surprising.
In the framework of unicyclic Markov processes, the diffusion

constant (D) in a NESS is defined consistently with eq 4 in
terms of forward and backward fluxes (j+ and j−). The extent of
enhancement in diffusion constant is expressed as (see eq S41)
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−
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At equilibrium, when the DB is established, j+ = j− = j0 (or K =
1), which leads eq 8 to ΔD/D0 = 0. More explicitly, the
enhancement of the diffusion constant can be expressed in
terms of microscopic rate constants using the (N = 2)-state
kinetic model (see eq S9 in section 1 of the Supporting
Information), and its theoretical upper bound can be obtained
as
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2
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The inequality in the last line specifies a theoretically achievable
upper bound of enhancement (ΔD/D0)max, the expression of
which remains unchanged even when the passive diffusion
component (DSE ∼ kBT/ηR) is included in D0. For a
Michaelis−Menten type enzyme reaction, a typical condition,
u2 ≫ w2 and u2 ≃ w1, makes (ΔD/D0)max ≃ u2

2/2w1w2 a large
number. D (or D0) itself is a number associated with a squared
length scale d0

2 per unit time. However, the precise meaning of
d0, a characteristic length, is not clear for the freely diffusing
enzymes, while d0 simply denotes the step size for molecular
motors. The dimensionless number, (ΔD/D0), eliminates such
ambiguity, allowing us to make a direct comparison between
1D transport motors and enzymes.
In the expression (ΔD/D0)max ≃ u2

2/2w1w2, u2 is the key
reaction rate that quantifies the catalytic event in the
Michaelis−Menten scheme (or “power stroke” in molecular
motors). To quantify the enzyme’s efficiency of converting
chemical free energy into motion, we define the conversion
factor, ψ, as the ratio between the observed and theoretically
predicted enhancement of diffusion constant at the maximal
turnover rate (V = Vmax) as follows:

ψ ≃
Δ

Δ

( )
( )

D
D

D
D
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0

0 (10)
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Mathematically, the factor ψ amounts to the ratio of u2
obs/u2,

where u2
obs is an actual amount of power stroke; hence, it

physically quantifies the extent of chemical energy converted to
spatial movement. For kinesin-1 whose ATP-induced con-
formational dynamics and thermal fluctuations are rectified to a
unidirectional movement along a 1D track,18 a high conversion
factor (ψ ≲ 1), i.e., tight coupling between the transitions in
chemical state space and motion in real space is expected from
the catalytic turnover. In contrast, the lack of scaffold renders
the motion of free enzymes in 3D space random and more
dissipative; hence, the transitions in chemical state space are
weakly coupled to the motion in real space. As a consequence,
the extent of conversion from chemical energy to the
movement of enzyme is expected to be much lower than that
of kinesin-1.
Indeed, we find that ψ(kinesin) ≫ ψ(freely diffusing

enzymes). For kinesin-1, Dmax ≈ 10−3 μm2/s at V = Vmax
from Figure 2 and D0 = 10−8 μm2/s from the fit to (N = 2)-
state model (see the Supporting Information) which
determines the rate constants u2, w1, and w2 lead to (ΔD/
D0)obs ≈ 6 × 104 and (ΔD/D0)max ≈ 7.4 × 105 from eq 9;
therefore, ψ ≈ 0.8 (or ψ ≈ 0.02 when D0 ≈ 2.2 × 10−5 μm2/s is
used from the third-degree polynomial fit: dashed line in Figure
2A). For the cases of Riedel et al.’s exothermic enzymes
(catalase, urease, and alkaline phosphatase), whose rate
constants are available in Table 1 (or in ref 5), ψ ∼ −(10 )46
− −(10 )76 is obtained from (ΔD/D0)obs ∼ −(10 )16 and (ΔD/
D0)max ∼ (10 )76 − (10 )176 .
The net chemical free energy change due to isomerization

reaction of substrate (dihydroxyacetone phosphate ⇌ D-
glycealdehyde 3-phosphate) catalyzed by triose phosphate
isomerase would be relatively small (Δμeff ∼ 0 or K ∼ 1)
compared with other highly exothermic enzymes. In this case, it
is anticipated from eq 8 that ΔD/D0 ∼ 0. All the values of
(ΔD/D0)obs, (ΔD/D0)max, and ψ discussed here are provided in
Table 1.
Direct comparison of the diffusions of kinesin-1 and freely

diffusing active enzymes may not appear to be fair. From a
perspective of thermodynamics, however, they still belong to
the same thermodynamic class in that the motions of both
systems require energy input. Furthermore, when mapped on
the chemical state space, (enzymatic) activities of both systems
are described using Michaelis−Menten relation with ATP
concentration. As quantified in the relation of ψ(kinesin-1) ≫
ψ(freely diffusing enzymes), kinesin-1, whose fluctuations are
tightly confined on the microtubules, is more efficient in
converting thermal/active fluctuations into motion than the
freely diffusing enzymes. Thus, our prediction is that confine-
ment of active fluctuations into low dimension leads to a

greater enhancement in diffusivity (ΔD/D0)obs, which can be
tested for the above-mentioned freely diffusing enzymes by
confining them in a narrow nanochannel. Conversely, it is also
expected that (ΔD/D0)obs and ψ of free kinesin-1 in solution,
i.e., in the absence of microtubules, are reduced greatly to the
values less than those for Riedel et al.’s enzymes.
The physical meaning of the term “diffusion constant” used

in the literature could be twofold. First, it refers to the response
of a system in a solution to thermal fluctuations, which amounts
to the diffusion constant defined by the Stokes−Einstein
relation, DSE = kBT/ζ, where ζ is the friction coefficient.
Second, the behavioral random motion of a system being
probed is often quantified using the operational definition of
diffusion constant, Deff = ⟨(δr)2⟩/6t, at long time limit. In a
nondriven thermally equilibrated system, it is expected that Deff
= DSE. However, for a system like swimming bacterium, where
unidirectional active motion is randomized with occasional
tumblings, there is no reason to expect that the two distinct
definitions are inter-related, and Deff > DSE should be expected
as long as the bacterium is “alive.” It is important to note that in
Riedel et al.’s FCS measurement, the behavioral random
motion of enzymes was effectively quantified as the diffusivity
of the enzymes based on the definition of Deff[= ⟨(δr)2⟩/6t],
and its variation with an increasing turnover rate was extracted
from the data fitting to the fluorescence intensity autocorre-
lation function. Once one accepts that substrate-catalyzing,
freely diffusing enzymes are thermodynamically in the same
class with molecular motors or swimming bacteria in that all of
them are energy-driven (substrate-catalyzing or nutrient-
digesting) systems in NESS, the enhancement of enzyme
diffusion is no longer enigmatic.
The fundamental difference between passive and active

particles is worth highlighting again using Langevin description.
In the simplest possible terms, the motion of a passive particle
in 1D under an externally controlled field, Fext, is described by
the Langevin equation x ̇(t) = Fext/γ + ζD t2 ( ) where ζ(t) is
the Gaussian noise with ⟨ζ(t) ζ(t′)⟩ = δ(t − t′), which gives rise
to the terminal velocity ⟨x ̇(t)⟩ = Fext/γ. In contrast, the
corresponding Langevin equation for an active particle is x ̇(t) =
V(u, w) + ζD u w t2 ( , ) ( ). In the latter case, both the velocity
and diffusion constant at steady state are a function of substrate
concentration, u = u([ATP]), the driving force of the particle’s
motion, which allows us to express D as a function of V such
that D = D(V).
To recapitulate, in this study we determined a set of

microscopic rate constants, which best describe the “trajecto-
ries” of kinesin-1, on a unicyclic kinetic model consisting of N-
contiguous chemical states and transition rates between them
and evaluated the heat dissipation along the reaction cycle. The

Table 1. Rate Constants, Enhancement of Diffusion, and Conversion Factor Determined from the (N = 2)-State Kinetic Modela

Q (kBT) [S] (mM) u1 (s
−1) u2 (s

−1) w1 (s
−1) w2 (s

−1) Δ( )D
D obs0

Δ( )D
D max0

ψ

kinesin ( f = 1.05 pN) 15 2 2200 99 0.55 0.092 6× 104 (45b) 9.7 × 104 ∼0.8 (0.02b)
catalase 40 62 6.2 × 106 5.8 × 104 6.1 × 106 2.2 × 10−13 ∼1 1.3 × 1017 ∼3 × 10−9

urease 24 3 3 × 105 1.7 × 104 2.8 × 105 7.4 × 10−7 ∼0.3 1.2 × 1010 ∼5 × 10−6

AP 17 1.6 1.6 × 105 1.4 × 104 1.5 × 105 4.0 × 10−4 ∼3 1.9 × 107 ∼4 × 10−4

TPI 1.2 1.8 1.8 × 105 1.3 × 104 1.7 × 105 4.2 × 103 0.01 1.2 0.09
aAP, alkaline phosphatase; TPI, triose phosphate isomerase. bD0 determined from the third-degree polynomial fit (eq 5) to the data in Figure 2A was
used to estimate (ΔD/D0)obs and ψ.

The Journal of Physical Chemistry Letters Letter

DOI: 10.1021/acs.jpclett.6b02657
J. Phys. Chem. Lett. 2017, 8, 250−256

254

http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.6b02657/suppl_file/jz6b02657_si_001.pdf
http://dx.doi.org/10.1021/acs.jpclett.6b02657


philosophy underlying the analysis of mapping trajectories on
the kinetic model, proposed here on kinesin-1 as well as others
on F1-ATPase,

29,46 is in essence similar to the one by the recent
study which has quantified circulating flux on configurational
phase space (or mode space) to diagnose broken DB and
nonequilibrium dynamics at the mesoscopic scale.37,38 Lastly,
our study confers quantitative insights into how much of the
chemical free energy supplied to active systems (enzymes,
molecular motors) is converted to mechanical movement in
space and eventually dissipated into heat. Variations in the
transport properties and heat dissipation among different
molecular motors provides glimpses into their design
principles,47 which should also be highlighted against typical
enzymes specialized for catalysis.

■ COMPUTATIONAL METHODS

Analysis of Kinesin-1 Data Using (N = 4)-State Kinetic Model.
The data digitized from ref 33 were fitted to the (N = 4)-state
model used by Fisher and Kolomeisky,21 but we kept the
parameter w4 independent of [ATP]. Initial values for the fit
were chosen from eqs 14 and 15 in ref 21, except that we set w4

= 100 s−1 as an initial value for the fit. The curve_f it from
scipy48 was used to globally fit the data in Figures 2A−C and
5A−F. θ4− is determined from the constraint ∑n=1

N (θn
+ + θn

−) =
120 at every iteration step. The parameters determined from the
fit shown in Figure 5 are provided in Table 2, and they are
comparable to those in ref 21.
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