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ABSTRACT: Depletion forces are relevant in a variety of contexts
such as the phase behavior of colloid−polymer or colloid-depletant
mixtures and clustering of inclusions in mobile brushes. They arise
from the tendency to minimize the volume of the depletion zone
formed around colloidal particles or inclusions. In comparison to
depletion interactions widely studied for colloidal particles or
polymers in a suspension of spherical depletants, depletion
interactions between nonspherical inclusions in mobile polymer
brushes display complex behaviors. When the brush is shorter than
the inclusion height, the inclusions in brushes experience apparent
attraction; yet, such attraction is reduced or even becomes repulsive
when the brush is overgrown beyond the inclusion height. Here we
use the self-consistent field theory (SCFT) to calculate the
depletion zones around two cylindrical inclusions and offer a clear explanation of how these complex behaviors arise. In tall
brushes, the changes of the depletion zone volume with varying intercylinder separation are opposite in sign at the upper and lower
parts of cylinders. Consequently, in tall brushes, cylinders even shorter than the size of a correlation blob experience repulsion, but
long cylinders attract each other. Our study reveals that brush-induced depletion interactions are decided by the complex interplay
among the sizes of brushes, inclusions, and correlation blobs.

1. INTRODUCTION
Transmembrane proteins are often found to form nanoclusters
on the cell surface.1,2 The mechanisms such as membrane
undulation-induced thermal Casimir-like long-range attrac-
tion,3,4 helix−helix interaction,5 protein sorting via hydrophobic
mismatch,6,7 and membrane curvature-mediated interaction8,9

are generally considered to underlie the protein nanocluster
formation on the cell surface. The glycocalyx, a layer of
glycolipids and glycoproteins that densely coat the cell surface,
has recently been shown to play vital roles in promoting the
integrin nanocluster formation and integrin-mediated down-
stream signaling.10−14

Motivated by experimental observations on the role of
glycocalyx, recent studies have adopted the ideas of Asakura and
Oosawa (AO)15,16 and the self-consistent field (SCF)
approach17 to investigate the effect of laterally mobile polymer
brushes on inclusions confined to two-dimensional (2D)
surfaces. Compared with the extensive studies over the past
decades on depletion interactions in colloid−polymer mix-
tures18−31 and biopolymers in a crowded environment,32−40 less
has been investigated on a scenario of brush polymer-induced
depletion interactions. Although both the AO and SCF theories

have predicted brush-induced depletion attractions between
inclusions,15−17 the two theories differ from each other in that
they rely on distinct physical assumptions. Furthermore, their
results have not been compared on an equal footing. Recently,
we have shown that the blob concept incorporated into the AO
theory is essential for quantitatively explaining the potentials of
mean force (PMFs) obtained for different grafting densities and
brush heights from molecular dynamics (MD) simulations.16

We herein show that SCFT, based on the mean-field strategy of
determining the effective potential field around an ideal
chain,41−44 not only reproduces the scaling relations for
depletion free energy against grafting density identical to those
from the AO theory but also generates PMFs that align well with
those from MD simulations.
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After describing themethods ofMD simulations (Section 2.1)
and SCFT (Section 2.2), we first review the basics of brush
polymers, highlighting the concept of correlation blobs in the
semidilute environment (Section 3.1), which is essential in the
quantitative formulation of the brush-induced depletion
interaction using the AO theory,16 and next review the
associated quasi-2D version of the AO theory (Section
3.2).15,16 In Section 3.3, we show that once the excluded
volume parameter, Λ, of SCFT, which can be related to the
grafting density σ by mapping it to the strong-stretching theory
(SST),45−48 is adequately selected, the free energy profiles
acquired from SCFT align well with those fromMD simulations
and thus the scaling relations predicted by the AO theory.
By leveraging the computational efficacy of SCFT in gaining

equilibrium properties of dense polymer systems, we calculate
the density profiles of brush monomers ϕ(r) around cylindrical
inclusions, representing signaling proteins on membranes, with
varying brush height and intercylinder separation (Section 3.4).
The density profiles are used not only to quantify the depletion
free energy but also to decompose the volume of the depletion
zone around the two cylinders into those around the lateral
surface and above the circular face. This effort suggests that the
two depletion zone volumes change in an opposite manner with
the intercylinder separation. The competition between
depletion interactions arising from two different regions of the
cylindrical inclusions gives rise to an intriguing theoretical
prediction (Section 3.5): embedded in tall brushes, two coin-like
cylinders, whose height (h) is even shorter than the size of the
correlation blob at the surface, repel each other mainly due to
the tendency to minimize the depletion zone volume above the
cylinders.
Lastly in the Conclusions (Section 4), we put brush-induced

depletion interactions into the context of glycocalyx-enhanced
integrin signaling, linking our theoretical prediction of cylinder-
height dependent depletion interactions in tall brushes to the
effect of conformational change of integrins on their clustering in
cell surfaces coated with thick glycocalyces.
For clarity, we summarize the key parameters and variables

used throughout the paper in Table 1.

2. METHODS
2.1. Molecular Dynamics Simulations and Potential of

Mean Force between Two Cylinders in Polymer Brushes.
Molecular dynamics (MD) simulations were performed using
the Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS).49 The low friction Langevin equation was
integrated at the temperature T = 1.0 ϵ/kB, where kB is the
Boltzmann constant and ϵ is the Lennard-Jones parameter
described below.
First, the cylindrical inclusion of diameter D b10 2= and

height h b D20 2 2= = was modeled using a harmonically
constrained composite rigid body consisting of 6500 beads. We
used a harmonic potential with a force constant k ≃ 103 ϵ/b2 to
restrain the beads at the bottom layer (z = 0.0) of the cylinder
only along the z-direction, so that the cylinders were free to
move laterally.
Next, the bond potential along each polymer chain consisting

ofNmonomers was modeled with the finite extensible nonlinear
elastic (FENE) potential and the repulsion between the
neighboring monomers with the Weeks−Chandler−Anderson
(WCA) potential

U r k r
r

r

b
r

b
r

( )
1
2

ln 1

4
1
4

i i o
i i

o

i i i i

b , 1 F
2 , 1

2

, 1

12

, 1

6

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ
i
k
jjjjj

y
{
zzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÄ

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ

=

+ +

+
+

+ + (1)

with kF = 30.0 ϵ/b2 and ro = 1.5b. Themonomers along the chain
as well as in the different chains repel each other via the WCA
potential, realizing the self-avoidance of polymer chains.
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The beads comprising the cylinder body and the chain
monomers also repel each other via eq 2. To prevent polymers
from penetrating the surface at z = 0, the WCA potential (eq 2)
was placed at z = −b, with r in eq 2 being replaced with the
minimal distance from the surface. For a given grafting density,
σ(=np/A) where np is the number of brush polymers in the
system and A is the area of the 2D surface, the lateral dimension
of the simulation box was set to L L n /x y p= = with periodic

Table 1. Parameters and Variables Used in the Study

polymer N number of monomers comprising each brush polymer

b monomer size
ξ blob size, ξ ≃ bg3/5

g mean number of monomers inside a blob
R0 size of an ideal chain of length N, R0 = N1/2b
RF size of a real chain of length N (or Flory radius),

RF ≃ N3/5b
brush np number of brush polymers on the 2D surface

A area of the surface covered by the brush polymers
σ grafting density σ = np/A
H brush height
Π osmotic pressure
ϕ monomer volume fraction in the interior of brush

cylinder D diameter of a cylinder
d center-to-center distance between two cylinders
δc depletion layer thickness
h cylinder height

AO theory Aex excess area
Vex excess volume

number of interaction units
FAO(d) AO free energy (potential) at d
ΔFAO Free energy gain, ΔFAO = FAO(∞) − FAO(D)

SCFT ϕ(r;d) mean monomer density at r for intercylinder
separation d

ϕb bulk monomer density
Vp total volume occupied by the brush segments,

Vp = ∫ drϕ(r)
u0 strength of self-avoidance
ρ0 mean density of a single brush segment, ρ0 = Nnp/Vp

Λ excluded volume parameter, Λ = Nβu0ρ0
W(r) self-consistent field at r, W(r) = Λϕ(r)
FSCF(d) free energy at d obtained from SCF calculations
Vdepl(y) depletion volume at a separation y
Vdepltop (y) depletion volume on the cylinder top
Vdepllat (y) depletion volume around the lateral surface of the

cylinders
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boundary conditions. Along the z direction, we used shrink-
wrapped boundary conditions to adjust the simulation box to
the brush height.
To calculate the PMF between the inclusions in brushes, the

configurations of the system were collected through the
umbrella sampling method along the separation (d) between
the central axes of the two cylinders. At each sampling point, the
system was first relaxed for 103τ, where τ[=(mb2/ϵ)1/2] is the
natural time unit for the MD simulations, followed by a
production run for 105τ under a bias potential,UB(d;dk) = ks(d−
dk)2/2 with ks = 200.0 ϵ/b2 and dk = D + 10.0b − kb/4 (k =
1,···,42). The unbiased free energy profile was reconstructed by
means of the weighted histogram analysis method
(WHAM).50,51

2.2. Self-Consistent Field Theory. In order to obtain the
mean field version of free energies of a system, the SCFT
considers the partition function using a functional integral over
an auxiliary field. The theory works best for many-chain systems,
such as melts, blends and copolymers,41,48,52 where the pressure
from the surrounding chains counterbalances the interchain
repulsions making the statistics of individual chains nearly
ideal.41

To calculate the free energy between the inclusions in brushes
separated by d, we start with the partition function of a system
consisting of np polymer chains

n
r1

e
p

n
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(3)

Equation 3 is written in terms of the functional integrals over the
space curves representing np polymer chains [rα] ≡ {rα(s)|α =
1,2,···,np;0 ≤ s ≤ N} along with the energy potential U[rα] =
U0[rα] +U1[rα].U0[rα] denotes the chain connectivity potential
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and U1[rα] is the sum of solvent mediated nonbonded pairwise
interactions v(···) between the monomers along a single chain as
well as between the chains
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This particle (monomer)-based expression of the canonical
partition function (eq 3) can be replaced with the field-
theoretic representation via the Hubbard−Stratonovich trans-
formation.53

Specifically, we first introduce the monomer density field at
position r, ρ̂(r) = ∑α=1

np ρ̂α(r) = ∑α=1
np ∫ 0Ndsδ(r − rα(s)), and

rewrite the eq 5 into a density field-based expression

U vr r r r r r r
2
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Next, by introducing a delta functional of the density field that
satisfies the relation F F[ ] = [ ] [ ], where

w ei wr r r rd ( ) ( ) ( )[ ] = [ ] with an auxiliary field
w(r) that can be interpreted as the fluctuating chemical
potential field at r, one obtains the field-theoretic representation
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Q[iw], introduced in eq 7, corresponds to the single chain
partition function subject to a purely imaginary potential iw(r),
and it is obtained by noting the relations ρ̂(r) =∑α

npρ̂α(r), ρ̂α(r)
= ∫ 0Ndsδ(r − rα(s)) and

w
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The expression in the last line of eq 7 is obtained after carrying
out functional integration over the density field ρ(r). Thus, the
partition function is cast into a field theory with an effective
Hamiltonian that varies with the fluctuating auxiliary field w, i.e.,

we H weff[ ].
In our problem of brushes, we use a delta function to model

the nonbonded potential v(···), i.e., v(|r− r′|) = u0δ(r− r′) with
u0 denoting the strength of self-avoidance, which leads to
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The SCFT version of free energy of the system is formally
acquired through the saddle point approximation as follows

F w
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Along with the normalized arc length 0 ≤ s ≤ 1, the
Q[iw]defined above is written as

Q iw
r

r

e

e

e

e

Nb s s s iN sw s

Nb s s s

iN sw s

i w

r r

r

r

r r r

(3/2 ) d (d ( )/d ) d ( ( ))

(3/2 ) d (d ( )/d )

d ( ( ))
0

d ( ) ( )
0

2
0
1 2

0
1

2
0
1 2

0
1

[ ] =

=

= (12)

Note that Q[iw] corresponds to a path integral subject to the
external potential iNw(r) along 0 ≤ s ≤ 1, and for the case of
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brush polymer it can be related to the chain propagator from 0 to
s at position r, q s sr r r r( , ) e ( ( ) )U sr( ;0, ) , and its

back-propagator q s sr r r r( , ) e ( ( ) )U sr( ; ,1)† 54,55

Q iw
V

q s q sr r r r1
d ( , ) ( , ) e

p

U r( ;0,1)[ ] = †

(13)

Here, q(r,s) obeys the following diffusion equation under an
effective potential field iNw(r) with the one-end grafted
boundary condition q(r, 0) = R0δ(z − ϵ)41,55
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where R02 = Nb2, and its back-propagator q†(r, s) from 1 to s,
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1.
The concentration at position r, solely due to the α-th

polymer, is given by
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Here, Vp = v0npN, with v0 = ρ0−1 denoting the volume of a single
segment, is the total volume occupied by the entire segments
comprising the brush. Then, the mean monomer concentration
(or density) at r by the whole polymers comprising the brush,
satisfying ∫ drϕ(r) = Vp, is obtained by taking a functional
derivative on Q[iw](eq 12)

n
n Q iw
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p

p

0

= = [ ]
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which is also related with the chain propagators as
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When eq 14 is solved self-consistently along with eqs 13 and
17 until the effective field w(r) converges to w* (r), the
functional derivative of the effective Hamiltonian (eq 10)
vanishes, satisfying the following key relations

H w
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yielding the self-consistent solution of SCFT54

iNw Wr r r( ) ( ) ( )= * * (19)

where Λ ≡ Nβu0ρ0 is defined as the excluded volume parameter
in SCFT. Under this condition iw* (r) becomes a real number,
and the solution of eq 14 amounts to getting the chain
propagator of an ideal chain subject to an effective external
potential field proportional to the local concentration, Λϕ(r).
Furthermore, the auxiliary field, iw* (r), determined as the
solution of SCF eq (eq 14), enables one to compute the
corresponding free energy given in eq 11. For brushes with
inclusions, eq 11 is solved for the two cylindrical inclusions
separated by d along with the boundary conditions, q(r, s) = 0
and q†(r, s) = 0 for r inside the inclusions. Finally, eq 11 is cast
into the following form after dividing both sides by σR02

Figure 1.Height (H) and lateral fluctuations (δ R⊥) of brush polymers (N = 100, b = 1) at s = L and s = L/2 as a function of grafting density (σ). (A)
Illustration of a brush along with the length scales (H, ξ, and δR⊥) discussed in the main text. (B) H versus σ (top) and δR⊥ versus σ (bottom). The
brush forming grafting density is σ > 1/RF

2 ≈ 4.4 × 10−3. Thus, the grafting density, 0.01 ≲ σb2 ≲ 0.08, corresponds to the semidilute regime that
confirms the scaling behaviors of brush polymers expected from eqs 21 and 24. For σ ≳ 0.1, the lateral fluctuations display a distinct behavior δR⊥ ∼
σ−1/2.
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where the symbol * for the self-consistent field W* obtained
from SCFT is dropped for simplicity.
To solve the SCF equations, we employed the Crank-

Nicolson and alternating-direction implicit methods while
setting the contour and grid intervals as Δs = 1/400 and ΔL =
R0/20, respectively. The chain propagators and partition
function are computed by utilizing an open-source library.56

All computations are parallelized using a GPU, with each SCFT
run taking approximately an hour on an NVIDIA V100.

3. RESULTS AND DISCUSSION
3.1. Polymer Brush.We consider a polymer brush where np

polymers are grafted to a 2D surface of area A. If the grafting
density σ(= np/A) is greater than the density defined by the
Flory radius of isolated chain (RF ≃ bNν with ν ≃ 3/5, more
precisely ν = 0.588), i.e., σRF

2 > 1, the polymer chains overlap
with each other, transitioning from a mushroom-like config-
uration to brushes (Figure 1). As a result, each chain is deformed
into a string of N/g correlated blobs of size ξ, inside which self-
avoidance dominates chain statistics: ξ≃ τ1/5 bg3/5 < RF with τ =
(T−Θ) /T associated with the second virial coefficientB2∼ τb3.
This consideration leads to the mean brush height H that obeys
the Alexander-de Gennes brush scaling57−59

H
N
g

Nb b( )2 1/3i
k
jjjjj

y
{
zzzzz (21)

Since the grafting distance between the neighboring chains
under the brush-forming condition is effectively set by ξ, the
grafting density σ is related to ξ as

1/ 2 (22)

Importantly, as discussed in the section that follows, the
correlation blob serves as the fundamental interaction unit in
determining the brush-induced depletion interactions.16

Instead of using the blob concept, one can rely on the Flory
argument to reach the same expression with eq 21. Specifically,
the free energy of the stretched brush chain is given by

F
R

Nb
b c r r1

2
( ) d

2

2
3 2+ + ···

(23)

where the first term is associated with the entropic cost of
stretching an ideal chain, and the second term represents the
pairwise two body interaction arising from the intrachain
excluded volume interaction.41,60 Throughout the paper, β= 1/
kBT. To simplify the calculation, we consider a uniform
concentration c(r) ≃ (N/V) and ∫ dr → V with V ≃ R∥ × dgr

2

≃ R∥/σ where dgr denotes the grafting distance that satisfies the
relation σ ≃ 1/dgr

2 , which casts eq 23 into βF ≃ R∥2/Nb2 + (1/2)
τb3N2σ/R∥. Its minimization with respect to R∥, i.e.,

0d F
R HdR
| == , leads to the same expression of the scaling with

eq 21.
Also, note that the conformation of a single polymer chain in

brushes can effectively be generated under an extensile force f∥.
The work associated with stretching the chain from the free state
satisfying ⟨R⃗ee⟩ = 0 to the mean heightH (work = f∥ ×H) should
be balanced with the mean number of blobs (H/ξ), each of
which contributes the free energy of kBT so that the free energy
of extension is given by kBT × H/ξ. Thus, the size of blob, ξ, is
associated with the extensile force f∥as ξ ∼ kBT/f∥ ∼ bg3/5, and
the brush height is related with f∥ asH ≃Nb(bβf∥)2/3. Inside the
brush (ξ < x < H), the lateral fluctuation of a chain on a plane
normal to the extensile force f∥is related toH as ⟨δR⊥2 ⟩ ≃ kBTH/
f∥ ≃ (Nb) b2/3(βf∥)−1/3, or it can be described simply by a
random walk of a blob projected on the plane ⟨δR⊥2 ⟩ ≃ (2/3)
(N/g)ξ2. Thus, together with eq 21, we obtain an arc length-
dependent lateral fluctuation, R⊥(s) ≡ ⟨δR⊥2 ⟩1/2 (0 ≤ s ≤ L with
L = bN)

R s b s b( ) (2/3) ( )1/2 1/2 1/2 2 (2 1)/4 (24)

It is noteworthy that for a fixed N and ν = 3/5, the lateral
fluctuations of polymer brushes depend only weakly on the
grafting density, δR⊥ ∼ σ−1/12. Since the interior of brushes is

Figure 2. Brush-induced depletion interaction between two inclusions. (A) Illustration of depletion attraction between two proteins in polymer brush
on a 2D surface. (B) Top view of the illustration. The boundaries (dotted lines) around the inclusions demarcate the depletion zone, and the pale blue
circles depict the ranges of correlation blobs. The hashed area in magenta depicts the excess area,Aex(d =D;δc) (eq 26), gained when the two inclusions
are brought together.Specified in the figures with the arrows are the height of inclusion (h), brush height (H), diameter of the inclusion (D), depletion
layer thickness (δc), and the center-to-center distance between the two inclusion (d).
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effectively in the semidilute regime, it follows from the des
Cloiseaux scaling of osmotic pressure βΠ ∼ 1/ξ3 ∼ ϕ9/4 ∼ σ3/2
that δR⊥ ∼ Π−1/18. However, when the grafting density is too
high (σ > 0.1), the lateral fluctuations are restricted by its
neighbors, displaying the same scaling behavior as that of blobs
(ξ ∼ σ−1/2), i.e., δR⊥ ∼ σ−1/2, and δR⊥ ∼ Π−1/3. These σ-
dependences of δR⊥ andH are confirmed by theMD simulations
demonstrated in Figure 1B.
We note that the scaling relations discussed throughout this

study rely on the assumption that there is a clear separation in
length among b, ξ, andH, which are the monomer size, the blob
size, and the brush height, respectively. The scaling law σ−1/12 in
Figure 1B, for instance, is reliable when H≫ ξ≫ b. Under this
condition, the brush system is well in the semidilute scaling
regime. The data points obtained with σ < 0.01 (mushroom
phase) or σ > 0.1 (regime of concentrated polymer solution) in
Figure 1B are not deep inside this regime. Widening this regime
requires simulating longer chains.
3.2. AO Potential for Brush-Induced Depletion

Interaction. The AO theory, originally proposed for attraction
between hard spheres or flat surfaces suspended in a solution of
depletants,18,19 can be extended to other geometry as well as to
the one in two dimensions (2D).30,31

When two parallel cylindrical objects of diameter D are
separated by a distance d ≥ D in brushes, the two key length
scales relevant for the problem are (i) the diameter of the
inclusion (D); (ii) the depletion layer thickness (δc) that
corresponds to the size of the polymer free region around
cylinders in Figure 2B. As the distance d decreases from d > D +
δc toD≤ d≤D + δc due to the depletion forces, the total volume
accessible for brush polymers V(d;δc) increases from V> to V> +
Vex(d;δc)

V d
V d D

V V d D d D
( ; )

for

( ; ) for
c

c
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l
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=
> +

+ +
>

> (25)

where V> = (A− π D2/2) min(h,H) and the d-dependent excess
volume formed for D < d < D + δc is given by Vex(d; δc) =
Aex(d;δc) min (h,H) with the excess area created between the
two inclusions (Figure 2B)16

A d D
d

D

d D d

( ; )
1
2

( ) cos

( )

c c
c

c

ex
2 1

2 2

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
i
k
jjjjj

y
{
zzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑ

= +
+

+
(26)

Thus, in reference to the configurations of inclusions separated
by d > D + δc, the entropy of the system increases by

( )S ln V V
V

ex+>

>
and the effective free energy (AO potential)

between the cylinders at separation D < d < D + δc is given by
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(27)

where the second line is obtained for Vex/V> ≪ 1 and V> ≈ A
min(h,H). The proportionality constant denoted by signifies

the number of statistically independent interaction units that
contribute to the AO potential.
Importantly, the mean number of interaction units per

polymer chain ( )n/ 1p = , which contribute to the depletion
interaction, can vary depending on the degree of correlation
between the segments, so that it is confined in the range of

n
h H

1 /
min( , )

p (28)

First, the lower bound n/ 1p = corresponds to the case when a
single brush polymer chain contributes to the depletion
interaction as a whole. Second, one could suggest that the steric
repulsion from each blob is the fundamental unit of interactions.
In this case, min(h,H) /ξ, corresponding to the mean number of
blobs per chain that interact with the cylinder, is expected to
scale with the grafting density (σ) as

h H H N g H h

h H h

min( , ) / / for

/ for

1/2

1/2

l
m
ooo
n
ooo=

<

> (29)

The extent of correlation between the segments, which sets
n/ p to a value somewhere between the two bounds, is germane

to the problem of brush-induced depletion interactions.
While not stated explicitly, the AO argument presented in eqs

25−27 suggests that the thickness of depletion layers (δc)
decides the excess volume created between the cylinders. In
what follows, we will show that δc is closely related with the size
of blobs formed in brushes.
3.3. PMFs from SCFT and Their Comparison with AO

Theory and MD Simulations. The dependence of the free
energy profile obtained using the SCFT (eq 20) on the grafting
density (σ) is not explicit. Thus, it is not straightforward to make
direct comparison between the free energy profiles obtained
from SCFT and those from MD simulations. Here, we map the
excluded volume parameter Λ introduced in eq 19 to the σ by
means of the strong-stretching theory (SST).45−48 We begin the
mapping by considering the optimal configuration of the chain
obtained through minimization of the total chain energy

( )E s s W sr r r( ) ds ( ) ( )
R0

1 3
2

2

0
2[ ] = | | + [ ] , which is a func-

tional of chain conformation rα(s). From the calculus of
variation, i.e., δE[rα(s) ] = 0, we get 3rα″(s) /R02− ∂rdα

W[rα(s) ] =
0. Any chain conformation satisfies the boundary conditions
zα(1) = 0 and zα(0) = z0, such that the tip of the chain (s = 0)
starting from the height z = z0 always ends at z = 0 that
corresponds to the grafting point (s = 1). This is analogous to a
situation for a simple harmonic oscillator, where the time it takes
to reach the minimal point of potential energy is identical
regardless of the initial displacement. Thus, the effective
potential energy is parabolic along the z-axis, W(z)∝C − Bzα

2,
which yields the equation of motion 3zα″(s) /R02 + 2Bzα(s) = 0,
and its solution zα(s) = z0 cos(πs/2) with BR2 /3 /20

2 = . We
thus find

W
H z

R
r r( ) ( )

3 ( )
8

2 2 2

0
2= =

(30)

Here the constant C was determined from the condition of
W(H) = 0. The relations Vp = ∫ drϕ(r) = A∫ 0Hϕ(zα)dzα and AR0
= Vp lead to
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The resulting relation H/R0 = (4Λ/π2)1/3 together with eq 21
allows us to associate the excluded volume parameterΛwith the
grafting density σ, establishing a one-to-one correspondence
between Λ and σ.

R b b( /4)( / )2
0

3 2= (32)

The SCF calculation with Λ = 0 generates conformations of
an end-grafted phantom Gaussian chain along with the
boundary condition of impenetrable cylinders. Notably, the
PMF from SCF calculations between two cylinders of diameter
D = 2R0 most favorably matches with the AO potential (eq 27)
with n/ 1p = and δc = 0.45D ≃ R0, namely, βFSCF(x)/σR02 ≃

Figure 3.Depletion free energies from SCFT andMD simulations. (a) βFSCF(x)/σR02 between two cylindrical inclusions calculated by SCFT. The one
by AO theory with n/ 1p = is depicted in magenta. (b) βFMD(x)/σR02. (c) βΔF/σR02 versus σ (for MD) or Λ (for SCFT). The solid lines annotated
with∼σαwith α = 0.10 (H < h in A-(c)) and−1/4 (H > h in B-(c)) are the scaling relations predicted from the AO theory. For (A)H < h and (B)H > h,
MD simulation results in (b) were obtained with N = 50 and N = 150, respectively.

Figure 4.Depletion layer. (A) Depletion layer thickness around a tall cylinder (h = 9R0) at height z = 1.9R0 for varyingΛ calculated using π(R0 + δc)2 =
πR02 + 2π∫ R d0

∞r(1−ϕ(r)/ϕb)dr. (B) Depicted are the monomer concentration profiles of brushes around the cylinder withD = 2R0,ϕ(r) /ϕb, generated
from SCFT. The bottom panel shows the z-dependent depletion layer thickness for varying Λ.
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βFAO(x) /σR02 =Aex(x;0.45D) /R02 (cyan circles andmagenta line
in Figure 3A,B-(a)). As briefly mentioned, brush-induced
depletion interactions with n/ 1p = signify that each brush
chain contributes to the depletion interaction as a whole, and
behaves like an ideal chain without any correlation.
Calculations using SCFT show that the range of interaction

between the two inclusions (or depletion layer thickness)
shrinks with increasing Λ (Figure 3A-(a),B-(a)). It could be
surmised that the interchain repulsion, implicitly incorporated
into the self-consistent field W(r), pushes the polymer chains
toward the cylinders, rendering the depletion interaction and
depletion layer thickness shorter-ranged. The depletion zone
around the cylinder exhibits minor variation with the height (z)
from the surface (Figure 4B, the panel at the bottom).44 The
depletion layer thicknesses at z = 1.9R0 explicitly calculated for
varying Λ (10−1 < 4Λ/π2 < 102) indicates that the scaling
behavior of δc ∼ Λ−1/2 holds over the range of large Λ, i.e., 10 <
4Λ/π2 < 100 (Figure 4A). FromΛ∼ σ (eq 32), it follows that δc

∼ σ−1/2 ∼ ξ. This is, in fact, consistent with our recent MD
simulation study,16 which showed the depletion layer thickness
around cylindrical object scales with the grafting density as δc ∼
σ−1/2 and that δc/D < 1 for all practical purposes.
From the AO theory and the condition δc/D < 1 which

approximates Aex(D;δc) (eq 26) to D2(δc/D)3/2, it is anticipated
that βΔFAO/σ R02 scales as
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Thus, for H < h, the relations n H N g N/ / /p
1/=

(eq 29) incorporated into eq 27 lead to

F R D D/H h
AO 0

2 1/ 1/2 3/4 1/2 (2 3 )/4 0.10<

(34)

Figure 5. (A)Monomer density profiles of brush polymersϕ(r;d) around cylindrical inclusions of diameterD = 2R0 and height h = 2R0 calculated with
H = 4R0 andΛ = 2π2 for varying intercylinder separations (d−D)/R0 = 0.1−1.0. (B) The volume of the depletion zone visualized by calculatingϕb(z)
− ϕ(r;d), where ϕb(z) denotes the mean monomer density at the bulk defined at a large distance from the cylinders.
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with ν = 0.588. Both the dependences of βΔFSCF/σR02 and

βΔFMD/σR02 on σ are consistent with each other and in good

agreement with the prediction made by eq 34 (Figure 3-A(c)).

ForH > h, the segment of a brush polymer directly in contact

with the inclusion is limited by the inclusion height, h. Thus, the

mean number of blobs exerting the depletion force on the

Figure 6. (A) Free energy gain as a function of relative brush height (H/h) calculated for several values of cylinder height (h = 0.1R0, 0.5R0, 1.0R0,
1.5R0, and 2.0R0) whenH is varied from 0 to 5R0 (H varied to 10R0 for h = 2.0R0). (B) Depletion zone volumes above the circular face and around the
lateral surface of cylinders. (C, D) Depletion zones around cylinders with H = 4R0 at two different separations, y[=(d − D)/R0] = 3 (left) and y = 0
(right) (see also SI Movies S1, S2, S3, S4, and S5). (C) for h = 2R0 and (D) for h = 0.1R0 yield attraction and repulsion, respectively. (E) Vdepltop (y) (solid
lines) and Vdepllat (y) (circles) as a function of separation (y) for various h’s while the brush height is fixed toH = 4.0R0. (F) Vdepl(y) (=Vdepltop (y) + Vdepllat (y))
calculated for varying h’s, normalized by the value at large separation (Vdepl(∞)). Calculated separately as well are the normalized depletion zone
volumes above the circular face (Vdepltop (y)/Vdepltop (∞)) and around the lateral surface of the cylinders (Vdepllat (y) /Vdepllat (∞)).
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inclusion is given n h/ /p , and the scaling relation of
βΔFAO/σ R02 against σ predicted from the AO theory reads

F R h D hD/ ( / )H h
AO 0

2 1/2 3/2 1/2 1/2 1/4>

(35)

This accounts for the results from MD simulation and SCFT in
the range of 0.01≤ σ≲ 0.05. Notably, the profiles of βF(x)/σ R02
from SCFT exhibit a repulsive barrier around x≲ 1.2 atΛ = 16π2
(Figure 3B-(a)) is consistent with the PMF fromMD simulation
at high grafting densities, σb2 = 0.08, 0.09 (Figure 3B-(b)). As
discussed in studies on colloid−polymer mixtures, excluded
volume interactions among depletants are responsible for these
repulsive barriers,23−25 whose height gets larger for long brush
polymer chains overgrown beyond the inclusion height (H > h),
especially at high grafting density.
Note that the scaling relation in eq 35 derived from the AO

theory appears to deviate from the data at high grafting density σ,
especially for tall brushes (H > h) (Figure 3B-(c)). The
deviation can be attributed to the emergence of a different
scaling regime at sufficiently high grafting density σ. In this case,
the brushes are in the dense regime rather than in the semidilute
regime.61 This is paralleled by constrained lateral chain
fluctuations at high σ shown in Figure 1B.
3.4. Monomer Density Profiles around Cylindrical

Inclusions. In terms of the computational cost, SCF
calculations are far more effective than MD simulations in
calculating equilibrium properties of dense polymeric systems. It
is straightforward to extend the calculations of the monomer
density profiles around a single cylinder (Figure 4) to those
around two cylinders. Themeanmonomer density profilesϕ(r),
calculated using eq 19, suggest how the depletion zone changes
with the varying separations between the two cylinders (Figure
5A).
Given the mean monomer density profile ϕ(r) demonstrated

in Figure 5A, it is also straightforward to directly visualize the
profile of the depletion zone (Figure 5B). By subtracting ϕ(r)
from the height-dependent bulk density ϕb(z), which is defined
as the one at a large distance from the cylinders, one can
calculate the profile of the depletion zone as

d z dr r( ; ) ( ) ( ; )bdepl = (36)

and quantify the volume of the depletion zone via the integration
of eq 36

V d dr r( ) ( ; )ddepl depl= (37)

A few remarks are in place regarding the monomer density
profiles (Figure 5A) and the corresponding depletion zones with
varying intercylinder separation (Figure 5B). (i) The mean
monomer density is nearly constant over 0 < z ≲ h/2, but it
decreases at greater z(≳h/2) until it vanishes at the tip of the
brush (z ≈ H, see Figure 5A). (ii) The brush polymers are
depleted further in the space between the two cylinders than in
other regions when their separation is reduced to y[=(d − D)/
R0] ≲ 0.4, suggesting that the imbalance in osmotic pressure
starts being created at this separation. (ii) The spatial variation
of the mean monomer density ϕ(r) (eq 16) offers visualization
of the depletion zone. The depletion zones are found on top of
the circular faces as well as in the space between the two
cylinders (Figure 5B). Of particular note is that the volume of
the depletion zone above the circular face of the cylinders is
greater when the two cylinders are nearly in contact (y = 0.1)

than when they are well separated (y = 1.0) (Figure 5B),
showing an opposite trend to the depletion zone around the
lateral surface of the cylinders.
Thus, given that the depletion forces are built in the direction

that minimizes the total volume of depletion zone, the variations
in the depletion zone volume in the upper and lower parts of
cylinders with their separation are characterized with opposite
signs, giving rise to intriguing outcomes discussed in the next
section.
3.5. Nonmonotonic Variation of Depletion Interaction

with Increasing Brush Height. Our recent study on brush-
induced depletion interaction using MD simulations has
demonstrated nonmonotonic variation of depletion attraction
with increasing brush height.16 In contrast to MD simulations,
SCFT does not involve any sampling issue and can be used to
analyze the aforementioned nonmonotonic variation systemati-
cally.
Figure 6A demonstrates the brush-height dependent free

energy gain (eq 20) calculated using SCFT atΛ = 2π2 for varying
cylinder heights (h = 0.1R0 − 2R0). The following points are
noted. (i) The free energy gain changes nonmonotonically with
brush height (H/h) for all values of h, and saturates atH/h≫ 1.
(ii) The crossover point of nonmonotonic free energy gain,
marked with blue triangle in Figure 6A, displays its dependence
on the cylinder size (h). (iii) In sufficiently tall brushes (H/h≫
1), the free energy gain is positive for short cylinders (βΔF/σR02
> 0. See the curves of h = 0.1R0, 0.5R0 in Figure 6A), indicating
that for coin-like flat cylinders whose cylinder height is even
shorter than the surface blob size (h < ξ ≃ σ−1/2), the cylinders
repel each other when they are brought in contact. The net
repulsion results from the fact that the depletion attraction
directly acting on their lateral surface is insignificant in
comparison to the depletion repulsion on the top. (iv) For tall
cylinders (h = 2.0R0 in Figure 6A), on the other hand, βΔF/σR02
saturates to a negative value in sufficiently tall brushes (H/h≫
1), which indicates that the cylinders experience attraction.
The origin of the cylinder height-dependent variations of free

energy gain are quantitatively understood by means of the
depletion zone, ϕdepl(r;d) (eq 36), visualized around the
cylinders via 2D projection at two different separations y = 3
and 0 (Figure 6B−D), as well as by means of the depletion zone
volume, Vdepl(y)/Vdepl(∞) (see eq 37), calculated as a function
of separation y (Figure 6E,F). The depletion zones around the
cylindrical inclusions, decomposed into the top and lateral parts,
clarify how the volume of each part, i.e., Vdepltop (y) and Vdepllat (y),
changes with the interinclusion separation (Figure 6E). When
the two cylinders are brought together, Vdepllat (y) decreases,
whereas Vdepltop (y) increases (Figure 6E). These opposing trends
of volume variation compete each other, giving rise not only to
the nonmonotonic change in the free energy gain with growing
brush height, but also to a variation in the crossover point in the
curves (see the blue triangles in Figure 6A). It is also of particular
note that in comparison with Vdepllat (y) whose magnitude is
expected to increase linearly with the cylinder height (h), the
variation of Vdepltop (y) remains relatively insensitive to h (Figure
6E). For coin-like flat cylinder with h = 0.1R0 whose height is
even smaller than the size of correlation blob (h < ξ ≪ H),it is
observed thatVdepllat (y)/Vdepllat (∞)∼ 1 (or log(Vdepllat (y) /Vdepllat (∞))
∼ 0) over the entire range of y. This signifies that the lateral
depletion force exerted to the cylinder becomes negligible, and
that the depletion interaction exerted to these short cylinders is
dominated by the change in the depletion volume on the
cylinder top.
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4. CONCLUSIONS
In the conventional AO theory18−21 the depletion interaction is
formulated based solely on the configurational entropy of
depletants associated with their accessible volume. At low
density, the depletants are effectively regarded as penetrable
ideal gas, whose pressure is proportional to its density, following
the van’t Hoff relation, βΠ∼ϕd, whereϕd is the volume fraction
of depletants. Such a picture that ignores the correlations or
interactions among the depletants may be reasonable when the
depletants are small and dilute.
In contrast, for brush systems, overlap between brush chains

leads to deformation of each chain into a string of blobs, and the
monomer concentration in each blob remains independent of
chain length and is given byϕ≃ g/ξ3≃ ξ1/ν−3∼ σ(3−1/ν)/2. Thus,
for the brush-induced interactions, considerations based on a
semidilute polymer solution characterized with the correlation
length ξ and the osmotic pressure βΠ ≃ 1/ξ3 ≃ σ3/2 ≃ ϕ9/4 are
better suited than, for example, a perturbative approach used in
the scaled particle theory (SPT).62 It is noteworthy that the AO
potential derived in eq 27 is equivalent to a free energy gain upon
creating an excess volumeVex(d;δc) in the interior of a semidilute
medium characterized with osmotic pressure βΠ ∼ 1/ξ3,
namely, βFAO(d;δc) = −βΠ × Vex(d;δc) = −1/ξ3 × min(h,H)
Aex(d;δc).
In the SCFT, which is characterized with the diffusion

equation for chain propagator in an effective field, the blob
concept is not explicitly incorporated into the formulation.
Nevertheless, similarly to the Flory argument (eq 23), the theory
still captures the essence of brush-induced depletion interactions
that align well with the MD simulation results (Figure 3),
reproducing the scaling feature of depletion layer thickness δc ∼
Λ−1/2 ∼ σ−1/2 for large Λ (Figure 4).
Finally, our finding that taller cylinders in an overgrown brush

environment experience stronger depletion attraction (Figure 6)
bears relevance to integrin nanocluster formation which is
deemed essential for signalings.10 The thickness of glycocalyx
ranges between (10) nm and (1) m depending on the cell
types.63,64 Upon activation, integrins expand their structure
from the bent-closed to the extended-open conformation,63,65

such that the integrins’ height above the membrane surface
increases from∼5 to∼(20−25) nm. Given the relative height of
glycocalyx brush to active integrins H/h ∼ 50, the stability of
integrin nanoclusters is determined effectively at the limit ofH/h
≫ 1 in Figure 6A. In addition to the suggestion that glycocalyx-
induced membrane curvature formation is a critical mechanism
giving rise to integrin nanoclusters,10,14,66 our study highlights
the brush-induced depletion forces between integrin proteins
upon activation as another key mechanism.
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