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SUPPLEMENTARY INFORMATION

Rationale for using the Self-organized Polymer (SOP) model for allosteric tran-

sitions: Several studies have shown that the gross features of protein folding [1, 2], mechanical

unfolding of proteins and RNA [3, 4] and the complicated global motions of large systems can

be captured using native structure-based models [5]. More recently, such native structure-based

methods [6–10] have also been used to probe transitions between two given end-point structures

and to ascertain the nature of robust modes that mediate the allosteric transitions [11]. In order

to realistically simulate transitions between distinct allosteric states, it is necessary to use simple

coarse-grained models that can be used to capture, at least qualitatively, the inherent dynamics

connecting two or more states. Although simple elastic network models have given insights

into the nature of low frequency dynamics of a number of systems [5], the inherent linearity

of the model limits their scope when dealing with potential non-linear motions that must be

involved in the allosteric transitions [6]. We have recently introduced a novel class of versatile

structure-based models that incorporates the fundamental polymeric aspects of proteins and

RNA. The SOP model, which is easily adopted for use in very large systems, has already proven

to be successful in obtaining a number of totally unanticipated results for forced-unfolding and

force-quench refolding of RNA and proteins [12, 13].

Building on the successful application to single molecule force spectroscopy of biomolecules

we used a variant of the SOP model to probe the complex allosteric transitions in a prototypical

biological nanomachine, namely, the E. Coli. chaperonin GroEL. Structures of GroEL (T , R, and

R′′), that are populated in the reaction cycle, have been determined (see Fig. S1 for a side view).

Given the two allosteric states (say T and R of GroEL) we induce transitions between the two

states by switching the energy function representing one structure to another. A few methods

for achieving the switch smoothly have been recently proposed [7–10]. We have advocated a

Langevin dynamics based method in which the switch is accomplished using Eq. 2 of the main

text (see Fig. S2 for a pictorial view). In writing the equations of motions given by Eq. 2 in

the main text, we assume that initially the ensemble of conformations are in the T state so that

the conformations obey the Boltzmann distribution i.e, P ({~ri}) ' e−βH({~ri}|T ) where H({~ri}|T )

is the SOP energy for the T -state GroEL (see Eq. 2 in the main text). Upon switching the
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Hamiltonian (see below) over a time interval Nth
∗ the dynamics follows the equations of motion

given in step (iii) of Eq. 2 in the main text. As long as fluctuation dissipation theorem is satisfied,

so that the standard potential conditions are met [14], it can be rigorously shown that at long

times the biomolecule will reach the R state with the conformations given by the equilibrium

Boltzmann distribution governed by the Hamiltonian H({~ri}|R). From this perspective the

procedure we have used is rigorous.

The assumption that switch occurs over a predetermined duration requires a few comments.

The allosteric transitions occur as a result of ligand-binding or interactions with other

biomolecules. As a result of binding, local strain is induced at the interaction site or sites. As

long as the rate of strain propagation is larger than the rate of conformational change of the

molecule then the switch over a reasonable time is justified. Extremely rapid switching, which

is tantamount to very large local loading rates, is unphysical as is adiabatic change in the

energy function. Given these extreme situations we choose a value of Nt that falls in between

the extreme conditions. In our procedure Nt can be adjusted to mimic the potential rate of

strain propagation, which induces the allosteric transitions. The efficacy of the procedure has

been demonstrated by successful applications to describe the multiple allosteric transitions in

GroEL.

Implementation of the Hamiltonian switch: Here we give details of the algorithm for

executing the second step in the equations of motion (See subsection Additional details in the

Methods section in the main text). During the transition interval we define ro
ij(T → R) using

linear combination of ro
ij(T ) and ro

ij(R) where ro
ij(X) is the distance between the residues i and

j in the structure X with X = T or R. The switch between ro
ij(T ) and ro

ij(R) is carried out

slowly every 100 time steps. In the initial stage of the T → R transition (0 to 100 time steps)

we let ro
ij(T → R) = ro

ij(T ). Subsequently, we set ro
ij(T → R) = (1− 0.01k)ro

ij(T ) + 0.01kro
ij(R)

where k = 1, 2, 3....100 is changed every 100 time steps. Thus, the switch in ro
ij(T → R) occurs

over 10,000 time steps. The loading condition can be varied by changing the number of time

steps used to achieve the switch in the distances between the native contacts. For convenience

we used a linear combination of ro
ij(T ) and ro

ij(R) during the switch process. More generally,

one can use non linear combinations, i.e., ro
ij(T → R) = g(t)ro

ij(T ) + (1− g(t))ro
ij(R) where g(t)
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is an arbitrary function (exponential for example).

At the end of each interval, the new value of ro
ij(T → R) is substituted into the SOP

Hamiltonian to compute the forces needed to solve the equations of motion in step (ii) (see

Eq. 2 of the main text). In the present application, the procedure for using ro
ij(T → R) lasts

only < 50 ns. As a result, the dynamics of distant pair is not affected. Only the equilibrium

distances of native pairs, that are already in contact in the T state but lead to instability in

the intergration of equations of motion due to rapid switching from T to R, are corrected to

the equilibrium distances at R state (see Fig. S2).

Time scales and their relevance: The characteristic time scale of the Brownian dynamics

in the overdamped limit is τH = ζεhh
kBT

τL where we used the friction coefficient ζ = 50τ−1
L ,

εh = 2.0kcal/mol and τL = (ma2

εh

)1/2 ∼ 3 ps for proteins. The simulations are performed at

T = 300 K (kBT = 0.6kcal/mol). We chose the integration time step h = 0.1τL for (i) and (iii)

while h∗ = (0.001 − 0.01)τL for (ii). Thus, 106 integration time steps with h = 0.1τL in our

Brownian dynamics simulations correspond to 50 µs. Because we have used a minimal model for

GroEL the time scales quoted in the main text should be viewed as lower limit for the various

processes. The actual time scales are expected to be much longer. The relatively time scales for

different aspects of the allosteric transitions are likely to be correct. For example, we find that

the tilt of K and L helices occur four times more slowly than the F and M helices (see Fig. 3 in

the main text). Our prediction of factor of four is, in all likelihood, an accurate estimate. During

simulations we collected the structures every 0.5 µs to analyze the allosteric transition dynamics.

Analysis of dynamics: To perform a quantitative analysis on the salt bridge or contact pair

dynamics we averaged over the time traces of all the trajectories. For the contact dynamics

of two-subunit GroEL we generated N = 50 trajectories in total and computed dynamic

changes in specific residue pairs using 〈d(t)〉 = 1
N

∑N
i=1 di(t). In general 〈d(t)〉 is fit using

〈d(t)〉 = 〈d(t∗)〉+∆(fe−(t−t∗)/τ1 +(1− f)e−(t−t∗)/τ2), where t∗ = 50µs, ∆ is the average decrease

in the contact distance, and τ1, τ2 are the relaxation times for the pathways partitioned into f

and 1 − f .
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Figure Captions

Figure S1: The columns from left to right show the side view of GroEL structure in the T ,

R, and R′′ states.

Figure S2: Illustration of the procedure to switch SOP Hamiltonian from T to R state. To

avoid the computational instability caused by instantaneous switch of equilibrium distance, the

equilibrium distance from T to R state (ro
ij(T ) → ro

ij(R)) is gradually switched using a series of

transient potentials defined with ro
ij(T → R) (see Additional details in Methods section).

Figure S3: TSEs represented in terms of distribution P (∆‡) where ∆‡ = 1/2 ×

|(RMSD/T )(tTS) + (RMSD/R)(tTS)| for T → R transition. ∆‡ for R → R′′ transition is

similarly defined.

Figure S4: The dynamical changes in the distances between a number of residues in a

single trajectory during T → R and R → R′′ are plotted on A and B, respectively.
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FIG. S1:
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FIG. S2:
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FIG. S3:
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FIG. S4:
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