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ABSTRACT
We review the trade-offs between speed, fluctuations, and thermodynamic cost involved with biological processes in nonequilibrium states
and discuss how optimal these processes are in light of the universal bound set by the thermodynamic uncertainty relation (TUR). The values
of the uncertainty product Q of TUR, which can be used as a measure of the precision of enzymatic processes realized for a given thermo-
dynamic cost, are suboptimal when the substrate concentration is at the Michaelis constant, and some of the key biological processes are
found to work around this condition. We illustrate the utility of Q in assessing how close the molecular motors and biomass producing
machineries are to the TUR bound, and for the cases of biomass production (or biological copying processes), we discuss how their optimality
quantified in terms of Q is balanced with the error rate in the information transfer process. We also touch upon the trade-offs in other error-
minimizing processes in biology, such as gene regulation and chaperone-assisted protein folding. A spectrum ofQ recapitulating the biological
processes surveyed here provides glimpses into how biological systems are evolved to optimize and balance the conflicting functional
requirements.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0043671., s

INTRODUCTION

From the perspective of thermodynamics, biological machiner-
ies required to sustain living matters are at work out of equilibrium.
Their operations to carry out specific functions, which must defy the
effect of noise inherent to cellular environment, necessarily incur
thermodynamic costs.1–6 As such, the quest for the relationships
between thermodynamic costs and information processing has been
a recurring theme in biological sciences.7–17

Recently, a new class of thermodynamic principle, called the
thermodynamic uncertainty relation (TUR), has been derived, giv-
ing us quantitative ideas on the trade-off between the thermody-
namic costs and uncertainty (or precision) of dynamic processes
generated in nonequilibrium.18–22 For continuous time Markov
jump processes or overdamped Langevin processes under constant
nonequilibrium drives, TUR in nonequilibrium steady states (NESS)
is written as

Q = ΔStot(t)
⟨δX(t)2⟩
⟨X(t)⟩2

≥ 2kB. (1)

Here, kB is Boltzmann’s constant, which will be set to kB = 1 through-
out this paper. ΔStot(t) = ⟨Δstot(t)⟩ is the mean total entropy produc-
tion from both the system and its environment [Δstot(t) = Δssys(t)
+ Δsenv(t)], calculated over an ensemble of trajectories generated for
time t. ΔStot(t) is deemed the thermodynamic cost (or dissipation)
to maintain the dynamical process in nonequilibrium for t.20 X(t)
is a time-integrated current-like observable with odd parity [X(−t)
= −X(t)] that best captures the functional feature of the process with
⟨X(t)⟩ and ⟨δX(t)2⟩(= ⟨X2(t)⟩ − ⟨X(t)⟩2) being its mean and vari-
ance. For the process generated from an enzyme reaction, one could
choose the net number of catalyses or product formations that has
occurred for time interval t [Δn(t) = n(t) − n(0)] as a natural out-
put observable of the process, X(t) = Δn(t). Upon time reversal, i.e.,
t → −t, Δn(−t) = n(−t) − n(0) = n(0) − n(t) = −Δn(t), satisfying the
odd parity. If the enzyme exhibits motility along a filament, the net
displacement of the enzyme [Δx(t) = x(t) − x(0)] can be taken as
the output observable. From the central limit theorem, the entropy
production and the square of relative uncertainty grow with time
t as ΔStot(t) ∝ t and ⟨δX(t)2⟩/⟨X(t)⟩2 ∝ 1/t. As a result, the prod-
uct between the two quantities, termed the uncertainty product Q,
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is a time-independent constant. The inequality sign of TUR [Eq. (1)]
constrains the value of Q, specifying the minimal dissipation for a
given uncertainty, or the minimal uncertainty for a given amount of
dissipation.

Originally, the TUR was conjectured and derived for over-
damped and continuous time Markov jump processes at a long
time limit (t → ∞) under time-independent non-equilibrium
drives.18,19,23–25 The steady-state TUR in finite time as in Eq. (1),
which is more relevant for the analysis of real systems, was also
proven22,26–29 and experimentally verified.30 The TUR has recently
been extended to more general settings for the fluctuations in first
passage times,31 for the underdamped condition,32,33 in the presence
of magnetic field,34 under time-dependent drives,35–37 and for the
arbitrary initial states.38 Furthermore, generalized versions of the
relation with a less tight bound have been derived from the large
deviation principles39 and fluctuation theorems.21,40,41

Since the majority of biological processes can be described
by employing the language of Markov jump processes on a cyclic
kinetic network or overdamped Langevin processes, we confine
ourselves in this Perspective to the version of TUR described in
Eq. (1). In this Perspective, we will first clarify the physical sig-
nificance of the bound set by the TUR from a perspective of the
stochastic thermodynamics. Next, by quantifying the uncertainty
product Q for various biological processes with particular empha-
sis on biological motors and biomass producing machineries, we
provide our unified perspective on how the functionally critical fea-
tures, such as thermodynamic cost, reaction speed, and fluctuations
of those processes, are balanced in light of TUR.42 For the case of
biomass production processes that transfer the sequence informa-
tion of DNA or RNA to its downstream, the error in information
transfer is another key quantity to be tightly regulated.43 We will
address how the error probability (η) is balanced with the dynam-
ical features integrated in Q by the error correcting machineries.
Including other dynamical processes associated with information
processing that can also be analyzed to determine the value of Q,
we will construct a spectrum of Q to provide an idea of how differ-
ent biological processes comprising cellular activities balance their
functional needs under the fundamental constraint dictated by the
TUR.

PHYSICAL SIGNIFICANCE OF THERMODYNAMIC
UNCERTAINTY RELATION

Before discussing the TUR, we review the basics of the stochas-
tic thermodynamics,44–46 which is closely linked to the TUR.47 In
the stochastic thermodynamics, the thermodynamic quantities are
first defined in a trajectory-based manner. When the probability of
observing a certain trajectory Γ ≡ {xt} = (x0, x1, . . . , xt) is given
by P(Γ) with ∫ DΓP(Γ) ≡ ∫ dx0dx1, . . . , dxtP(x0, x1, . . . , xt) = 1,
a trajectory-based observable Θ = Θ(Γ) has its average value for-
mally obtained by taking the average over all possible trajectories
as ⟨Θ⟩ = ∫ DΓP(Γ)Θ(Γ). The basic premises of the stochastic
thermodynamics are to (i) “define” the stochastic entropy,

ssys(t) ≡ − log P(xt), (2)

and (ii) the trajectory-based total entropy production is given by
the ratio of probabilities associated with the original path of the

trajectory and its time reversal44 such that

Δstot(Γ) = log(P[Γ]
P̃[Γ̃]

) = log(P[Γ∣x0]P(x0)
P̃[Γ̃∣x̃0]P(x̃0)

), (3)

where P[Γ|x0] is the conditional probability of the forward path
starting from x0 and evolving along Γ and P̃[Γ̃∣x̃0] is for its time
reversal with x̃τ ≡ xt−τ and Γ̃ ≡ (x̃0, x̃1, . . . , x̃t) = (xt , xt−1, . . . , x0).
The expression is further decomposed into the entropy production
for the reservoir and the system,44

Δstot(Γ) = log(P[Γ∣x0]
P̃[Γ̃∣x̃0]

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=Δsres(t)

+ log(P(x0)
P(xt)

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=Δssys(t)

. (4)

Note that the change in the system entropy [Δssys(t)] is the dif-
ference between the initial and final points [Eq. (2)] and that the
entropy production from the reservoir is the log-ratio of the con-
ditional probabilities of the forward and time-reversed paths.48,49

The total entropy production follows from the formal definition of
trajectory-based ensemble average such that

ΔStot = ⟨Δstot(t)⟩ = −∫ DΓP(Γ) log(P[Γ]
P̃[Γ̃]

)

= ⟨Δsres(t)⟩ + ⟨Δssys(t)⟩, (5)

where

⟨Δssys(t)⟩ = ⟨ssys(t)⟩ − ⟨ssys(0)⟩

= −∫ dxtP(xt) log P(xt) + ∫ dx0P(x0) log P(x0) (6)

and

⟨Δsres(t)⟩ = ∫ DΓP[Γ∣x0] log(P[Γ∣x0]
P[Γ̃∣x̃0]

). (7)

If one chooses the trajectory-based entropy production
(entropic current) as the output observable of interest such that
X(t) = Δstot(t),30,50–52 then the TUR in Eq. (1) can be written as

Q = Var(Δstot(t))
⟨Δstot(t)⟩

≥ 2. (8)

Since the entropy production, an extensive variable, increases with
time [ΔStot = ⟨Δstot(t)⟩∝ t], the inequality between the variance and
mean of entropy production, Var(Δstot(t)) ≥ 2⟨Δstot(t)⟩, demands
that the variance of entropy production also increases with t, but
that it cannot be smaller than twice the mean entropy production
(see Fig. 1).

Meanwhile, nonequilibrium dynamical processes discussed in
this Perspective are expected to establish cyclic steady states as long
as the time scale of observation is longer than a single cycle time.
The total entropy Δstot(t) produced from such processes obeys the
detailed fluctuation theorem (DFT),44,45

P(Δstot)
P(−Δstot)

= eΔstot , (9)

where we drop the dependence of entropy production on t for sim-
plicity of the notation. The DFT follows straightforwardly from
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FIG. 1. Properties of the distribution of total entropy production demanded by TUR.
Two scenarios of time evolution of P(Δstot(t)) from t = ti (blue) to t = tf (red):
(i) As time increases, the distribution of entropy production is broadened. In this
case, the TUR is obeyed with Var(Δstot) ≥ 2⟨Δstot⟩ at both t = ti and t = tf . (ii) As
time increases, the distribution of entropy production is narrowed down, such that
Var(Δstot) < 2⟨Δstot⟩ at t = tf , which contradicts to Eq. (8) and violates the TUR.

Eq. (3) and the odd parity of entropy production upon time rever-
sal [Δstot(Γ) = −Δstot(Γ̃)] by evaluating P(Δstot) = ∫ DΓδ(Δstot
− Δstot(Γ))P(Γ), and it relates the probability density functions of
entropy production from an irreversible process for time t with
exponentiated total entropy production. Rearranging the terms and
integrating with respect to Δstot over −∞ < Δstot <∞ give rise to the
integral fluctuation theorem (IFT), ⟨e−Δstot⟩ = 1,

⟨e−Δstot⟩ = ∫
∞

−∞
d(Δstot)e−Δstot P(Δstot)

= ∫
∞

−∞
d(Δstot)P(−Δstot) = 1. (10)

Here, ⟨⋯⟩ denotes the average taken over the distribution of total
entropy production from the process, P(Δstot), and the relation
should hold for any dynamical process. However, a special relation
follows if the distribution of the total entropy production (Δstot) is a
Gaussian, i.e., P(Δstot) ∼ exp [− (Δstot−⟨Δstot⟩)2

2Var(Δstot) ],

1 = ⟨e−Δstot⟩ = ∫
∞

−∞
d(Δstot)e−Δstot P(Δstot)

= e−⟨Δstot⟩+Var(Δstot)/2, (11)

from which the equality condition of Eq. (8) Var(Δstot)/⟨Δstot⟩ = 2 is
acquired.

The above-mentioned argument based on IFT and Gaussian
distribution suggests that the equality condition of TUR (Q = 2)
is attained when the distribution of entropy production follows pre-
cisely a Gaussian. Since the tail part of the distribution contributes
to the evaluation of the exponentiated average, the distribution of
the total entropy production, Δstot, and the sum of Δsi’s (i = 1, 2, . . .,
t), which are the independently and identically distributed (iid) ran-
dom variables (Δstot = ∑t

i=1 Δsi), should be assessed using the large
deviation theory, an extension of the central limit theorem.19,53 In
order for P(Δstot) to be a perfect Gaussian including the tail parts,
the entropy production from each cycle P(Δsi) should also be a

Gaussian, which is highly restrictive. Thus, the inequality (Q > 2),
leading to Var(Δstot) > 2⟨Δstot⟩, arises when P(Δstot) deviates from
the Gaussianity. This condition of Gaussianity of the distribution
of total entropy production is more general than the condition of
detailed balance (DB) or equilibrium, which gives rise to the equality
condition of TUR for the Markov process [see Eqs. (20) and ( (25)].
However, even at out of equilibrium, Q could be minimized (or sub-
optimized) to a small value. An illuminating far-from-equilibrium
case that gives rise to the equality condition (Q = 2) is found in a
strongly driven colloidal particle in periodic potentials with Δstot(t)
being chosen as the output observable.24,50,54,55

Second, we underscore the significance of TUR in light of the
second law of thermodynamics. Using the definitions of entropy
production rate σtot(t) = ΔStot(t)/t, mean, and variance of finite time
current, ⟨J⟩ = ⟨X(t)⟩/t and ⟨δJ2⟩ = ⟨δX(t)2⟩/t, one can rewrite the
expression of TUR in Eq. (1) as follows:

Q = σtot(t)
⟨δJ2⟩
⟨J⟩2

≥ 2. (12)

It is rearranged as follows:

σtot(t) ≥ B⟨J⟩2, (13)

where B = (2/⟨δJ2⟩), the TUR conveys a remarkable message
that the rate of entropy production from the dynamical process is
bounded below by the square of mean current multiplied by a prefac-
tor B. This makes the physical bound of the thermodynamic process
more explicit and tighter than the second law of thermodynam-
ics [ΔStot ≥ 0 or σtot(t) ≥ 0].20,28,56 Recently, Li et al.57 showed that
once inferring the macroscopic current and its fluctuations, the TUR
can be used to estimate the lower bound of the entropy production
(dissipation) rate even for high-dimensional dynamical systems.

THE UNCERTAINTY PRODUCT Q AS A MEASURE
OF OPTIMALITY OF ENZYMATIC PROCESSES

Many biological processes, which exhibit a net change in terms
of chemical species, are driven by enzyme reactions that incur ther-
modynamic cost. To discuss the TUR in the context of the enzyme
reactions, it is convenient to recast the expression [Eq. (1)] into

Q = ⟨Δstot(t)⟩
⟨n(t)⟩

Var(n(t))
⟨n(t)⟩ = βA ⟨δJ2⟩

⟨J⟩ = βA × λ ≥ 2, (14)

where we choose n(t), the net number of catalyses that takes place
for time t, as the observable of interest, defining the mean and fluc-
tuation of finite time current as ⟨J⟩ = ⟨n(t)⟩/t and ⟨δJ2⟩ = Var(n(t))/t.
The Fano factor associated with the number of catalyses or with
the reaction current is defined as λ = Var(n(t))/⟨n(t)⟩ = ⟨δJ2⟩/⟨J⟩,
which corresponds to the randomness parameter,58,59 and
βA = ⟨Δstot(t)⟩/⟨n(t)⟩ with the inverse temperature β = (kBT)−1 is
the entropy production per cycle (or affinity) of the enzymatic reac-
tion. Since ⟨J⟩ and ⟨δJ2⟩ are associated with the speed (⟨J⟩ ∼ Vt) and
diffusivity (⟨δJ2⟩ ∼ 2Dt) of the enzymatic process, a dynamic pro-
cess that operates at high speed, low fluctuation (high regularity),
and low thermodynamic cost is characterized with small Q and can
be deemed more optimally designed when Q is smaller and close
to 2.28,42
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Before exploring physically realistic processes, such as molec-
ular motors and biomass producing machineries, we motivate by
computing Q of two simple versions of enzymatic cycle as follows.

(i) For the catalysis of the substrate S in the (N = 1)-state kinetic
reaction network [Fig. 2(a)], the binding and unbinding rates
of the substrate are denoted by kon and koff, respectively. The
substrate concentration, [S], can be varied independently as a
control parameter.

The master equation for the probability Pn(t) of observ-
ing n catalytic events at time t is

Ṗn(t) = kon[S]Pn−1(t) + koffPn+1(t) − (kon[S] + koff)Pn(t),
(15)

with the initial condition Pn(0) = δn ,0. The method of gener-
ating function60 F(z, t) = ∑∞n=−∞ znPn(t) casts Eq. (15) into
F(z, t) = exp [{zkon[S] + koff/z − (kon[S] + koff)}t], which
allows one to calculate the mean and fluctuations in the
number of catalytic events using ∂zF(z, t)∣z=1 = ⟨n(t)⟩
= (kon[S]−koff)t and ∂2

z F(z, t)∣
z=1
= ⟨n2(t)⟩−⟨n(t)⟩ = 2kofft

+ (kon[S] − koff)2t2. Thus, the quantities required to evaluate
Q in Eq. (14) are obtained as follows:

⟨J⟩ = kon[S] − koff, (16)

⟨δJ2⟩ = kon[S] + koff, (17)

λ = ⟨δJ2⟩
⟨J⟩ =

eβA + 1
eβA − 1

, (18)

FIG. 2. Q of simple enzyme reactions as a function of the substrate concentration
[S]. Schematics of (a) the one-state and (b) two-state kinetic networks. [(c) and
(d)] Q([S]) of the two-state kinetic network for three pairs of γ and ξ values. In
(c), [S], normalized by KM, shows that Q([S]) is locally minimized at [S] ≈ KM. In
(d), [S] is normalized by [S]eq[= (koffkrev)/(konkcat)], the substrate concentration at
the detailed balance condition, showing that lim[S]→[S]eq

Q([S]) = 2. The rate

constants used for the plots are as follows: kon = 108M−1 s−1, koff = krev = 10 s−1,
and kcat = 30, 300, 1000 s−1.

βA = ln
kon[S]

koff
, (19)

which leads to

Q = βA eβA + 1
eβA − 1

≥ 2. (20)

At the DB condition ([S] = [S]eq ≡ koff/kon), no net catalysis
(⟨J⟩ = 0) and no dissipation (A = 0) occur, and the uncer-
tainty product reaches its bound, Q = 2. As [S] increases,
breaking the DB condition, ⟨J⟩, A, λ, and Q all increase
monotonically.

(ii) For substrate catalysis through the (N = 2)-state kinetic
network, with the rate constants as denoted in Fig. 2(b),
we obtain the following expressions5,61,62 for the quantities
required to evaluate Q:

⟨J⟩ = konkcat[S] − krevkoff

kon[S] + kcat + krev + koff
, (21)

⟨δJ2⟩ = konkcat[S] + krevkoff − 2⟨J⟩2

kon[S] + kcat + krev + koff
, (22)

λ = konkcat[S] + krevkoff

konkcat[S] − krevkoff
− 2

konkcat[S] − krevkoff

k2
on([S] + KM + krev

kon
)

2 , (23)

βA = ln
konkcat[S]

krevkoff
, (24)

with the Michaelis constant KM = (kcat + koff)/kon. When Q is
written as a function of the thermodynamic drive βA,

Q = βA
⎡⎢⎢⎢⎢⎣

eβA + 1
eβA − 1

− 2
γ2(eβA − 1)
(γ2 + γξ + eβA)2

⎤⎥⎥⎥⎥⎦
, (25)

with dimensionless parameters γ = kcat√
koffkrev

and ξ = koff+krev√
koffkrev

(≥ 2), one can show that for any ξ(≥2), there exists a thresh-
old value of γ, above which Q becomes non-monotonic with
[S] [see Fig. 2(c) and supplementary Fig. 2 in Ref. 43]. One
can also show that for βA≪ 1, Q = 2+[ 1

6 −
2γ2

(1+γξ+γ2)2 ](βA)2

+ O[(βA)3] ≥ 2, which confirms that Q = 2 is attained at the
DB condition [Fig. 2(d)]. Additionally, it is straightforward to
see from Eq. (23) that, at the limit of a strongly driven process
with βA≫ 0 and kon ≫ krev, λ is simplified to

λ([S]) ≃ 1 − 2kcat[S]
kon([S] + KM)2 , (26)

which is minimized at [S] = KM [Fig. 2(c)]. Thus, when
konkcat[S] ≫ krevkoff (βA ≫ 0) and kon ≫ krev, Q([S]) has
a local minimum and is sub-optimized at around [S] ≈ KM
[Fig. 2(c)].

The non-monotonic variations of Q([S]) seen in some of
the biological motors and copy enzymes discussed below simply
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mean that the dynamical processes of these molecules display a
Michaelis–Menten-type hyperbolic dependence on [S]. The condi-
tion of [S] ≈ KM in the Michaelis–Menten-type reaction mechanism,
v([S]) = kcat[S]/(KM + [S]), corresponds to the point where the
response of enzymatic activity to the logarithmic change in sub-
strate concentration is maximized, i.e., dv/d log [S] = kcat(KM/[S])/
(1 + KM/[S])2 ≤ kcat/4. Importantly, a recent system level analysis
of metabolic pathways in eukaryotic cells has shown that the physio-
logical substrate concentrations of many enzyme reactions are tuned
near their respective KM values,63 which naturally explains the sub-
optimality of Q([S]) at [S] ≈ KM for some processes discussed in the
following sections titled Transport processes by molecular motors
and Biological copy processes.

TRANSPORT PROCESSES BY MOLECULAR MOTORS

Biological motors are a class of enzymes that have an ability
to transduce chemical free energy to mechanical motion via the
catalysis of molecular fuels (ATP and GTP) present in the cellu-
lar milieu.5,64 Among them, kinesin-1 is arguably the most well-
studied motor protein that transports cargos or organelles from the
minus to plus ends of microtubules with the velocity of V ≈ 1 μm/s,
taking 8 nm step for every ATP hydrolysis. Dynein moves with a
similar speed, but in the opposite direction along microtubules, dis-
playing more fluctuations in the time traces. Myosin families are
the motor proteins specialized to move along actin filaments and
generate mechanical forces. Whereas these motor proteins are spe-
cialized for linear movement and force generation, there are also
rotary motors (e.g., F1F0ATPase) that utilize the H+ gradient across
a membrane to generate rotational motion (or torque), which is,
for example, used to empower the beating dynamics of bacterial
flagella.

The chemical free energy-driven dynamics of molecular motors
are a perfect example whose optimality can be assessed in light of
TUR and the uncertainty product Q. The TUR in the original form
[Eq. (1)] with X(t) = Δx(t) can be cast into the following form with
V = ⟨Δx(t)⟩/t and D = [⟨Δx(t)2⟩ − ⟨Δx(t)⟩2]/2t:

Q = σtot
2D
V2 ≥ 2. (27)

According to this relation, a molecular motor that transports cargos
with high velocity (V), low fluctuations (D), and low thermody-
namic cost (σtot) would be characterized with a small value of Q,
and one could argue that a motor with a smaller Q value is bet-
ter designed as a molecular transporter. For a transport efficiency
defined as ηtr ≡ 2/Q, which is bounded in 0 ≤ ηtr ≤ 1, a motor with
smaller Q can be said to have a higher transport efficiency.28,42

Of note, the TUR can also be used to determine the upper
bounds on the thermodynamic efficiency by means of the dissipa-
tion bound, σtot ≥ V2/D [Eq. (27)]. Pietzonka et al.65,66 defined the
thermodynamic efficiency (η) of a molecular motor in the presence
of external load (f ) as the ratio between the amount of work produc-
tion (Ẇ = fV) and an input chemical potential (−Δ̇μ = Ẇ + Tσtot) so
as to obtain its upper bound of η as follows:

η = Ẇ
∣Δ̇μ∣
= Ẇ

Ẇ + Tσtot
= 1

1 + TV
2fDQ

≤ 1
1 + TV

fD

= ηmax. (28)

The maximum thermodynamic efficiency, ηmax, is obtained in the
condition equivalent to Q = 2.

Given the single molecule time traces, {x(t)}, the velocity (V)
and diffusivity (D) are straightforwardly determined. Meanwhile,
the rate of total entropy production σtot either (i) can be estimated,
for example, from the fact that each step of kinesin-1, which occurs
every ∼10 ms, is generated from the hydrolysis free energy of a single
ATP molecule ∼20 kBT (Tσtot ∼ 20 kBT/10 ms) or (ii) can be calcu-
lated more systematically by knowing all the chemical rate constants
on the kinetic network.48 σtot for the (N = 2)-unicyclic network in
the absence of external load (f = 0), for example, can be calculated
using Eqs. (21) and (24),

σtot = ⟨J⟩ × βA =
konkcat[S] − krevkoff

kon[S] + kcat + krev + koff
log(konkcat[S]

krevkoff
). (29)

For the case (ii), σtot of a general kinetic network with known tran-
sition rate constants can be obtained by a method developed by
Koza.67

As clearly gleaned from the data extracted from single molecule
time traces of a molecular motor (e.g., kinesin-1), the velocity and
diffusivity of time traces vary with ATP concentration ([ATP]) and
external force (f ) [Figs. 3(a) and 3(b)].59,68,69 Thus, the value of Q not
only depends on a type of molecular process of interest but also on
its working condition. Figures 3(c) and 3(d) show the diagrams of
Q as a function of f and [ATP] for kinesin-1 and kinesin-1 mutant,
respectively. Some features of Q(f , [ATP]) of biological motors are
noteworthy: (i) As clearly seen for the case of kinesin-1 [Fig. 3(c)],
besides the trivial minima at low [ATP] corresponding to the DB
condition, Q is sub-optimized at f ≈ 3 pN and [ATP] ≈ 200 μM.
Q(f = 1pN, [ATP]) plotted in Fig. 3(e) displays a non-monotonic
variation with [ATP]. A similar behavior is observed in Q for dynein
(Fig. 4 of Ref. 42). As already discussed in the foregoing section
titled The uncertainty product Q as a measure of optimality of enzy-
matic processes, the non-monotonic variation of Q([ATP]) is the
outcome of Michaelis–Menten-type response of motor or enzymatic
activity on substrate concentration. (ii) The cellular condition (f ≈ 1
pN, [ATP] ≈ 1 mM) marked with a yellow star [Fig. 3(c)] is in prox-
imity to the suboptimal condition. (iii) The high Q value region in
the middle of the diagram (Q > 100) arises when the hindering
load stalls the movement of motor. It is important to note that at
the stall condition, ATP is still consumed (σtot > 0).42,70–72 While the
motor is motionless at mechanical equilibrium (V ≈ 0), it is not in
chemical equilibrium (σtot > 0). As a result, Q diverges [Eq. (27)]
[see the high Q region in Figs. 3(c) and 3(d)]. (iv) Q(f , [ATP]) of
the kinesin-1 mutant [Fig. 3(d)], which has six additional amino
acids inserted into the neck-linker, is drastically altered from that
of the wild-type such that the value of Q is increased and the stall
condition is formed at smaller f values. (v) Finally, Fig. 3(f) com-
pares the values of Q for various biological motors at the cellular
condition (f ≈ 1 pN, [ATP] ≈ 1 mM). Q = 7 − 15 for wild-type
(WT) motors: kinesin-1, F1-ATPase, dynein, KIF17, KIF3AB, and
myosin-V. In particular, Q = 7 for kinesin-1, whereas its mutant dis-
plays much deteriorated performance with Q = 19. The uncertainty
product of biological motor specialized for cargo/organelle transport
is relatively smaller than other machineries that will be discussed
below.
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FIG. 3. (a) and (b) Analysis of experimental data of (a) V and (b) D of kinesin-1. The experimental data are digitized from Ref. 59 and fit using a six-state double-cycle kinetic
model in Ref. 42. The solid lines are fits to the data, with three values of external load. [(c) and (d)] Diagrams of Q as a function of [ATP] and external load (f ). Assisting and
resisting loads correspond to f < 0 and f > 0, respectively. (c) Kinesin-1 and (d) kinesin-1 mutant. The color code and the corresponding colorbar in (c) and (d) quantify the
value of the uncertainty product Q. (e) The values of Q as a function of ATP concentration at f = 1 pN. (f) The trade-off relations between ΔStot and the relative uncertainty
of displacement xt (≡ x(t)) are plotted for various molecular motors with their uncertainty products calculated at [ATP] = 1 mM and f = 1 pN. This figure was adapted from
Ref. 42.

BIOLOGICAL COPY PROCESSES

As exemplified in DNA replication, transcription, and trans-
lation processes, which comprise the central dogma of molecular
biology, some of the key information transfer processes in biology
are nearly free from copy error even in the noisy cellular environ-
ment. For the case of DNA replication, the error probability (ηeq)
estimated solely from the stability difference between the correct
and incorrect basepairs is at best ηeq ≈ 10−3;73 however, the actual
error probability of replicating incorrect bases to the copy strand is
as small as η = 10−10, which makes the replication of giant human
DNA consisting of N = 3 × 109 bases effectively error-free.74 To
achieve the substantial error reduction from ηeq to η, a host of elab-
orate energy-expending molecular mechanisms are at work at every
step of the biological copy processes.75–78

From the viewpoint of information processing in biology, the
error reduction is certainly an important issue; however, it in itself
cannot be the sole goal of the biological copy processes, given that
biomass production, e.g., from DNA to RNA and from RNA to pro-
teins, is the major outcome from the processes. Excessive operations
of error correction machineries would not only incur thermody-
namic cost but also slow down the process of biomass production.
There have recently been a number of studies devoted to under-
standing the strategy of biological copy processes to achieve the

mutually contradicting goals of low copy error, high speed, and low
thermodynamic cost79–84 [Fig. 4(a)].

Here, we will view each step of the copying enzyme along a tem-
plate polymer as that of a molecular motor stepping along a template
filament processively. Each substrate incorporating an event can be
split into several Markov jump steps on a cyclic kinetic network, at
the end of which the copying enzyme transitions to the next posi-
tion along the template strand. The forward motion of the enzyme
is driven by the chemical potential of the biosynthetic substrates
(dNTPs for the DNA polymerase, NTPs for the RNA polymerase,
and charged tRNAs for the ribosome). Under an assumption that
cellular homeostasis maintains the substrate concentrations con-
stant but away from the DB condition, the dynamical process asso-
ciated with synthesizing a copy strand can be modeled as a process
operating at the NESS with the substrate concentration, [S], as the
key parameter to be controlled.

Instead of the uni-cyclic kinetic network introduced earlier for
enzymatic processes on a single type of substrate catalysis, additional
cycles due to the chance of copying incorrect types of substrates to
the strand are necessary for the copy processes described above. The
schematic of the reaction network in Fig. 4(b) represents the one
for copy processes, which takes into account the chance of incorpo-
rating incorrect substrates. c denotes the reaction cycle (red) asso-
ciated with the correct substrate incorporation, whereas i is for the
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FIG. 4. Biological copy processes and trade-off relation. (a) Trade-off relations in biological copy processes. An excessive amount of error corrections are expected to lead to
higher thermodynamic cost and slow biomass production. (b) The illustration of DNA replication process (top) and a kinetic network to represent general copy processes with
the possibility of accommodating either the correct or incorrect substrate to the copy strand. The c-cycle (red) and i-cycle (blue) are for the correct and incorrect substrate
incorporations, respectively. (c) Reaction currents along the subcycles of the network as a function of substrate concentration. Explicit calculations of currents were conducted
using an example of translation of a codon CUG by ribosome.43 (b) and (c) were adapted from Ref. 43.

cycle (blue) associated with the incorrect substrate incorporation.
Provided that correct substrates are always accommodated to the
copy enzyme without any futile attempt, the reaction current, more
specifically the current associated with polymerization, Jc

pol, flows
only through the c-cycle. In this case, the probability of copy error
would be 0 [Eq. (31)]. However, the stochastic nature of biochemi-
cal reactions makes the incorporation of the incorrect substrate to
the copy polymer still inevitable. An incorrect substrate incorpo-
rated to the enzyme–cofactor complex engenders the reaction cur-
rent through the i-cycle. A proofreading mechanism expending the
free energy (e.g., GTP hydrolysis for the case of mRNA translation
by ribosome) in action filters out the incorrect substrate from the
system, generating a futile current (Ji

fut); otherwise, the substrate is
accommodated into the copy polymer, generating a current asso-
ciated with polymerization (Ji

pol). The futile current along the c-
cycle is conceivable as well, just like the case in which a molecular
motor, say, kinesin-1, occasionally fails to step despite ATP hydrol-
ysis. Explicit calculations of four currents in Fig. 4(b) conducted for
the translation of a CUG codon by a ribosome indicate that the sizes
of the four currents are maintained in the following order, effectively
over the whole range of GTP concentration (1 nM ≤ [GTP] ≤ 100
mM),43 while the cellular concentration of GTP is [GTP] ≈ 5 mM,85

⟨Jc
pol⟩≫ ⟨Ji

fut⟩ ≳ ⟨Jc
fut⟩≫ ⟨Ji

pol⟩. (30)

Both ⟨Jc
pol⟩ and ⟨Ji

pol⟩ are reflected to the copied sequence such that
the error probability of the copy process is associated with the two
mean currents as

η =
⟨Ji

pol⟩
⟨Jc

pol⟩ + ⟨Ji
pol⟩

, (31)

which gives η ≈ 4 × 10−4 for the case of CUG codon.43

The free energy cost associated with the copy process repre-
sented by the schematic of the kinetic network in Fig. 4(b) is given
as follows:43

βA = −β[Δμpol +
⟨Jfut⟩
⟨Jpol⟩

Δμfut] − η lnη − (1 − η) ln (1 − η), (32)

where ⟨Jpol⟩ ≡ ⟨Jc
pol⟩ + ⟨Ji

pol⟩ and ⟨Jfut⟩ ≡ ⟨Jc
fut⟩ + ⟨Ji

fut⟩ are the
total reaction current along the polymerization and futile cycles.

Note that since Δμpol and Δμfut, the chemical potentials associated
with each cycle, are the state function, they are identical regard-
less of the cycle. The value of βA is determined by the ratio of
currents ⟨Jfut⟩/⟨Jpol⟩ as given in the expression of Eq. (32). Finally,
the Shannon entropy-like term, S(η) = −η ln η − (1 − η)ln(1 − η),
arises from the entropic drive created by a potential disorder in
the copied sequence. Although the actual contribution of S(η) is
minor compared to the entire free energy (A) in biologically rel-
evant parameter regimes,43 S(η) could, in principle, be the source
of thermodynamic drive for the polymerization reaction when
[Δμpol + (⟨Jfut⟩/⟨Jpol⟩)Δμfut] ≈ 0 (see Ref. 9). Equation (32) clarifies
that extra free energy cost is incurred in the presence of a larger
amount of futile current when the proofreading mechanisms are at
work.

Finally, we aim to look at the problem of biological copy
processes under the hood of TUR and study how the error prob-
ability is balanced with dissipation, speed, and fluctuations. While
there have been a number of studies on the relation between error
probability, dissipation, and speed, somewhat less attention was
paid to the fluctuations emanating from the dynamical process.
Mallory et al. concluded that fluctuations are the lowest priority in
optimizing copy processes in comparison with the speed, cost, and
accuracy;84 however, large fluctuations in the reaction cycles of tran-
scription and translation contributing to higher variability in the
protein copy number86,87 could be detrimental to the fitness of an
organism.88,89 Given that the DNA replication of developing ani-
mals is meticulously synchronized across the cells, the disarray of
the cell cycle from other cells can be lethal.90,91 As further discussed
in the section titled “mRNA translation by E. coli ribosome,” the
fluctuations of the copy process could display substantial variations
depending on the proofreading dynamics of the copying enzyme
[Fig. 5(c)]. Overall, fluctuations associated with biological copy pro-
cesses also have to be suppressed down to biologically acceptable
levels, and this aspect is naturally taken into account by calculating
the uncertainty product Q of TUR.

DNA replication

Of the three biological copy processes, the most precise one is
DNA replication, at the heart of which is the interaction between
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FIG. 5. The uncertainty product Q for biological copy processes. (a) DNA replication by T7 DNA polymerase. (b) Translation of codons by the E. coli ribosome. The dashed
lines indicate the cellular concentrations of aa-tRNA and GTP. (c) Proofreading step-modulated fluctuations in the translation times of the E. coli ribosome (T ) that reads the
tufB mRNA sequence encoding the 394 amino acids of EF-Tu. In the two panels at the bottom are shown the error probability and uncertainty product as a function of the
perturbation factor (αPR) multiplied to the rate of proofreading step. This figure was adapted from Ref. 43.

the polymerase and the exonuclease domains of the DNA poly-
merase (DNAP).92 In a nutshell, the exonuclease domain of the
DNAP executes the proofreading step by preferentially cleaving off
incorrect nucleotides, the incorporation of which slows down the
action of the polymerase. Through a Michaelis–Menten approxi-
mation of all the chemical reactions catalyzed by the DNA poly-
merase, Gaspard derived the dependence of the error probabil-
ity, speed, and thermodynamic cost on the substrate concen-
trations.80,81 Along similar lines, Igoshin, Kolomeisky, and col-
leagues further explored the reaction dynamics of the DNAP
by explicitly modeling the switching of the DNAP between the
polymerase and exonuclease states.82,84 Results from both groups
demonstrated that the copy errors were being suppressed at the
expense of the speed and the thermodynamic cost. Furthermore,
the analysis of rate constants of the wild-type T7 DNA polymerase
suggested that it was optimized for the speed rather than the
accuracy.

Evaluating the fluctuation and the uncertainty product Q of
DNA polymerases together with the activity of exonuclease requires
a careful analysis of the kinetics involved with the switching among
the polymerizing, proofreading, and paused states of the poly-
merase.75,93,94 However, since the precise knowledge of the exonu-
clease mechanism still remains elusive, the analysis here is limited
to the proofreading-free version of exonuclease-deficient T7 DNAP.
The analysis of the kinetic network of T7 DNAP finds that Q for T7
DNAP is suboptimal (Q ≈ 10) at [dNTP] ≈ 100 μM, which is in the
similar range of dNTP at the cellular condition O(102) μM − O(1)
mM.95–97 Notably, the error probability is already saturated to its
minimal value η ≈ 10−4 when [dNTP] ≳ 10−11M. This suggests that
instead of the error probability, other dynamical properties of T7

DNAP can be further optimized. It is noteworthy that the dynamics
of the T7 DNAP is sub-optimal in Q at its working condition.

RNA polymerases

While synthesizing the RNA transcript complementary to the
DNA sequence, the RNA polymerase (RNAP) translocates along
the DNA sequence, maintaining a DNA bubble of 12–14 basepairs
and an 8–9 basepair RNA–DNA hybrid double strand.98,99 Simi-
larly to the DNAP, the polymerase and the exonuclease activities
of the RNAP are combined together to suppress copy errors.100

Upon incorporating incorrect nucleotides, the polymerase activity
slows down and the RNAP converts to a backtracked state that can
no longer incorporate a new nucleotide. Only after the removal
of the erroneous NTP, the RNAP is able to continue incorporat-
ing new nucleotides. Structural, biochemical, and theoretical studies
have characterized both the mechanisms of nucleotide incorpora-
tion in the elongation complex and the proofreading, highlighting
the strong sequence dependence on the error rate and the pausing
frequency of the polymerase. The effect of the exonuclease-mediated
proofreading reactions on the error probability has been quantita-
tively evaluated through kinetic modeling.101 Along with the fluctu-
ations of the RNAP activity, analysis of RNAP dynamics in light of
Q would also be of great interest.

mRNA translation by E. coli ribosome

The E. coli ribosome is a well characterized system that employs
KPM to suppress copy errors.77,102 The ribosome synthesizes pro-
teins from mRNAs by decoding the sequence information encoded
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in the “codons.” For each of the 61 codons (excluding the three
stop codons from the total of 43 possible combinations), there exist
potentially multiple “correct” tRNAs with the matching anti-codon,
in complex with the encoded amino acid (aa), elongation factor
(EF), and GTP. The binding of the correct aa-tRNA–EF–GTP com-
plex to the ribosome–mRNA complex initiates the reaction cycle
through which the amino acid is added to the elongating polypeptide
sequence. Similarly, aa-tRNA–EF–GTP complexes with incorrect
amino acids can undergo a parallel reaction cycle as the correct sub-
strate, which leads to the incorporation of errors in the polypeptide
sequence.103 Free energy released from GTP hydrolysis is used to
execute KPM (see Ref. 43 for the details of the kinetic proofreading
mechanism).

The error probabilities associated with codon-anticodon pair-
ings are already saturated to η ≈ 10−4 to 10−2 for all the codons
with respect to the variations in [aa-tRNA] and [GTP] (see Fig. S6
in Ref. 43). As shown in Fig. 5(b), the uncertainty products Q are
again non-monotonic functions of both [aa-tRNA] and [GTP], and
the corresponding cellular concentrations of [aa-tRNA] and [GTP]
are found to be greater than the concentrations, [aa-tRNA]∗ and
[GTP]∗, that give rise to the suboptimal values of Q. Depending on
the codon-type, Q varies between 20 and 40 [Fig. 5(b)]. The mRNA
translation is realized when a ribosome translocates through a string
of codons, accommodating correct types of aa-tRNA and forming
new peptide bonds. The greater forward kinetic rates of the GTP
hydrolysis and the polymerization along the correct cycle103,104 lower
the error probability.

To study the process of mRNA translation of the E. coli ribo-
some in a more realistic fashion, it is possible to consider an
extended version of the network model, which translates 42 species
of aa-tRNAs into 20 different amino acids. With information on
the concentration of aa-tRNAs in the cellular milieu, Song and
Hyeon classified them into cognate, near-cognate, and non-cognate
types and simulated the E. coli ribosome-mediated translation of
the tufB mRNA sequence that encodes the 394 amino acid EF-
Tu [Fig. 5(c)].43 The effect of proofreading step on the ribosome
dynamics and on the error probability can be assessed by modulat-
ing the polymerization current by multiplying a factor αPR to the
associated rate constants [see the general kinetic network for proof-
reading depicted in Fig. 5(b)]. A similar perturbative analysis has
previously been used to decipher which feature of the biomolecular
process had been optimized throughout evolution.82,84,105 Although
rate constants are not easy to tune in experiments, such modifica-
tions happen throughout the evolution by means of mutations to
the ribosome, EF-Tu, and tRNA. Their simulation results demon-
strated that the variations in the completion times of mRNA trans-
lation (the first passage times, T ) depend critically on the parameter
αPR that modulates the polymerization current. For αPR = 1 corre-
sponding to the wild-type, the average speed of polymerization is
found to be ≈16 aa/s and the error probability is η ≈ 10−3 [Fig. 5(c)],
in good agreement with those known from experimental measure-
ments.106,107 Selecting the completion time T (first passage time) as
the output observable, one can use a version of TUR derived for the
first passage time,31

Q = ΔStot(T )
Var(T )
⟨T ⟩ 2 = σtot

Var(T )
⟨T ⟩ ≥ 2. (33)

While η decreases monotonically with αPR, Q is non-monotonic
with αPR [Fig. 5(c)], minimized near the wild-type condition. At
αPR = 1 and under the cellular concentrations of aa-tRNA and GTP,
the uncertainty product for the E. coli ribosome is Q = 45 [Fig. 5(c)].
For the given kinetic parameters from the wild-type (WT), Q is
minimized to Q ∼ 30 at αPR ≈ 5. For αPR = 10−2, the translation
times display a much broader distribution than that of the wild-type
[Fig. 5(c)]. Thus, it could be argued that the extent of proofreading
of the WT is in a proper range that the fidelity of translation and the
fluctuations of protein synthesis are simultaneously regulated. Fluc-
tuations in the completion time for mRNA translation (⟨δT 2⟩) can
be critical, as it is translated to a significant variation in the protein
copy number.

For the E. coli ribosome, the kinetic rate constants of ribo-
somes have evolved to optimize the speed (⟨Jpol⟩) over the accu-
racy (η), while increasing the thermodynamic cost (A) only slightly
above the minimal cost necessary for the polymerization reac-
tion. Importantly, similar conclusions were drawn by a number
of studies, each of which evaluated the translation process of the
E. coli ribosome using different kinetic reaction networks.43,82,104

From the findings of maximized current, suppressed fluctua-
tions, and a moderate increase in A captured by the effectively
sub-optimized value of Q (≈ 45 − 50) at αPR ≈ 1, while η
being determined at biologically acceptable levels,43,93 it could be
argued that the wild-type ribosome operates near the semi-optimal
condition.

Gene regulation by transcription factors

The gene expression is regulated in large part by the binding
of transcription factors (TFs) to the regulatory regions of DNA. The
specificity by which TFs can activate target genes is originated from
the discriminatory binding of TFs to the non-specific regulatory
regions of the DNA. With an assumption that the relative bind-
ing affinities of the TF to the target and the non-target sequences
differ only by their respective dissociation rates, kc

off and ki
off, the

minimal error probability of transcription can be approximated by
η ≈ η0 = [1 + ki

off/kc
off]−1. Shelansky and Boeger recently pro-

posed a mechanism in gene regulation by TFs and nucleosomes
that can reduce η at the expense of extra free energy cost.108 Nucle-
osomes, the regulatory structures that bind and unbind reversibly
from DNA, are generally known to suppress the transcriptional
activity in the bound state. In model of Shelansky and Boeger, tran-
scription is assumed to occur only when the DNA is bound to
the transcription factor and free from the nucleosome [Fig. 6(a)].
Briefly, when the nucleosome can be more easily removed from
the TF-bound regulatory sequences than from the TF-absent ones
[α > β in Fig. 6(a)], a kinetic proofreading-like mechanism can
reduce the minimum error rate below η0. The nucleosome removal
in the TF-bound sequences is predicted to be driven by the activity
of ATP-consuming chromatin remodelers, which are recruited by
the TF.108,109

Figure 6 plots the error probability and Q with an increasing
thermodynamic drive. Parallel to Eq. (31), the error probability is
defined as η ≡ Ji

trans/(Ji
trans + Jc

trans), where Ji
trans and Jc

trans are the reac-
tion currents associated with the incorrect and correct gene expres-
sions. Next, the noise in the correct gene expression is defined by
the Fano factor λ ≡ ⟨(δJc

trans)2⟩/⟨Jc
trans⟩. To evaluate the uncertainty
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FIG. 6. Q and transcription noise in non-equilibrium gene regulation by transcrip-
tion factors (TFs). (a) Schematic of a gene regulation by a combination of the
nucleosome (NC) and TF occupancy. Transcriptional activity is assumed to occur
only when the regulatory sequence is released from the NC and bound to the tran-
scription factor (TF).108 A parallel network for the incorrect gene expression also
exists, in which the TF unbinds with rate ki

off. (b) The error probability (η) and Q of
correct gene expression plotted as functions of α. When the NC is removed pref-
erentially in the TF-bound state (i.e., α > β), the error in the gene expression can
be reduced below η0 ≡ [1 + ki

off/k
c
off]
−1. Other than α, the remaining parameters

are set as follows: kon = 1 s−1, kc
off = 1 s−1, ki

off = 100 s−1, kNC
on = 0.2 s−1,

β = 0.01 s−1, and v = 0.01 s−1.

product Q, we assume that the nucleosome removal step (α) entails
the unwinding of ∼20 basepairs of DNA, with every 2 basepairs
requiring 1 ATP based on single molecule studies.110–113 We addi-
tionally assume that the transcription initiation step (v) requires ∼20
ATPs in order to melt the DNA into the open complex.114 Assuming
that the free energy of ATP hydrolysis is ∼20 kBT, we can compute
the semi-empirical free energy cost associated with transcription, A,
by accounting for all the ATP hydrolysis reactions occurring at the
correct and incorrect DNA binding sites.

To increase the thermodynamic drive, we increase the nucle-
osome unbinding rate from TF-bound sequences (α), while keep-
ing the rest of the parameters constant. Q increases monotoni-
cally with α, while the error probability (η) is minimized at around
α/β ≈ 60. Further analysis in the framework of the TUR will be useful
in quantifying trade-off relations among the error probability, tran-
scription noise, and the thermodynamic cost of gene regulation by
TF binding.

Molecular chaperone-assisted folding of proteins

In an appropriate environmental condition, small single
domain proteins, in general, can reversibly fold and unfold and
reach their native state within biologically relevant time scales.116

Yet, there are still a class of proteins that are prone to misfold
and aggregate whose presence can be detrimental to the organisms.
For such proteins (e.g., Rubisco and malate dehydrogenase117,118),
only a small fraction (Φ ≪ 1, Φ ≈ 0.05 for Rubisco119) of the
population can reach their native state, and the remaining frac-
tion of population (1 − Φ) is kinetically trapped in misfolded states
(Fig. 7). Molecular chaperones,3,115,117,118,120 which employ the free
energy sources ubiquitous in cells to change their conformations
and interact with the molecules in misfolded states, can change the
population entirely and sustain the cellular environment in good
condition.

FIG. 7. Molecular chaperone as an error-reducing machine. (a) Rugged folding
landscape of biomolecules that visualizes the native and misfolded basins of
attraction. As a result of spontaneous folding, molecules are partitioned with the
fraction of Φ and 1 − Φ to native and misfolded states, respectively. (b) Iterative
annealing by GroEL. (a) was adapted from Ref. 115.

One of the most well-studied protein chaperones, bacterial
GroES–GroEL chaperonin system, interacts exclusively with the
misfolded population of proteins, providing them with another
chance to repeat the folding process. As a result of an initial interac-
tion of the chaperone with misfolded protein population, out of the
misfolded population 1 − Φ from the first round of folding process,
Φ(1 − Φ) would fold into the native state, and (1 − Φ)2 would be
again trapped in the misfolded states. When this process is repeated
N(= t/τ0) times, where τ0 is the time associated with a single cycle
and t is the time duration, the fraction (1 − Φ)N still remains mis-
folded, and hence, the 1 − (1 −Φ)N are folded. The fraction of native
population increases from its originally small yield Y1 = Φ(≪1)
at N = 1 to

YN = 1 − (1 −Φ)N Φ≪1ÐÐ→ 1 − e−Φt/τ0 . (34)

Via this mechanism, called the iterative annealing mechanism
(IAM),117,119,121,122 the native yield of unity can be finally reached
when N →∞ or t →∞. From the perspective of information pro-
cessing, molecular chaperones are another elegantly designed error-
reducing machinery. For every cycle, which lasts about 2 s,123,124

GroEL made of two heptameric rings presumably consumes at
least 3–4 ATPs for each ring, which amounts to ≈60–80 kBT of
dissipation. Furthermore, since the successful conversion of the
misfolded to folded state is not guaranteed at each cycle, the dis-
sipation per cycle estimated above is only a lower bound of the
estimate. In fact, τ = τ0/Φ is the full conversion time to the native
state. Given that τ0 ≈ 2 s and Φ = 0.05 for Rubisco, τ = 40 s.
Since the number of successful conversions to the native state usu-
ally obeys Poisson statistics, the Fano factor of the net fraction
of conversion ΔYN (t) is λ = ⟨(δΔYN)2(t)⟩/⟨ΔY(t)⟩ ≈ O(1).
Thus, a rough estimate of Q for GroEL assisted protein folding
is Q ≳ τ/τ0 × (60 − 80) ≈ 2 × 103.
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FIG. 8. A spectrum of uncertainty product (Q) computed for transport motors,42

T7 DNA polymerase,43,93 E. coli ribosome,43,93 molecular chaperone, and bio-
chemical oscillators.125 The theoretical lower bound of TUR is specified at Q = 2.
The range of Q for the family of molecular motors and biochemical oscillators is
shaded in red and green, respectively.42,125

CONCLUSIONS

Under evolutionary pressure, biological processes are often
confronted with situations in which to balance between a num-
ber of competing options. Here, we have reviewed the recent stud-
ies on the trade-off relations of these features in biological motors
and biological dynamics involved with information processing, from
the perspective of TUR, which offers the uncertainty product Q
as a measure of the optimality integrating the cost and precision
of the processes. Importantly, the physical lower bound of Q pro-
vides an absolute scale onto which we can map the efficiencies of
diverse biomolecular processes. Biological motors, specialized for
cargo transport, are found to operate close to the lower bound
(Q = 2) even at NESS, with Q ≈ 7 − 15.42 Compared with biolog-
ical motors that utilize ATP hydrolysis free energy (∼20 kBT ≈ 0.8
eV), synthetic nano-motors126 that use the >3 eV UV-light source as
the driving force are expected to have at least several-fold greater Q.
The exonuclease-deficient T7 DNA polymerase operates at Q ≈ 10,
and the ribosome operates at Q = 45 − 50.43,93 The value of Q for
molecular chaperones is estimated to be rather large, Q ≳ O(103),
mainly due to the large cost of operating the reaction cycle of chap-
erones. Although it was not discussed in this Perspective, Marsland
et al. evaluated the values of Q for several biochemical oscillators by
selecting the oscillation period as their output observable of interest.
Some of the biochemical oscillators severely underperform the TUR
bound, for example, the KaiABC system works at Q ≳ O(103).125

For biological motors, both thermodynamic cost and precision of
the processes are valuable quantities to be balanced, giving rise to
a relatively small value of Q near the physical lower bound of 2.

In contrast, for the cases of molecular chaperones and biochemical
oscillators, the precision of the processes is in the highest priority,
at the expense of large thermodynamic cost. Along with the spec-
trum of Q recapitulating our survey on various processes, in this
Perspective (Fig. 8), the Q values of more numbers of other dynam-
ical processes will be of help to better glean the design principles
underlying life sustaining cellular processes.
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