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1. Introduction

The use of models in obtaining insights into the organiza-
tion of nucleic acids can be traced back to the publication
in 1969 of a seminal paper[1] outlining a detailed structure
for transfer nucleic acid (tRNA) by Levitt, one of the re-
cipients of the 2013 Nobel prize in chemistry. By assum-
ing that conformations of different tRNA molecules are
similar (homologous), and that the association of hydro-
phobic moieties, stabilized by hydrogen bond interactions
and hydration of charged and other solvent exposed polar
groups, are free-energetically favorable, Levitt predicted,
with stunning accuracy, a detailed structure of tRNA. Al-
though there has not been a great deal of attention paid
to RNA structures until recently, several major discover-
ies have made it abundantly clear that RNA is not merely
a passive carrier of information, but is involved in many
cellular functions (many are most likely in the category of
“unknown unknowns”). Thus, it is important not only to
determine RNA structures, but also to determine how
they fold (the RNA folding problem)[2] and function in
crowded cellular environments, and respond to the bind-
ing of metabolites, as occurs in the process of gene ex-
pression in bacteria. The growing importance of RNA has
ushered this important class of molecules to the center
stage of biology, raising questions that were once familiar
only in the study of proteins. From a computational per-

spective of RNA folding, the dream would be to generate
movies using atomically detailed molecular dynamics sim-
ulations, starting from different initial conditions, until
RNA reaches the folded structure. For RNA, this is not
yet a reality because force fields are not accurate[3] and
the folding time scales are extremely long (for large ribo-
zymes it can exceed seconds). This forces us to use con-
cepts rooted in polyelectrolyte theory and coarse-grained
(CG) models to make much needed progress, and in the
process, discover general principles of RNA folding.
Here, we describe some developments along these lines
that we have made over the past decade or more.

The use of CG models, based on theoretical ideas to
describe essential phenomena in a number of areas, has
a rich history in science. Insights into many problems in
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condensed matter physics have come from the use of min-
imal CG models that capture the essence of complex phe-
nomena. Such models can sometimes be solved by purely
analytical methods. However, complex problems, such as
spin glasses,[4] structural glasses,[5–7] and a host of prob-
lems in biology, such as RNA folding[8] and enzyme func-
tions[9] require computational methods covering a broad
spectrum of time and length scales. With increasing com-
putational power and continued focus on developing in-
creasingly accurate force fields, in the spirit of pioneering
works in the context of protein folding and dynamics[10–12]

and enzyme reactions, it is likely that in the not too dis-
tant future, one will be able to represent the folding of
proteins in atomic detail. In fact, rapid progress has been
made in obtaining folding trajectories of a few single
domain proteins.[13–15] At present, the prospects of per-
forming atomically detailed and accurate molecular dy-
namics (MD) simulations for nucleic acids seems daunt-

ing. Given the paucity of predictions for RNA folding
using MD simulations, there should be interest in devel-
oping CG models for nucleic acids, with a view to describ-
ing many aspects of self-assembly of RNA folding, folding
of chromatin, and protein-RNA (and DNA) interactions.
Although there are several examples of using simulations
of coarse-grained models in condensed matter and the
study of proteins, there is still a good deal of resistance to
the use of CG models to make testable predictions in
biology. The purpose of this article is to document a few
case studies from our own research to illustrate the pre-
dictive power of CG models in the difficult area of RNA
folding.

Modeling reality requires a level of abstraction, de-
pending on the phenomenon of interest. For example,
near a critical point of a fluid (or a magnet), exponents
that describe the vanishing of the order parameter (densi-
ty or magnetization) or divergence of the correlation
length (describing density-density or spin-spin correlation
function) are universal; they depend only on the spatial
dimensionality (d), and are impervious to atomic details.
These findings, which are rooted in the concepts of uni-
versality and renormalization groups,[16] are also applica-
ble to the properties of polymers.[17] In nucleic acids, at
short length scales (l~5 �), the detailed chemical envi-
ronment determines the basic forces (hydrogen bonds
and dispersion forces) between two nucleotides. If l~1–
1.5 nm, interactions between the two bases, base stacks
and grooves of the nucleic acids become relevant. Under-
standing how RNA folds (l~1–3 nm) requires energy
functions that provide at least a CG description of nucle-
otides and of interactions between them in the native
state and excitations around the folded structure. On the
persistence length scale, lp�150 bp�50 nm,[18] and
beyond, it suffices to treat dsDNA as a stiff elastic fila-
ment without explicitly capturing the base pairs (bps). If
l~O(1) mm, dsDNA behaves like a self-avoiding poly-
mer.[19] On the scale of chromosomes (l~mm), a much
coarser description suffices. Thus, models for DNA and
RNA vary because the scale of structural organization
changes from nearly millimeters in chromatin to a few
nanometers in the folded states of RNA. To describe
RNA folding and the response of these molecules to me-
chanical forces, we have introduced two classes of CG
models. The first represents each nucleotide by three in-
teraction sites, referred to as the TIS model. Here, we
employ the TIS model to illustrate the complexity of
RNA hairpin formation and the effects of crowding on
the equilibrium shift between the pseudoknot and hairpin
formations in human telomerase RNA. In the second
model, each nucleotide is represented using a single inter-
action center. The efficacy of the resulting model, re-
ferred to as the self-organized polymer (SOP) model, is
illustrated using simulations to predict the outcomes of
single molecule pulling experiments.
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2. General Considerations in Modeling RNA

In general, as a natural consequence of a rugged folding
landscape, the folding of RNA is partitioned into several
pathways, the effect of which can be detected in the form
of multi-exponential functions in kinetics experiments.[8]

For several reasons, the folding landscape of RNA is
rugged, consisting of multiple basins of attraction separat-
ed by substantial free energy barriers: (i) Phosphate
groups are negatively charged, which implies that poly-
electrolyte (PE) effects oppose the collapse and folding
of RNA. Valence, size and shape of counterions, necessa-
ry to induce compaction and folding,[20] can dramatically
alter the thermodynamics and kinetics of RNA folding.
Thus, PE effects, which are controlled by a number of fac-
tors, play a key role in determining RNA folding thermo-
dynamics and kinetics (see below). (ii) The purine and
pyrimidine bases of nucleotides have different sizes but
are chemically similar. (iii) Only ~54 % of bases form
canonical Watson-Crick base pairs, while the remaining
nucleotides are in non-pairing regions[21] (discussed fur-
ther below). (iv) The lack of chemical diversity in the
bases results in RNA easily adopting alternate stable mis-
folded conformations, resulting in a relatively small stabil-
ity gap between the folded and misfolded structures.[8]

Thus, the homopolymer nature of the RNA monomers,
the critical role of counterions in shaping the folding
landscape, and the presence of multiple low-energy exci-
tations around the folded state, make RNA folding a chal-
lenging problem.

2.1 Polyelectrolyte Effects

To fold, RNA must overcome the large electrostatic re-
pulsion between the negatively charged phosphate
groups. PE-based theory (see Appendix 1) shows that
multivalent cations (Z>1) are more efficient in neutraliz-
ing the backbone charges than monovalent ions – a pre-
diction that is borne out in experiments. For example, the
midpoint of the folding transition Cm, the ion-concentra-
tion at which the populations of the folded and unfolded
states are equal, for Tetrahymena ribozyme is ~3� 106-
fold greater in Na+ than in cobalt-hexamine (Z=3)! The
nature of the compact structures depends on Z, with the
radius of gyration scaling as RG/1/Z2,[22] implying com-
pact intermediates have lower free energy as Z increases.
Thus, folding rates should decrease as Z increases, which
also accords well with experiments.[23] Polyelectrolyte
theory also shows that counterion charge density, z=Z e/
V, (V is the volume occupied by the ion) should control
RNA stability. As z increases, RNA stability should in-
crease – a prediction that was validated using a combina-
tion of PE-based simulations and experiments. For in-
stance, it was shown that the changes in stability of Tetra-
hymena ribozyme in various Group II metal ions (Mg2+,
Ca2 +, Ba2+, and Sr2+) showed a remarkable linear varia-

tion with z.[24,25] The extent of stability is greatest for ions
with largest z (smallest V corresponding to Mg2 +). We
further showed using Brownian dynamics simulations that
this effect could be captured solely by non-specific ion-
RNA interactions.[24] These findings, and similar varia-
tions of stability in different sized diamines, show that: (i)
the bulk of the stability arises from non-specific associa-
tion of ions with RNA; and (ii) stability can be greatly al-
tered by the valence, shape, and size of the counterions.

2.2 Statistics of Base Pairs in RNA Structures

Because of the systematic experimental studies pioneered
by Tinoco, Uhlenbeck, Crothers, and Pçrschke in
1970s,[26–28] and Turner and Zuker in the 1980s and
1990s,[29–31] good estimates of the free energies of RNA at
the level of secondary structure are available. However, it
is still difficult to accurately predict RNA secondary
structures (especially if the number of nucleotides is big)
because a substantial portion of the nucleotides do not
participate in the “canonical“ GC, AU, and GU type of
base pairing, with base stacks whose free energy of associ-
ation can be accurately measured. To quantify the frac-
tion of nucleotides forming base pairs, we searched
through RNA structures for pairs of nucleotides (A with
U, G with C or U) in which at least one of their possible
pairs of donor-acceptor heavy atoms is within a cut-off
distance of 4 �. For example, a Watson�Crick (WC) AU
pair is identified if N6 from A and O4 from U, or N1
from A and N3 from U, is within 4 � from each other.
The 4 � cut-off, larger than the typical 2.8–3.0 � in an
ideal hydrogen-bonded base pair, is chosen to account for
possible non-ideal bonds and imperfections in the RNA
structures, due to the X-ray resolution or NMR NOESY
signals.[21] Hence, the list of hydrogen-bonded pairs in-
cludes all the WC and reverse WC, Hoogsteen and re-
verse Hoogsteen, wobble and reverse wobble pairs for
AU, GC, and GU; thus, in our statistics, base pairs found
in pseudoknots are also included. (Parenthetically, using
a more liberal definition of base pairs, Westhof and cow-
orkers[32] have shown that nearly 70 % of nucleotides are
involved in base pairs; however, they included non-can-
onical base pairs, such as G-A, A-C, C-C, A-A, and U-U,
whose free energy of stabilization is not known or mea-
sured in their analysis. Even with this higher estimate, it
is clear that a large fraction of nucleotides are not ac-
counted for in canonical bp formation.) Based on our cri-
terion for bp formation, we counted the number of the
bps, Nbp, for a given structure in the PDB (protein data
bank), and compared this number with the length, L, of
the sequence. We found that Nbp varies linearly with L as
expected, and the linear growth of Nbp with L is satisfied
with great accuracy (Figure 1(a)). If all the nucleotides
are engaged in WC-type canonical base pairing, the ex-
pected value for the ratio between Nbp and L is 0.5. How-
ever, the slope is only 0.27, i.e., Nbp =0.27 �L. The ratio
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Nbp/L=0.27 implies that only 54% (fbp =0.54) of nucleo-
tides in an RNA chain form base pairs. The remaining
46%, which is a large percentage of nucleotides, remain
as single strands, forming bulges, loops, or dangling ends,
the free energy of which varies significantly, depending
on their size. Even with the more liberal definition used
by Westhof, it is clear that a large fraction of nucleotides
do not participate in WC-type base pairing.

Using the calculated relationship between Nbp versus L,
the total length of a given RNA structure can be decom-
posed into the base-paired and unpaired regions. Thus,

L ¼ Nss þ 2�Nbp ð1Þ

or

fbp ¼
2�Nbp

Nss þ 2�Nbp
¼

2 nbp

� �

nssh i þ 2 nbp

� � ð2Þ

where fbp (=0.54) is the proportion of nucleotides making
base pairs in the structure, and Nss is the number of
single-stranded nucleotides and nucleotides making non-
canonical base pairs. From the statistics of the length of
stem surveyed from ribosomal RNA (Figure 1(b)), the
average length of stem is nbp

� �
� 4:1, and hence from

Eq. 2, with fbp�0.54, the average length of a single strand
is nssh i � 7:0.[33]

The free energies associated with C-C, A-A, and G-A,
as well as loops, bulges, internal loops, and internal multi-
loops, are difficult to determine experimentally. In addi-
tion, the PE effects are hard to take into account accu-
rately. These considerations explain the difficulties in de-
vising reliable models for simulations. Nevertheless, we
show here, using examples from our studies, that the two
classes of CG models not only provide insights into
a number of RNA problems, but also make specific test-
able predictions.

3. CG Models for RNA

Although CG models have been applied to a number of
problems involving proteins, their use in the context of
RNA is relatively recent.[34–38] To our knowledge, we were
the first to introduce CG models for RNA and use them
to predict the outcome of single molecule pulling experi-
ments and RNA folding,[34,39–44] and to describe the effects
of molecular crowding on the stability of folded states of
RNA.[45,46] We introduced two levels of coarse graining
for nucleic acids. The first genre of models utilized the
three site interaction model, which has been subsequently
used in interesting applications to problems in DNA biol-
ogy. In the original applications, we used only semi-realis-
tic parameters in the TIS force field. In more recent de-
velopments, we parameterized the energy function to
ensure that experimental melting curves for a number of
oligonucleotides are quantitatively reproduced,[47] result-
ing in a transferable TIS force field. To cope with larger
systems, including complexes with proteins, we also devel-
oped the self-organized polymer model.

3.1 Three Interaction Site Representation of RNA

In the TIS model,[34,46] each nucleotide is replaced by
three spherical beads P, S, and B, representing a phos-
phate, a sugar, and a base (the center panel in Figure 11a,
Appendix 2), located at the center of mass of the chemi-
cal groups. The energy function in the TIS model, UTIS, is
given by

UTIS ¼ UBL þUBA þUEV þUST þUHB þUEL, ð3Þ

corresponding to bond length and angle constraints, ex-
cluded volume repulsions, single-strand base stacking,
inter-strand hydrogen bonding and electrostatic interac-
tions, respectively. Interactions resulting from chain con-
nectivity, such as bond lengths, 1, and angles, a, are con-
strained by harmonic potentials, UBL (1)=k1 (1�10)

2 and
UBA (a)=ka (a�a0)

2, where the equilibrium values 10 and
a0 are obtained by coarse-graining an ideal A-form RNA
helix. The values of k1 and ka are given in Ref. [47].

3.1.1 Excluded Volume Interaction

Excluded volume interaction between the interacting
sites is modeled by a Weeks-Chandler-Andersen (WCA)
potential,[48]

UEVðrÞ ¼ e0
D0

r

� �12

�2
D0

r

� �6

þ1
� �

; r � D0;

UEVðrÞ ¼ 0; r > D0;

ð4Þ

where e0 =1 kcal mol�1 and D0 =3.2 � for all interacting
sites.

Figure 1. Statistics of base pairs in RNAs. (a) The dependence of
the number of base pairs in a given native structure as a function
of sequence length, L. The figure was adapted from Dima et al.[21]

(b) Distribution of the number of consecutive base pairs compos-
ing stems, calculated from 16S, 23S E. coli and T. thermophilus ribo-
somes.
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3.1.2 Stacking Interactions

We assign stacking interactions, UST, between two consec-
utive nucleotides along the chain,

UST ¼
U0

ST

1þkrðr � r0Þ2 þ k�ð�1 � �1;0Þ2 þ k�ð�2 � �2;0Þ2
; ð5Þ

where r (�) and f1, f2 (rad) are defined in Figure 11b,
Appendix 2. The equilibrium values of r0, f1,0 and f2,0 are
obtained by coarse-graining an A-form RNA helix. The
parameters kr, kf and U0

ST are derived from available
thermodynamic measurements of single-stranded and
double-stranded RNA,[21,27,31] as described in detail in Ref.
[47].

3.1.3 Hydrogen Bond Interactions

The TIS description of an RNA molecule includes
coarse-grained hydrogen bond interactions, UHB, which
mimic the atomistic hydrogen bonds present in the mole-
cule�s PDB structure. Each hydrogen bond found in the
PDB structure is modeled by a coarse-grained interaction
potential,

UHB ¼ U0
HB � ½1þ 5ðr � r0Þ2 þ 1:5ðq1 � q1;0Þ2 þ 1:5ðq2 � q2;0Þ2

0:15ðy� y0Þ2 þ 0:15ðy1 � y1;0Þ2 þ 0:15ðy2 � y2;0Þ2��1;

ð6Þ

where the geometrical definition of r (�) and q1, q2, y,
y1, y2 (rad) is illustrated in Figure 11c, Appendix 2. For
canonical Watson-Crick base pairs, the equilibrium values
r0, q1,0, q2,0, y0, y1,0 and y2,0 are adopted from the coarse-
grained structure of an ideal A-form RNA helix. For all
other hydrogen bonds, the equilibrium parameters are ob-
tained by coarse-graining the PDB structure of the RNA
molecule. The parameter U0

HB has been calibrated to re-
produce experimental melting curves of RNA hairpins
and pseudoknots (see Ref. [47] for details). Although the
terms q1,0, q2,0, y0, y1,0, y2,0 in Eq. 6 are defined based on
those of PDB structure, and Eq. 6 is for the native hydro-
gen bonds, it is also possible to consider generic angles,
and extend UHB for non-native hydrogen bond interac-
tions.

3.1.4 Electrostatic interactions

To model electrostatic interactions, we employ the
Debye-H�ckel approximation,[49] combined with the con-
cept of counterion condensation.[50] Using this approach,
the electrostatic energy of an RNA conformation is com-
puted as

UEL ¼
Q2e2

2e

X

i;j

exp � ri � rj

�� ��=l
	 


ri � rj

�� �� ; ð7Þ

where Q is the reduced charge of the phosphate groups,
e is the proton charge, j ri�rj j is the distance between two
phosphates i and j, e is the dielectric constant of water
and l is the Debye-H�ckel screening length. In monova-
lent salt solutions, Manning�s theory of counterion con-
densation predicts[50]

Q ¼ b
lB
; ð8Þ

where b is the length per unit charge in the polyelectro-
lyte in the absence of counterion condensation and lB is
the Bjerrum length, lB =e2/e kBT. We previously estab-
lished that using b=4.4 � gives good agreement between
the simulation and experiment for the RNA thermody-
namics in monovalent salt solutions.[47]

3.2 Self-Organized Polymer Model

The self-organized polymer model, a new class of versa-
tile coarse-grained structure-based models, is well suited
to understanding dynamics at the spatial resolution that
single-molecule spectroscopy of large RNA provides. We
refer to the model as the SOP model because it only uses
the polymeric nature of the biomolecules and the crucial
topological constraints that arise from the specific fold.
We introduced the SOP model to study the response of
proteins and RNA to mechanical force. The reason for
using the SOP model in force spectroscopy applications is
the following: (i) Forced unfolding and force-quench re-
folding lead to large conformational changes of the order
of 10–100 nm. Currently, single molecule experiments
(laser optical tweezers or atomic force microscopy)
cannot easily resolve structural changes below 1 nm. As
a result, details of the rupture of hydrogen bonds or local
contacts between specific residues cannot be discerned
from force-extension curves or the dynamics of the end-
to-end distance, R, alone. Because only large changes in
R are monitored, it is not crucial to model details due to
local interactions, such as bond-angle and various dihe-
dral angle potentials. (ii) In the context of mechanical un-
folding, as well as the folding of RNAs, many of the de-
tails of the unfolding and folding pathways can be accu-
rately computed by taking into account only the interac-
tions that stabilize the native fold. Previous studies also
suggested that it is crucial to take into account chain con-
nectivity and attractive interactions that faithfully repro-
duce the contact map of a fold. The basic idea of the SOP
model is to use the simplest possible Hamiltonian to sim-
ulate the low-resolution global dynamics for biopolymers
of arbitrary size. The potential function for biopolymers
in the SOP representation is
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HSOP ¼ �
PN�1

i¼1

k
2 R2

0 log 1� ri;iþ1�r0
i;iþ1ð Þ2

R2
0

� �
þ
PN�2

i¼1
el

s

ri;iþ2

� �6

þ
PN�3

i¼1

PN

j¼iþ3
eh

r0
i;j

ri;j

� �12
�2

r0
i;j

ri;j

� �6
� �

Dij þ
PN�3

i¼1

PN

j¼iþ3
el

s

ri;j

� �6
ð1� DijÞ

ð9Þ

The first term in Eq. 9 is the finite extensible nonlinear
elastic (FENE) potential for chain connectivity with pa-
rameters, k=20 kcal mol�1 ��2, R0 =0.2 nm. The distance
between neighboring beads at i and i+1 is ri,i +1, and
r0

i,i+ 1 is the distance in the native structure. The use of
the FENE potential is more advantageous than the stan-
dard harmonic potential, especially for the purpose of
simulating force-induced stretching of biopolymer, be-
cause the fluctuations of ri,i +1 are strictly restricted
around r0

i,i+ 1 with variations of �R0, which enable us to
produce worm-like chain behavior, without including an
additional bond-angle potential term to the energy poten-
tial. The second term ensures non-crossing of the chain
by making i, i+2 pairs interact repulsively with s=3.8 �.
The Lennard-Jones potential, with a special condition for
the native pairs, is used to account for interactions that
stabilize the native fold. The native pairs are defined for
beads, between i and j with j i�j j >2, whose distance in
the native state is less than 8 �. We use eh =1–2 kcal
mol�1 for native pairs, and el =1 kcalmol�1 for nonnative
pairs. Although potential attraction between nonnative
pairs are neglected in the SOP model, this should not
qualitatively affect the results for forced unfolding of
RNA. Especially when simulating force-induced unfold-
ing dynamics of native structure, such interactions do not
make a significant contribution to the dynamics. To probe
forced unfolding of RNA, it is sufficient to only include
attractive interactions between contacts that stabilize the
native state.

There are five parameters in the SOP force field. In
principle, the ratio of eh and el can be adjusted to obtain
agreement with experiments. For simplicity, a uniform
value of eh is assumed for proteins or RNA. But, if such
modification is critical for understanding the dynamic be-
havior of the molecular system of interest, eh can be
made sequence-dependent and ion-implicit. The time
spent in calculating the Lennard-Jones potential scales as
~ O(N2). From an algorithmic point of view, drastic sav-
ings in computational time can be achieved by truncating
the forces due to the Lennard-Jones potential for inter-
acting pairs with rij>3r0

ij or 3s, and by taking into ac-
count the neighboring list for numerical enumeration.
Variation of the original SOP model has been used with
remarkable success to predict the outcomes of single mol-
ecule pulling experiments. These predictions were subse-
quently validated.

4. Applications

4.1 Complex Kinetics of Hairpin Formation

When viewed on length scales that span several base
pairs and time scales of the order of ms, folding of an
RNA hairpin is simple. Hairpin formation can be de-
scribed using a two-state model. However, when probed
on short times (ns–ms range), the formation of a small
hairpin, involving a loop and base-stacking, is complex.
Temperature jump experiments have shown that the ki-
netics of hairpin formation in RNA deviates from the
classical two-state kinetics, and is best described as
a multi-step process.[51] Additional facets of hairpin for-
mation have been revealed in single molecule experi-
ments that use mechanical force (f). Inspired by these ex-
periments, we performed simulations using the TIS
model, with the energy function given in Ref. [34], by
varying T and f.[52] The equilibrium phase diagram
showed two basins of attraction (folded and unfolded) at
the locus of critical points (Tm, fm), which are the transi-
tion midpoints separating the unstructured and hairpin
states. At Tm and fm, the probability of being unfolded
and folded is the same. The free energy surface obtained
from simulations explained the sharp bimodal transition
between the folded and unfolded state when the RNA
hairpin is subject to f,[34,52] characteristic of a two-state
system.

However, upon temperature quench, a hairpin forms
by multiple steps,[52] as observed in the kinetic experi-
ments.[51] Folding pathways between T-quench and f-
quench refolding are markedly different (Figure 2b), re-
flecting the differing initial conditions. The initial confor-
mations generated by forced unfolding are fully extended
and structurally homogeneous. The first event in folding,
upon f-quench, is loop formation, which is a slow nuclea-
tion process (see Figure 2b). Zipping of the remaining
base pairs leads to rapid hairpin formation. Refolding
upon T-quench commences from a structurally broad en-
semble of unfolded conformations. Therefore, nucleation
can originate from many regions in the molecule (see Fig-
ure 2b). Our simulations showed that the complexity of
the folding kinetics, observed in ribozyme experiments,[53]

is reflected in the formation of simple RNA hairpin.[34,54]

4.2 Mechanical Unfolding of RNA

The stability of the RNA molecule in the native state can
roughly (neglecting entropy) be decomposed into the sec-
ondary and tertiary interactions, etot ¼ Si esec

i þ Sk eter
k ,

where i and k refer to the number of secondary and terti-
ary structural elements, respectively. The difference in the
free energy between secondary and tertiary interactions,
Si esec

i � Sk eter
k , ensures that force disrupts tertiary con-

tacts prior to secondary structures; thus, rips in force-ex-
tension curves (FECs) are due to disruptions of domains
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defined by secondary structural elements. The separation
in the energy scales Si esec

i � Sk eter
k

	 

enables analysis of

FEC for RNA to be made domain by domain. The hair-
pin stacks, which can vary in the length and sequence, are
the simplest structural motifs, and the presence of hairpin
loops, bulges, internal loops, and internal multiloops, in-
creases the complexity of RNA structures. The effect of
force on RNA structures with increasing complexity from
simple hairpins, hairpins with bulges and internal loops to
three-way junctions is quantitatively described else-
where.[40] We showed that many aspects of the physics of
the mechanical unfolding of RNA, such as a force-depen-
dent free energy profile as a function of the end-to-end
distance, loading rate dependent movement of transition
state, and pulling speed dependent unfolding pathways,
can be dissected using structural motifs.

4.2.1 The L-21 T. Ribozyme

The Tetrahymena ribozyme and its independently folding
subdomains (P4–P6 and P5abc) have been extensively
studied since the discovery of self-splicing enzymatic ac-
tivity in 1980s.[20,55,56] By probing the unfolding character-

istics of increasingly larger constructs of the T. ribozyme
using LOT (laser optical tweezers) experiments, Onoa
et al.[57] were able to associate the force peaks in the
FECs to rupture specific substructures, providing an out-
line of the forced unfolding pathway of RNA. They as-
sumed that extension by a certain length corresponds to
the unraveling of the entire helical substructures, and in-
ferred the unfolding pathway of ribozymes from FECs
alone. However, it is difficult to unambiguously assign the
specific paired helices for a given FEC. The number of
rips in the FECs also varies depending on the specific
molecule that is being stretched. In addition, there are
multiple unfolding routes,[57] indicative of heterogeneity
in force-induced unfolding.

To provide molecular details of forced unfolding, we
used the SOP representation of the Westhof model,[58a,b]

and computed the FEC[58a] using Brownian dynamics sim-
ulations. In agreement with LOT experiments,[57] in the
majority of the cases, the FECs have about eight peaks.
The number of peaks varies from molecule to molecule,
which is increasingly being recognized as a characteristic
of heterogeneity at the single-molecule level.[59–61] Explicit
comparison of the FECs with the dynamics of the contact
disruption (Figure 3b) enables us to read off the molecu-
lar events associated with each rip in the FEC. There are
two major unfolding pathways (Figure 3): (i) [N]!
[P9.2]![P9.1, P9, P9.1a]![P2]![P2.1]![P3, P7, P8]!
[P6]![P4, P5]![P5a, P5b, P5c]. (ii) [N]![P2]![P2.1]!
[P9.2]![P9, P9.1, P9.1a]![P3, P7, P8]![P6]![P4, P5]!
[P5a, P5b, P5c]. The difference between the two pathways
is the switch in the order of unfolding of the peripheral
domains (P2 and P9). The experimentally inferred, most
probable pathway is [N]![P9.2]![P9.1]![P9, P9.1a]!
[P2, P2.1]![P3, P7, P8]![P6, P4]![P5]![P5a, P5b,
P5c].

Snapshots from simulations in Figure 3 show the con-
formational changes that occur in the force-induced un-
folding transition. Although the predicted FECs do not
quantitatively agree with the measurements, due to the
differences between the loading rates and the spring con-
stant used in the simulations and experiments, the order
of the unfolding of the helices and the heterogeneous
nature of the unfolding pathways are consistent with ex-
periments. A few additional comments about our results
from SOP simulations are worth making: (i) Both simula-
tions and experiments[57] find that the peripheral domains
unravel before disruption of the tertiary interactions in-
volving the catalytic core. Complete rupture occurs when
helices P6, P4, and P5abc unfold. (ii) The major and
minor unfolding pathways are not trivially related to each
other. In one pathway, unfolding starts from P2, while in
the other, unraveling starts from the P9 end. From a struc-
tural perspective, P2 forms tertiary interactions with P5c,
whereas the P9 helix is in contact with P5. The free ener-
gies of the tertiary interactions involving the P2 and P9
domains are also different. Thus, from both the energetic

Figure 2. Folding of an RNA hairpin. (a) Kinetics of hairpin forma-
tion under f-quench and T-quench conditions. In each molecule
the hairpin formation time can be decomposed into looping and
zipping time as tF =tloop +tzip. The dynamics of looping are more
time-consuming in the f-quench condition than in the T-quench
condition (compare Pf

loop (t) and PT
loop (t)), but the dynamics of zip-

ping occurs on a similar time scale (compare Pf
zip (t) and PT

zip (t)).
The probability of molecules remaining unfolded at time, t, (PU (t)),
is plotted in the inset. Under f-quench and T-quench conditions,
the probabilities are fit to Pf

U (t) = e�(t�50)/138) for t>50 ms and PT
U

(t) = 0.44 e�t/63 + 0.56 e�t/104, respectively, where the time t is in the
unit of ms. In particular, the lag phase of Pf

U (t) at 0< t<50 ms sug-
gests an obligatory intermediate (If

SL, where SL stands for small
loops). (b) Schematic of refolding pathways of an RNA hairpin
upon quenching the force from a high to low value (left) and from
a temperature quench (right) using the TIS model. Upon f-quench,
folding commences from an extended (E) state by forming the
turn, which nucleated the hairpin formation (left). However, folding
occurs by multiple pathways upon T-quench. The figures were
adapted from Hyeon and Thirumalai[52] (reproduced with copyright
permission from the American Chemical Society).
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and structural considerations, the differences in the un-
folding pathways are significant. (iii) The rips correspond-
ing to the peripheral domains P9 in the simulations are
[P9.2]![P9.1, P9, P9.1a], whereas in the experiments
three rips corresponding to [P9.2]![P9.1]![P9, P9.1a]
are identified. The two rips corresponding to [P2]![P2.1]
also differ from the single rip [P2, P2.1] in the experi-
ment. The minor differences may be due to the slight var-
iations in the constructs used in experiments (390-nt)
versus simulations (407-nt).

4.2.2 Stretching the Azoarcus Ribozyme

Building on the good agreement between unfolding path-
ways in simulations and single molecule experiments on
the Tetrahymena ribozyme, we performed simulations for
a smaller, but structurally related, ribozyme. Mechanical
unfolding trajectories of the 195-nt Azoarcus ribozyme
(PDB code: 1u6b), generated at three different loading
rates using the SOP model, reveal distinct unfolding path-
ways (Figure 4). At the highest loading rate, the FEC has
six conspicuous rips,[62] whereas at the lower loading rate,
the number of peaks is reduced to between two and four.

These simulations showed that the unfolding pathways
can be altered by changing the loading rate.

At the highest loading rate, the dominant unfolding
pathway is N![P5]![P6]![P2]![P4]![P3]![P1]. At
medium loading rates, the ribozyme unfolds via N![P1,
P5, P6]![P2]![P4]![P3], which produces four rips in
the FECs. Multiple helices in the square bracket mean
that they unravel nearly simultaneously. At the lowest
loading rate, the ribozyme unfolds by two steps via N!
[P1, P2, P5, P6]![P3, P4]. The simulations using the SOP
model indicate that unfolding pathways depend on the
loading rate, a result that does not seem to be well appre-
ciated. The physical origin of the change in the unfolding
pathways as the loading rate is varied is explained else-
where.[62]

These results showed that the unfolding pathways can
drastically change, depending on the loading rate, rf. The
dominant unfolding rate depends on rf, suggesting that
the outcomes of unfolding by LOT and AFM experiments
can be dramatically different. Our predictions for the re-
sponse of Azoarcus ribozyme can be tested readily using
pulling experiments.

4.3 Towards Folding under Cellular Conditions

4.3.1 Background

Because the cytosol is crowded, replete with macromole-
cules such as ribosomes, lipids, proteins, and RNA, whose
collective volume fraction (f) can exceed 0.2, it is expect-
ed that RNA folding in the crowded environment is dif-
ferent from in vitro experiments that are conducted under
infinite dilution conditions.[63–66] Describing the transition
between folded and unfolded states of RNA under crowd-

Figure 3. Unfolding of T. ribozyme. (a) The dynamics of disruption
of individual contacts (Qi (t)) for one of the trajectories in the major
unfolding pathway. The scale in differing shades represents the
number of contacts that survive at t. The tertiary contacts indicated
with the circles (a–d) are shown in the T. ribozyme structure. The
yellow squares show interactions that stabilize the P3 pseudoknot.
The figure on the right shows that unfolding can also occur by an
alternate pathway in which the initial event is the opening of P2.
(b) Snapshots of T. ribozyme structures are shown along the major
and minor pathways. The figures adapted from Hyeon et al.[62] (re-
produced with copyright permission from Elsevier).

Figure 4. Loading rate dependent variation of unfolding pathway
of Azoarcus ribozyme. The secondary structure of the ribozyme is
shown on the left. Time evolutions of contact disruption at three
different loading rates rf = 1.2 � 103 pN s�1, 3.6 � 102 pN s�1, and 1.9 �
101 pN s�1 are shown from the top to bottom. The figure adapted
from Hyeon et al.[62] (reproduced with copyright permission from
Elsevier).
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ed conditions is complicated because the nature of the in-
teractions between the crowding agents and RNA is not
fully understood. However, to a first approximation, the
dominant effect of crowding agents is to exclude the mol-
ecule of interest from the volume occupied by crowders
(see Appendix 3 for depletion interaction arising from ex-
cluded volume interactions). If excluded volume interac-
tions dominate (an assumption that has to be tested
before the theory can be applied to analyze experiments),
then the stability of the folded state of the RNA is en-
hanced, compared with the infinite dilution limit. In this
case, the loss in entropy of the folded state due to crowd-
ing is much less than that of the unfolded state, resulting
in the stabilization of the folded state. The resulting en-
tropic stabilization of the folded state[64,67] has been re-
cently affirmed in a number of studies.[45,46,68]

We showed, using theoretical arguments and coarse-
grained simulations, that crowding can modestly stabilize
RNA secondary structures.[45] However, RNA requires
counterions (Mg2+, for example) for tertiary folding.
Thus, the effect of macromolecular crowding on tertiary
structures of RNA may be complicated depending on the
interplay between electrostatic and excluded volume in-
teractions. Using small-angle X-ray scattering measure-
ments, it has been shown that, in the presence of polyeth-
ylene glycol (PEG), the 195 nucleotide Azoarcus ribo-
zyme is more compact relative to f =0.[68] It was conclud-
ed that excluded volume effects play a dominant role in
the compaction of RNA in low molecular weight PEG.
Interestingly, the transition to the folded state occurred at
a lower Mg2+ concentration in the presence of PEG.[68]

Even if excluded volume interactions largely determine
the stability of the folded states of RNA, a number of
variables besides f, such as size and shape of crowding
agents, also contribute to the stability of RNA in the
presence of inert crowding agents. Thus, a systematic
study of the influence of macromolecular crowding on
RNA is required. To date there are only a handful of
works that have considered this problem.

4.3.2 Crowding Shifts Conformational Equilibrium between
Pseudoknot (PK) and Hairpin (HP) in Human Telomerase RNA

As a biologically relevant example, we simulated crowd-
ing effects on the transition between the hairpin and
pseudoknot conformations (Figure 5) in the pseudoknot
domain of human telomerase RNA (hTR).[69] The activity
of the pseudoknot domain, which is conserved in different
organisms, is closely linked to chromosome stability.[70,71]

Mutations that either increase or decrease the stability of
the PK conformation result in a reduction in telomerase
activity.[72,73] Therefore, it is important to compare the
impact of physical factors, such as macromolecular crowd-
ing, with that of naturally occurring chemical mutations.

To provide quantitative estimates of crowding-induced
changes in the stability of RNA, we augmented the TIS

model for RNA with interactions between the crowders
and the nucleotides. We modified the Lennard-Jones po-
tential to model interactions of RNA with the spherical
crowders of arbitrary size,

ULJðrÞ ¼ e
2Ri

D0

D0

r þD0 �D

� �12

�2
D0

r þD0 �D

� �6

þ1
� �

;

r � D;ULJðrÞ ¼ 0; r > D;

ð10Þ

where r is the distance between the centers of mass of
two interacting particles, D0 is the effective penetration
depth of the interaction, Ri is the radius of an RNA
coarse-grained bead, rC is the radius of a crowder, and
D=Ri + rC. The ratio 2Ri/D0 in Eq. 10 is used to scale the
interaction strength, e, in proportion to the surface con-
tact area. This potential accounts for nonspecific surface
interactions between spherical crowders representing
large macromolecules and individual segments of the
coarse-grained RNA. The global effects of hard sphere
crowders on RNA can be qualitatively explained using
the concept of depletion forces, first discussed by Asa-
kura and Oosawa (see Appendix 3).

4.3.3 Crowding Effect is Negligible for Large Crowders

The high density of macromolecules in the cell (volume
fractions f�0.2–0.4) reduces the space available for con-
formational fluctuations. Therefore, macromolecular
crowding should shift the thermodynamic equilibrium be-
tween the HP and PK states of the hTR pseudoknot
domain towards the more compact PK. To assess the
extent to which PK is favored at f ¼6 0, we first discuss

Figure 5. Secondary and tertiary structures of the pseudoknot and
hairpin conformations for DU177. (a) PK secondary and tertiary
structures. (b) HP secondary and tertiary structures. Nuclear mag-
netic resonance (NMR) structure of the HP includes residues G93 to
C166 only (PDB code 1NA2). To quantify the effect of crowders on
the PK�HP equilibrium, we added an unstructured tail A167–A184
to the NMR structure in (a). This inclusion ensures that identical
RNA sequences are used in simulations of the PK and HP confor-
mations.
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the simulation results[46] for the HP and PK states of the
modified pseudoknot domain, DU177 (Figure 5). The mo-
lecular construct DU177 has been examined experimen-
tally in vitro at f=0.[73] The atomistic structures of the
HP and PK conformations of DU177 are available from
the protein data bank, codes 1NA2 and 2K96, respective-
ly.

Here, we only consider spherical crowders with radius,
rC. For monodisperse particles, the volume fraction is f=
4p r3

C 1/3, where 1 is the number density. Thus, f can be
changed by increasing or decreasing 1, or by altering the
size of the crowding particles. For clarity of presentation,
we fix f=0.3 and examine the consequences of changing
rC. Based on general theoretical considerations[74,75] (see
Appendix 3), it can be shown that, in the colloid limit
rC>R0

G, the crowding agents would have negligible ef-
fects on RNA stability. Here, R0

G is the size of the RNA
in the absence of the crowding agent. It is only in the op-
posite polymer limit, rC<R0

G, that the crowding particles
would affect RNA stability. We therefore expect that the
magnitude of the crowding effect should depend only on
the ratio rC/R0

G. Although this scaling type result follows
from theory it has not been adequately tested in experi-
ments involving RNA.

The HP melting profile, taken to be the negative deri-
vate of the number of intact base pairs NBP with respect
to kBT, is plotted in Figure 6a for the crowder radius, rC =
26 �.[46] Such crowders are larger than the radius of gyra-
tion of strand G93–C121 in the unfolded state, R0

G =
20 �. As discussed above, large crowders should have
minimal effects on the melting of the HP even at f=0.3.
For a fixed f, the average distance between two spherical
crowders will increase with the crowder size. If the un-
folded hairpin can easily fit in the interstitial space, the
folding/unfolding transition will not be affected signifi-
cantly by the presence of crowders. For f=0.3 and the
crowder radius rC =26 �, which is only slightly larger
than R0

G, the increase DT in the melting temperature is
1.5 8C for stem 1 of the HP and is negligible for stem 2
(Figure 6a). A further increase in rC results in DT�0 for
both stems (data not shown).

Figure 6a also shows the melting profile of the HP in
a ternary mixture of crowders, containing volume frac-
tions f=0.11, 0.11, and 0.08 of particles with rC =104 �,
52 �, and 26 �, respectively.[46] The sizes and volume
fractions of individual components in the model mixture
correspond to the ribosome, large enzymatic complexes
and relatively small individual proteins, found in E. coli.
Because all the values of rC in the E. coli mixture are
larger than R0

G, we expect only small changes in the melt-
ing profile of the HP (Figure 6a). For the total volume
fraction of 0.3, the melting temperature of the HP stem
1 increases only by 2 8C with respect to f=0 (Figure 6a).
Interestingly, the effect of the E. coli mixture is similar in
magnitude to that of a monodisperse suspension with rC =
26 � and f=0.3. In contrast, a monodisperse suspension

with rC =26 � and f=0.08, which is equivalent to the
smallest particle component in the mixture, has negligible
effect on the melting of the HP (Figure 6a).

In summary, the crowding effect of polydisperse mix-
tures is largely the effect of the smallest particle compo-
nent, but taken at the total volume fraction of the mix-
ture. The excess stability of the folded state due to crowd-
ing decreases nonlinearly with the radius of the crowding
particle rC (see the next subsection). We therefore pro-
pose that, for crowding in the cellular environment, the
main role of large macromolecules is to increase the ef-
fective volume fraction of the relatively small macromole-
cules.

4.3.4 Role of Crowder Size in the PK-HP Equilibrium

The change in stability of the HP and PK at 37 8C, in the
presence of monodisperse crowders for different crowder
radii rC (f=0.3), shows that the magnitude of the excess
stability DG(0.3)�DG(0) is small if rC/R0

G>1, and in-
creases sharply for rC/R0

G<1. The crowding effect is
larger for the PK for all values of rC (Figure 6b), indicat-
ing an equilibrium shift towards this conformation. Mac-
romolecular crowding promotes the binding of strand
C166–A184 to the remainder of the structure in the
PK (Figure 5), because fluctuations associated with this
strand are restricted in a crowded environment.
The crowder radius, rC =12 �, corresponds to the
size of an average protein in vivo. For f=0.3
and rC =12 �, DGPK(0.3)�DGPK(0) =�2.4 kcalmol�1 and

Figure 6. (a) Melting profiles of the HP in various crowding envi-
ronments at 	1 M monovalent salt concentration. Black solid
curve: without crowders. Red dashed curve (the model Escherichia
coli mixture): f= 0.11 of crowders with rC = 104 �, f= 0.11 of crow-
ders with rC = 52 � and f= 0.08 of crowders with rC = 26 �. Green
dashed-dotted curve: f= 0.08 of crowders with rC = 26 �. Blue
dotted curve: f= 0.3 of crowders with rC = 26 �. Thick orange
curve is the experimental UV data at 200 mM KCl, from Figure 2b
in Theimer et al. (2003),[69] divided by 5.53 � 10�5. The two peaks in-
dicate melting of stems 1 and 2 of the HP. The peak positions
(melting temperatures) and the overall width of the melting curve
(melting range) serve as a measure of agreement between theory
and spectroscopic data. (b) Changes in stability (kcal mol�1) of the
HP and PK at 37 8C due to crowders at f= 0.3, as a function of the
crowder radius rC. The figure adapted from Denesyuk and Thiruma-
lai[76] (reproduced with copyright permission from Springer).
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DGHP(0.3)�DGHP(0)=�1.0 kcal mol�1, which results in
the relative stabilization of the PK conformation by
�1.4 kcal mol�1 (Figure 6b).

4.3.5 Implications for Function

It is known that changes in the relative stability of the
HP and PK conformations of the hTR pseudoknot
domain compromise the enzyme activity. The estimate of
the crowding effect in a typical cellular environment,
DDG=�1.4 kcalmol�1 (see above), allows us to assess
the extent to which macromolecules could regulate telo-
merase activity. We showed[46] that the enzyme activity of
the hTR mutants[72,73] decreases exponentially as a func-
tion of jDDG* j = jDG*

PK(0)�DGPK(0) j , where DG*
PK(0)

and DGPK(0) are the stabilities of mutant and wild-type
pseudoknots at f=0 (Figure 7). The majority of muta-
tions destabilize the PK, i.e., DDG*>0 (black squares in
Figure 7), and only two mutants have stabilizing effects,
i.e. , DDG*<0 (red stars in Figure 7). For destabilizing
mutants, the reduction in activity, a, was shown to follow
the exponential dependence,[46] a=exp(�0.6DDG*) (thick
curve in Figure 7). The naturally occurring destabilizing
mutations DKC and C116U have been linked to the dis-
eases dyskeratosis congenita and aplastic anemia, respec-
tively.[77,78] The DKC and the stabilizing DU177 mutations
have been studied in vivo (green symbols in Figure 7), as
well as in vitro. In both cases, mutant telomerase in vivo

was found to be significantly less active than the corre-
sponding construct in vitro, suggesting that a number of
factors determine the activity of telomerase in vivo.

Although macromolecular crowding enhances the sta-
bility of the PK state, the crowding effect (DDG=
�1.4 kcal mol�1) is less than the stability changes caused
by mutations. In Figure 7, the grey area marks the
domain of potential mutants with DDG*>0, whose activi-
ty may be completely restored by macromolecular crowd-
ing. All experimentally studied mutants fall outside the
marked domain, including the two disease related mu-
tants DKC and C116U. Nevertheless, due to the strong
dependence of enzyme activity on DDG*, the effect of
crowding on telomerase function may be significant. We
estimate that the activity of telomerase can be up- or
down-regulated by a more than two-fold in response to
density fluctuations in its immediate environment. Fur-
thermore, due to the expected dynamical heterogeneities
in cells, there will be variations in enzyme activity in dif-
ferent cell regions. It should be emphasized that the en-
hancement in the stability of PK relative to HP is a maxi-
mum for a given rC and f in the excluded volume domi-
nated regime. All specific interactions between crowders
and nucleotides will invariably decrease the extent of sta-
bility changes. Thus, the predicted enhancement is an
upper bound.

4.3.6 Crowding Effects on RNA at Different Ionic Strengths

The entropic stabilization mechanism[64] implies that
crowding increases the stability of the folded state by re-
ducing the population of expanded conformations in the
unfolded state. Therefore, we expect that the magnitude
of the crowding effect will be sensitive to the ionic
strength of the RNA buffer, since the latter determines
the size of the unfolded RNA. The quantitative discussion
above assumed the limit of high ionic strength. As the
buffer ionic concentration, c, is lowered, the screening of
the negative charge on the RNA sugar-phosphate back-
bone becomes less efficient, which in turn, increases the
mean radius of gyration of conformations in the unfolded
state. The function RG(c) for the unfolded PK is shown in
Figure 8a in the absence (black diamonds) and presence
(green circles) of crowding. The same general trend is ob-
served in both cases, with the RG values being consistently
smaller when crowders are present for the entire range of
c. In accordance with our predictions, the crowder-in-
duced stabilization of the folded PK becomes more signif-
icant at low ionic strengths (red squares in Figure 8a).

Interestingly, the stabilization effect increases rapidly
upon lowering c from 1 M to 0.1 M, but shows little
change when c is lowered further to below 0.1 M. The un-
derlying reason for such behavior can be traced to the
probability distributions p(RG) in the unfolded state (Fig-
ure 8b). For a given crowder solution, we can identify
a typical size of the cavity which will be free of any crow-

Figure 7. Activity of mutant telomerase normalized to wild-type
activity (100 %) as a function of the magnitude of the stability dif-
ference between mutant and wild-type pseudoknots. Three mu-
tants, DU177, DKC, and C116U, are explicitly marked. The in vitro
data for destabilizing (black squares) and stabilizing (red stars) mu-
tations are from Table 2 in Theimer et al.[73] Green symbols: in vivo
data for DU177 and DKC from Comolli et al.[72] The experimental
data for destabilizing mutations is fit to the exponential function
(solid curve). Gray area: range of stability differences that can be
accommodated by crowding. The figure adapted from Denesyuk
and Thirumalai[46] (reproduced with copyright permission from the
American Chemical Society).
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ders. If the radius of gyration of RNA conformations is
such that they fit into the cavity, these conformations will
not be perturbed by crowding. On the other hand, the
population of conformations with RG larger than the typi-
cal cavity size will be significantly depleted by crowding.
For f=0.3 and rC =12 �, we can infer the size of a stan-
dard empty cavity from the distributions p(RG) at high
ionic strength (Figure 8b). Note that p(RG) decreases for
RG>20 � when crowders are present (green solid line in
Figure 8b), but p(RG) increases with RG around 20 � in
the absence of crowders (black solid line in Figure 8b).
This indicates that the crowders significantly perturb the
unfolded conformations with RG larger than 20 �, which
can serve as an upper estimate of the smallest RNA size
affected by crowders. When c decreases, the distribution
p(RG) shifts to larger RG, increasing the fraction of the
unfolded conformations affected by crowders. At c=
0.1 M, all statistically significant values of RG in the un-
folded state fall within the range RG>20 �, so that the
entire distribution p(RG) is depleted due to crowding
(symbols in Figure 8b). This explains why the crowding-
induced stabilization is almost constant below 0.1 M, even
if the average RG continues to increase rapidly all the
way to 0.01 M (symbols in Figure 8a). This explanation
also shows that the relative ratio between the size of the
unfolded RNA and the crowder size dictates the extent
of stability changes.

4.3.7 RNA Becomes Compact as f Increases

The reduction in conformational space accessible to RNA
should increase with f, for a fixed rC. Thus, we expect
that RG should decrease as f increases. This is precisely
what is observed in experiments, which show that at all
concentrations of Mg2+ the Azoarcus ribozyme becomes

more compact as the volume fraction of the crowding
agent (PEG) increases[68] (Figure 9). Interestingly, the
midpoint of the folding transition cm – the concentration
of Mg2 + at which the folded and unfolded states of the
Azoarcus ribozyme have equal populations – also de-
creases as f increases (Figure 9). This finding can be

readily explained in terms of the entropic stabilization
mechanism[64] and suggests that, to a first approximation,
PEG behaves as an inert hard sphere crowding agent.
Based on our considerations from the previous section,
we predict that the shift in cm due to crowding will also
depend on the concentration of monovalent counterions
in the RNA buffer, a prediction that is amenable to ex-
perimental test. In addition, it would be of interest to per-
form experiments at a fixed f but varying rC, which can
be changed by decreasing or increasing the molecular
weight of PEG.

5. Outlook

There are compelling reasons to develop CG models fur-
ther to study many complex phenomena associated with
RNA. The two most obvious ones are: (i) Current atomis-
tic RNA force fields do not appear to be accurate enough
to predict folding thermodynamics of even a tetra loop.[3]

It is unclear if the deficiency is in the parameterization of
RNA or water models or both. (ii) The time scales associ-
ated with the processes that we have touched upon here
are far too great for even the most specialized computers.
By essentially following a methodology of calibrating
energy functions by direct comparison with experiments,

Figure 8. (a) The radius of gyration RG of the unfolded PK (right
axis) as a function of the monovalent ion concentration c for f= 0
(black diamonds) and f= 0.3, rC = 12 � (green circles). Red squares
show the excess stability of the PK due to crowding, DGPK-
(0.3)�DGPK(0), for rC = 12 � (left axis). (b) Probability distributions
p(RG) of the radius of gyration of the unfolded PK for f= 0 and c =
1 M (black solid line), for f= 0 and c = 0.1 M (black diamonds), for
f= 0.3, rC = 12 � and c = 1 M (green solid line), and for f = 0.3, rC =
12 � and c = 0.1 M (green circles). Vertical dashed line indicates the
smallest size of RNA conformations that will be perturbed by crow-
ders with f= 0.3 and rC = 12 �.

Figure 9. Small-angle X-ray scattering measurements of the radius
of gyration of the Azoarcus ribozyme for different concentrations
of Mg2 + ions and polyethylene glycol (PEG). Graphic adopted from
Kilburn et al.[68]
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we have shown that CG models can not only reproduce
experimental measurements, but also can make testable
predictions. Although not discussed here, the folding
landscape of add-riboswitch (which activates translation
in E. Coli. by binding to adenine) under force was pre-
dicted accurately[79] three years before experimental vali-
dation. More recently, we have predicted that a single
point mutation should alter the folding landscape of add-
riboswitch to resemble that of pbuE-riboswitch, which ac-
tivates transcription.[80] These results show that discovery
of design principles of riboswitches, which control gene
expression, can be made using CG models but remain, at
present, outside the scope of atomically detailed simula-
tions. The concept of modeling at the appropriate level,
prevalent in the study of synthetic materials, which also
applies to biological problems, will surely spur us on to
develop suitable CG models and theories that capture the
essence of the problem at hand without being encum-
bered by unnecessary details, and will continue to grow
because there is an appetite to understand the workings
of a cell.

Appendix 1: Manning-Oosawa Mechanism

Counterion condensation onto a polyelectrolyte is analo-
gous to vapor-to-liquid phase transition.[81] Consider
a system consisting of NPE polyelectrolyte molecules in
a solution of volume V. Each PE, whose contour length is
l, has n charged groups on the backbone onto which n
monovalent counterions can condense. Counterions are
divided into nf, free (vapor), and nb, bound (liquid), coun-
terions. Figure 10 shows that the volume occupied by the
nb bound counterions around each PE is approximated as
a cylinder, with thickness, Rb, and volume v, (p Rb

2 l�v).
The average volume for n counterions released from each

PE is pRf
2 l�V/NPE. Therefore, the volume fraction of PE

(f 
NPE v/V) is related to Rb and Rf as (Rf/Rb)
2 =f. At

equilibrium, chemical potentials of free (mf) and bound
ions (mb) are equal, Dm=mb�mf =0. The energetic contri-
bution, De, results from the difference in the Coulomb
potentials (�ey) between the two phases. For a PE mod-
eled as a cylinder De=�e (yb�yf)=�e (y(Rb)�y (Rf))=
2kBTbxlog(Rb/Rf)�kBTbxlogf, where b 
 nf/n and x=n
lB/l, lB =e2/kBT is the Bjerrum length. The entropic contri-
bution TDs to Dm is determined by the ratio of accessible
volumes for the counterions in each phase, Vb for bound
ions and Vf for free ions. Since Vb�NPE v and Vf =
V�NPE v, TDs=kBT log(Vb/Vf)=kBT log(f/(1�f)). For
f!0 Dm� (bx�1)kBT logf. This suggests that the fraction
of free ions at equilibrium (Dm=0) is b=1/x and the frac-
tion of ions bound to PE (or the fraction of backbone
charge neutralized by the counterions) is 1�x�1. One can
use similar arguments to quantify the effect of counterion
condensation onto RNA, which is roughly spherical in
the folded state.[82] Surprisingly, this concept, familiar in
PE theory, has been very successful in estimating renor-
malized charges on the phosphate groups.

Appendix 2: Genre of CG Models

In response to the challenge of describing biological pro-
cesses that span several orders of magnitude in time and
length scales, a variety of CG models for DNA, RNA,
and proteins have been proposed. Although CG models
have been prevalent in the polymer literature for over
fifty years, their use in proteins began in earnest with the
pioneering work of Levitt and Warshel.[11] The efficacy of
off-lattice models for protein folding kinetics was first
demonstrated by Honeycutt and Thirumalai.[83] More re-
cently, in the same spirit, we introduced CG models for
RNA. In all the CG models, polypeptide chains and nu-
cleic acids are represented using a reduced description.
Figure 11 shows: (a) three interaction site model for an
RNA hairpin, obtained by representing each nucleotide
by three sites, corresponding to phosphate, ribose, and
base (the center panel). The rightmost panel shows fur-
ther reduction to the SOP model. The associated energy
functions are described in the main text. (b) Definition of
the distance between the bases (r) and of the two dihe-
dral angles (f1, f2) for stacking interactions in the TIS
model (Eq. 5). Phosphates, sugars and bases are shown in
black, green and red, respectively. The indices refer to
different nucleotides. (c) Definition of the distance (r),
angles (q1, q2) and dihedral angles (y,y1, y2) for hydrogen
bond interactions between the bases in the TIS model
(Eq. 6). Definitions of the structural parameters for hy-
drogen bonds involving phosphates or sugars and further
details on the energy functions can be found in Ref. [47].

A major advantage of CG models is that their confor-
mational space can be exhaustively sampled. However,

Figure 10. The volume occupied by the bound counterions
around each polyelectrolyte.
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even with simplification, accurate results for thermody-
namics might require enhanced sampling methods. To-
wards this end, simulation of CG models have used repli-
ca exchange methods and multicanonical methods. In ad-
dition, low friction Langevin dynamics has also been used
to efficiently sample conformational space. These meth-
ods are especially necessary in simulating proteins with
complex topology. To obtain kinetic information for fold-
ing, typically Brownian dynamics (BD) simulations are
performed. In BD simulations, the Brownian time is tH�
zHa2/kBTs where zH is the friction constant, a is roughly
the size of a coarse-grained bead, and Ts is the simulation
temperature. Estimates of these quantities[84] have been
used to map simulation times to real times in a number
of applications.

Appendix 3: Depletion Force

If the spacing between two colloidal particles in a suspen-
sion containing inert polymers is less than the polymer
size, osmotic pressure of the solution produces an attrac-
tive force, referred to as the depletion force, between the
colloidal particles.[74] The depletion force arises so as to
maximize the entropy of macromolecules. Consider two
colloidal particles (red spheres with diameter, D) sus-
pended in a solution of volume, V, with macromolecules
(orange spheres with diameter, d) (D>d). If both colloids
and macromolecules are hard spheres, the partition func-
tion for the system when two colloidal particles are sepa-
rated by a distance, a, is the accessible volume for macro-

molecules, i.e. , Q(a)= sV dx exp(�w(x, a))=Veff(a), where
w(x, a) is the potential energy between the two colloidal
particles at separation a, and x denotes the orientation (q,
f) between them. Depending on the distance between
the two colloidal particles, a, the accessible volume for
the macromolecules is

Veff ðaÞ ¼
V � p

4
3

Dþd
2

� �3
þ Dþd

2

� �2
a� 1

12 a3
h i

ðD � a � Dþ dÞ

V � 8p

3
Dþd

2

� �3
ða 	 Dþ dÞ

8
><

>:

ð11Þ

For D�a�D+d, the two spheres with radius (D+d)/2
overlap, reducing the accessible volume for macromole-
cules. Given the partition function, one can calculate the
depletion force between the spheres using f=NkBT
@logQ(a)/@a. For V!1,

Veff ðaÞ ¼
�p� p

3 ½ðDþ dÞ2 � a�ðD � a � Dþ dÞ
0 ða 	 Dþ dÞ

(

ð12Þ

Here p=NkBT/V is the osmotic pressure due to the
macromolecules. Note that p

4 ((D+d)2�a2) is the area of
circular intersection formed by the overlap of two

spheres, with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDþd

2 Þ2 �
a
2

	 
2
q

being the radius of intersec-
tion. The attractive interaction between two colloids
(green arrows in Figure 12) due to the depletion force
manifests itself only if the separation of the colloidal par-
ticles (a–D) is less than the size of macromolecules (d).
From Eq. 12, it is expected that for a given osmotic pres-
sure (p) the depletion force will be larger for bigger-size

Figure 11. (a) RNA hairpin, with TIS model (center) and SOP model
(right) representations. (b) Definition of the distance between the
bases (r) and of the two dihedral angles (f1, f2) for stacking inter-
actions in the TIS model. (c) Definition of the distance (r), angles
(q1, q2) and dihedral angles (y, y1, y2) for hydrogen bond interac-
tions between the bases in the TIS model.

Figure 12. The attractive interaction between two colloids (green
arrows) due to the depletion force manifests itself only if the sepa-
ration of the colloidal particles (a–D) is less than the size of macro-
molecules (d).
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macromolecular crowders. For a given volume fraction of
crowders fc =

4p

3 (d/2)3 N/V, the osmotic pressure is inver-
sely proportional to d3 (p=6fckBT/pd3); thus depletion
force becomes stronger for crowders with a smaller size,
d, although the range of non-zero depletion force [a2(D,
D+d)] is smaller.
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