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ABSTRACT Adapting a well-established formalism in polymer physics, we develop a minimalist approach to infer three-dimen-
sional folding of chromatin from Hi-C data. The three-dimensional chromosome structures generated from our heterogeneous
loop model (HLM) are used to visualize chromosome organizations that can substantiate the measurements from fluorescence
in situ hybridization, chromatin interaction analysis by paired-end tag sequencing, and RNA-seq signals. We demonstrate the
utility of the HLM with several case studies. Specifically, the HLM-generated chromosome structures, which reproduce the
spatial distribution of topologically associated domains from fluorescence in situ hybridization measurement, show the phase
segregation between two types of topologically associated domains explicitly. We discuss the origin of cell-type-dependent
gene-expression level by modeling the chromatin globules of a-globin and SOX2 gene loci for two different cell lines. We
also use the HLM to discuss how the chromatin folding and gene-expression level of Pax6 loci, associated with mouse neural
development, are modulated by interactions with two enhancers. Finally, HLM-generated structures of chromosome 19 of
mouse embryonic stem cells, based on single-cell Hi-C data collected over each cell-cycle phase, visualize changes in chromo-
some conformation along the cell-cycle. Given a contact frequency map between chromatic loci supplied from Hi-C, HLM is a
computationally efficient and versatile modeling tool to generate chromosome structures that can complement interpreting other
experimental data.
SIGNIFICANCE The packaging of chromosomes, giant macromolecules made of hundreds-of-megabase-long DNA,
into a micrometer-sized cell nucleus is truly remarkable. Recent advances in Hi-C techniques have ushered in a new era of
research on genome organization. We developed a computationally efficient and versatile approach, called the
heterogeneous loop model, to generate chromosome structural ensemble from Hi-C. The heterogenous-loop-model-
generated three-dimensional chromosome structures not only substantiate the chromosome organizations implicated by
diverse experimental data but also allow us to decipher the structural origin of genome function and variation of gene-
expression level along the cell cycle and across different cell types.
INTRODUCTION

Recent advances in chromosome conformation capture tech-
niques combined with parallel sequencing (1–5) and fluores-
cence imaging microscopies have ushered in a new era of
chromosome research over the past decade. Along with
post-translational histone modifications, which have led to
the conceptualization of epigenomes (6), the critical findings
from fluorescence imaging and Hi-C data that the spatial
organization of chromatin varies with the tissue or cell types
(7,8), cell cycle (4), and pathological states (9–11) have
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brought a new dimension to our understanding of genome
functions.

Among others, maps of genome-wide contact frequencies,
quantified byHi-C data, offer unprecedented opportunities to
infer 3D chromosome structures in cell nuclei (12–22). In a
nutshell, Hi-C provides the contact frequencies of genomic
loci pairs based on the statistics of PCR-amplified DNA frag-
ments digested from formaldehyde cross-linked cells (1,2).
One could interpret that Hi-C measures the population-
sampled contact probability between pair of genomic loci,
say i and j, pij. A proper mathematical mapping of pij to the
spatial distance rij is of critical importance for interpreting
fluorescence imaging data (23,24) in comparison with Hi-C
data.

The advent of fluorescence in situ hybridization (FISH)
followed by C-based techniques have engendered much
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devotion to capturing the principle underlying the three-
dimensional (3D) folding of chromosomes. This has led
to development of a series of polymer-based models over
the decades, which include the ‘‘multiloop subcompartment
model’’ (25,26), the ‘‘random loop model’’ (RLM) (27–29),
the ‘‘strings and binders switch’’ model (12,15,30) and
its derivative (17,31,32), the ‘‘loop extrusion model’’
(13–15,33), the ‘‘minimal chromatin model’’ (34), and,
more recently, the ‘‘chromosome copolymer model’’ (22).
Among them, although applicability is limited to the associ-
ated spatiotemporal scale of the model being considered,
some were developed by keeping a specific molecular
mechanism in mind or by incorporating ‘‘one-dimensional’’
information of epigenetic modification and/or DNA accessi-
bility along genomic loci as an input to a heteropolymer
model (22,32,35). On the other hand, partly sacrificing
model simplicity, others were developed solely for the pur-
pose of reconstructing more precise 3D chromatin structures
from Hi-C (20,36–38) and other experiments (39).

As the cell imaging data over different cell types are
rapidly growing, comparative study of chromosome confor-
mations has become imperative. In the abovementioned
models, however, a physically sound mapping of pij from
Hi-C to the spatial distance rij (see review (40)) is still lack-
ing, and computational costs are still high. To this end, here
we develop a minimalist model that allows us to generate
chromatin conformations from Hi-C data in a most efficient
way and to study the structural characteristics of chromo-
some at a length scale of interest corresponding to the resolu-
tion of the given data. To achieve such a goal in the most
simplifyingmanner, one could learnmuch from the literature
of generic polymer problems, such as the collapse transition
of an isolated polymer chain or macromolecular networks
with increasing numbers of internal bonds (41–44) and poly-
mer conformation and dynamics inside confinement (45–47).

Pushing the polymer physics idea to its extreme, we pro-
pose a minimalist approach, termed the heterogeneous loop
model (HLM), that allows us to build 3D structures of chro-
mosomes from Hi-C data. The HLM adapts the RLM, which
was originally developed based on a randomly cross-linked
polymer chain (27,28,48). In the RLM, which represents
chromosome conformation in terms of the sum of harmonic
potentials, pairwise contact probabilities are expressed
analytically in terms of a few model parameters. Here,
without sacrificing the mathematical tractability and
simplicity of the RLM, we extend the RLM to the HLM
by allowing the loop interactions to be nonuniform and
heterogeneous such that the resulting loop interactions can
best represent a given Hi-C data set.

In this study, we apply the HLM to various regions of
human and mouse genomes that span 1–100 Mb at 5–500
kb resolution and generate the corresponding conformational
ensemble of chromosomes. We demonstrate the utilities of
the HLM by comparing the structural information extracted
from an HLM-generated chromosome ensemble with those
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implicated by themeasurements fromFISH (23,24,28), chro-
matin interaction analysis by paired-end tag sequencing
(49,50), and previous modeling studies (28,32,37,51,52).
Through multiple examples, this study will demonstrate
that the HLM is an excellent approach to infer 3D structures
from Hi-C data.
METHODS

Description of the HLM

The full energy potential of the HLM consists of two parts.

UHLMðrÞ ¼ UKðrÞ þ UnbðrÞ (1)

In what follows, we delineate the first and second terms of Eq. 1 (see

Supporting Materials and Methods for technical details).

First, decomposed into two parts, UKðrÞ describes the harmonic

constraints on a chain of N monomers (27),

UKðrÞ ¼
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where successive monomers along the backbone and nonsuccessive mono-

mers forming loops are both harmonically restrained. In the second line,
UKðrÞ is written in a compact form with r ¼ ð~r1;~r2;/;~rN�1ÞT and K rep-

resenting the Kirchhoff matrix. K can be built from the interaction strength

matrix K, which takes kij ¼ ðKÞij as its matrix element. The interaction

strengths ought to be non-negative (kijR 0) for all i and j-th monomer pairs.

In the HLM, if kijs0, then the i and j-th monomer has a potential to form a
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and sij½ ¼ hd~ri ,d~rji� is the covariance between the positions of i and j-th

monomers, which can be obtained from an inverse of K-matrix as
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(5)

One can obtain the contact probability pij by integrating the pairwise

distance P(rij) (Eq. 3) up to a certain capture radius (rc) (53,54), pij ¼R rc
0
PðrijÞdrij, which gives
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where erfðxÞ ¼ ð2= ffiffiffi
p

p Þ R x
0
dte�t2 . Therefore, a one-to-one analytical map-

ping between p and k follows from the precise mappings between p and
ij ij ij

sij from Eqs. 4 to 6 and between sij and kij from Eq. 5.
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Although it is tempting to directly use the mathematical relation between

pij and kij to obtain K from Hi-C data, there is an unavoidable numerical

issue (see Supporting Materials and Methods and Figs. S3–S5 for details).

In practice, we calculate the ~K-matrix that approximates K by selecting

only the significant contacts in P. More specifically, we evaluate the signif-

icance of contact probability pij by calculating zij, which is defined as (see

the matrix elements in the upper diagonal part of Fig. 1 B)

zij ¼ pij
PðsÞ; (7)

where PðsÞ ¼ ð1=N � sÞPN�s�1
i¼0 pi;iþs is the mean contact probability for

monomer pairs separated by the arc length s along the contour. The greater
the value of zij, the more significant the contacts are deemed. We then select

the top 2N (i, j) pairs ranked in terms of the values of zij (>1) (the matrix

elements in the lower diagonal part of Fig. 1 B). For these 2N pairs whose

contact probability pij is given in P, the precise value of g�
ij (or equivalently

hr2�ij i ¼
RN
0

r2ijPðrijÞdrij ¼ ð3=2gÞ�ij) can be determined using Eq. 6. Then,

starting from a Rouse chain configuration as an initial input, we add nonsuc-

cessive bonds with varying interaction strengths (0% kij % 10 kBT/a
2) until

we minimize the objective function FðKÞ

FðKÞ ¼
X2N
ði;jÞ

uij
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so as to determine the optimal values of ~K ¼ f~kabg ¼minfkabgFðKÞ. Here,
the weight factor uij, which is used to normalize the statistical bias from

chromatin loops of different sizes, is defined as
A B

DE

FIGURE 1 The pipeline of the HLM. (A) Contact probability matrix P of a 10-

lated from Eq. 7 is shown above the diagonal. The significant contacts selected fro

of Z is provided on the left-hand side of the panel, and we divide the whole chro

ingly. (C) The interaction strength matrix ~K calculated by the constrained optimiz

from HLM potential defined by ~K and Z (Eq. 1) is illustrated with the L, M, and

domain labels assigned in (B). (E) shows ~P-matrix calculated using a conformati

tween P (A) and ~P (E) is 0.96. To see this figure in color, go online.
uij ¼ uðji� j j Þ ¼ uðsÞ ¼ n�1ðsÞP
sn

�1ðsÞ; (9)

where nðsÞ ¼P
ði;jÞ

dðji� j j � sÞ is the number of loops of size s. The
gradient-descent algorithm (L-BFGS-B method in SciPy package) was

used to determine the optimal parameters f~kabg. A fully convergent solu-

tion of ~K-matrix (Fig. 1 C) could be obtained within a few minutes when

N was not too large (%200). This ~K-matrix determining process, termed

‘‘constrained optimization,’’ faithfully reproduces the original K matrix

with a relative error smaller than 5% (see also Figs. S3–S5).

In fact, the number of selected top contact pairs (nc) could have been 3N,N,

or even N/2. But we found that when nc R 2N, the quality of the resulting

interaction strength matrix ~K is already good enough that the Pearson corre-

lation (PC) between the original Hi-C and the contact probability matrix ob-

tained from ~K saturates for nc > 2N (Fig. S6). Thus, to build the interaction

strength matrix by simultaneously minimizing the computational cost, we

chose nc ¼ 2N.

After obtaining ~K (Fig. 1 C) and hence UKðrÞ, we added a nonbonded

interaction term Unb(r), defined for all i and j pairs to the full energy poten-

tial UHLM(r) (Eq. 1):
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X
ij

cti ;tjuLJ
�
rij
�
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where uLJ(r) is the Lennard-Jones potential truncated for rR rc where rc ¼
5a/2 with e ¼ 0.45 kBT,
uLJðrÞ ¼ e
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C

Mb genomic region of chr5 in GM12878 cells is shown. (B) Z matrix calcu-

mZ are shown below the diagonal. The sign of the first principal component

mosome domain into ‘‘L’’ (purple), ‘‘M’’ (green), and ‘‘N’’ (orange) accord-

ation is shown. (D) The conformational ensemble of chromosomes generated

N domains colored in purple, green, and orange, respectively, following the

onal ensemble produced from molecular dynamics simulations. The PC be-
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If e ¼ eq (¼ 0.34 kBT) with cti ;tj ¼ 1, then Unb(r) leads to q-solvent con-

dition for an infinitely long chain, putting the second virial coefficient to

zero, i.e., n2 ¼ ð1=2Þ R rc
0
ð1� e�buNBðrÞÞd3r ¼ 0. We chose ε (¼ 0.45

kBT) slightly greater than εq and assigned a loci-pair-type-dependent prefac-

tor cti ;tj. Each monomer i is assigned with a type t, either ‘‘�’’ or ‘‘þ,’’ based

on the sign of the first principal component of Z (see the track on top of

Fig. 1 B). The value of prefactor cti ;tj (>0)—depending on the types of

two loci i and j, which are titj ¼ þþ, � �, or �þ —is evaluated by aver-

aging over all the monomer pairs of the corresponding types, such that

cp;q ¼ hzijiti¼p;tj¼q. The values of cti ;tj are determined based on a given

Hi-C data set. For the case shown in Fig. 1, we obtain c�,� ¼ 1.18,

c�,þ ¼ 0.79, and cþ,þ ¼ 1.19. According to the Flory-Huggins theory

(55), the condition ceff
�;þ ¼ ð1=2Þðc�;� þ cþ;þÞ � c�;þz0:4> 0 leads to

spatial separation between þ and � type loci, which indeed is realized

and reflected in the characteristic checkerboard pattern of Hi-C data. It

should be noted, however, that the classification of type �/þ is not neces-

sarily identical to the A/B compartment of chromatin. Whereas A/B com-

partments are genome-wide characteristics usually defined based on Hi-C

data at low (Mb) resolutions (2,3), the monomers in the HLM can be always

classified into types �/þ regardless of the resolution of the model.

Finally, we sampled 3D chromosome structures using molecular dy-

namics simulation, implementing the full energy potential UHLM(r), and

calculated the contact probability matrix based on an HLM-generated

conformational ensemble. In the specific example demonstrated for the

Hi-C data of the 10-Mb genomic region of chr5 in the GM12878 cell line

(Fig. 1), ~P (Fig. 1 E) obtained from HLM-generated chromosome confor-

mations (Fig. 1D; see also the clustering analysis that highlights the confor-

mational variability of chromosomes in Supporting Materials and Methods;

Fig. S7) displays a notable resemblance to the input P (Fig. 1 A) (PC of

0.96; Spearman correlation of 0.92). Despite the simplicity of the HLM po-

tential (Eq. 1), the similarity between P and ~P, as well as the chromosome

conformations ensemble generated during the procedure, is remarkable.
Structure characterization

We quantified the structural feature of HLM-generated chromosome

ensemble by means of several quantities:

1) The compactness of a (sub)chain of length N is quantified in terms of

r3g=N, where rg is the gyration radius of the (sub)chain.

2) The asphericity (A) is calculated by A ¼ P3
i¼1ðli � lÞ2=6l2, where li

(i ¼ 1, 2, 3) are the three eigenvalues of the moment of inertia tensor
TABLE 1 Genomic Regions Simulated in This Work

Species Cell line Hi-C experiment Chromosome Start (bp)

Human GM12878 (3) chr5 90,000,000 1

IMR90 (3) chr21 14,000,000

IMR90 (3) chr11 59,000,000

IMR90 (3) chr1 150,000,000 1

K562 (3) chr16 60,000

GM12878 (3) chr16 60,000

hESC (88) chr3 179,000

HUVEC (3) chr3 179,000

Mouse mESC (75) chr2 105,000,000 1

NPC (75) chr2 105,000,000 1

CN (75) chr2 105,000,000 1

ncx_NPC (75) chr2 105,000,000 1

ncx_CN (75) chr2 105,000,000 1

mESC (4) chr19 1

aThe similarity between contact probabilities (pij) from Hi-C and those from mo

and Methods).
bIt takes a few minutes to determine the interaction strength parameters by the
cFrom the post-M to pre-M phase, PC of mESCs is 0.77, 0.96, 0.96, 0.96, 0.97
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and l is their mean (56,57). A¼ 0 for a sphere, and A> 0 for a nonspher-

ical shape.

3) The roughness of the surface of a (sub)chain was evaluated using the

Voronoi diagram (58), which tessellates the 3D space occupied by the

chain. An upper bound for the volume of each monomer was set using

a dodecahedron with a diameter of 2a. The Voronoi diagram provides

a well-defined volume V and surface area S of the (sub)chain. Because

the surface area of a perfect sphere with the volume V is S0 ¼
(36pV2)1/3, we quantified the surface roughness using S/S0 R 1.

4) To visualize an ensemble of structures with considerable variability, we

first divided the chain into a few segments (domains). Next, the distri-

bution of the distances between the geometric centers of these domains

were computed based on the ensemble of structures. Several configura-

tions of chromosomes were then randomly selected from the most

populated state (in terms of interdomain distances), aligned, and

rendered.
RESULTS

The HLM is effectively a multiblock copolymer model in
which monomer-monomer interactions (loops) are harmon-
ically restrained with varying interaction strengths (kij)
(Methods; Supporting Materials and Methods). Mapping
the pairwise contact probabilities pij from Hi-C to the model
parameters kij is the essence of the HLM. By incorporating a
standard Lennard-Jones nonbonded potential slightly below
the q-condition, which takes into account the short-range
excluded-volume interaction between monomers as well
as the global thermodynamic driving force that induces
spatial separation between different monomer types, the
HLM allows us to generate a conformational ensemble of
chromosome structures that reproduces a contact probability
matrix that displays close resemblance to an original input-
ted Hi-C data set. We used the HLM to model various
genomic regions (see Table 1). HLM-generated chromo-
some conformations were used to interpret the currently
available experimental results.
End (bp) Resolution (kb) N PCa Time (min)b Figure

00,000,000 50 200 0.96 4.8 Fig. 1

48,000,000 250 137 0.97 0.8 Fig. 2

94,000,000 250 140 0.98 1.7 Fig. S8

80,000,000 250 120 0.98 0.8 Fig. S9

560,000 5 100 0.94 0.2 Fig. 3

560,000 5 100 0.92 0.4 Fig. 3

184,000 40 125 0.94 1.4 Fig. 4

184,000 40 125 0.95 1.8 Fig. 4

06,000,000 8 125 0.94 1.4 Fig. 5

06,000,000 8 125 0.96 1.2 Fig. 5

06,000,000 8 125 0.97 1.3 Fig. 5

06,000,000 8 125 0.97 0.8 Fig. 5

06,000,000 8 125 0.97 1.1 Fig. 5

61,342,430 500 117 0.92c 1.4 Fig. 6

deling is quantified by the PC (see also discussions in Supporting Materials

constrained optimization, namely obtaining ~K from P.
, and 0.91, respectively.
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Spatial distribution of TADs inferred from HLM in
comparison with FISH measurement

Intrachromosomal distances between topologically associ-
ated domains (TADs) in human IMR90 cells, measured by
Wang et al. through a multiplexed FISH method (23),
have been used as a benchmark for different models (38).
To show the utility of the HLM, we model a 34-Mb genomic
region on chr21 of IMR90 cells, which contains 33 labeled
TADs (Table S1 provides the genomic positions of these
TADs).

First, the contact probability matrix ~P constructed
from HLM-generated structures captures the characteristic
checkerboard pattern of the heatmap of Hi-C data, P; the
mean contact probability PHLM(s) of the HLM is consistent
with PHi-C(s) calculated from Hi-C over all length scales,
including the wiggly pattern at large s (Fig. 2, A and B).

The heatmap calculated for inter-TAD distances using the
HLM-generated conformational ensemble (lower diagonal
part of Fig. 2 C) can directly be compared with the FISH
measurement (upper diagonal part). The square block
pattern along the diagonal axis of the heatmap indicates
that four to five adjacent TADs constitute an aggregate,
reminiscent of meta-TAD (30), and the patterns in the off-
diagonal part (highlighted by the magenta boxes) suggest
long-range clustering of TADs. The error of the inter-TAD
distance heatmap relative to FISH is 0.184, which is compa-
A C

B D

FIGURE 2 A 34-Mb-genomic region of chr21 in IMR90 cells modeled by the

part) and HLM (~P, lower diagonal part) is given. The PC between P and ~P is 0

map. The type of each domain, A or B, is depicted in red or blue, respectively.

(orange data) and HLM (blue line). (C) The heatmap of inter-TAD distances mea

the HLM (lower diagonal part). (D) Distributions of A- and B-type TADs proje

TADs are aligned, are indicative of the spatial separation between the two TAD

distances r(s)’s as a function of arc length s from FISH (orange data) and the HLM

pairwise contact probability between TADs, p�1
ij versus inter-TAD distance rij i
rable to the value of the GEM model (38) and better than
others (see Fig. 4D in (38)). A principal component analysis
of this matrix (top left part of the matrix in Fig. 2 C) divides
TADs into A/B types (23). Fig. 2 D demonstrates the polar-
ized organization of A- and B-type TADs by aligning the
geometric centers of HLM-generated A- and B-type TADs
along an axis that best separates the two types of TADs (23).

The intrachain end-to-end distance rðsÞ ¼PN�s�1
i¼0 ri;iþs=

ðN � sÞ displays a scale-dependent scaling relationship
with the genomic distance s, r(s)� sn (Fig. 2E). In qualitative
agreement with the FISH measurement (23), there is a cross-
over around s ¼ 7 Mb, such that n z 1/3 for s < 7 Mb and
n z 0.21 for s > 7 Mb.

We explore the relationship between contact probability
pij and the corresponding distance rij of two loci. It is ex-
pected that the looping probability of polymer is inversely
proportional to the volume of space (V) explored by the
two loci as Ploop � 1/V. Because the volume V scales with
the spatial separation (R) between the two loci in d-dimen-
sion as V � Rd, it follows that (59–61)

Ploop � 1

Rd
f
�rc
R

�
� 1

Rd

�rc
R

�g
(12)
The correlation hole exponent g is g ¼ 0 for a Gaussian
chain (55). According to the Flory theorem (62–65), the
E

F

HLM. (A) A heatmap of contact probabilities from Hi-C (P, upper diagonal
.97. The positions of TADs, labeled by sticks, are displayed above the heat-

(B) Plotted are the mean contact probabilities P(s)’s calculated from Hi-C

sured by FISH (upper diagonal part) is compared with that calculated from

cted on the x axis, along which the geometric centers of different types of

types. An ensemble of structures is also shown. (E) Intrachain end-to-end

(blue line) are shown. The inset shows r(s)’s in log-log scale. (F) Inverse of

s shown in log-log scale. To see this figure in color, go online.
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ideal chain statistics is a good approximation for a chain in
polymer melts or for a subchain in a fully equilibrated
globule. Because d ¼ 3 for 3D, we expect Ploop � R�3, or
equivalently, pij � r�3

ij (see also Fig. S1 B). In fact, this
scaling relation is observed for the data point generated by
HLM for rij < 1 mm (Fig. 2 F). Although Wang et al.,
who combined Hi-C and FISH data, reported a scaling
relation of pij � r�4:1

ij for the entire range, it is not clear
whether the relation can straightforwardly be extended to
the range of rij < 1 mm in which the data point from their
measurement might be less accurate. According to the
HLM-generated data, a more proper scaling should be
pij � r�3

ij for rij < 1 mm and pij � r�4:1
ij for rij > 1 mm.

Next, to demonstrate another analysis on FISH measure-
ment, we applied the HLM to the q-arm of chr11 in IMR90
cells, whose intrachain pairwise distances between genomic
loci had been measured with FISH (28,66) (see Table S2 for
the position of FISH probes in the genome and in the
model). The model produces the contact probability
matrix ~P with a PC of 0.98 relative to Hi-C data (P) (see
Fig. S8, A and B). The HLM enables us to calculate the
spatial distances between specific pairs of loci (Fig. S8 C),
with a mean relative error of 0.189 (with respect to FISH
data). The HLM-generated structural ensemble also indi-
cates that compared to the gene-poor and transcriptionally
inactive antiridge domain, the transcriptionally active ridge
domain is less compact, less spherical, and has a rougher
domain surface (Fig. S8, D–F), all of which are in agree-
ment with the FISH experiment (66). Modeling another
30-Mb region on chr1 of IMR90 cells leads to similar results
(Fig. S9; Table S3).
Visualization of chromatin globules

a-Globin gene

Cis-regulatory elements generally mediate the transcription
of neighboring genes within a range smaller than 1 Mb (67).
The a-globin gene domain, a 500-kb genomic region known
as ENm008 located at the left telomere of human chr16, has
previously been studied to decipher the relationship between
chromatin structure and transcription activity (37,51,52).
RNA-seq data (68–70) indicate that the a-globin genes
(including z-, m-, a2-, a1-, and q-globin genes) are ex-
pressed in K562 cell lines but silenced in GM12878 (tracks
on the left side of the Hi-C heatmaps in Fig. 3 A). According
to 3C/5C measurements (51,71), the a-globin gene forms
long-range looping interactions with multiple regulatory
elements upon gene activation. Among them, of particular
interest is one of the DNase I-hypersensitive sites (DHSs),
HS40, located at �70 kb upstream of the a1 gene.

The HLM-generated structural ensemble at 5-kb resolu-
tion for ENm008 of two cell lines (K562 and GM12878)
suggests that the contact probability P(s) decreases slightly
faster in K562 than in GM12878 cells at large s (Fig. 3 B).
618 Biophysical Journal 117, 613–625, August 6, 2019
The a-globin domains of K562 and GM12878 cell lines
visualized with FISH (51) indicate that K562 is less
compact than GM12878, which is confirmed straightfor-
wardly by the compactness calculated using the HLM-
generated structures (Fig. 3 C). Compared with GM12878
cells, the a-globin domain in K562 cells adopts a less spher-
ical shape (Fig. 3 D; (51,52)) (see also Fig. S10, where indi-
vidual loci are classified into different groups based on their
3D coordinates, clarifying the spatially separated domains
of K562 cells).

Next, we examined the changes in the distances between
the a1-globin gene and other loci upon activation of the
gene. Even though the whole domain in K562 cells is rela-
tively more expanded, HS40 is closer to the a1 gene in K562
than in GM12878 cells (Fig. 3 E), which is consistent with
the expectation based on the higher contact enrichment be-
tween HS40 and the a1 gene observed in K562 by 3C/5C
measurements (e.g., Fig. 2 in (51)). Through inter-cell-line
comparison between K562 and GM12878 for the rest of
the region using distance distribution to the a-globin gene
locus, we identified a group of loci other than HS40 that
are significantly closer to a-globin genes in K562 cells
(Mann-Whitney U test, p < 1 � 10�5). Their genomic posi-
tions are marked using red sticks in Fig. 3 E. According to
the independent chromatin interaction analysis by paired-
end tag sequencing experiments (49,50) designed to capture
the chromatin loop interactions mediated by specific protein
factors, the structural variation associated with a-globin
genes is mainly orchestrated by Pol II (see Table S4).
HLM captures 83% of Pol-II-mediated chromatin loops
specific to K562 cells (Fig. 3 F).

These results indicate that the HLM captures both the
tissue-specific variation in the global packing of the a-globin
gene domain and variation in the structure of the gene locus.
The multiple K562-specific interactions, substantiated by the
HLM, suggest that a cooperative action of multiple regulato-
ry elements, including HS40, is responsible for the activa-
tion of a-globin genes (37). HLM-generated conformations
indeed confirm the notion of chromatin globule proposed
in (51).

SOX2 gene

As another example of transcription-dependent chromatin
folding, we studied the human SOX2 gene locus, which
encodes a transcription factor involving the regulation of
embryonic development. The SOX2 gene is transcribed in
human embryonic stem cells (hESCs) but not in umbilical
vein epithelial cells (HUVECs) (Fig. 4 A). To compare the
results from the HLM with a recent modeling study (32),
we measured the distances between the SOX2 gene and
two possible regulatory elements located at regions �800
kb upstream and �650 kb downstream. Whereas both ele-
ments are closer to the SOX2 locus in transcriptionally
active hESCs than in inactive HUVECs, the chromatin fiber
is less compact in hESCs (Fig. 4 D; see also the snapshots in
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FIGURE 3 a-Globin gene domain modeled by the HLM for two different cell lines. (A) Shown are the heatmap (P) of contact probabilities measured by

Hi-C (upper diagonal part) and the corresponding map (~P) obtained from the HLM (lower diagonal part) in K562 (left) and GM12878 (right) cells. RNA-seq

signals (68) are displayed on the left side of the heatmaps, and the location of the a-globin gene is depicted in gray shading. (B) Mean contact probability P(s)

is plotted. (C) Compactness and (D) asphericity of the domain are shown. (E) Genomic positions of the loci, closer to the a1 gene in K562 than in GM12878

cells, are labeled using red sticks. Contrasted below are the distance distributions between the a1 gene and HS40, P(ra,HS40), for two cell lines. For each cell

line, an ensemble of structures is shown for comparison with chains colored by the genomic position from the telomere (blue) to centromere (red). The

a-globin gene and HS40 are rendered using a black and an orange sphere, respectively. (F) Pol-II-mediated chromatin interactions (49), involving a-globin

genes and specific to K562 cells, are compared with the model. To see this figure in color, go online.
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Fig. 4, E and F). HLM-generated structures demonstrate the
dependence of chromatin folding on the transcription level
at SOX2 gene loci, and this trend comports well with the
prediction made in (32), which also employed polymer
model simulation.
Chromatin interaction at Pax6 gene loci

The efficacy of the HLM was further tested for the genomic
loci of the Pax6 gene, which involve the development of
mouse neural tissues. Flanked by two neighboring genes
(Pax6os1 and Elp4), the expression level of the Pax6 gene
is considered to be regulated by multiple long-range ele-
ments, including two regulatory regions located at �50 kb
upstream (URR) and �95 kb downstream (DRR) (Fig. 5
A). The DRR contains several DHSs and the SIMO
enhancer, which was identified in transgenic reporter gene
studies of developing mouse embryos (72,73). Another
cis-regulatory element within the URR, PE3, has recently
been identified from mouse pancreatic b cells (b-TC3) (74).
A study combining Capture-C, FISH, and simulations
(32) has reported a nontrivial correlation between the
expression level of the Pax6 gene and the spatial separation
from the Pax6 gene to the URR and DRR. Among the three
types of mouse cells (b-TC3, MVþ, and RAG cells) studied
in (32), the Pax6 gene maintained the largest separation
from the DRR in the b-TC3 cells that displayed the highest
expression level of Pax6. Therefore, it was suggested (32)
that the enhancer at the DRR is not involved in upregulation
of Pax6 in b-TC3 cells or that some unclear upregulation
mechanisms that do not require the spatial proximity to en-
hancers are responsible for the activity of the Pax6 gene.

To study the origin of the possible complex interplay be-
tween the Pax6 gene and neighboring genetic elements, we
applied the HLM to the same genomic region of five
different mouse cell types whose Hi-C data are currently
available: 1) embryonic stem cells (mESCs), 2) neural pro-
genitors (NPCs), 3) cortical neurons (CNs), 4) ncx_NPCs,
and 5) ncx_CNs, with the prefix ‘‘ncx_ ’’ indicating that
the cells are directly purified from the developing mouse
Biophysical Journal 117, 613–625, August 6, 2019 619
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FIGURE 4 Comparison of a 5-Mb genomic region on chr3 modeled by the HLM between hESCs and HUVECs, which includes the SOX2 gene. (A) Genes

annotated in this region are aligned with RNA-seq (68) and H3K27ac signals (89) of two cell lines. The genomic positions of three ‘‘simulated’’ FISH probes

(32) are labeled in the bottom track. (B) The distance between upstream and SOX2, (C) the distance between SOX2 and downstream, and (D) the gyration

radius calculated from our model are given. (E) A heatmap of contact probabilities for hESCs measured by Hi-C (88) (upper diagonal part) and calculated

from the HLM (lower diagonal part) is displayed. Based on the first principal component of the significance matrix (track on the left side of heatmap), we

divided the region into three domains and colored the chromatin chain accordingly in the snapshot of a typical structural ensemble. (F) Analysis was carried

out for HUVECs with Hi-C data from (3). To see this figure in color, go online.
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embryonic neocortex in vivo. Each cell type displays
distinct transcriptional activity patterns of Pax6 and its
neighboring genes (75) (Fig. 5 A). According to the frag-
ments per kilobase of transcript per million scores from
RNA-seq analysis, which is higher when the gene transcrip-
tion is more active, the five cell types display Pax6 activity
in the following order: ncx_NPC > NPC > CN > ES >
ncx_CN (Fig. 5 B).

The contact probabilities calculated from our HLM-
generated conformations reasonably reproduce the Hi-C
data at 8-kb resolution (75) (see Fig. S11; Table 1). The
Hi-C contact profiles of three genomic loci (URR, Pax6,
and DRR) with other genomic regions (histograms in
Fig. 5 C) are well-captured by HLM-generated conforma-
tions (lines in Fig. 5 C). Compared with the distance of
Pax gene promoter (P) to the upstream enhancer (UE),
Pax6 gene activity is better correlated with the distance to
the downstream enhancer (DE) (see Fig. 5 D); the closer
620 Biophysical Journal 117, 613–625, August 6, 2019
to the DE, the higher the Pax gene activity is. The highest
Pax gene activity is seen in ncx_NPCs. Notice that the
most enriched Hi-C contacts between Pax6 and DRR are
indeed found in ncx_NPCs, which is marked with a red
star in Fig. 5 C. We note that our finding on contacts be-
tween Pax6 and the DRR using a different set of cell lines
differs from the result based on b-TC3 cells (see Fig. 2 A
in (32)). This, however, underscores that the mechanism
or the chromatin conformations responsible for the Pax6
gene activity depend strongly on the cell type. It is clear
that the mechanism of Pax6 gene regulation in ncx_NPCs
differs from that in b-TC3 cells.

Next, given thatHi-C data are obtained from a collection of
millions of cells, heterogeneity of chromatin conformations
is inevitable in analyses, which has indeed been highlighted
in (32). To characterize the heterogeneity in the HLM-gener-
ated conformational ensembles, we classified each chromatin
structure into five groups based on the separations between
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FIGURE 5 Pax6 gene locus modeled by the

HLM for five different mouse cell types. (A)

Genes in a 1-Mb region on chr2, where the

genomic positions of the URR, Pax6, and the

DRR are labeled with gray shading, are shown

in alignment with the fragments per kilobase of

transcript per million score measured from RNA-

seq analysis (75). Pax6 gene promoters and en-

hancers and nearby DHSs are zoomed in at the

bottom (74,90), where the positions of the up-

stream enhancer (UE), promoter (P), and down-

stream enhancer (DE) are marked with arrows.

(B) Expression levels of the Pax6 gene are pro-

vided for different cell types. (C) Contact profiles

for five different cell types are shown. The profiles

were constructed using Hi-C data (gray bars) for

the URR, Pax6, and the DRR (from top to bottom)

relative to other genomic regions and calculated

using the HLM (solid lines). (D) Pax6 expression

level is shown as a function of the average distance

between two enhancers (UE and DE) and the pro-

moter (P). (E) Percentage of chromatin conforma-

tions belonging to each group classified based on

the distances between UE, P, and DE is shown.

(F) Shown are the scatter plot of the distances

rP–DE and RUE–P of 200 structures, which were

randomly selected from the conformational

ensemble of ncx_NPCs. Typical structures are pre-

sented for each group in which the three sites are

labeled using different colors. To see this figure

in color, go online.
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the Pax6 gene promoter (P) and two enhancers (UE and DE)
(Fig. 5 E). To visualize the conformational diversity, we
randomly selected 200 structures and characterized them
by the promoter-enhancer distances (Fig. 5 F). Except for
the ‘‘gray’’ group, in which all three separations are large,
the population of conformational ensemble consists mainly
of the ‘‘black’’ group (P is close to DE but not to UE) and
the ‘‘purple’’ group (P is close to UE but not to DE), which
are suspected to be responsible for the high expression level
of the Pax6 gene. Consistent with our analysis of the
ensemble-averaged distance to enhancers for different cells
(Fig. 5 D), the proportion of the ‘‘black’’ group shows a
decreasing trend as Pax6 becomes less active (Fig. 5 E), sug-
gesting amore important role of DE thanUE in regulating the
Pax6 gene for the five cell lines.

Although an indirect upregulation of Pax6 gene by DRR
as seen in b-TC3 cells (32) cannot entirely be ruled out, the
correlation of gene activity level with the spatial proximity
of the Pax6 gene to the DRR is clearly demonstrated, at least
across the five cell lines that we studied using the HLM. The
mechanism of indirect upregulation and the mechanism of
cell-type-dependent choices deserve further study.
Chromosome in different phases of the cell cycle

Most Hi-C data are obtained over a population of ‘‘un-
phased’’ cells. Here, we employ the HLM to model the
global architecture of chromosome at different phases of
the cell cycle during the interphase based on single-cell
Hi-C (4). Accumulating the data from tens to hundreds of
binary contact matrices of single cells into an input matrix
P, we built a 500-kb-resolution model of chromosome for
the post-M, early-S, mid-S, late-S/G2, and pre-M phases
of chr19 in mESCs (above the diagonal in Fig. 6 A). ~P
matrices computed using the HLM (below the diagonal in
Fig. 6 A) display reasonable correlation with the original
Hi-C data (PC > 0.9), except for the post-M phase (PC ¼
0.77); unlike other phases, the lower PC value with the
~P-matrix at the post-M phase, characterized with a uniform
and featureless pattern, is due to the smaller number of sam-
pling cells (Nc).

The local compactness of the chromosome conformation
was quantified in terms of the average volume occupied by a
single monomer (v ¼ V=N) based on the Voronoi tessella-
tion (Fig. 6 B). After mitosis, the chromosome continues
to expand until the late-S/G2 phase. The gyration radius
also captures this trend (Fig. 6 B), except that the model
has the largest value of rg in the post-M phase. A partial
condensation of the chain (decreases in r3g and v) is observed
before entering the pre-M phase. This decondensation-
condensation cycle is also captured with the asphericity of
structures generated from the HLM (Fig. 6 C), which
decreases dramatically from the post-M to G1 phases and
then increases gradually after the G1 phase. The same
Biophysical Journal 117, 613–625, August 6, 2019 621
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FIGURE 6 Chr19 of mESCs modeled by the HLM at 500-kb resolution. (A) A heatmap of contact probabilities from Hi-C (upper diagonal part) and HLM

(lower diagonal part) is given. From post-M phase to pre-M phase, Pearson correlations (PCs) are 0.77, 0.96, 0.96, 0.96, 0.97, and 0.91, respectively. The

Hi-C matrices are the outcomes from a sum of Nc binary contact matrices of single cells in the same phases of the cell cycle. (B) Plotted are r3g and the average

volume (v) occupied by a single monomer. (C) Asphericity of the chromosome in different phases along the cell cycle is calculated. Depicted at post-M, G1,

and pre-M phases are the snapshots of the HLM-generated structure, which are colored from the centromere (blue) to telomore (red). To see this figure in

color, go online.
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conclusion can be drawn from the probability density of
pairwise distance between monomers (see Fig. S12).
DISCUSSION

The HLM is similar to previous polymer models of chro-
matin that also convert information on spatial proximity
into effective harmonic restraints between monomers
(25,76,77). In fact, our use of harmonic potential is based
on our observation that the pairwise loci distance distribu-
tions measured in many FISH experiments (23,36,78,79)
are reasonably represented by the variations under harmonic
restraints. For example, the distance distribution between
seven pairs of FISH probes in mESCs (36) can be reason-
ably represented by the probability density of the pairwise
distance of the HLM (Fig. S1 C). Of course, we cannot
rule out the possibility that the cell population is too hetero-
geneous to capture by using single harmonic restraint.

The HLM adopts a ‘‘mean-field’’ approach of using a
population-sampled Hi-C map as the sole input data. Funda-
mental concerns as to the use of single-input data in solving
the inverse problem can still be raised to many modeling ap-
proaches employing information such as epigenetic marks
and DNA accessibility, which are also population-averaged,
not single-cell based. Nevertheless, the nature of contact
pairs is still probabilistic, giving rise to variations in pair-
wise distances (Fig. S1 A). More importantly, topological
and energetic frustrations that arise from the competition be-
tween the chain connectivity and long-range interaction
defined in Hi-C data are inherent in the polymeric system
(80). It is generally not possible to obtain a single chromatin
structure that satisfies all the probabilistic constraints given
in the Hi-C map. As a result of computationally solving the
inverse problem of inferring 3D structures from population-
sampled Hi-C data, we always observe structural heteroge-
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neity in the chromosome conformation ensemble (e.g., see
Fig. S7). Of course, it is in principle questionable whether
or not such a heterogeneous structural ensemble acquired
from a Hi-C-map-based HLM represents the true heteroge-
neous population of chromosome; however, as demon-
strated in this study, using the HLM, we can still extract
an amount of meaningful information that can complement
diverse experimental measurements.

To demonstrate that the choice of energy potential in
HLM is optimal over similar alternatives, we examined
HLM and its three variants on a 10-Mb genomic region on
chr5 of GM12878 cells (Fig. S13). Unlike the HLM, which
faithfully reproduced the domain edges of enriched contacts
observed by Hi-C (highlighted by cyan boxes in Fig. S13 A)
that were regarded as a distinct feature of loop extrusion
(14), two alternative copolymer models, which retain uni-
form strength of loop interaction, could not properly repro-
duce the diagonal-block patterns of Hi-C data (Fig. S13, B
and C). In a homopolymer model, in which c�,�, c�,þ,
and cþ,þ are all set to 1 (see Methods), the long-range
checkboard pattern was not reproduced (Fig. S13 D). The
PC of contact probabilities contrasted between Hi-C and
other models at different genomic separation, PC(s), shows
that HLM outperforms others (Fig. S13 E).

Di Stefano et al. have performed steered molecular dy-
namics simulations of a polymer model of the whole
genome of hESC and IMR90 cells, based on physical re-
straints derived from Hi-C (21). Their model features the
nuclear positioning of different chromosomes and func-
tional genomic regions observed in vivo. To compare two
models, we computed the Kendall rank correlation between
the Hi-C contact matrix and the HLM distance matrix in the
simulated genomic regions of both cell types (Fig. S13 F).
The Kendall rank correlation value gets closer to �1 as
the correlation between the model and Hi-C increases. In
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comparison with steered molecular dynamics, structures
generated with the HLM are better correlated with Hi-C,
especially at short genomic distance.

The minimal chromosome model (MiChroM) is another
interesting Hi-C-based polymer model (34), which we
have used in our previous study (35). We simulated chr5
of GM12878 cells at 50-kb resolution with MiChroM
(Fig. S13 G) and compared PC(s) of a 10-Mb region based
on both models (Fig. S13 H). Even though MiChroM con-
siders six types of monomers to describe nonbonded
interactions, the HLM outperforms MiChroM in terms of
short-range correlations. It also shows comparable long-
range correlations with Hi-C.

In addition to the overall PCs listed in Table 1, we calcu-
lated PC(s) for all the genomic regions discussed in this
study (Fig. S14). Compared with the modeling based on
ensemble Hi-C data (Fig. S14, A and B), the model of
chr19 of mESC based on single-cell Hi-C shows lower
correlation (Fig. S14 C). We found that the PC in general de-
creases at large genomic separation, but there are two
groups of exceptional cases in which the models maintain
high correlation with Hi-C at large value of s. The first group
is the model of IMR90 cells, which has the lowest model
resolution (i.e., the largest genomic size of each monomer)
among the human genome models in Fig. S14 A. The second
group is the model of mouse neuron cells (Fig. S14 B), in
which the input Hi-C library has higher depth of coverage
than the Hi-C data used in others (75). These results suggest
that the quality of the resulting structures depends on the
accuracy of Hi-C contact probabilities, which can be
improved by lowering the model resolution and choosing ul-
tradeep Hi-C. For a specific genomic region of interest, one
may improve the model quality further by fine-tuning the
value of c.

As shown for different chromosomes, cell types, and spe-
cies with a flexible choice of model resolution, one of the
greatest advantages of the HLM is its versatile application.
Although all of the output conformations exhibit great vari-
ability (see discussions in Figs. S7 and 5 F), the population-
sampled contact map faithfully reproduces the input Hi-C
data. For a given Hi-C data set, the two sets of model param-
eters ~K and fcti;tjg can be determined in a few minutes using
a personal computer without any manual intervention
(Table 1).

In summary, we demonstrated that the HLM is a compu-
tationally efficient approach with which to investigate the
genome function. The conformational ensemble generated
by the HLM shows that depending on the chromatin states,
different types of chromatin domains have different
compactness and shapes, and spatial phase separation be-
tween domains takes places in human genome. The inter-
cell-line comparison of human a-globin and SOX2 loci
shows that although the submegabase gene domain becomes
less compact upon gene activation, the most critical regula-
tory element comes closer to the gene, and that its expres-
sion is likely affected by many other elements. The
activity of the Pax6 gene during mouse neuron development
is mostly modulated by the proximity between Pax6 pro-
moter and the DE, whereas the distance to the upstream reg-
ulatory element shows nonmonotonic variations with its
activity for the cell types we studied. The HLM was also
used to visualize the cell-cycle dynamics of chromosome
organization based on single-cell Hi-C. Although the
HLM is not designed based on assumptions of molecular
mechanisms of genome organization, the principle of tran-
scription regulation can be inferred from the changes of
chromatin conformations. With Hi-C data being accumu-
lated, the HLM would be of great use to provide comple-
mentary structural information that is not easily accessible
to current experiments.
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SUPPLEMENTARY INFORMATION

Hi-C data preparation

The contact frequency matrix obtained from a pop-
ulation of cells, the raw data of which are listed in Ta-
ble 1, was first normalized by using the Knight-Ruiz (KR)
method [1], so that the sum of each row and column of
the matrix is unity. We then rescaled the KR-normalized
matrix so that it satisfies P (s) = 1 at s = 1, where s is
the genomic separation in the unit of the model resolu-
tion, and used it as the input contact probability matrix
P. Since genomic loci have different coordinates in se-
quence database for different genome assemblies, if nec-
essary, we converted the genomic coordinates of human
and mouse by choosing Hg19 and mm10, respectively, as
their references.

Pairwise contact probability in heterogeneous loop
model

Similar to RLM [2], the harmonic-restraining energy
potential of HLM for a chain of N monomers can be
written

UK(r) = 3
2rTKr, (S1)

where r = (~r1, ~r2, · · · , ~rN−1)T and the translational de-
grees of freedom was removed by setting ~r0 = (0, 0, 0).
K is the Kirchhoff matrix:
∑N−1
j=0,j 6=1 k1j −k12 · · · −k1,N−1

−k21
∑N−1
j=0,j 6=2 k2j · · · −k2,N−1

...
...

. . .
...

−kN−1,1 −kN−1,2 · · ·
∑N−1
j=0,j 6=N−1 kN−1,j

 .

(S2)
Then, the probability density of the distance between the
i and j-th monomer (i < j) projected on one dimension
is

P (xij ; γij) = 〈δ[xij − (xi − xj)]〉

=
∫
dx1 · · · dxN−1δ [xij − (xi − xj)]P (x)

∝
∫ ∞

0
dqeiqxij

∫
dx1 · · · dxN−1e

−iq(xi−xj)e−
1
2 xTKx

∝
∫ ∞

0
dqeiqxije

− q2
4γij

∝ e−γijx
2
ij , (S3)

where we have used 〈exp (
∑
n ξnxn)〉 =

exp
( 1

2
∑
nm(K−1)nmξnξm

)
. The value of γij de-

pends on the topology of ‘vulcanized’ polymer chain,
dictated by K matrix, and is related with the covari-
ance between the positions of i and j-th monomer

σij = 〈δ~ri · δ~rj〉 as follows

γij =
{

1
2(σii+σjj−2σij) , i > 0

1
2σjj , i = 0

(S4)

where σij(= (Σ)ij) is the elements of inverse matrix Σ =
K−1. Finally, the probability density of pairwise distance
in 3D is [2]

P (rij ; γij) = 4γ3/2
ij /
√
πr2
ije
−γijr2

ij . (S5)

Typical profiles of P (rij ; γij) for varying γij are shown in
Fig. S1A with the relation between pij and γij given in
the inset.

Eq. S5 enables us to evaluate a few quantities of inter-
est directly. For a pair of monomers in contact with the
condition of rij < rc, the pairwise contact probability,
pij , is given by

pij =
∫ rc

0
P (rij)drij

= erf(γ1/2
ij rc)− 2rc

√
γij
π
e−γijr

2
c , (S6)

with erf(x) = 2√
π

∫ x
0 dte−t

2 . In addition, the mean pair-
wise distance is

〈rij〉 =
∫ ∞

0
rijP (rij)drij = 2

√
πγ

1/2
ij

, (S7)

and the mean square distance equals to

〈r2
ij〉 =

∫ ∞
0

r2
ijP (rij)drij = 3

2γij
. (S8)

For γijr2
c (≡ gij) � 1 (or 〈rij〉 � rc), pij is approxi-

mated as

pij = 2√
π

{∫ g
1/2
ij

0
[1− t2 +O(t4)]dt− g1/2

ij [1− gij +O(g2
ij)]
}

= 1
3
√
π
g

3/2
ij +O(g5/2

ij ). (S9)

Replacing gij with 〈rij〉 using Eq. S7, one obtains a scal-
ing relation between pij and 〈rij〉 as

pij ∼
[ 4r2

c

π〈rij〉2
]3/2

∼ 〈rij〉−3. (S10)

As shown in Fig. S1B, the scaling p−1
ij ∼ 〈rij〉3 holds for

large 〈rij〉.
RLM was developed to understand the scaling of the

spatial distance between two genomic loci with respect
to their genomic distance [2]. The original RLM as-
sumes that all loops have the same interaction strength
(i.e., kij = 3 or 0 kBT/a2), and the overall compactness
of the chain was adjusted by the total number of loops
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FIG. S1. (A) Probability density of pairwise distance P (rij) at various values of γij (Eq. S5), where the inset shows contact
probability pij as a function of γijr

2
c (Eq. S6). (B) Inverse of pij is plotted as a function of the mean pairwise distance 〈rij〉 in a

log-log scale, where it shows p−1
ij ∼ 〈rij〉3 at 〈rij〉 � rc (Eq. S10). (C) P (rij) between seven FISH probe pairs in the Tsix/Xist

region on chrX of mESC. The experimental data (black lines) were digitized from Fig. 2F in Ref. [3], and their corresponding
fits to Eq. S5 are shown in red.

(Nl =
∑
i>j δ(kij − 3)). Therefore, any quantity of in-

terest, e.g., P (rij), needs to be averaged over different
instances of K with the same value of Nl. In the worst
case, this requires 2(N−1)(N−2)/2 implementations of K,
which renders a precise evaluation of P (rij) impractical.
In this study, instead of varying Nl, we relax the con-
straint on kij so that it can take any non-negative value.

Inferring interaction strengths by direct inversion

In HLM, pij increases monotonically with γij at given
rc (Fig. S1A), which allows one to determine the value of
γij from pij . Given a contact probability matrix P of ele-
ments pij , we can further derive the interaction strength
matrix K of elements kij in three steps

P → Σ→ K→ K. (S11)

More specifically, the interaction strength matrix K for
HLM can be obtained from P via the following steps,
which we call the direct inversion:

1. Construct the matrix Σ using the relations of di-
agonal elements σii = 1

2γ0i
for i > 0; and the

off-diagonal elements σij = 1
2

(
σii + σjj − 1

2γij

)
for

i, j > 0, i 6= j.

2. Invert the matrix (Σ → Σ−1) to get the Kirchhoff
matrix K.

3. Determine the interaction strengths kij(= (K)ij)
from (i) kij = −(K)ij for i, j > 0, i 6= j; (ii) k0i =∑
j(K)ij for i, j > 0.

However, even a small sampling error, if any, in the
contact probability matrix P may result in unphysical
values of K with this protocol. We demonstrate this is-
sue clearly using molecular dynamics (MD) simulations

of three toy models (N = 20) characterized with differ-
ent intra-chain loops (i.e., different K-matrix): (i) a chain
with a single loop (Fig. S3); (ii) a chain with two nested
loops (Fig. S4); (iii) a chain composed of two blocks of
monomers without any inter-block attraction (Fig. S5).
For the case of the single-loop polymer (model (i)), P es-
timated based on the conformational ensemble from MD
simulation resembles P∗, where the superscript ∗ denotes
the true value, with a small relative error of 0.018; how-
ever, K obtained from P using the aforementioned di-
rect inversion gives rise to unphysical matrix elements
kij < 0. The same issue (kij < 0) was encountered for
the two other cases (models (ii) and (iii)). For the three
toy models, we circumvented the issue of kij < 0 resulting
from the direct inversion through the constrained opti-
mization, which is explained in the METHOD section in
the main text and illustrated along the magenta arrows
in Figs. S3-S5.

We note that Hi-C data is still an outcome of sampling
over finite number of cell population, and hence a small
but finite amount of error is inevitably included in Hi-C
data. The same issue arises when the direct inversion is
applied to Hi-C. Therefore, in the framework of HLM, we
use the constrained optimization to determine K̃-matrix
that can serve as a proxy of K, which are followed by MD
simulations using HLM potential.

Molecular dynamics simulations

To produce a conformational ensemble of chromosome
using HLM via the enhanced sampling, we performed
the low-friction Langevin simulations by numerically in-
tegrating the following equation [4],

m
d2~ri
dt2

= −ζMD
d~ri
dt
− ~∇~riU(~r1, ~r2, . . .) + ~ξ(t), (S12)
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We chose a friction coefficient ζMD = 1.0m/τMD and
a time step δt = 0.01τMD with the characteristic time
scale τMD = (ma2/ε)1/2. The whole simulation was car-
ried out with three steps. (i) Random Gaussian chains
were first equilibrated for 500 τMD under the energy po-
tential UK(r) without nonbonded interaction term. At
this stage, excluded volume interaction is absent. (ii)
The simulations were performed under the full HLM po-
tential UHLM(r) for 100 τMD but with extra care. Ex-
cessive overlaps between monomers generated from the
foregoing stage, were eliminated by gradually increas-
ing the contribution from the short-range repulsive po-
tential, which was achieved by using the LJ potential
term uLJ(rij) = min {uc, uLJ(rij)} with gradually in-
creasing uc. (iii) The production runs were generated
for 5 × 105τMD, during which chain configurations were
collected every 50 τMD. Simulations were all carried out
by using ESPResSo 3.3.1 package [5]. For any chromo-
some ensemble discussed in this work, it took less than 5
hours on a single CPU to generate them.

Quantifying the similarity between contact
probabilities from Hi-C and modeling

It has been recently proposed [6] that compared with
a global Pearson or Spearman correlation coefficient, the
reproducibility of Hi-C data can be better assessed by
measuring the Pearson correlation PC(s), at each value
of genomic separation s, which minimizes the depen-
dence of contact frequency on the genomic distance (e.g.,
see Fig. S13E). A underlying assumption for this quan-
tity is that the mean contact probability as a function
of genomic distance, P (s), does not change too much.
Whereas this is probably true for different replicates in
Hi-C experiment, it is not guaranteed for modeling.

Two examples are shown in Fig. S2A and B. Although
the contact probability matrix I and II (III) are perfectly
correlated at each genomic scale (Fig. S2D), their over-
all similarity is low due to the different profiles of P (s)
(Fig. S2C). With these possible artifacts in mind, we cal-
culated both properties to quantify the similarity of con-
tact probabilities between Hi-C and our model (Table 1
and Fig. S14).

Clustering analysis on chromosomes with
conformational variability

To characterize the variability in the conformational
ensemble in Fig. 1D quantitatively, we cluster the HLM-
generated structures using hierarchical clustering algo-
rithm. We first defined three domains labeled as “L”,
“M” and “N” based on the sign of the first principle com-
ponent of Z matrix (see the left tracks of Fig. 1B). Struc-
tures were hierarchically clustered according to struc-
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FIG. S2. Similarity between contact probablity matrices.
Comparison of contact probability matrices I and II (A), I
and III (B), with the overall Pearson correlations labeled on
top. (C) Mean contact probability, (D) Pearson correlation
as a function of genomic distance.

tural similarity assessed by the distance-based root-
mean-square deviation (dRMSD). For any two struc-
tures, say α and β, their similarity was measured by

dRMSDα,β =

√√√√ ∑
{X-Y}

1
3(rαX-Y − r

β
X-Y)2, (S13)

where rX-Y is the distance between the geometric cen-
ters of two different domains X and Y (X,Y ∈ {L,M,N}).
The dendrogram depicted in Fig. S7A identifies at least
4 main classes of conformations. Chromatins fold into
compact globules in the class-1, but adopt elongated con-
formations in the class-4. The class-2 and -3 can be iden-
tified separately from the class-1 and -4 in the 2D phase
plane drawn as a function of rL-M and rL-N (Fig. S7B).
Since the structural interconversion among different chro-
mosome conformations is an unusually time-consuming,
glass-like process [7], the contact probability matrix P̃
(Fig. 1E) is in effect an outcome of quenched-average [2]
over distinct conformations.

[1] Knight, P. A., and D. Ruiz, 2013. A fast algorithm for
matrix balancing. IMA J. Numer. Anal. 33:1029.

[2] Bohn, M., D. W. Heermann, and R. van Driel, 2007.
Random loop model for long polymers. Phys. Rev. E.
76:051805.

[3] Giorgetti, L., R. Galupa, E. Nora, T. Piolot, F. Lam,
J. Dekker, G. Tiana, and E. Heard, 2014. Predic-
tive Polymer Modeling Reveals Coupled Fluctuations
in Chromosome Conformation and Transcription. Cell
157:950 – 963.

[4] Veitshans, T., D. Klimov, and D. Thirumalai, 1997. Pro-
tein folding kinetics: timescales, pathways and energy



4

landscapes in terms of sequence-dependent properties.
Folding Des. 2:1–22.

[5] Limbach, H. J., A. Arnold, B. A. Mann, and C. Holm,
2006. ESPResSo – An Extensible Simulation Package
for Research on Soft Matter Systems. Comput. Phys.
Commun. 174:704–727.

[6] Yang, T., F. Zhang, G. G. Yardimci, F. Song, R. C.
Hardison, W. S. Noble, F. Yue, and Q. Li, 2017. Hi-
CRep: assessing the reproducibility of Hi-C data using
a stratum-adjusted correlation coefficient. Genome Res.
27:1939–1949.

[7] Shi, G., L. Liu, C. Hyeon, and D. Thirumalai, 2018. Inter-
phase Human Chromosome Exhibits Out of Equilibrium
Glassy Dynamics. Nat. Commun. 9:3161.

[8] Mateos-Langerak, J., M. Bohn, W. de Leeuw, O. Giro-
mus, E. M. M. Manders, P. J. Verschure, M. H. G. In-
demans, H. J. Gierman, D. W. Heermann, R. van Driel,
and S. Goetze, 2009. Spatially confined folding of chro-
matin in the interphase nucleus. Proc. Natl. Acad. Sci.
USA 106:3812–3817.

[9] Ester, M., H.-P. Kriegel, J. Sander, and X. Xu, 1996.
A Density-Based Algorithm for Discovering Clusters in
Large Spatial Databases with Noise. In Proc. of 2nd
International Conference on Knowledge Discovery and
Data Mining. 226–231.

[10] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay, 2011.
Scikit-learn: Machine Learning in Python. J. Mach.
Learn. Res. 12:2825–2830.
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contains unphysical negative elements due to numeric errors. By contrast, K∗ can be still inferred from P, K̃(P) ≈ K∗ with a
relative error of 8×10−4, using the constrained optimization (Eq. 9) on the significant contacts selected from Z (lower diagonal
region).
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FIG. S4. HLM illustrated by a model of two-nested-loop polymer chain. The chain is composed of 20 monomers. One loops is
anchored between the second and 11-th monomers, and the other is between the 5-th and 13-th monomers. In contrast to the
direct inversion which generates unphysical negative elements in K̂(P), constrained optimization leads to K̃(P), that is similar
to K∗ with a relative error of 0.002.
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FIG. S5. HLM illustrated by a model of diblock copolymer chain. The chain is composed of 20 monomers. K∗-matrix indicates
the presence of heterogeneous intra-block attractions within the first 0 ≤ i, j < 10 and the second block 10 ≤ i, j < 20, but
there is no such interaction between the two blocks. Compared to K̃(P) calculated from direct inversion of P-matrix which is
fraught with many negative the inter-block interaction strength demonstrated in the off-diagonal block, K̃(P) inferred by the
constrained optimization display a better resemblance to K∗ with a relative error of 0.044.
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Compactness, (E) asphericity, and (F) roughness of the surface of the domains.
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TABLE S1. TADs on chr21 of human IMR90 cells whose
pairwise distances were measured in Ref.[14], and computed
in Fig. 2.

TAD index Start(bp) End(bp) Center(bp) i A/B
2 13,280,000 16,160,000 14,720,000 2 B
3 16,160,000 18,280,000 17,220,000 12 B
4 18,320,000 21,080,000 19,700,000 22 B
5 21,240,000 23,160,000 22,200,000 32 B
6 24,320,000 25,680,000 25,000,000 44 B
7 26,160,000 27,000,000 26,580,000 50 B
8 27,040,000 28,000,000 27,520,000 54 A
9 28,000,000 29,320,000 28,660,000 58 B
10 29,360,000 29,680,000 29,520,000 62 B
11 29,760,000 31,360,000 30,560,000 66 B
12 31,400,000 31,960,000 31,680,000 70 B
13 31,960,000 32,600,000 32,280,000 73 B
14 32,600,000 32,920,000 32,760,000 75 B
15 33,080,000 33,800,000 33,440,000 77 B
16 33,840,000 34,200,000 34,020,000 80 A
17 34,200,000 34,680,000 34,440,000 81 A
18 34,680,000 34,920,000 34,800,000 83 A
19 34,920,000 36,440,000 35,680,000 86 A
20 36,440,000 36,640,000 36,540,000 90 A
21 36,680,000 37,440,000 37,060,000 92 A
22 37,440,000 37,880,000 37,660,000 94 B
23 37,960,000 38,720,000 38,340,000 97 B
24 38,720,000 39,760,000 39,240,000 100 B
25 39,760,000 41,440,000 40,600,000 106 B
26 41,440,000 42,120,000 41,780,000 111 B
27 42,120,000 42,840,000 42,480,000 113 B
28 42,840,000 43,120,000 42,980,000 115 B
29 43,160,000 44,040,000 43,600,000 118 A
30 44,040,000 44,360,000 44,200,000 120 A
31 44,360,000 45,040,000 44,700,000 122 A
32 45,040,000 45,400,000 45,220,000 124 A
33 45,440,000 46,160,000 45,800,000 127 A
34 46,160,000 46,944,323 46,552,161 130 A

i is the index of the corresponding monomer in HLM. A/B
type is determined by a principal component analysis of the
inter-TAD distance matrix measured in the experiment.
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TABLE S2. FISH probes in chr11 of human IMR90 cells
whose pairwise distance were measured in Ref.[8], and com-
puted in Fig. S8.

Domain q Start(bp) End(bp) Center(bp) i

R 1 59,145,349 59,328,495 59,236,922 0
0 61,446,617 61,635,131 61,540,874 10
0 63,606,476 63,728,827 63,667,651 18
0 68,035,816 68,234,792 68,135,304 36
0 69,453,280 69,614,785 69,534,032 42

A 1 81,410,783 81,515,783 81,463,283 89
0 84,330,302 84,491,603 84,410,952 101
0 87,242,814 87,391,556 87,317,185 113
0 88,840,806 89,052,495 88,946,650 119
0 93,270,300 93,463,527 93,366,913 137

L 1 59,145,349 59,328,495 59,236,922 0
0 74,678,334 74,845,650 74,761,992 63
0 77,016,132 77,155,090 77,085,611 72
0 81,410,783 81,515,783 81,463,283 89
0 84,330,302 84,491,603 84,410,952 101
0 87,242,814 87,391,556 87,317,185 113
0 90,287,090 90,448,063 90,367,576 125
0 93,270,300 93,463,527 93,366,913 137

In the experiment [8], distances were measured between the
reference probe (q = 1) and other probes (q = 0) within a
transcriptionally active ridge domain (R), a transcriptionally
inactive anti-ridge domain (A), and a longer genomic region
including both (L). The genomic positions of probes were
lifted from hg15 to hg19 [15]. i is the index of the
corresponding monomer in HLM.
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TABLE S3. FISH probes in chr1 of human IMR cells. The
pairwise distance were measured in Ref.[8], and computed in
Fig. S9.

Domain q Start(bp) End(bp) Center(bp) i

R 0 153,688,049 153,838,214 153,763,131 15
0 154,258,113 154,423,159 154,340,636 17
0 154,756,480 154,933,673 154,845,076 19
0 154,813,142 154,963,617 154,888,379 19
0 155,236,093 155,386,538 155,311,315 21
0 155,869,571 156,011,182 155,940,376 23
0 156,245,828 156,422,950 156,334,389 25
0 156,763,312 156,949,996 156,856,654 27
0 156,918,444 157,130,858 157,024,651 28
1 157,089,739 157,266,762 157,178,250 28

A 1 174,780,621 174,961,968 174,871,294 99
0 174,960,409 175,130,220 175,045,314 100
0 175,283,924 175,434,463 175,359,193 101
0 175,600,401 175,773,331 175,686,866 102
0 175,886,407 176,036,727 175,961,567 103
0 176,108,104 176,295,598 176,201,851 105
0 176,558,298 176,714,279 176,636,288 106
0 177,180,236 177,391,475 177,285,855 109
0 177,747,748 177,891,719 177,819,733 111

L 1 153,367,866 153,518,504 153,443,185 13
0 155,275,054 155,425,545 155,350,299 21
0 157,394,838 157,556,421 157,475,629 29
0 159,499,529 159,658,201 159,578,865 38
0 163,510,707 163,671,832 163,591,269 54
0 167,491,540 167,680,298 167,585,919 70
0 169,360,041 169,519,360 169,439,700 77
0 171,415,729 171,565,827 171,490,778 85
0 173,507,237 173,672,089 173,589,663 94
0 176,530,621 176,711,968 176,621,294 99
0 177,858,104 178,045,598 177,951,851 104
0 179,679,177 179,836,567 179,757,872 119

Some column names are explained in the footnote of
Table S2.
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TABLE S4. Chromatin interactions captured by ChIA-PET
between the α-globin gene of α-globin domain of human chr16
in two distinct cell lines (K562 and GM12878) and the rest of
the domain.

Cell line/ i j

Protein Start(bp) End(bp) Start(bp) End(bp)
K562/ 228,606 232,911 101,957 105,248
Pol II[16] 223,848 234,650 112,365 122,815

225,207 234,180 123,062 131,022
228,466 231,601 140,986 144,385
230,572 233,311 144,684 148,565
223,675 234,904 148,901 176,075
212,504 217,730 187,975 191,457
228,181 231,216 193,260 195,050
227,544 232,194 281,991 287,514
228,369 231,250 337,052 340,267
231,278 233,446 400,120 404,207
227,874 230,293 415,011 417,686

K562/ 231,119 231,985 115,418 116,419
CTCF[16] 230,063 230,936 115,816 116,534

231,349 231,926 118,457 119,027
229,989 230,841 146,609 147,247
231,126 232,019 146,696 147,500
229,955 230,849 156,728 157,605
231,083 232,073 156,717 157,821
230,241 231,130 157,831 158,483
229,997 230,876 167,564 168,163

GM12878/ 230,169 231,829 115,412 117,393
CTCF[17] 231,254 231,916 146,941 147,379

233,653 235,304 157,106 157,280
230,334 232,616 154,799 158,610
230,238 232,162 166,032 168,889
231,353 231,816 412,084 412,434

Pol II-mediated interaction, involving α-globin genes and
the rest of the domain, is absent in GM12878 cells [17].
Since CTCF-mediated interactions are mostly overlapped
between K562 and GM12878 cells, the K562-specific
interactions are mainly mediated by Pol II.
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