
STATISTICAL MECHANICS : Mid-term exam (take-home exam) (Fall 2009)

For this take-home exam, feel free to consult any text book. But, DO NOT work together

or ask your senior fellows. Each person must submit his/her own work by 12:00 pm at sharp

October 21st. For delayed submission, 10 points will be deducted every hour. Since partial

credit will be given, make sure to show all your work and to present it in a neat and organized

fashion. Try to communicate well. I will NOT even bother to grade if the organization of your

work or handwriting is messy. Please, take this exam seriously !!!

1 (20 pt) A simple model for the motion of particles through a nanowire consists of a one-

dimensional ideal gas of N particles moving in a periodic potential. Let the Hamiltonian for

one particle with coordinate x and momentum p be

H =
p2

2m
+

kL2

4π2

[

1 − cos

(

2πx

L

)]

(1)

where m is the mass of the particle, k is a constant, and L is the length of the one-dimensional

”box” or unit cell.

(a) Calculate the change in the Helmholtz free energy per particle required to change the

length of the ”box” from L1 to L2. Express your answer in terms of the zeroth order modified

Bessel function

I0(x) =
1

π

∫ π

0

dθe±x cos θ (2)

(b) Calculate the equation of state by determining the one-dimensional ”pressure” P . Do you

obtain an ideal-gas equation of state? Why or why not? You might find the following properties

of modified Bessel functions useful:

dIν(x)

dx
=

1

2
[Iν+1(x) + Iν−1(x)] (3)

Iν(x) = I−ν(x) (4)

2. (20 pt) Consider a system of N distinguishable non-interacting spins in a magnetic field H .

Each spin has a magnetic moment of size µ, and each can point either parallel or antiparallel to

the field. Thus, the energy of a particular state of the whole spin system is

Eν = −
N

∑

i=1

niµH, (5)
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where niµ is the magnetic moment in the direction of the field with ni = ±1.

(a) Determine the internal energy of this system as a function of β, H , and N by employing

an ensemble characterized by these variable.

(b) Determine the entropy of this system as a function of β, H , and N .

(c) Determine the behavior of the energy and entropy for this system as T → 0.

(d) Determine the average total magnetization (〈M〉 = 〈
∑N

i=1
µni〉) as a function of β, H ,

and N .

(e) Determine the magnetic susceptibility 〈(δM)2〉.
(f) Derive the behavior of 〈M〉 and 〈(δM)2〉 in the limit of T → 0.

3. (20 pt) (a) Consider a region within a fluid described by the van der Waals equation βp =

ρ/(1 − bρ) − βaρ2, where ρ = 〈N〉/V . The volume of the region is L3. Due to the spontaneous

fluctuations in the system, the instantaneous value of the density in that region can differ from

its average by an amount of δρ. Determine, as a function of β, ρ, a, b, and L3, the typical

relative size of these fluctuations; that is, evaluate 〈(δρ)2〉1/2/ρ. Demonstrate that when one

considers observations of a macroscopic system (i.e., the size of the region becomes macroscopic,

L3 → ∞) the relative fluctuations become negligible.

(b) A fluid is at its critical point when (∂βp/∂ρ)β = (∂2βp/∂ρ2)β = 0. Determine the

critical point density and temperature for the fluid obeying the van der Waals equation. That

is, compute βc and ρc as a function of a and b.

(c) Focus attention on a subvolume of size L3 in the fluid. Suppose L3 is 100 times the

space filling volume of a molecule - that is, L3 ≈ 100b. For this region in the fluid, compute

the relative size of the density fluctuations when ρ = ρc, and the temperature is 10% above

the critical temperature. Repeat this calculation for temperature 0,.1% and 0.001% from the

critical temperature.

(d) Light that we can observe with our eyes has wavelengths of the order of 100 nm.

Fluctuations in density cause changes in the index of refraction, and those changes pro-

duce scattering of light. Therefore, if a region of fluid 100 nm across contains significant

density fluctuations, we will visually observe these fluctuations. On the basis of the type

of calculation performed in part (b), determine how close fluctuations become optically

observable. The phenomenon of long wavelength density fluctuations in a fluid approaching
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the critical point is known as critical opalescence. (Note: You will need to estimate the size

of b, and to do this you should note that the typical diameter of a small molecule is around 5 Å.)

4 (20 pt) (a) Show that for an ideal gas of structureless fermions, the pressure is given by

βp =
1

λ3
f5/2(z) (6)

where z = eβµ,

λ = (2πβ~
2/m)1/2 (7)

m is the mass of the particle,

f5/2(z) =
4√
π

∫

∞

0

dxx2 log (1 + ze−x2

)

=
∞

∑

l=1

(−1)l+1zl/l5/2, (8)

and the chemical potential is related to the average density,

ρ = 〈N〉/V, (9)

by

ρλ3 = f3/2(z) =

∞
∑

l=1

(−1)l+1zl/l3/2 (10)

(b) Similarly, show that the internal energy, 〈E〉, obeys the relation

〈E〉 =
3

2
pV (11)

[(c)-(f)] For high temperature and/or low density regime (ρλ3 ≪ 1),

(c) Show that

z = ρλ3 + (ρλ3)2/2
√

2 + · · · (12)

(d) Use the result in (c) together with the Fermi distribution for 〈np〉 to deduce the Maxwell-

Boltzmann distribution

np ≈ ρλ3e−βǫp (13)
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where p stands for momentum and ǫp = p2/2m.

(e) Show that the thermal wavelength, λ, can be viewed as an average De Broglie wavelength

since λ ∼ h/〈|p|〉.
(f) Show that

βp/ρ = 1 + ρλ3/25/2 + · · · (14)

Why does a finite value of ρλ3 leads to deviations from the classical ideal gas law? Why should

you expect the quantum deviations to vanish when ρλ3 → 0?

[(g)-(h)] For low temperature and/or high density (ρλ3 ≫ 1).

(g) By obtaining the asymptotic behavior of the integral representation f3/2(z) =

(4/
√

π)
∫

∞

0
dxx2(z−1ex2

+ 1)−1 for low temperature and/or high density, show that

ρλ3 = f3/2(z) ≈ (log z)3/24/3
√

π (15)

hence

z ≈ eβǫF (16)

where ǫF = (~2/2m)(6π2ρ)2/3. Estimate the Fermi energy ǫF of a typical metal, say Cu, in

eV unit. Note that 1Hatree is 27.2 eV and discuss whether the low temperature and/or high

density approximation (ρλ3 ≫ 1) is a good approximation for Cu at a standard condition (1

atm, 25oC).

(h) Show that

p =
2ǫF ρ

5

[

1 + O(k2

BT 2/ǫ2

F )
]

(17)

Hence the pressure does not vanish at T = 0. Why?

5. (20 pt) Consider a dilute gas made up of molecules which have a permanent electric dipole

moment µ. The energy E of a molecule in an electric field E pointing in the z direction can be

written

E = Etrans + Erot − µ · E (18)
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where E and dipole µ make an angle θ. Treat the diples as classical rods with moment of inertia

I. Then

Erot =
I

2
(θ̇2 + φ̇2 sin2 θ) (19)

Assume that the canonical partition function for the gas can be written

Q =
qN

N !
(20)

where the partition function for a single molecule is q = qtransqrot.

(a) Show that

qrot =
2I sinh βEµ

~2β2Eµ
(21)

(b) Show that the polarization, P , satisfies

P =
N

V
〈µ cos θ〉 =

N

V

(

µ cothβµE − kBT

E

)

(22)

(c) Show that in the weak-field limit (µE/kBT ≪ 1) the dielectric constant ǫ, given by

ǫE = ǫ0E + P (23)

satisfies

ǫ = ǫ0 +
Nβµ2

3V
(24)
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