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1. Physics: Understanding Reynold’s number

(a) Show that the viscosity η and the density ρ can be combined to form a char-
acteristic force, f0. Calculate f0 for water near room temperature (η ≈ 10−3 Pa.s,
ρ ≈ 103 kgm−3).

(b) Estimate the viscous force needed to keep a sphere of radius a stationary in a
fluid flow of speed u in the Stokes flow regime. (Hint: use the approximate formula
developed in the lecture for estimating the viscous force on a fluid parcel of size `
and set ` ∼ a). Calculate the ratio of this force to f0: do you recognise this quantity?
Thus, when forces in a fluid are � f0, the flow is viscosity dominated.

(c) To appreciate how big the value of f0 you have calculated for water actually is,
calculate the work done by this force moving 1 nm. Express your answer in units of
kBT , the thermal energy, in eV, and in kJ/mol. Compare this to the kind of energy
needed to break a covalent bond (a few hundred kJ/mol ≡ a few eV).

(d) Another way of thinking about what it means to say ‘inertia doesn’t matter’:
When you stop pushing in a swimming pool, you carry on moving for a bit before
coming to a halt. This is inertia. At low Re, when inertia is negligible, the absence of
pushing brings things to a halt immediately. To see this quantitatively, Take typical
numbers from an E. coli bacterium: model it as a sphere of radius a ∼ 1µm moving
at a speed of v ∼ 10µm/s. Calculate how much force is needed to drag such a sphere
along at this speed in water (and compare it to f0). Now write the equation of
motion for this sphere. Calculate how long it will take for the sphere to stop if the
driving force is removed. That is what it means to say that inertia doesn’t matter
at low Re.
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2. Dimensional analysis: making sure you can do it

The flow equation we obtained in the lecture was:

ρa = −dP
dx

+ η
d2u

dz2
+ f.

Show that the dimensionless variables suggested in the lecture, {x̄, z̄, ā, P̄ , ū, f̄}, in-
deed gives rise to

Re× ā = −dP̄
dx̄

+
d2ū

dz̄2
+ f̄ = 0,

and that once we’ve taken the Re→ 0 limit, the dimensional form of the Stokes flow
equation is indeed

−dP
dx

+ η
d2u

dz2
+ f = 0.

Extra: In the above exercise I used ηU/L to non-dimensionalise the pressure. Show
that there exist an alternative non-dimensionalising scheme in which P̄ = P/(ρU2).
Obtain the flow equation in this case. Notice that the pressure now drops out. In
full 3D form the flow equation is now ∇2v = 0. This represents a special sub-class
of Stokes flow.

3. Maths: for those who are good at vector calculus

The Stokes flow problem with no external force is completely specified by

−∇P + η∇2v = 0 subject to ∇ · v = 0.

Show that this is equivalent to
∇2P = 0,

i.e. the pressure field is ‘harmonic’, and

∇4v = 0 subject to ∇ · v = 0,

where ∇4 is the ‘biharmonic operator’. Many formal treatments of Stokes flow take
this as the starting point, since a lot is known about solving harmonic and biohar-
monic PDEs.

(Hint: take the divergence of the Stokes equation; easiest for both parts if you use
the full apparatus of suffix notation and summation convention).
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Separately, consider the consequence of the fact that the pressure is harmonic. By
comparing ∇P = 0 with the equation of the pressure field in a sound wave, i.e.

∇p =
1

v2s

∂P

∂t2
,

explore another consequence of Stokes flow, namely, its instantaneity. This property
can already be seen directly by noting that the Stokes flow equations contain no time,
so that flow fields are determined by the instantaneous positions of all boundaries
(at infinity as well as at surfaces of all particles).

4. Physics: thinking through reversibility

Revisit the argument we used in the lecture to show that a sphere moving parallel
to a wall cannot experience any lift or attraction from the presence of the wall at
Re → 0.

(a) Explain why this argument does not apply in the inertia regime. (Hint: how does
force scale with v in the viscous and inertial regimes?)

(b) Explain why this argument does not apply even at Re → 0 to an E. coli swim-
ming next to a wall. (Hint: draw a similar diagram to the one used in the lecture
for a sphere. Draw everything, and reverse everything!)

5. The importance of local anisotropy and global non-reversibility

(a) Derive the expression given in the lecture for the propulsive component in the
motion of a thin rod, viz.

fprop = (ξ⊥ − ξ‖)(u sin θ cos θ) x̂.

(Hint: rotate the coordinate system.)

(b) Sketch a propagating waveform down a filament (like a sperm tail) and convince
yourself that this satisfies the non-reciprocating requirement.
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