Cell volume cell stiffness and cell motion

Dave Weitz Harvard

NIH, NSF, Harvard MRSEC

Ming Guo Allen Ehrlicher Karen Kasza Fred MacKintosh Angelo Mao

Harvard	Dave Mooney	Harvard
McGill	Enhua Zhou	HSPH
Sloan-Kett.	Jeff Fredberg	HSPH
Amsterdam	Jennifer Lippincott-Schwartz	NIH
Harvard	Tommy Angelini	Florida

- 1. Bulk osmotic modulus of cells
- 2. Substrate stiffness and cell volume
- 3. Dynamic arrest in motion of cells

http://weitzlab.seas.harvard.edu/

Active Systems GIST, 6/27/14

Cell stiffness measurements

(B)

Frequency (Hz)

trap and bead displacements (nm)

Control of cell volume

- What controls cell volume
- What are consequences of cell volume

Bulk modulus (osmotic)

- Susceptibility to change in volume
- Not due to compression of water
- Due to change in volume of cell

Compression of cell volume with PEG

Cell volume responds immediately to change in osmotic pressure

Cell volume controlled by osmotic pressure (PEG)

One single cell being compressed repeatedly.

Control of cell volume

- Water eflux through membrane
- Depends on osmotic pressure

П-V relationship

П-V relationship

Control of cell volume

- Water eflux through membrane
- Depends on osmotic pressure
- Stresses on membrane ~ shear modulus
- Too weak to support pressure difference
- No pressure drop across membrane

\rightarrow Pressure inside = pressure outside

 $\Pi_{\rm osm}$

(Pa)

ions, while V_{\min} is occupied by cellular materials, mainly proteins.

Substrate stiffness dependence of equation of state

Number of intracellular osmolytes

The concentration of osmolyte estimated is on the order of 10^2 mM; the number agrees with intracellular ions measured experimentally.

Bulk (osmotic) modulus of cells

- Bulk modulus *B* >> shear modulus *G*
- Cytoskeleton plays negligible role

Cell volume is strongly regulated → What are the consequences

Cells have many different stiffnesses

Cell stiffness depends on stiffness of environment

Cell Stiffness:

Stem-cell fate depends on stiffness of environment

Cell Stiffness:

Cells adjust stiffness to their environments

Cell stiffness changes when growing on adhesive patterns with various sizes.

Tee et al. Biophysical J (2011)

Cell stiffness changes with osmolarity.

Zhou et al. PNAS (2009)

Why does cell stiffness change? What control parameters are involved?

Cell morphology

Cell area changes with substrate stiffness

Projected area of cell increases with substrate stiffness.

Cell area increases with substrate stiffness

Projected cell area increases with increasing substrate stiffness.

Cell height decreases with substrate stiffness

While the projected cell area increases with increasing substrate stiffness, the cell height decreases.

Cell height decreases with substrate stiffness

Discrete slice through cell

Cell height decreases with substrate stiffness

While the projected cell area increases with increasing substrate stiffness, the cell height decreases.

Cell volume decreases with substrate stiffness

A7 Cell size distribution

~200 cells per distribution

Control cell spreading by adherence area

Contact printing of adhesion proteins

Control cell spreading by adherence area

Cells spread to cover only printed area

Control cell spreading by adherence area

10 µm

Cell volume decreases with area

Dependence of cell volume on cell area

Control adhesive area

Dynamics of cell volume changes

Spreading of a single cell

Dynamics of cell volume changes

Dynamics of stiffness adjustment

Effect of molecular motors

Depends on water content of cell

Cell stiffness depends on substrate stiffness

Cell stiffness depends on substrate stiffness

Behaves like reconstituted cross-linked actin networks: $C^{2.2}$

Cell stiffness scaling is same as that of reconstituted actin network

Cortical and cytoplasmic stiffness scales with cell volume

Nucleus volume changes too

Nucleus volume changes with cell volume

What about stem-cell differentiation?

D1 mouse mesenchymal stem cells on stiff and soft PAA gel substrates (collagen coated)

Compress cell volume osmotically with adding PEG 300.

Bar: standard error * p < 0.05

 $_{\rm or}$ Soft substrate \rightarrow volume decreased by osmotic pressure

Cell volume affects stem cell differentiation

Bar: standard error * p < 0.05

Soft substrate \rightarrow volume decreased by osmotic pressure

Full gene expression analysis

Gene-chip analysisAnalysis of mRNA

• Determine origin of dependence

- Cell stiffness correlates with cell volume
- Cell volume controllable by:
 - substrate stiffness
 - adhesion area
 - osmotic pressure
- Nucleus volume tracks cell volume
 - gene expression
 - stem-cell differentiation

Now for something fun

Cell motion on substrates

Single cell versus multi-cell motion

Tissue cells:

- contractile "inchworm"
- spread, stick, release

Single cell versus multi-cell motion

30 µm

Tissue cells:

- contractile "inchworm"
- spread, stick, release

30 *µ*m

Do canonical forms drive collective motion?

Q: how does a fibroblast talk to his friends a millimeter away?

How do $10^5 - 10^6$ cells coordinate?

Trepat, et. al., Nat. Phys. 2009

Do cells communicate across millimeters?

tissue-cell collective migration: development, wound healing, tumor invasion

MDCK epithelial cells on polyacrylamide surfaces.

Time evolution of cell behavior

MDCK epithelial cells on polyacrylamide surfaces.

Speed up time-lapse: cells move, substrate fluctuates.
200 mins, ~800 µm field of view. 16 datasets taken in succession.

Cell density increases with time

200 mins, ~800 μ m field of view. 16 datasets taken in succession.

Traction force microscopy

MDCK epithelial cells on polyacrylamide surfaces.

Cells

Substrate

Deformation patterns span hundreds of microns

800 microns

Quantify length-scale: spatial correlation function

$$C_{dd}(R) = \left\langle \frac{\sum_{j} \delta \mathbf{d}(\mathbf{r}_{j}) \cdot \delta \mathbf{d}(\mathbf{r}_{j} + \mathbf{R})}{\sum_{j} \delta \mathbf{d}(\mathbf{r}_{j}) \cdot \delta \mathbf{d}(\mathbf{r}_{j})} \right\rangle_{t,\varphi}$$

Correlation length grows in time

Collective migration: large scale patterns

$$C_{\mathbf{vv}}(R) = \left\langle \frac{\sum_{j} \delta \mathbf{v}(\mathbf{r}_{j}) \cdot \delta \mathbf{v}(\mathbf{r}_{j} + \mathbf{R})}{\sum_{j} \delta \mathbf{v}(\mathbf{r}_{j}) \cdot \delta \mathbf{v}(\mathbf{r}_{j})} \right\rangle_{t,\varphi}$$

Measure correlation length

Correlation correlation length grows in time

How are the two patterns related?

Swirl size grows with deformation pattern

Migration follows deformation in time

$$C_{\mathbf{dv}}(\tau) = \left\langle \sum_{j} \delta \mathbf{d}(t_{j}) \cdot \delta \mathbf{v}(t_{j} + \tau) \right\rangle_{\mathbf{R}}$$

- •Time correlation: positive slope.
 - •Slope decreases with time.

Substrate deformations: essential

Cells live on a substrate that is roughly as stiff as they are 200 + 1 Cells call long distance: collective substrate deformations guide collective cell migration

Dynamic structure factor

 $S(q,\omega) = \left| \mathscr{F}[\rho(r,t)] \right|^2$

Sound speed, c
Damping, Γ
Diffusivity, D₀
Compressibility, χ
DOS

$S(q,\omega)$ of cell motion pick a q, analyze ω lineshape

$\begin{aligned} & \text{Rayleigh-Brillouin triplet} \\ & \frac{S(q,\omega)}{S(q)} = \frac{I_R(q)\frac{1}{2}\Gamma_0(q)}{\omega^2 + \left(\frac{1}{2}\Gamma_0(q)\right)^2} + \frac{I_B(q)\Omega(q)\Gamma^2(q)}{\left(\omega^2 - \Omega^2(q)\right)^2 + \omega^2\Gamma^2(q)} \end{aligned}$

•Commonly used function in IXS, INS

•**Rayleigh** peak: diffusive fluctuations.

•**Brillouin** peak pressure fluctuations.

Vogel - Fulcher Tammann Hesse (VFTH) equation

Assume $D_{i} = (cell size)^{2}/z_{bus}$ VFTH fit gives $\pi_{p} = 2728 \text{ mm}^{-2}$ colloidal glass transition

Divergence of time scale for colloidal particles

Bartch, Antonietti, Schupp, Sillescu, J. Chem. Phys. 97, 3950 (1992)

$\frac{S(q,\omega)}{S(q)} = \frac{I_R(q)\frac{1}{2}\Gamma_0(q)}{\omega^2 + \left(\frac{1}{2}\Gamma_0(q)\right)^2} + \frac{I_B(q)\Omega(q)\Gamma^2(q)}{\left(\omega^2 - \Omega^2(q)\right)^2 + \omega^2\Gamma^2(q)}$

•Commonly used function in IXS, INS

•**Rayleigh** peak: diffusive fluctuations.

•Brillouin peak pressure fluctuations.

Brillouin peak

Density of States (DOS)

Brillouin peak: Density of States (DOS)

Brillouin peak: Density of States (DOS)

DOS peak: soft modes in glasses

Velocity field: length scale for flow

Structural Relaxations in a Supercooled Fluid

Relaxing particles are highly correlated spatially

Relaxation events are spatially correlated

volume fraction

Cluster size grows as glass transition is approached

Dynamic heterogeneities grow

choose all v's within fastest 15% calculate size of connected regions: ξ_h

Migration slows down, cluster size grows. Analog to dynamic heterogenities in colloidal glasses.

Dynamic heterogeneities grow

Compressibility

Wavelength at peak = **0.40+-0.04 cell lengths**. Exactly the same as **high-***\omega* **DOS peak**! Phase transition from **migration** state to **division** state?

Tissue analogy to glass forming fluid

- Growing dynamic heterogeneities
- Growing relaxation times: fragility
- Cell body deformation: Boson peak in DOS

Implications:

- collective motion is activated.
- fluidize tissue to initiate fast motion.
- wound healing, metastasis, embryonic development.

Conclusions

- •Inert particles undergo 'diffusive' motion
- •Fluctuations driven by motors in cell
- •Cell volume depends on cell spreading
- •Cell stiffness correlates with cell volume
- •Stem-cell differentiation depends on volume

Thank you for your attention