Microrheology, motors, fluctuations Dave Weitz Harvard NSF, NIH, Harvard MRSEC

Ming Guo Allen Ehrlicher Karen Kasza Cliff Brangwynne Margaret Gardel Fred MacKintosh Angelo Mao

Harvard	Dave Mooney	Harvard
McGill	Enhua Zhou	HSPH
Sloan-Kett.	Jeff Fredberg	HSPH
Princeton	Jennifer Lippincott-Schwartz	NIH
Chicago	Mikkel Jensen	Harvard
Amsterdam	Jeff Moore	BU
Harvard	Gijsje Koenderink	FOM

- 1. Non-linear elasticity of actin networks
- 2. Effect of molecular motors
- 3. Fluctuations of microtubules
- 4. Fluctuations within cells

http://weitzlab.seas.harvard.edu/

Active Systems GIST, 6/26/14

Biopolymer networks provide mechanical rigidity

Cytoskeleton crowds the cell

network meshsize << 1μm

Total protein volume fraction in

cells is typically 20-30%

Actin Networks

Study reconstituted networks

5 *µ*m

Actin filaments

Polymerize in presence of ATP, divalent salt Mass ~ 42k Da $a \sim 7$ nm

- •Young's Modulus, $E \sim 10^9$ Pa →Hard Plastic
- •Large Aspect Ratio $d \ll L$ \rightarrow Soft Bending Modulus $\kappa \sim Ed^4$

•1-5% of proteins in nonmuscle cells

Reconstituted Actin Networks

Actin network Electron Microscopy Actin with bundling protein Confocal Microscopy

Viscoelasticity of Soft Materials

Solid:
$$\tau = G\gamma$$

Fluid: $\tau = \eta\dot{\gamma}$ \longrightarrow $\tau = \begin{bmatrix} G'(\omega) + iG''(\omega) \end{bmatrix}\gamma$
Elastic Viscous

Assumes intrinsically equilibrium system \rightarrow causality (Kramers-Kronig)

 $c_A = 12 \ \mu M$ R=0.03

weak, elastic gel

Cytoskeletal Mechanics

Bausch et. al., Fabry et. al.

Rheology of cells: twisting-beads

Cells are much stiffer than actin networks

(Fabry, Fredberg, 2003)

Actin Networks

0.2 μm

in vitro Filaments are shorter Filaments are cross-linked

Gelsolin → Capping

Limits filament length

Gelsolin → Capping Filamin → Cross-linking

Limits filament length

Cross-links filaments Cell motility, mechanoprotection

Actin Networks

0.2 μm

in vitro

in vivo

Actin (24 μM), 1/50 FlnAwt, 1/555 gelsolin, MgATP (5 mM), KCl (50 mM)

Actin-filamin networks are gels

G' extremely sensitive to stress

Non-linear spring constant

Need new ways to measure elasticity Measure differential spring constant

Linear Measurements in Nonlinear Regime

<u>Creep Test:</u> Apply Steady Stress: σ_s Measure γ

Prestress stiffens Filamin-Actin Networks

Traction force microscopy: Measures prestress in cell

Cytoskeleton is pre-stressed

Traction Force Microscopy

Cell data agrees with filamin network

External strain puts tension on filaments

How to generate tension internally?

Can motors put internal tension on filaments??

Add motors: skeletal muscle myosin II

Non-processive heads:

- ATP hydrolysis: 50 ms.
- Bound 1 ms, unbound 49 ms.

Tail:

- Bipolar filament formation.
- Size: ionic strength, pH, T

- 50 mM KCl, 5 mM MgATP.
- Length ~1 μm (~300 myosins).

50 F-actin: 1 Filamin Niederman, Amrein and Hartwig, JCB, **96** 1983

Stress build-up monitored with rheology $\leftrightarrow \sigma(t) = \sigma_0 \sin(\omega t)$ = Cone-plate 1°: gap 30 – 80 µm. = Probe with small strain <1%, 1 Hz.

Actin + myosin (1/50)

Add filamin (1/100)

Stress build-up monitored with rheology

- Cone-plate 1°: gap 30 80 μm.
- Probe with small strain <1%, 1 Hz.</p>

Stress build-up monitored with rheology

Probe with small strain <1%, 1 Hz.</p>

Stress build-up monitored with rheology $\leftrightarrow \sigma(t) = \sigma_0 \sin(\omega t)$

- Cone-plate 1°: gap 30 80 μm.
- Probe with small strain <1%, 1 Hz.</p>

Calibrate internal tension

Internal stress identical to external stress

Calibration

But: Anisotropic *vs* Isotropic

Internal stress identical to external stress

Depends on actin filaments

Sharp onset \rightarrow minimum number required

Microtubule fluctuations

Compressive stresses on microtubules

Compressive stresses on microtubules

Buckling from exogenous compressive forces

Fourier Mode Analysis - Ensemble

•Thermal-like spectrum
Fourier Mode Analysis - Ensemble

Thermal-like spectrumMuch larger amplitude

Microtubules can be highly bent

Fixed CHO cell

Fluctuations are short wavelength

•GFP-tubulin transfected Cos7 cell

- •Time difference 1.6 seconds
- •New position red; earlier position green

Fluctuation spectrum of single microtubule

Microtubules confined in actomyosin networks

Act 24 μ M, 1:50 myo, L= 19 μ m

140 frames, 42 s total

906 frames, 41/2 min total

Act 24 μ M, 1:50 myo, L=19 μ m

1200 frames, 6 min total

300 frames, 11/2 min total

All movies: 0.3 s between frames, 2x sped up.

Act 24 μM, 1:100 myo, L=43 μm

Fourier Mode Analysis: Single Microtubule *in vitro*

Tip growth of microtubules

Fluctuations of Tip Growth

Tip Growth: Persistent Random_Walk

Larger polymerization forcesImproved "search and capture"

Forces on microtubules

Point force

Exponential time dependence

Fluctuating motion within cells

5 μmCOS 7 cell transfectedEndogenous granuleswith GFP-tubulin

Fluctuating motion within cells

Brownian motion

2 μ m particles

COS 7 cell transfected with GFP-tubulin

Brownian motion

Mean square displacement:

Micro-inject inert beads into cells Probe motion within a cell

Micro-inject inert beads into cells Probe motion within a cell

Mean-squared displacement of 200 nm beads in wild type A7 cells

Motion appears diffusive

Microrheology: Viscous medium $\eta = 500$ x water

 $6\pi\eta a$

Biopolymer networks in cells

0.2 *μ*m

Biopolymer networks in cells

0.2 *μ*m

MSD of 200nm beads in wild type A7

MSD of 200nm beads in wild type A7

MSD of beads in wild type A7

Red:	100nm in diameter
Green:	200nm
Blue:	500nm

Scale by bead radius

Decrease cell's activity

Open symbols: 10 µM Blebbistatin treated (inhibit Myosin II motors)

Further decrease in cell activity

Effect of molecular motors on microtubules

Requires a solid network

Fluctuations of elastic network

- Levine & MacKintosh; Lau et al
- Elastic network
- Random forces from motors
- Random force dipoles drive fluctuations

Distribution of motors \rightarrow random forces

Particle must be in an elastic matrix

- Fluctuating actin filament
 - Inactive myosin II minifilament

≻8-8←

Active myosin II minifilament

Lipid vesicle

- Mitochondria
- Tracer particle

Active microrheology

Jeff Moore Mikkel Jensen BU

Laser tweezers

Optical Trap Oscillation and Bead Response (f = 1 Hz)

Response is still very much in phase at f=1Hz, suggests that the material inside is still elastic at 1Hz.

Active microrheology

Spectrum of forces on microtubules

Exponential time dependence

Fluctuations of elastic network

 $\left\langle x^{2}(\omega)\right\rangle = \frac{\left\langle f^{2}(\omega)\right\rangle}{\left|K(\omega)\right|^{2}}$ Force spectrum due to active motors $\left\langle f_{act}^{2}(\omega)\right\rangle \propto \frac{1}{\omega^{2} + 1/\tau_{p}^{2}}$ Viscoelastic response

 $\left< \Delta r^2 \right> \sim t$

 $\left<\Delta r^2\right> \sim t^{2\alpha}$

 $\langle \Delta r^2 \rangle \sim t^{1.2}$

Fluctuations of elastic network

- Elastic network
- Random forces from motors
- Random force dipoles drive fluctuations

Scaled Mean Square Displacement

Fluctuations of elastic network

- Slope: 1+2α:
 - 1 from motor fluctuations
 - α from elastic behavior of network

Distribution of local slopes

Distribution of processivity times

Force spectrum: Colored noise

Force spectrum microscopy

Force spectrum microscopy

Force spectrum microscopy

New assay to probe cancer cells

Force spectrum

Test effects of changes of biopolymer networks

cytoD to depolymerize actin

Effect on small molecule transport

Transport of small molecules is enhanced by motor activity.

Effect of motors

- Motors throughout cell
 - -Coupled through network, fluid
- Active material
- Leads to 'effective' thermal-like behavior
 Not like thermal behavior in elastic medium
- Elastic medium \rightarrow depends on *a*
- Lau, Hoffman, Davies, Crocker, Lubensky PRL '03
- Levine & MacKintosh, PRL '09
- Motors impact stiffness of cells

Conclusions

- •Biopolymer networks are elastic
- •Biopolymer networks are highly non-linear
- •Motors produce required internal tension
- •Networks and motors cause transverse fluctuations of microtubules
- •Motors drive random fluctuations of particles in cells

Thank you for your attention