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ABSTRACT: A statistical mechanical treatment of the wormlike chain model (WLC) is used to analyze 
experiments in which double-stranded DNA, tethered at one end, is stretched by a force applied directly 
to the free end, by an electric field, or by hydrodynamic flow. All experiments display a strong-stretching 
regime where the end-to-end distance approaches the DNA contour length as l/(force)1’2, which is a clear 
signature of WLC elasticity. The elastic properties of DNA become scale dependent in the presence of 
electrostatic interactions; the effective electric charge and the intrinsic bending elastic constant are 
determined from experiments at low salt concentration. We also consider the effects of spontaneous 
bends and the distortion of the double helix by strong forces. 

I. Introduction 

Perhaps the most elementary notion in polymer 
statistical mechanics is that to extend the ends of a long, 
linear flexible polymer, a force must be applied. The 
work done by this stretching goes into reduction of the 
conformational entropy of the chain. Thanks to huge 
technical advances in manipulation of the structure of 
double-helix DNA, it has become feasible to measure 
the force vs extension of single 10-100 pm long DNAs. 
In recent experiments by Smith et al.,l one end of a DNA 
was attached to a surface, while the other end was 
attached to a 3-pm-diameter magnetic bead which was 
then used to put the polymer under uniform tension 
(Figure la). Rather different experiments of Schurr et 
a1.2 and Perkins et al.3 anchored one end of a DNA and 
then stretched the polymer using either an electric field 
or the drag force exerted by hydrodynamic flow past the 
coil (Figure lb). 

In this paper, we discuss these kinds of stretching 
experiments from the point of view of equilibrium 
statistical mechanics. The experimental results are 
rather rich in details that can be understood quantita- 
tively by simple analytic calculations, thanks to some 
special features of DNA. First, double-helix DNA, or 
B-DNA, is very stifT-6 so that the energy associated 
with conformational fluctuations may be modeled using 
merely linear elasticity of a thin, uniform rod: i.e., using 
the “wormlike chain” (WLC).7 Second, self-interactions 
or excluded volume effects are negligible under almost 
all of the experimental conditions8 (see section 1II.C). 
Lastly, single double helices of up to 100 pm longg may 
be readily obtained and manipulated: one can easily 
obtain the long-chain limit favored by theorists. 

Previous theoretical models for single-DNA stretch- 
ingl0 have ignored the thin-rod elasticity known to 
describe DNA bending, which is a serious omission. 
Over most of the experimental range (end-to-end exten- 
sions from 30 to 95% of the contour length), the 
difference between the end-to-end extension and the 
total molecule contour length goes to zero as UP2, where 
f is the applied force (Figure 2). The only regime where 
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Figure 1. DNA stretching experiments are done with teth- 
ered chains either (a) by applying a force to an object (“bead”) 
attached to the free end or (b) by applying a force to the DNA 
itself along its length with, e.g., electric or hydrodynamic flow 
fields. In (a) the tension along the DNA is uniform; in (b) the 
tension in the chain increases, and fluctuation decreases, as 
one moves from the free end to the tethered end. Tethering 
of the beads on the left might be accomplished by localizing 
them mechanically, or in an optical trap. 

a generic polymer model (e.g., the Edwards model, or 
the freely-jointed chain) is appropriate to describe DNA 
is for very weak stretching. Section I1 will discuss the 
basic statistical mechanics of the WLC under tension. 
This problem was treated numerically by Fixman and 
Kovac,ll and some analytical details were later dis- 
cussed by Crabb and Kovac,12 but a complete theoretical 
picture has been lacking and is now demanded by DNA 
stretching  experiment^.^,^ Thanks to the high quality 
of experimental data and its generally good agreement 
with WLC elasticity, we can next shift our attention to 
the question of how and why the naive WLC model fails 
to describe stretching experiments. 

Section I11 treats electrostatic effects, important since 
DNA is charged; at low ionic strengths DNA is stiffened 
by Coulomb self-repulsion. Odijk, Skolnick, and Fix- 
man13 and, more recently, Barrat and Joanny14 have 
shown that DNA elasticity a t  low ionic strength should 
be scale dependent: thus the effective persistence length 
should go down as the force stretching the WLC goes 
up. This occurs due to the reduction of the WLC 
fluctuation correlation length to less than the Debye 
screening length at high forces and turns out to be 
clearly observable at low ionic strengths in the experi- 
ments of Smith et a1.l Vologodskii15 recently used Monte 
Carlo simulations to show that the WLC with Debye- 
Hiickel interactions could capture the experimentally 
observed trends; our analytical treatment gives further 
understanding of electrostatic stiffening effects. Ex- 
perimental data at low ionic strength clearly indicate 
scale-dependent elasticity in accord with theory. Con- 
sidered across a large range of ionic strengths, the data 
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A long enough linear DNA is a flexible polymer with 
random-walk statistics with end-to-end mean-squared 
distance Ro = (bLY2 ,  where b is the Kuhn statistical 
monomer size (excluded volume effects can be ignored 
in most of the experimental data considered in this 
paper;* see section 1II.C). The bending costs an energy 
per length of ~ B T A K ~ / ~ ,  where K = laS2rl is the curvature 
(the reciprocal of the bending radius) and where A is 
the characteristic length over which a bend can be made 
with energy cost kBT. This inextensible polymer model 
is variously called the wormlike chain (WLC), the 
Kratky-Porod model, and the persistent chain model. 
For the WLC, Ro2 = 2AL, and thus b = 2Ae7 

Since A is also the characteristic distance along the 
WLC over which the tangent vector correlations die 
it is called the persistence length. For DNA in vivo 
(where there is about 150 mM Na+ plus other ions), one 
should keep in mind a value A x 50 nm or 150 b ~ , ~  
although at  low ionic strengths electrostatic stiffening 
can cause A to appear as large as 350 nm. Throughout 
this paper, L >> A is always assumed. 

Like any flexible polymer, separation of the ends of a 
DNA by an amount z << L costs free energy F = 3 k ~ T z ~ /  
(2R02)  and therefore requires a force f = aF/az = 3k~Tz/ 
(W). Below the characteristic force of kBTIA, the 
extension z is small compared to L and this linear force 
law is valid. Since 1 kBT/nm = 4.1 piconewtons (pN), 
for A = 50 nm, kBTIA = 0.08 pN: the forces needed to 
extend DNAs are very small compared to the piconew- 
tons needed to fully extend conventional polymers (e.g., 
polystyrene) with Kuhn length b < 1 nm. 

For forces beyond kBTIA, the nonlinear entropic 
elasticity11J2 of the WLC model with fixed total contour 
length determines the force-distance behavior. Only 
for forces of order the base-stackinglpairing energies/ 
length 10kBT/nm = 500k~T/A will the constraint of 
fixed arc length cease to  be a good approximation, thus 
rendering inapplicable the WLC model (see section V). 

The effective energy of a stretched WLC is11,20 
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Figure 2. Fit of numerical exact solution of WLC force- 
extension curve to experimental data of Smith et a1.l (97004 
bp DNA, 10 mM Na+). The best parameters for a global least- 
squares fit are L = 32.8 pm and A = 53 nm. The FJC result 
for b = 2A = 100 nm (dashed curve) approximates the data 
well in the linear low-fregime but scales incorrectly at large 
f and provides a qualitatively poorer fit. Inset: f 1 l 2  vs z for 
the highest forces; the exact WLC result (solid line) is in this 
plot a straight line extrapolating to L = 32.8 pm from which 
the experimental points begin to diverge above z = 31 pm; 
including intrinsic elasticity (eq 19 with y = 500 kBT/nm, 
dotted curve) improves the fit. 

also make plausible a crossover from an entropic 
elasticity regime to an intrinsic stretching elasticity 
regime (where the DNA contour length slightly in- 
creases), recently suggested by Odijk.16 In the same 
section, we describe why one can largely ignore effects 
of excluded volume and spontaneous bends that may 
occur along DNA because of its heterogeneous base-pair 
sequence. 

Section IV discusses experiments that stretch teth- 
ered DNAs with one free end (Figure lb) with an electric 
field (again relying on the polyelectrolyte character of 
DNA) or with hydrodynamic Because of the 
complexities of dealing with a nonuniform and self- 
consistently determined tension, these kinds of experi- 
ments furnish less stringent tests of elastic theory but 
are closer to the kinds ofways DNAs and other polymers 
get stretched in the natural world. Finally, section V 
discusses recent experiments17 showing that strong 
forces cause the double-helical "secondary structure" of 
B-DNA to abruptly lengthen by a factor of about 1.85. 
Although the precise nature of the new DNA state is at  
this time unclear (perhaps it is an extended flat ribbon 
or separated random-coil-like single strands), the ge- 
ometry of the lengthening is consistent with straighten- 
ing of the double helix, and the force scale is consistent 
with what is necessary to overcome the cohesive free 
energy binding the DNA strands together. 

11. Entropic Elasticity of the Wormlike Chain 
Double-helical B-DNA is a stiff-rod polymer. At 

length scales comparable to the double-helix repeat of 
3.5 nm or the diameter of 2.1 nm, the pairing and 
stacking enthalpy of the bases makes the polymer very 
rigid, with a well-defined contour length that may be 
measured either in nanometers or in base pairs (1 bp 
= 0.34 nm).4 DNA conformations may therefore be 
described by a space curve r(s) of fixed total lengthA L ,  
where s is arc length and where the tangent vector t = 
a,r is a unit vector.l8Jg 

where the force f appears as a Lagrange multiplier to 
fix the end-to-end extension z = &*[r(L)  - r(0)I. Below 
we will compute the equilibrium extension using the 
Boltzmann distribution e-E1kBT. In the remainder of this 
paper, forces and extensions are taken to be along the 
z axis, and when forces appear with inverse-length 
dimensions, a factor of kBT has been suppressed. 

A. Simple Calculation of WLC StrongStretch- 
ing Behavior. When large forces are applied to a 
WLC, the extension approaches the total length L, and 
the tangent vector fluctuates only slightly around 2.12 
From the constraint It1 = 1, we see that if t, and ty are 
taken as independent components, the t, fluctuations 
are quadratic in the two-vector t l =  [t,,t,], namely, t, = 
1 - tL2/2 + 0(t14). To quadratic order, K~ = (a,tl)2, and 
we obtain the Gaussian approximation to (1):12 

where we have expressed the extension in (1) as z = 
Jds t, and where terms of higher than quadratic order 
in tl have been dropped. 

Fourier transforms ( $ L ( q )  Jds eiqstl(s)) decouple the 
energy into normal modes: 
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partition function for the WLC is 

Z(S~,i~;So,io) = j oi eXp[-E(S1,s,)/kBT] (9) 

where the path integral includes a constant to set the 
normalization Jd2tl Z(1;O) = 1 for all SI, SO, and to. 

Given the probability distribution w for the tangent 
vector at  s‘, we may compute it at  s using (9): 

(3) 

The average of t12 a t  any point s is simply given by 
equipartition: 

The leading factor of 2 in (4) counts the two components 
of tl. The extension is 

z - = i -2  = 1 - (t2)/2 = 1 - 1/(4fA)“ L ( 5 )  

and we see that for large forces, z approaches L with a 
distinctive l / P 2  behavior.12 This is to be contrasted 
with, for example, the freely-jointed chain (FJC-a 
random walk of independent, fixed-length steps) model 
in which L - z - llf for large forces.lJl 

The large-force limit is characterized by a decreasing 
correlation length for the tangent vector fluctuations tl. 
From (31, we can just read off this correlation length as 
E = (NflU2. For low forces f = kBTI.4, E = A  as welwould 
expect. For smaller forces still, the fluctuation o f t  away 
from 2 is large, and the Gaussian approximation is 
inapplicable. 

We can expect the WLC model to be inapplicable 
when the force is so large that the correlation length 6 
is reduced to of order the helix repeat length x 3.5 nm. 
Using f = (kBTIA)(N<)2, we see that for A = 50 nm the 
WLC should apply for forces up to ~OO~BTIA, or up to 
zlL 0.97. This force scale is comparable to that 
mentioned above for the applied force to overcome base 
pairing and stacking interactions, x500k~TIA. 

The side-to-side excursions of the chain over arc 
length s, R12 = ([rI(s) - r1(0)12), can also be calculated 
exactly in the Gaussian limit using t l =  asrl: 

) (6) 
1 - exp[-~(f/A)”~I R, - - S -  

2 - 2 (  f (flA)1/2 

Note that if the s - 0 limit of (6) is divided by s2, (4) is 
rederived. Equation 6 works for forces down to f = kBT/ 
A,  where R becomes the typical unstretched DNA coil 
size RI x (AsIY2; for much larger forces, Rl = (ASP2/ 

A useful summary of these results is an approximate 
interpolation formula for the WLC force versus exten- 
sion: 

VA)*2. 

(7) 

This is asymptotically exact in the large- and small-force 
limits and has the scaling property that fNkBT is a 
function only of zlL (manifest already in (1) for L * A ) .  
However, the quality of the experimental data of Smith 
et al. requires that one fit the exact force-extension 
relation.21 

B. Exact Force versus Extension of the WLC. 
The WLC energy (1) in terms o f t  is 

and is analogous to the action of a mechanical rotator i 
of moment A for times s between SO and s1 (generalized 
from 0 and L), subject to a polarizing field f acting in 
the z-direction.11120 Given values for t at SO and SI, the 

y(i,s) = j d 2 t ’  Z(s,i;s’,?)q(?,s’) (10) 

Examination of (10) in the limit s - s‘ - 0 shows that 
satisfies a linear Schrodinger-like equation:11t20 

where 8 is the angle between 2 and i and where L = i 
x Vi is the “angular momentum” operator. 

Translational invariance of (11) in s indicates that we 
can find eigenstates of (11): 

824 = -gq (12) 

For these states, y(L)  = e-gLy(0), and (9) tells us that 
log Z(L, 0) = -gL. The WLC free energy22 is thus 
simply related to the smallest g in the spectrum of (11). 
The extension is computed from g via (9): 

(13) 

The right-hand side of (11) is easily diagonalized 
numerically (Appendix), but since we seek the minimum 
g, a variational approach cap profitably be used. The 
vari@ional wavefunction y(t) = exp[a cos 81 (where 8 
= 24) reproduces the exact large- and small-fresults 
obtained previously. For small variational parameter 
a, ly is linear in cos 8 as is f lz ) ,  while for large a, 11, is 
Gaussian in 8, which is the ground state for the 
oscillator described by (2). 

Assuming the normalization Jd2t y2( i )  = 1, the 
variational free energy is 

= min{ (6 - d( coth 2a - -)} 1 (14) a 2a 

For large- and small-force limits, the limiting behavior 
of (14) may be analytically obtained. For fA << 1, a = 
fA is also small, g = -Af2/3, and thus zlL = 2fN3. For 
fA >> 1, a = diverges, g = - f  + ( fA)1/2,  and 
therefore zlL = 1 - (4fA)-v2. In between, (14) may be 
solved numerically. The force versus extension curves 
for the interpolation formula (7) (which differs from the 
exact result in extension by about 7% for fA  % 11, the 
solution of (14) (accurate to about 1.5%) and the nu- 
merical ‘exact’ result (see Appendix) are all shown in 
Figure 3 for comparison. 

C. Fit of Pure WLC Elasticity to Experimental 
Data at 10 mM Salt. Adjustment of the constants L 
and A to obtain a least-squares fit of experimental data 
of Smith et al. (97004 bp DNA in 10 mM Na+) to the 
exact WLC result21 gives L = 32.8 pm and A = 53 nm. 
These values give a very good global fit to this data set 
(Figure 2) and the WLC provides a qualitatively better 
description of the data compared to the FJC (dashed 
line). In addition, the persistence length extracted this 
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Figure 3. Comparison of three different calculations of the 
WLC extension zlL as a function of fXlk~T.  The solid line 
shows the numerical exact result (Appendix); the dashed line 
shows the variational solution (13- 14); the dot-dashed line 
shows the interpolation formula (7). All three expressions are 
asymptotically equal for large and small fMkBT. 

way matches the result of a battery of other, less direct 
measurements.516 

The inset of Figure 2 shows that f 1 I 2  goes to zero 
approximately linearly in z for z - L (the solid line 
shows the asymptotic WLC result zlL = 1 - (kBT/ 
[4Af1)1/2 for A = 53 nm and L = 32.8 pm). However, for 
the highest forces, the measured extensions exceed L 
= 32.8 pm, and f1I2 is not quite linear in z (note that 
this effect is very hard to see in the main part of Figure 
2 where zlL is plotted versus f) .  These effects point to  
a failure of the pure WLC model a t  high forces. A 
possible explanation is that the B-DNA is slightly 
stretched by the highest tensions (e.g., consider that a 
slight untwisting of the double helix will slightly 
lengthen it; the linear twisting elasticity of B-DNA is 
well characterized5Q Odijk has recently noted that 
relaxing the constraint of fixed length in the WLC model 
via the addition of linear stretching elasticity yields the 
asymptotic stretching16 zlL = 1 - (kBT/[4Af1)112 i- f l y ,  
where L is the total contour length of the unstressed 
chain and where y is an elastic constant with dimen- 
sions of force (when y-l - 0, the inextensible WLC 
result is obtained). The estimate y = 1 6 k ~ T  AID2 can 
be made by supposing DNA to be a homogeneous elastic 
rod of radius D = 1.2 nm;16 takingA = 53 nm, we guess 
y % 600 kBT/nm. Turning to the data shown in the inset 
of Figure 2 and keeping the previously fit L = 32.8 pm 
and A = 53 nm, we find that y = 500 kBT/nm can 
account for the slight deviation from WLC behavior at  
high forces (inset of Figure 2, dotted line). 

A more revealing way to plot the data and directly 
test the WLC model is to  define an effective persistence 
length, Ace, computed separately in the high- and low- 
force limits from the simple exact analytic formulas 
relating z to  f: 

Figure 4 shows the 10 mM data of Figure 2 transformed 
using L,ff = 33.7 pm in (15). This value of L,R was 
chosen for consistency with the low-salt data discussed 
in the following section. Given only the data in Figure 

a 
I 

0 '  ' 1 1 1 1 1 ' 1 '  ' ' ' ~ " l  ' " . ' " '  ' ' " "  
1 0 - ~  lo-' 10-1 l o o  10' 

force f (kT/nm) 

Figure 4. Apparent persistence lengths as defined in (15) for 
high and low forces, extracted from the 10 mM experimental 
data of Smith et al.' in Figure 2 using L,tf = 33.7 pm. The 
curves are the two theoretical fits of sections I11 (solid curves 
show L = 32.8 pm, A0 = 50.8 nm, A = 53 nm, and y = 500 
kBT/nm; dashed curves show L = 33.7 pm, A0 = 15 nm, A = 
52 nm, and y infinite) for z vs f transformed in an identical 
fashion. 

2 however, L,ff = 33.4 pm would make Aeff in Figure 4 
nearly f-independent, thereby establishing that a single 
persistence length can describe both limits. However, 
this would still leave the deviations shown in the inset 
of Figure 2 pointing to a failure of the naive WLC model. 
The scatter in A,ff for intermediate forces is in any event 
independent of the choice of LeE within the range L,ff = 
33.4-33.7 pm. The next section shows how the gentle 
decrease of A,a for 10 mM Na+ (Figure 4) may be 
explained by electrostatic self-repulsion, either with or 
without intrinsic stretching elasticity. 

111. Electrostatic Stiffening 
Figures 5a and 5b show A,R, (151, for the experimental 

data of Smith et a1.l for 97 004 bp DNAs with L,ff = 
33.7 pm for 1 and 0.1 mM Na+ (Figures 6a-c show 
extension z versus force f for 10, 1, and 0.1 mM Na'). 
The limiting low-force persistence length in these cases 
greatly exceeds its high-force limit, with most of the 
variation occurring for zlL > 0.5. There is compara- 
tively little variation in A,R measured for high salt (10 
mM, Figure 4). 

For the low ionic strengths of 0.1 and 1 mM, the 
electrostatic screening length AD falls within the range 
of the WLC elastic correlation length, 6 = (A/flU2. (For 
the Na2HP04 solution used,l we expect complete 2: 1 
Na-HP04 dissociation at 300 K,23 which gives AD % 

0.25M-u2 nm,24 where M is the Na+ molarity; M is used 
to label the data sets). At low forces, electrostatic self- 
repulsion increases the effective persistence length; for 
high enough forces that << AD, only the "intrinsic" 
elastic persistence length is observed. Although the 
electrostatic contribution to the low-force persistence 
length was discussed long ago by Odijk, Skolnick, and 
Fixman13 (OSF), Barrat and Joanny14 (BJ) only recently 
emphasized that the OSF results indicate scale depen- 
dence of the persistence length. We now incorporate 
these electrostatic effects into the force-extension 
calculations of the previous section to explain the low 
ionic strength results of Smith et ale1 and also examine 
how the resulting fits change when intrinsic stretching 
elasticity (see section 1I.C) is included. 
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The Bjerrum length Zg = e2/(&T) = 0.7 nm in water at 
300 K with E = 80, and u(r) = r-l exp[-r/A~]. v is the 
number of effective electron charges per unit length 
along a DNA (Y is the long-distance effective charge and 
should be considered as a free parameter since there is 
no ab initio theory for it, but it should be on the order 
of the value l ~ - l  as suggested by the Manning conden- 
sation m ~ d e l ~ ~ l ~ ~ ) .  

In the strong-stretching limit of section II.A, the 
Gaussian approximation to (16) is 
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Figure 6. Extension versus force data of Smith et a1.l 
compared with the two theoretical fits of section 111: (a) 10 
mM Na+; (b) 1 mM Na+; (c) 0.1 mM Na+. "he high-force fits 
are done with the Gaussian theory of (19) using L = 32.8 pm, 
y = 500 kBT/nm, and A0 = 50.8 nm (solid lines) and L = 33.7 
pm, y infinite, and A0 = 15 nm (dashed lines). 

where ZOSF = Z ~ ( i l ~ v ) ~ / 4 .  The Debye-Huckel kernel 
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behaves like K(q=O) = 1, K(q--) E 4(LDq)-’ log q, and 
K(q=2.029/AD) = The length l o s ~  is the only object 
containing the unknown effective charge v and will be 
treated as a phenomenological parameter. 

The electrostatic energy (17) should be added to the 
force and intrinsic elasticity contributions of (1) to yield 
the effective energy for small tl: 

Macromolecules, Vol. 28, No. 26, 1995 

where now A0 denotes the “elastic persistence length.  
The coefficient of q21t11212 is the total, “scale-dependent 
persistence length”14 A0 + lOSFK(q), which varies from 
A = A0 + 1 0 s ~  for q << 

Repeating the steps from (3) to (5), we find that for 
strong forces (i.e., fA >> 1) the extension is 

to A0 for q >>  ID-^. 

- _  2 -  &z 1 + -  f (19) 
- Ian [Ao + Zos&q)3q2 + f Y 

The final f l y  term accounts for the intrinsic linear 
stretching elasticity introduced in section ILC, which 
allows z to exceed L; this term is simply added to the 
zlL, which follows from (18) since in this Gaussian limit, 
bending and stretching fluctuations are decoupled. l6 

For forces f >> AI,ID~ and y infinite, only the intrinsic 
persistence length A0 contributes to (19). Therefore the 
experimental data at high forces for low salt (where AD 
is large) most directly determine L and Ao. Since we 
expect v to be nearly salt independent,26 and therefore 
that 1 0 s ~  x  AD^, the disparity between A and A0 should 
be largest at  low salt. By the same reasoning, y is best 
determined from high-salt data, where Coulomb effects 
are least important. 

The small-fluctuation result (19) is accurate for zlL 
> 0.5 (as determined empirically from Figures 6a-c) 
but the experimental data extend down to zlL x 0.1, 
demanding a better calculation. However, the long- 
range electrostatic interaction (16) makes improvement 
of our Gaussian approximation problematic. Fortu- 
nately, for 20.1 mM Na+, the screening length ,ID 5 Ao, 
and a lower bound on the crossover force, AdLD2, is large 
enough (Le., >1lA) so that a calculation based on the 
WLC model starting from low extensions and using A 
will cross over to its Gaussian limit before screening 
effects come into play. This suggests there will be a 
substantial region of overlap between a low-force fit of 
A using the WLC model and (19). 

B. Connecting the Theory to Experimental 
Results. To limit the number of free parameters, we 
immediately assume that only 1 0 s ~  depends on the salt 
concentration and demand that a single choice ofAo, y ,  
and L work throughout the concentration range. We 
use the Debye-Hiickel formula ,ID = 0.2~5IM*~ nm, 
assuming Na2HP04 - 2Na+ + HP04-’, with the mo- 
larities always defined with respect to Na+. The data 
can be equally well fit in two extreme limits, each of 
which ignores one possible additional fitting parameter. 
In the first scenario, we retain y but insist that 1 0 s ~  for 
10 mM is 0.01 of its value for 0.1 mM, i.e., that Y in the 
two limits is the same, and all the salt dependence 
comes from ,ID (this amounts to placing total confidence 
in the Debye-Hiickel theory). The 1 mM data is then 
a check on the quality of this assumption. In the second 
scenario, we suppose that the chain is truly inextensible 
(we set y - l =  O), and we fit ZOSF separately for each salt 
concentration. For all of our fits, our errors represent 
the limits within which a subjectively “good fit” is 
observed. 

1. Fit Assuming Finite Intrinsic Elasticity. In 
our first scenario, L and y are extracted from the 10 
mM data from the fit in the inset of Figure 2 (section 
1 1 . 0  y = 500 f 100 kBTlnm-l and L = 32.8 pm. From 
the 10 mM WLC fit, we have A = 53 nm while from the 
0.1 mM data, we find A = 310 f 20 nm (Figure 5b). 
The relation A = Ao + ZOSF = Ao + lB(/2DV)2/4, assumed 
to  hold for 0.1 and 10 mM, gives two equations that we 
solve to  obtain an elastic contribution to the persistence 
length ofAo = 50.8 nm and an effective charge v = 1.54 
nm-l. This value of v is close to the value Z B - ~  = 1.4 
nm-’ predicted by Manning condensation theory. A fit 
to the 1 mM data in Figure 5a gives A = 85 f 10 nm, 
which implies 1 0 s ~  = 34 i 5 nm, in quite good agreement 
with the value of 26 nm inferred from the assumption 
of 1 0 s ~  = lB(/ZDV)2/4 for v = 1.54 nm-l. 

The solid curves in Figures 4-6 show the Gaussian 
approximation (19) for zlL > 0.4, while for zlL < 0.5 we 
plot the exact WLC result using the large-scale A = A0 
+ 1 0 s ~ .  These curves are plotted for A0 = 50.8 nm and 
v = 1.54 nm-‘, with 1 0 s ~  therefore 2.6, 26, and 260 nm 
for 10, 1, and 0.1 mM, respectively. Note that in Figures 
4 and 5 we have used Aeff with Len = 33.7 pm merely as 
a device to amplify small differences between data and 
fits a t  high force levels, which would be invisible in a 
more conventional z vs f plot; the physical DNA length 
a t  low force levels is L = 32.8 pm in the present case. 

2. Fit Assuming Fixed Contour Length. In the 
second scenario, the intrinsic stretching elasticity is 
ignored ( y - l  is set to zero), and we fit the remaining 
parameters as follows. The contour length L (fixed a t  
one value at  all force levels) is determined first, by 
demanding that for high enough forces and low salt, Aeff 
crosses over and has a well-defined plateau (i.e., we 
want Adf << 2 ~ ~ ) .  Too small an L will make A,R increase 
a t  high force, while too large an L will eliminate the 
plateau. Unfortunately, for the 0.1 mM data, theory 
(figure 5b, dashed line) implies that we have to get to f 
> 10lzBTlnm to really see a plateau. Hence our fit of L 
= 33.7 pm was chosen to give a hint of curvature to the 
data points in Figure 5b. A value of L = 33.4 pm would 
create a noticeable plateau for f > llzBT/nm, while Aeff 
defined with L = 34.0 pm would have no plateau (as in 
Figure 5a, dashed line). Given L, we can move the high- 
force A,r up and down by adjusting Ao. We thus find 
Ao = 15 f 5 nm, with error bars set to where a 
noticeably inferior fit was obtained for all three molari- 
ties. 

A value of A0 % 15 nm would imply A e 25 nm for 
physiological salt concentrations ( ~ 0 . 1  M and above), 
contradicting most experiments which imply that A 
sticks a t  its 10 mM value as the salt concentration 
increases (however, some experiments suggest lower 
values for A; see p 279 in ref 5). One could fit a larger 
value of A0 e 35 nm, which moves the curves up, if one 
simultaneously increases ,ID to 0.381My2 nm, which 
moves the curves to the left. A larger value ofAo could 
also be made to fit if L was allowed to depend upon the 
salt concentration. However, given the assumption that 
y-I = 0, a small value of A0 is unavoidable. 

The last step in this fit entails using the low-force 
data to adjust A separately for each solution and thus 
to determine 1 0 s ~  = 37, 85, and 325 nm for 10, 1, and 
0.1 mM Na+, respectively, with errors of order 10% 
(Figures 4-6, dashed lines). These results correspond 
to effective charges of v = 5.7, 2.8, and 1.7 nm-l, 
respectively, tending torlard the Manning value of one 
uncondensed ion per Bjerrum length, l/lB = 1.4 nm-I 
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at low ionic strength, but there is more variation in v 
with molarity than one would expect. As we have seen 
above, if a larger value of A0 could be justified, l o s ~  
would be reduced in percentage terms much more for 
high rather than low salt concentrations, thus leveling 
the v values (e.g., with A0 = 35 nm, v = 3.9, 2.4, and 
1.7 nm-l, respectively). Systematic errors in Debye- 
Hiickel theory are expected in more concentrated solu- 
tions, which might explain the large Y values inferred 
by this fit. 

3. Comparison of the Two Fits. Figures 4 and 5 
show that the two scenarios (solid lines: WLC + 
electrostatics + extensibility; dashed lines: inextensible 
WLC + electrostatics) fit the data about equally well. 
However, the value of v = 1.54 nm-' independent of 
ionic strength as suggested by Manning condensation, 
the use of an a priori reasonable value of y = 500 kBT/ 
nm, and the value of the intrinsic elastic persistence 
length A0 = 50.8 nm make the first scenario physically 
more appealing. It is important that the scatter of I 

experiment around theory visible in Figures 4, 5a, and 
5b for A,E all but disappears in the conventional 
extension vs force plots (Figures 6a-c). We note that 
the value of A determined from the two fitting proce- 
dures was the same for 10 and 1.0 mM salt but differed 
marginally (310 nm with y finite vs 340 nm with y 
infinite) for the lowest salt concentration. 

C. Self-Avoidance. The lowest extensions studied 
experimentally (zlL < 0.25 in Figures 6a and 6b) are 
systematically larger than the theoretical z/L. This is 
emphasized in the low-force apparent persistence lengths 
(extreme left side of Figures 4 and 5a). This disparity 
might be attributed to systematic error in measuring 
the low-force extensions of a few microns (the 3 pm size 
of the bead and the slow fluctuations of the DNA + bead 
both serve to make the low-force regime difficult to 
study). On the other hand, could this effect be at- 
tributed to swelling of the unstretched polymer by 
excluded-volume interactions? The fundamentally non- 
local self-avoidance effect is not included in the above 
model, which was designed only to account for the 
effects of electrostatic interactions locally along a DNA. 

Here we quickly review how simple Flory theory 
provides a quantitative estimate of when self-avoidance 
between distant points along the chain is importanL8 
From the excluded phase space volume 4A2D of a rod 
of diameter D and length 2A (the WLC Kuhn length), 
we conclude that self-avoidance effects become impor- 
tant for an unstretched random coil (using end-to-end 
radius Ro = (2AL)1/2) when LD2/(8A3) > 1.8 For L = 33 
pm, D = 21D = 0.5M-1/2 nm, and low-force persistence 
lengths A = 50, 100, and 350 nm for Na+ molarities M 
= 10-2, and respectively, we find LD2/(8A3) 
M 0.83, 1.03, and 0.24. 

Therefore, at  zero extension we can expect some 
swelling via self-avoidance as is suggested by the low- 
force data in Figures 4,5a, and 6a-c. However, for even 
small extensions to a few times the random-coil size Ro 
= (2AL)u2, self-avoidance effects will be suppressed by 
the consequent reduction in DNA concentration. A 
simple Flory estimate indicates that for extension to a 
length z ,  the above criterion for swelling due to self- 
avoidance is suppressed by a factor Rdz. Thus for 
extensions zlL 2 0.25, Rdz I 0.2, and self-avoidance 
effects are unimportant. Of course, once zlL > 0.4, the 
tangent vector is predominantly along 1, and self- 
avoidance effects disappear completely. 

D. Intrinsic Bending. Biological DNAs (e.g., the 
1-phage genome used in all experiments discussed in 
this paper) have heterogeneous base pair sequences. 
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Consequently, biological DNAs have sequence-depend- 
ent permanent bends along their length.27 Although it 
is plausible that such intrinsic bending of DNA should 
be locally and uniquely determined by sequence,2a it is 
not yet known how to reliably do so. A possible 
simplification follows from the observation that at  large 
scales ( 2  1 kb), protein-coding sequences appear to have 
Gaussian statistics, corresponding essentially to random 
walks in sequence:29 thus large-scale intrinsic bends 
might be considered to be random. What can we say 
about the effects of large-scale random intrinsic bends 
on the WLC elasticity discussed in the previous section? 

Using electrophoretic mobility data, Trifonov and co- 
workers have proposed a simple model which associates 
a small ( ~ 4 " )  sequence-dependent bend with nearest- 
neighbor base pairs.30 The shape obtained from ap- 
plication of this model to the 48.5 kb &phage sequence 
corresponds to a thermal WLC configuration with a 
persistence length of Astruct M 400 nm.31 

This suggests a simple statistical model for large-scale 
intrinsic DNA shape:28 a particular configuration taken 
from the WLC ensemble with persistence length Astmct. 
If on top of these intrinsic random bends there are 
thermal bends with WLC bending persistence length A, 
Trifonov et al. noted2* that the random-coil fluctuations 
of this model correspond to those of a WLC with an 
apparent persistence length Aapp = A/[1+ A/Astmctl. The 
intrinsic bends are an additional source of disorder and 
shorten the apparent persistence length. 

For Astruct = 400 nm and A = 50 nm, the intrinsic 
bends are gradual compared to those excited thermally. 
Therefore, we might expect a slight reduction of the 
unstretched coil size and a consequent slight decrease 
in the extension obtained for a given force in the linear 
Edwards regime to result from intrinsic bends. How- 
ever, for L = 30 pm, the small effect suggested by Astmct 
M 400 nm will be more than offset by the swelling from 
self-avoidance (the very different zlL dependence of self- 
avoidance and disorder effects must be kept in mind; 
see section 1II.C). 

For strong stretching, one might imagine the length 
stored in intrinsic bends could alter the large-f force 
law.' However, a simple calculation indicates that this 
is not the case. If we suppose the DNA is a series of 
half-circles of radius Astruct and if we suppose that the 
energy of deformation is A(K - A,~ct)2ds/2 (via gener- 
alization of (1) to spontaneous curvature A&ct), then 
the extension z for large force varies as 1 - zlL x 
(A/Astruct)4(fA)-2. The prefactor is small because we 
expect A < Astruct; more importantly, the llf2 power-law 
decay is much faster than the Up2 contribution of WLC 
thermal fluctuations. These primitive estimates suggest 
that for DNA stretching experiments, intrinsic bends 
characterized by Astmct >> A can be ignored, especially 
in the large-force regime. On the other hand, sharp or 
strongly correlated bends can be expected to produce 
interesting effects. 

IV. Stretching Tethered DNAs with Electric 
and Flow Fields 

The experiments discussed in the previous section' 
were well designed to extract the elastic properties of 
DNA because (a) one end of the molecule is anchored, 
and a known force is exerted on the other end, giving a 
uniform tension along the chain that can be exactly 
described thermodynamically; (b) no fluorescent dye 
(e.g., ethidium bromide, DAPI, or YOYO) which could 
modify the elastic properties of the DNA is needed since 
only the bead on the free end needs to be imaged; and 
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(c) high forces first lead to the Gaussian regime dis- 
cussed in section L A ,  which is very easy to treat, and 
eventually to a regime where the base pairs unstack 
(section VI. Here the uniform tension allows one to 
probe coexistence of the B-form fixed-length phase with 
the unstacked phase.17 

A second class of experiments use electric fields and 
hydrodynamic flow to stretch tethered DNAs without 
beads attached at  their free ends. They are character- 
ized by highly inhomogeneous stretching: near the free 
end, there is very little stretching, while near the 
tethered end, the tension is the sum of forces applied 
to  the remainder of the chain and can be very large 
(Figure lb). Such experiments are closer to the kind of 
stretching that might occur naturally during gel elec- 
trophoresis2 or in shear In this section, we show 
how the thermodynamic expressions for the WLC 
derived in section I1 can be employed to treat these 
inhomogeneous situations. 

A. Uniform Electric Field. We begin with the 
problem of a fixed electric field E = E2 acting on a DNA 
molecule which has one end fixed in space and the other 
free. In practice, a uniform field can be maintained in 
an ionic solution only by driving a net current, and this 
can be stably done in standard electrophoresis setups. 2,32 

In the interesting limit of the screening length much 
less than the largest dimension of the body, the forces 
produced by electrophoresis are of hydrodynamic origin 
and result from a slight imbalance between the electric 
field acting directly on the surface charge and the shear 
stress of the flow in the screening layer.32 How this 
applies to a deformable object like a polymer is still an 
open question, and in this section, we examine the 
consequences of a purely phenomenological description 
where the tension at  a point s on a chain anchored at  s 
= 0 is vE2.[r(L) - r(s)l. The phenomenological constant 
Y has the dimensions of chargellength but, when com- 
puted for a solid rod, involves also the diameter and 
screening length. For a random coil configuration the 
tension at s = 0 scales as the radius of gyration in 
accordance with arguments of Ajdari et al.32 We can 
express our ansatz for the tension f at  a general point 
s in a form suitable for further analysis as 
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The tension at  s decreases as one approaches the free 
end and is proportional to 2.[r(L) - r(s)l, the distance 
along z to the end of the chain. 

We can close (20) in the limit when the time-averaged 
tension f l s )  (and therefore 2 4 s ) )  varies with s on a scale 
much larger than the correlation length for thermal 
fluctuations, t (s) x A/[1 + f AI1" (this formula for 5 
interpolates between the large- and low-tension limits 
discussed in section I.A, for f 2 llA, our closure criterion 
EId log fldsl << 1 reduces to dE/ds << I). Under these 
conditions, the averaged left-handed side of (20) may 
be related as a function of s to the local tangent vector 
orientation y(s) (2.t) by using just the thermodynamic 
relation for the force in terms of the averaged tangent 
vector, i.e., zlL of section 11. 

In view of other approximations to follow, it suffices 
to use the approximate WLC force-extension relation 
(7). Thus (20) becomes explicitly 

where we have introduced the dimensionless electric 
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Figure 7. Tangent vector orientation profiles y(s) = (i(s).2) 
versus contour length s for a tethered L = 33 pm DNA with A 
= 50 nm stretched by an electric field. Results for dimension- 
less electric fields E = vEA2/kBT = 0.005, 0.01, 0.02, and 0.05 
are shown. When ELIA 1, the stretching is appreciable: y 
=- 0.3 along more than half the chain. 

field E vEA2/kBT (the force applied to a persistence 
length of DNA in units of kBTIA). For E = 1 Vlcm, A = 
50 nm, and Y < 2e/nm, we have E < 0.02. It is this small 
parameter which will lead to the slow variation off and 
y on the scale 5, thereby justifymg our WKB-like 
approximation. 

Differentiation of (21) yields a local equation fory(s): 

(22) 

This equation indicates that Eld log yldsl I E every- 
where, and therefore for E << 1 our WKB approximation 
is justified. Note that we must not use the boundary 
conditiony(L) = 0 since integration of (22) from the free 
end would then lead to y ( s )  3 0. This is caused by the 
fact that our thermodynamic relation assumed a long 
chain and neglected boundary conditions. 

To derive a reasonable boundary condition for (22), 
we imagine the last persistence length to  be a freely 
reorienting rod in an external field. This suggests y(L) 
x E << 1 as a boundary condition for (221, which may 
then be solved in closed form: 

We see that the right-hand side depends only weakly 
on the boundary condition y(s=L), and thus any impre- 
cision in its definition is immaterial. Figure 7 shows 
profiles for the tangent orientation, y(s ) ,  for a 33 pm 
DNA, with A = 50 nm. The amount of DNA per length 
along 2 such as one would measure from fluorescence 
intensity is just proportional to y-l .  

Equation 23 implies that the tethered end of the chain 
is well aligned with the field if ELIA L ln(6-l). The 
characteristic parameter, ELIA in (23) follows by com- 
paring the typical force necessary to align DNA, kBT/A 
with the total electric force on the molecule computed 
in the fully extended limit, VEL. It is of course the 
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thermal disorientation of the chain that gives the 
logarithmic factor. 

In the limit cLlA >> 1, most of the chain is stretched 
and we can solve (23) by just keeping the term 
-ll(l - yI2 on the right-hand side. The asymptotic 
behavior of the total extension z = Jtds y(s)  is just 
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This equation is just the strong-stretching extension (5) 
with applied force f = vLE14. The square root is a 
signature of WLC strong-stretching elasticity. Experi- 
ments in this limit can test the scaling properties of 
WLC elasticity (the power law) and measure the effec- 
tive electrophoretic charge (the prefactor). 
B. Hydrodynamic Flow. Perkins et al. have used 

hydrodynamic flow to extend DNA molecules from 16 
to 83 pm in length by attaching a bead to one end and 
holding it in a steady flow in a laser trap ("optical 
 tweezer^").^ The bead was a negligible perturbation on 
the flow. Here we will use the WLC model as the basis 
for a semiquantitative description of the elongation vs 
flow velocity. 

The main challenge is to estimate the drag force on 
the DNA, since the drag depends on the shape and the 
molecule is simultaneously deformed. The particulari- 
ties of low Reynolds number hydrodynamics make it 
fairly easy to make estimates to within a factor of x2 ,  
but difficult to do better. A simplifying feature is the 
hydrodynamic screening which makes the tangle of 
DNA appear to the flow like a solid body. For instance, 
in the simple case of a random coil, there will be a 
pressure difference x yula across the equivalent sphere 
of radius a, where y is the viscosity and u the velocity. 
If d is the characteristic spacing of the DNA filaments 
inside, this pressure will only create a flow d2ula2 << 
u through the DNA tangle, which therefore appears 
solid. A second simplification is that the drag for small 
Reynolds number is set by the longest dimension of the 
body, with a coefficient that varies slowly with the 
aspect ratio. For instance, the drag on a sphere is 6qau 
and that on a prolate ellipsoid (major axis a,  minor axis 
b) is 4nyauAog(alb) for a >> b.33 

This minimal dependence of the drag on the body's 
shape allows a reasonable fit to the extension experi- 
ments using a single parameter to describe the stretch- 
ing of thenmolecule, the characteristic tangent orienta- 
tion y = (t.2). We ignore the variation of tension with 
s along the molecule and thus the increasing transverse 
fluctuations as one proceeds toward the free end (a 
family of ellipses with common b and variable a b )  1 b 
would be a reasonable guess for the drag on the DNA 
between s and L). 

We will use once again the simple interpolation 
formula (7) to relate y and the force. To close the 
problem we therefore must express the drag force 
interms of y. For strong stretching, we identify the 
minor semiaxis with the transverse wandering distance 
R I  (6 )  and the major semiaxis with aLyl2, where a will 
be used as an all fitting parameter. For weak stretch- 
ing, neither a nor b should be allowed to drop below the 
unperturbed random-coil hydrodynamic radius 
0.375(AL)1/2 34 (the numerical prefactor makes eq 25 go 
to a standard result for the drag on a random coil in 
they - 0 limit). 

Both these limits are included in the following inter- 
polation formula for the drag force: 
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Figure 8. Stretching of a tethered DNA with hydrodynamic 
flow. Theoretical (curves, eq 25 with = 0.01 P, A = 50 nm, 
and a = 0.25) and experimental (symbols, data of Perkins et 
aL3) extensions as a function of flow velocity u are shown 
for L = 22, 35, 44, 53, 63, and 83 pm. 

4z~,7va(Lyl2 + RH) 
(25)  

fD = log(1 + Ly/[2RH]) + 2 d 3  

where& = 0.375(AL)1/2(1 - y2) describes the transverse 
(hydrodynamic) radius in both the weak- and strong- 
force limits. This drag force can then be equated to the 
WLC stretching force (7) to determine the stretching y .  

These very simple ideas illustrate that high and low 
flows generate extensions that scale very differently 
with u and L. For weak stretching, the Stokes drag 
~ U ( A L ) ~ ~  balances the Edwards elasticity kBTyIA 
(numerical factors aredgnored). For strong stretching, 
the drag is roughtly yuLAog[Llbl (for the moment, we 
suppose that the ellipsoid minor semiaxis b is fixed) and 
balances the WLC elastic force kBT/[A(l - Y ) ~ ] .  In these 
two limits, we thus obtain the scaling behaviors 

(26)  

Thus y is not a function of one combination of yulkBT, 
L, and A. Before we compare with details of the results 
of Perkins et al., we note that their measured extensions 
do not go to zero at  zero flow (see Figure 2b of ref. 3). 
Their measurements of the longitudinal size of the 
"cloud" of fluorescently labeled DNA at low extensions 
are measures of the random-coil size. We may correct 
for this by adding a random-coil correction to our 
theoretical extension, contrived to disappear as y - 1 
in the same way as the transverse fluctuations: 

Z,bS = Ly + (!&w2(1 - y 2 )  (27) 

In Figure 8 we compare experimental data of Perkins 
et al.3 for extension as a function of flow, with the 
combination of (25), (27), and (7). The DNA lengths 
were L = 22,35 ,44 ,53 ,63 ,  and 83 pm, and we used y 
= 0.01 P, A = 50 nm, and set a = 0.25 to optimize the 
fit. For large extensions, the scaling behavior 1 - y = 
u-y2 is plainly apparent (see inset of Figure IC of 
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Figure 9. Theoretical curves for stretching of a chain by a 
flow from Figure 8 replotted as Zob& versus uLo 6;  a superim- 
position of curves very similar to that reported by Perkins et 
aL3 is obtained. 

i 

\ 4 

\ I 
i 

I I \  I 
0 1  
0 0  0 2  04 0 6  0 8  1 0  

extension zObs/L 

Figure 10. Square of transverse radius R2 for a DNA 
stretched by flow versus extension Zob& for L = 44 pm. 
Between 0.2 and 0.8, there is a roughly linear dropoff of R2 
even though the asymptotic behavior for Zob& - 1 is quadratic. 

Perkins et ale), and once again the square root is a 
signature of WLC elasticity. 

Over much of the experimental data range, the two 
limiting combinations of velocity and length which enter 
(26) (vL1I2 for weak stretching and vLllog L for strong 
stretching) can be jointly fit as VL" for some exponent 
x. For instance, in Figure 9, we show the theoretical 
curves from Figure 8 replotted as Zob& versus "he 
result is very similar to the collapse of the data shown 
in Figure 2b of Perkins et al.3 where was used as 
the abscissa. 

Finally, in Figure 10 we show the square of the total 
transverse radius R2 = AL(1 - y2)2 versus extension 
Zob& for L = 44 pm. D. Smith reported35 to us that for 
extensions between 0.35 and 0.75, there is a roughly 
linear dropoff of the,square of the transverse size. Very 
near z0b$L = 1, R2 has a quadratic "foot", but over most 
of the extension range (0.35-0.8) it indeed drops off 
nearly linearly. Further details of the conformation 
(e.g., the inevitable "trumpet" shapelo) depend on the 
precise way that the tension builds up with distance 

from the free end, which in turn depends on the flow 
past the elongated coil. 

V. Unstacking DNA 
The stacking and base-pairing interactions provide a 

few kBT per base pair of cohesive energy to  the DNA 
double helix.36 This energy density corresponds to a 
force on the order of 10kBT/nm 40 pN. This is a very 
large force compared to the XkBTIA x 0.08 pN charac- 
teristic scale for WLC entropic elasticity. Therefore a 
model with fixed contour length, and an unperturbed 
ds-DNA helix should be very reasonable for the experi- 
ments discussed in sections 11,111, and IV. On the other 
hand, if forces on the order of 40 pN are applied to a 
DNA, we should expect the double-helix structure t o  
deform: we expect to observe DNA's intrinsic stretching 
elasticity. In sections I1 and 111, we have already noted 
that data of Smith et a1.l a t  forces M 10 pN suggest the 
onset of linear stretching elasticity.16 In this section, 
we discuss evidence for, and a simple model for, 
extremely nonlinear elastic response of DNA that 
results from an abrupt change in structure of the double 
helix under high tensions. 

Recently17 the measurements in Figure 2 have been 
extended to higher static forces. A transition was 
observed for a force M 50 pN, where the B-DNA unsnaps 
and transforms to a state a factor a x 1.85 times longer. 
Clear evidence was also provided for coexistence be- 
tween the B-form and the unfolded phases since the 
force remained nearly at  its critical value, while the 
extension of the molecule, z,  varied in the range 1 < 
z/L < a, where L is the B-form contour length. This 
transition was plausibly attributed to  unstacking and 
unwinding the base pairs. The stacking forces are 
short-ranged and could be expected to yield abruptly. 
The simple-minded model of straightened sugar- 
phosphate backbones (in B-DNA they are helically 
wrapped around a 2 nm diameter cylinder with a 3.5 
nm helix repeat) gives an extension a x 2. 

In this section, we merely set up the thermodynamics 
to describe the two-phase coexistence, show how pa- 
rameters measured for thermal denaturation constrain 
the unbinding force, and speculate about other features 
of the two-phase region. In addition to a, we will 
characterize the unstacked phase by a second parameter 
t defining its free energy per unit length (of B-DNA). 
We neglect for the moment the very interesting but 
unexplored thermal fluctuations of the unstacked state, 
which due to its much reduced persistence length we 
expect to be more pronounced than for B-DNA. 

The B-DNA rFgions are described by an averaged 
stretching y (t*&), and a free energy per length (in 
the fixed-extension ensemblez2) 3-b) = yz / (2A)  + y2/ 
[4A(1- yll (note that ,7is the work done stretching the 
chain and may be derived from the interpolation for- 
mula (7) using the boundary condition 3 7 y = O )  = 0, and 
is properly convex and exact in the limit y - 1, in which 
we work). In analogy with liquid-gas coexistence a t  
fixed volume, we write the total free energy per length: 

where 4 is the fraction of unstacked DNA. We add the 
constraint of fixed extension: 
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which simply states that total length z is the sum of 
lengths of B-DNA and unstacked portions of the poly- 
mer. 

For small extension, the tension in the DNA is low, q5 
= 0, zIL = y .  However, at  some critical extension z*, it 
becomes favorable to create unstacked DNA. This 
occurs when the free energy density of the C#J = 0 state, 
S W L ) ,  becomes equal to  the line tension of the un- 
stacked phase minus the change in free energy due to 
the elongation of the B-DNA under the imposed force: 

9 ( z * l L )  = t - 9’(z* /L) (a  - z*/L) (30) 
Less physically, eq 30 is obtained by minimization of 
the free energy (28) subject to the constraint (29). The 
force at  which the unstacking begins to occur is just r“ 
= F ( z * / L )  = [t - 3(z* lL) l / [a  - z*/LI. 

For extensions beyond z > z*,  the tension stays 
constant at  r“, and the unstacking fraction grows 
linearly with z :  
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pN force needed to interconvert one phase into the other, 
rounding of the force plateau, and hysteresis observed 
during interconversion of the two phases. The unstack- 
ing transition, analyzed here, is also implicated in the 
experiments which stretch DNA with a receding minis- 
cus, judging by the forces and overextensions involved.40 
Further support for the phase coexistence model out- 
lined above is provided by Chatenay et al.41 who very 
recently measured the force vs distance for overexten- 
sion of B-DNA and observed a prominent region of 
constant force over a range of extensions from roughly 
1 to 1.8 times the B-DNA length. 

Other situations arise where two states of a polymer 
with different extensions are brought to pseudophase 
coexistence by stretching. Twisted DNA molecules form 
plectonemic supercoils, but since the ends of a plec- 
toneme are coincident, any imposed extension will 
require some fraction of solenoidally supercoiled DNA.42 
There exist proteins which when bound to DNA reduce 
its length (e.g., histones, TATA-binding proteins), so one 
might stretch such a complex sufficiently to make it 
thermodynamically favorable for the proteins to release 
(based on the % 3 0 k ~ T  binding energy of the 146 bp of 
DNA in a nuc leo~ome,~~ we have estimated that a force 
of 2 pN should be sufficient to liberate histones from 
chromatin fiber). Finally, we note that similar ideas 
were applied to the coexistence of collapsed and extended- 
chain conformations encountered when a polymer “brush” 
is stretched in a poor solvent.44 

VI. Conclusions 
The experiments analyzed in this article are a com- 

pelling illustration that biomaterials-in this case 
DNA-can furnish a quantitative test of basic aspects 
of polymer physics that otherwise would remain some- 
what academic. Three classes of experiments may be 
discerned depending on how the force is applied to the 
DNA (one end is always tethered), (a) static force is 
applied to the free end only; (b) an electrophoretic force 
is applied; (c) hydrodynamic drag is applied directly to 
the DNA. The theory is quantitative in all but the first 
case since otherwise hydrodynamics is involved and the 
shape of the DNA has to be determined self-consistently 
with the force. 

The WLC model can be solved exactly for perfect 
screening in case a, and far more precise experiments 
are possible by extensions of the techniques pioneered 
in ref 1. Thus we anticipate a lively exchange between 
theory and experiment as a number of small effects 
emerge unambiguously from the data. Prominent among 
these will be an improved treatment of Coulomb effects. 
Experiments at  -0.1 M salt will immediately decide 
whether the small value ofAo = 15 nm determined with 
no intrinsic elasticity is viable or whether a finite y. is 
required to fit experiment. For salt concentrations near 
physiological, one should probably linearize around the 
correct Poisson-Boltzmann equation in (16), to obtain 
some corrected kernel in (17). Ultimately, the only 
approach may be n~merica1.l~ In low salt, it  will no 
longer be adequate to treat all the crossover in the 
Gaussian limit and to fit the low-force data with the 
WLC model containing the long-distance correlation 
length A. Finally, some unique signature of chemical 
effects such as intrinsic bends may emerge. 

One aspect of DNA physics that has not been ad- 
dressed here are manifestations of the twist rigidity 
which leads to an internal twist-angle correlation length 
of order 75 nm at high salt.5 Thus DNA supercoils 
writhe when twisted, like a rubber hose. All force 
measurements to date have anchored only one of the 

@=- z - z *  
aL -2” (31) 

The constant tension in the chain is precisely what is 
required to do the work necessary to convert the WLC 
to unstacked DNA. Finally, when z = aL, the DNA is 
fully unstacked (q5 = 1) and in this model, no further 
extension is possible. For real DNA, there will be 
additional length stored in the thermal fluctuations of 
the unstacked region and the resultant elasticity can 
be measured until either the chemical bonds in the 
backbone or the attachments to the bead break (chemi- 
cal bonds will break at  very roughly 5 eV/nm x 600 pN; 
streptavidin-biotin links commonly used in stretching 
experiments break at  about 150 pN39. 

A value of t can be inferred from the measured critical 
force p“ = 50 pN and the extension a = 1.85, which when 
substituted into (30) imply t = 10.9kBTInm and z*/L = 
0.980 (note t is not simply f *  = 50 pN = 12.2k~T/nm). 
Since the sequence of the 2-phage genome used in the 
experiment is known, we can compute AGIL = 2.03 kcaV 
mol = 9.82k~T/nm for the helix-coil transition using 
the measured nearest-neighbor stacking energies from 
ref 36 and our value of 0.347 nmhp. To relate the free 
energy of two single-stranded random coils to t (the 
reference free energy is unstretched B-DNA in all cases), 
we add to AGIL the free energy difference of unstacked 
ribbon relative to free coils and the elastic energy to 
extend the ribbon. Both contributions are positive: the 
former because DNA melts into free coils and not a 
ribbon. Although t > AGIL, the difference is not large, 
so the unstacked state may effectively be two single 
strands. 

In the absence of any variation in t along the DNA, 
general statistical mechanical arguments imply that the 
two coexisting phases will mix.39 The size I of the 
droplets of pure phase can be estimated by balancing 
the entropy of the “domain wall” separating the two 
phases against the energetic cost of creating one. The 
entropy is &BT InWt), where [ x 1 nm is the (zero- 
dimensional) domain wall thickness, while the energy 
is xt5 x lOkBT, implying 1 x 5er5lkBT % 10 pm. These 
figures are largely guesses. To the extent, however, that 
1 > A, the entropy associated with the mixing of domains 
of the two phases is much smaller than the free energy 
of the WLC chain elasticity, which would diverge as x - L were the unstacking transition not to intervene. 
In practice, long-range correlations in the G/C vs A/T 
composition will make it favorable to put the unstacked 
phase where the B-DNA interstrand binding is smallest. 
This heterogeneity is probably responsible for the x l  
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DNA strands and thus allowed the molecule to come 
into twist equilibrium. However, with an imposed twist 
and reasonable values of force, the DNA is a mixture of 
plectonemic and solenoidal forms, and changes in exten- 
sion occur by conversion of one form to the other (the 
plectoneme has zero extension but is the preferred state 
in the at  zero force). The force-extension curves change 
dramatically; Gaussian calculations were reported in ref 
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Appendix. Numerical Calculation of WLC Free 
Energy 

(1 1) by just expanding $J using spherical harmonics: 
We may find the spectrum of the right-hand side of 

(32) 

where $JL are the expansion coefficients and where we 
have anticipated that the ground state must have axial 
symmetry and thus no m f 0 components. Insertion of 
(32) into (12) yields the matrix equation 

which is easily diagonalized to obtain the minimum 
eigenvalue g. 

An upper cutoff on 1 renders the problem finite: 
practically, one Cali just increase I until convergence to 
the precision desired over a certain force range is 
obtained. Figure 3 has a cutoff at  I = 100, which 
provides eight-digit accuracy (defined by the change in 
results relative to calculations with maximum I = 80) 
over the force range (fA < 100) relevant to experiments 
on DNA. 
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