Single Molecule Spectroscopy of Unfolded and Intrinsically Disordered Proteins

Ben Schuler

r(t)

Outline

- Unfolded and intrinsically disordered proteins
- Single Molecule Fluorescence Spectroscopy and FRET
- Distances and distance distributions from singlemolecule FRET
- Fluorescence Correlation Spectroscopy (FCS)
- Unfolded state dynamics from FCS

Unfolded and intrinsically disordered proteins

Unfolded Folded

Protein Folding

Intrinsically disordered proteins (IDPs)

 \rightarrow ~30% of the human proteome are estimated to be IDPs

Intrinsically disordered proteins

Coupled folding & binding

Polymeric properties of unfolded proteins

By and large only accessible in high concentrations of denaturant by ensemble methods

Kohn et al. PNAS 2004

- Unfolded and intrinsically disordered proteins
- Single Molecule Fluorescence Spectroscopy and FRET
- Distances and distance distributions from singlemolecule FRET
- Fluorescence Correlation Spectroscopy (FCS)
- Unfolded state dynamics from FCS

Fluorescence: a reminder

Fluorescence quantum yields depend on relative rates of radiative and nonradiative processes

Fluorescence lifetimes depend on the rates of all decay processes

Förster Resonance Energy Transfer (FRET)

Förster Resonance Energy Transfer (FRET)

acceptor

1.0

THEODOR FÖRSTER

$$\kappa^{2} = \left(\cos\theta_{\rm T} - 3\cos\theta_{\rm D}\cos\theta_{\rm A}\right)^{2}$$

= 2/3 for rapid orientational averaging

donor

Confocal single molecule fluorescence spectroscopy

Hoffmann et al., PNAS 2007 Soranno et al., PNAS 2012

Basics of photon statistics

Simplest case:

single fixed distance or all dynamics faster than mean interphoton time (~10 µs) \Rightarrow Photons uncorrelated, i.e. Poissonian photon statistics (good approximation): $p(N) = (nT)^N \frac{e^{-nT}}{N!}$, with $nT = \langle N \rangle$ mean number of photons per bin

Exponential interphoton time distribution $p(\tau) = n e^{-n\tau} \implies \langle \tau \rangle = n^{-1}$

Photon shot noise in single molecule FRET

Probability of observing N_A acceptor photons in a fluorescence burst of N photons, given a fixed mean transfer efficiency $\langle E \rangle$ underlying the signal:

$$P(N_{A}) = \binom{N}{N_{A}} \langle E \rangle^{N_{A}} (1 - \langle E \rangle)^{N - N_{A}}$$
$$P(N_{A}, N_{D}) = \frac{N!}{N_{A}! N_{D}!} \langle E \rangle^{N_{A}} (1 - \langle E \rangle)^{N_{D}}$$

 \Rightarrow Shot noise broadens transfer efficiency distributions

 \Rightarrow *E* distributions cannot be converted directly to distance distributions!

 \rightarrow but: the underlying true transfer efficiency distribution can be obtained by deconvolution of the shot noise contribution

Distances from FRET efficiencies

Important points to consider for quantitative distance measurements with FRET:

- Precision for distances and distance changes is greatest close to R₀ (where dE/dr is maximal)
- Förster theory is not accurate for very short distances (compared to the size of the fluorophores, i.e. < 1nm for typical dyes)
- Shot noise (see above)
- Reorientation of donor and acceptor must be fast relative to the donor fluorescence lifetime (κ² = 2/3), otherwise additional broadening and shift of ⟨E⟩
 → measure fluorescence anisotropy
- Instrument must be **calibrated** to correct for differences in quantum yields of the dyes and detection efficiencies to obtain accurate distances

• Time scales

 \rightarrow slow distance dynamics (relative to the interphoton time) will lead to a broadening of the *E* distribution (underlying distance distribution can be obtained by shot noise deconvolution)

 \rightarrow rapid distance dynamics (relative to the interphoton time) will lead to fast sampling of the distance distribution and will not result in broadening

- Unfolded and intrinsically disordered proteins
- Single Molecule Fluorescence Spectroscopy and FRET
- Distances and distance distributions from singlemolecule FRET
- Fluorescence Correlation Spectroscopy (FCS)
- Unfolded state dynamics from FCS

Distance distributions from FRET efficiencies

 \rightarrow but: direct information about P(r) lost due to ms-averaging over bursts

Distance distributions from fluorescence lifetimes

subpopulation-specific fluorescence intensity decays provide more direct test of P(r)

Example: Distance distributions in the unfolded state

Example: mapping unfolded state dimensions

 $l_p =$

$$p_{eq}(r) = \frac{4\pi r^2}{\left(\frac{2}{3}\pi \left\langle r^2 \right\rangle\right)^{3/2}} e^{-\frac{3r^2}{2\left\langle r^2 \right\rangle}}$$

 \rightarrow collapse is largely uniform

Polymer concepts quantify key properties of IDPs

Polymer scaling laws allow a classification of expansion and collapse

 $R_G = R_{G0} N_{bonds}^{\nu}$

Polymer effects in molecular crowding

Sanchez Theory of Coil-Globule Transitions

Hofmann *et al.* (2012) *PNAS 109,* 16155-16160

Schäfer, Kappeler, 1993: $R_g^2(N_1, N_2, c_{p2}) = l_R^2 N_R^{(0)} \left\{ 0.636 + 0.165 \left(N_R^{(1)} \right)^{1/2} - 0.292 \left(N_R^{(1)} \right)^{1/2} f_{12}^{2} G(W_2, y_N) \right\}$

Excluded volume screening/ Flory-Huggins Theory

Soranno, König *et al.* (2014) *PNAS 109,* 16155-16160

Expansion of denatured protein by molecular chaperones

Excluded Volume Effects

Kellner *et al.* (2014) *PNAS 111,* 13355-13360

- Unfolded and intrinsically disordered proteins
- Single Molecule Fluorescence Spectroscopy and FRET
- Distances and distance distributions from singlemolecule FRET
- Fluorescence Correlation Spectroscopy (FCS)
- Unfolded state dynamics from FCS

Fluorescence Correlation Spectroscopy (FCS)

- → Translational diffusion through the confocal volume leads to fluorescence intensity fluctuations
- \rightarrow Can be analyzed in terms of correlation functions

FCS: Translational diffusion

assume S = 5, ω_{xy} = 350 nm \rightarrow calculate the Stokes radius and the concentration of the fluorescently labeled macromolecule

Processes detectable by FCS

Any process that leads to fluctuations of fluorescence intensity on an accessible time scale will contribute to the correlation function.

Examples:

- Translational diffusion (~1 ms)
- Photophysics: triplet state blinking (intersystem crossing, ~1 μs), antibunching (fluorescence lifetime ~1 ns)
- Rotational diffusion (~1 to 100 ns)
- Conformational dynamics (FRET, quenching)
- Molecular interactions

 (binding → change in diffusion coefficient or crosscorrelation between different colors)

Monitoring processes on longer time scales than milliseconds typically requires immobilization \rightarrow accessible time scales limited by photobleaching (>minutes for low excitation rates)

- Unfolded and intrinsically disordered proteins
- Single Molecule Fluorescence Spectroscopy and FRET
- Distances and distance distributions from singlemolecule FRET
- Fluorescence Correlation Spectroscopy (FCS)
- Unfolded state dynamics from FCS

Dynamics from single molecule photon statistics

- → unfolded state dynamics are very rapid (close to Rouse/Zimm time)
- → how can the fluorescence intensity correlation functions be analyzed in terms of distance fluctuations (i.e. reconfiguration times or intramolecular diffusion coefficients)?

Distributions and dynamics from single-molecule FRET

Unfolded state dynamics: the Rouse model

Rouse model with internal friction

$$-\zeta_{i}\kappa\frac{d\mathbf{r}}{dt}-\zeta_{s}\frac{d\mathbf{r}}{dt}-\kappa_{0}\kappa\mathbf{r}+\mathbf{f}(t)=0$$

Sum of relaxation modes

$$\langle \mathbf{r}(0)\mathbf{r}(t)\rangle \propto \sum_{p} \frac{1}{p^2} e^{-t/\tau_p}$$

Scaling of dynamics with chain dimensions

 $au_0 \propto \langle r^2
angle \eta$

Internal friction time τ_i additive and independent of p

 $\tau_p = \frac{\tau_0}{p^2} + \tau_i$

Cerf 1958 De Gennes 1979 Portman, Takada & Wolynes, 2001 Khatri & McLeish 2007

Quantifying internal friction in unfolded proteins

Quantifying internal friction in unfolded proteins

Internal friction in intrinsically disordered proteins?

Internal friction in intrinsically disordered proteins?

- → increased reconfiguration dynamics of charged IDPs
- → greater internal friction in more compact unfolded states

Single-molecule FRET of protein structure and dynamics – a primer Schuler B J Nanobiotech 11(Suppl 1):S2 (2013)

Single-molecule detection and identification of multiple species by multiparameter fluorescence detection Widengren J, Kudryavtsev V, Antonik M, Berger S, Gerken M, Seidel CAM Anal Chem 78: 2039-2050 (2006)

Single-molecule spectroscopy of protein folding dynamics – expanding scope and timescales Schuler B, Hofmann H Curr Opin Struct Biol, 23: 36-47 (2013)

Theory of Single-Molecule FRET efficiency histograms Gopich I, Szabo A Adv. Chem. Phys., 146: 245-297 (2012)